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Abstract
Model counting (#SAT) is a fundamental problem1

in theoretical computer science with applications2

in probabilistic reasoning, reliability analysis, and3

verification tasks. Despite advancements in solvers4

and #SAT instance generation, existing bench-5

marks fail to fully capture the diversity of struc-6

tural features that influence solver performance.7

This paper introduces a feature-driven #SAT in-8

stance generator that systematically varies the frac-9

tion of Horn clauses across the full range (0% to10

100%), enabling a rigorous evaluation of solver11

performance. Results reveal a “U-shaped” correla-12

tion between solve times and Horn-clause fractions13

and a strong relationship with model counts, expos-14

ing computational bottlenecks. Our contributions15

include the generator design, experimental valida-16

tion across multiple solvers, and insights into im-17

proving solvers for challenging structural configu-18

rations, advancing #SAT research.19

1 Introduction20

Counting solutions to logical formulas is more than a theoret-21

ical curiosity—it underpins critical real-world applications.22

Model counting (MC), often referred to as #SAT, determines23

the number of satisfying assignments for a given proposi-24

tional formula [Gomes et al., 2009]. As a canonical #P-25

complete problem, it is central to theoretical computer sci-26

ence and vital for applications such as probabilistic reason-27

ing [Littman et al., 2001, Bacchus et al., 2003], reliability28

analysis [Valiant, 1979], and verification [Baluta et al., 2019].29

A variety of model counting solvers have been developed to30

tackle #SAT, employing diverse strategies to address its com-31

putational challenges.32

Solvers are algorithms designed to find the count of #SAT33

instances, while generators create these problem instances.34

Systematic evaluation and comparison of model counting35

solvers has been driven in part by the Model Counting Com-36

petition [Fichte and Hecher, 2021]. Although existing bench-37

mark suites have advanced the field, our analysis of existing38

model counting generators reveals that they do not fully ex-39

plore the structural diversity of #SAT instances. This shows40

the need for refined instance generators capable of system-41

atically varying structural features to better understand their42

impact on solver performance. One such feature, the fraction43

of Horn clauses, will be the focus of our research.44

The #SAT problem extends SAT by counting the total num-45

ber of satisfying assignments, rather than just determining46

satisfiability. Instances are typically represented in Conjunc-47

tive Normal Form (CNF), a structure composed of clauses,48

each a disjunction of literals. A literal represents a variable49

or its negation. Structural features of #SAT instances include50

metrics such as clause-to-variable ratios, clause polarity, and51

the fraction of Horn clauses, all of which can influence solver52

performance. A Horn clause, in particular, is a special type of53

clause containing at most one positive literal.54

This research addresses the question: How can we design55

#SAT instance generators focusing on the fraction of Horn56

clauses to evaluate and benchmark model counting solvers, 57

and how does the fraction of Horn clauses influence solver 58

performance? To explore this, we develop a feature-driven 59

generator capable of producing similar #SAT instances with 60

controlled Horn-clause fractions. Using these instances, we 61

benchmark solvers from the 2024 Model Counting Competi- 62

tion under time constraints, gaining insights into solver effi- 63

ciency and correctness across different structural configura- 64

tions. Our analysis aims to provide valuable recommenda- 65

tions for improving solvers, particularly for challenging con- 66

figurations. 67

The remainder of this paper is organized as follows. Sec- 68

tion 2 reviews prior research that inspired and informed our 69

work. Section 3 introduces foundational concepts of #SAT 70

instances. Section 4 presents the problem statement and sub- 71

questions we aim to answer. Section 5 outlines our method- 72

ology for generating and evaluating feature-driven #SAT in- 73

stances. Section 6 details the implementation of the gen- 74

erator. Section 7 discusses the experimental setup and re- 75

sults, while Section 8 addresses responsible research princi- 76

ples. Finally, Section 9 examines broader implications, and 77

Section 10 concludes with directions for future work. 78

2 Related Work 79

This section reviews foundational and recent studies that in- 80

formed and guided the development of our work. Horn 81

clauses have been studied in both SAT and #SAT due to their 82

unique structural properties and computational advantages. 83

The Unit Propagation algorithm [Zhang and Stickel, 1996] 84

solves instances of SAT problems composed entirely of Horn 85

clauses in linear time. This approach simplifies satisfiability 86

checking and laid the groundwork for modern SAT solvers. In 87

model counting, [Dubray et al., 2023] extended these ideas. 88

They proposed an efficient projected weighted MC solver for 89

Horn clause instances, demonstrating how their structured na- 90

ture supports scalable probabilistic inference. These studies 91

highlight the theoretical and practical significance of Horn 92

clauses, motivating our exploration of their potential in model 93

counting. 94

A notable contribution to this area is SharpVelvet [Latour 95

and Soos, 2024], a modular tool for fuzzing propositional 96

model counters. Building on the work of [Biere, 2009] 97

and [Brummayer, 2009, Brummayer et al., 2010], SharpVel- 98

vet generates #SAT instances using the CNFuzzDD and Fuz- 99

zSAT generators. In this project, we have implemented one 100

more generator, PairSAT [Jurišić, 2025b], and added it to 101

SharpVelvet framework to help our research. However, our 102

findings indicate that these instances lack structural diversity 103

and proximity to the Horn formula. This limitation reinforces 104

the need for a generator that systematically explores the frac- 105

tion of Horn clauses. 106

Recent work has focused on designing benchmarks to 107

challenge solvers by manipulating structural properties of 108

instances. [Escamocher and O’Sullivan, 2022] proposed 109

generators for small, yet difficult model counting instances. 110

[Giráldez-Cru and Levy, 2016] introduced SAT instance gen- 111

eration techniques that preserve community structure. Al- 112

though targeting SAT, this approach showed how structural 113



modifications have been studied.114

Research into structural features of #SAT instances has115

been pivotal in model counting field. Simple metrics, like116

clause-to-variable ratios, have proven insufficient to fully117

capture problem hardness. [Nudelman et al., 2004] found118

that metrics such as weighted clause graph clustering coeffi-119

cients are also useful indicators of instance difficulty. These120

findings have shaped automated algorithm selection frame-121

works, such as [Shavit and Hoos, 2024], which use diverse122

instance features to develop adaptive, portfolio-based solver123

strategies.124

Building on these insights, benchmarks tailored to struc-125

tural characteristics, such as varying Horn clause proportions,126

represent a promising research direction. We leverage post-127

processing techniques inspired by [Li et al., 2023] to refine128

the fraction of Horn clauses in generated instances. Addi-129

tionally, we integrate concepts from the generators proposed130

by [Escamocher and O’Sullivan, 2022] to target instances131

specifically for model counting and adopt their instance siz-132

ing strategies to guide our testing.133

3 Preliminaries134

This chapter introduces the foundational concepts necessary135

to understand this work, focusing on propositional model136

counting and related structures. Model counting (#SAT) is137

the problem of determining the number of satisfying assign-138

ments for a given propositional formula, typically expressed139

in Conjunctive Normal Form (CNF). A solver is an algorithm140

designed to find or count solutions for such #SAT instances,141

while a generator creates these problem instances to evaluate142

and benchmark solver performance. Structural properties of143

such formulas, such as the ratio between number of variables144

and clauses, are important for development #SAT generators.145

3.1 CNF Formula146

A Conjunctive Normal Form (CNF) formula is a conjunction147

of clauses, where each clause is a disjunction of literals. A148

literal is either a propositional variable or its negation.149

For example, the formula (A∨¬B)∧(C∨D∨¬E)∧(¬F )150

is in CNF. This formula consists of three clauses, each with151

a defined arity, which is the number of literals it contains. In152

this example, the arities of the clauses are 2, 3, and 1, respec-153

tively.154

3.2 SATZilla Features155

SATZilla is a framework designed to predict the best #SAT156

solver for a given instance by analyzing its structural fea-157

tures [Shavit and Hoos, 2024]. These features describe prop-158

erties such as the size of the formula, graph connectivity, and159

clause-to-variable ratios. By using these metrics, SATZilla160

identifies the solver best suited for a specific instance, en-161

hancing efficiency and performance. In this research, we used162

SATZilla’s software to calculate feature values for #SAT in-163

stances.164

3.3 Horn Clauses165

Definition 1 (Horn Clause). A Horn clause is a disjunction166

of literals in propositional logic that contains at most one pos-167

itive literal. Formally, a clause C = L1 ∨ L2 ∨ · · · ∨ Ln is168

Figure 1: Horn-clause percentages generated by existing gen-
erators. The data is sorted per generator by the measured met-
ric.

a Horn clause if |{Li | Li is positive}| ≤ 1, where Li repre- 169

sents a literal. 170

Definition 2 (Horn-Clause Fraction). The Horn-clause frac- 171

tion quantifies the proportion of clauses in a #SAT instance 172

that are Horn clauses. If an instance has n total clauses and h 173

of those are Horn clauses, the Horn-clause fraction is defined 174

as: 175

Horn-clause fraction =
h

n
.

Horn clauses are significant due to their unique structural 176

properties, which can influence solver efficiency and com- 177

plexity. Analyzing the Horn-clause fraction helps in under- 178

standing solver behavior and instance difficulty [Shavit and 179

Hoos, 2024]. 180

4 Problem Description 181

Building on the concepts outlined in the preliminaries, this 182

section describes the problem addressed in this research. Ad- 183

vancing solver performance is essential due to the broad ap- 184

plications of model counting. Achieving progress requires 185

access to diverse #SAT instances that capture a wide range of 186

structural properties, including the fraction of Horn clauses. 187

4.1 Problem Statement 188

We want to find out if the fraction of Horn clauses is influ- 189

encing #SAT instance complexity and solver performance. 190

However, data from 200 instances generated using existing 191

tools available in SharpVelvet indicate that Horn-clause per- 192

centages are typically concentrated between 25% and 65% 193

(see Figure 1). This limited range leaves much of the feature 194

space unexplored, reducing the effectiveness of benchmarks 195

in identifying solver limitations. 196

Additionally, Figure 1 includes, in red, a set of instances 197

that do not conform to the pattern mentioned above. These in- 198

stances are drawn from the publicly available Track 1 dataset 199

of the Model Counting Competition [Fichte et al., 2024] and 200

originate from a variety of research groups rather than a single 201

generative tool. Hence, designing a unified, publicly acces- 202

sible generator capable of replicating such diversity in Horn- 203

clause distributions remains an open challenge. 204

Motivated by the limited range of available generators and 205

the recent interest in Horn clauses [Dubray et al., 2023], this 206



work aims to systematically vary the Horn-clause fraction207

across its full range (0% to 100%). Such variation should en-208

able the creation of diverse and challenging #SAT instances209

that stress-test solvers. By doing so, we aim to identify solver210

inefficiencies, errors, and weaknesses.211

4.2 Relation to Research Questions212

Building on the research question introduced in the Section213

1, this study is guided by the following research questions:214

1. RQ1: How can we design a #SAT instance generator215

that systematically varies the fraction of Horn clauses216

while keeping values of other features stable?217

2. RQ2: How can analysing solver performance on218

instances produced by our generator reveal solver219

strengths, weaknesses, and opportunities for improve-220

ment?221

Addressing these questions involves testing solvers un-222

der diverse and extreme conditions, exposing vulnerabilities223

such as timeouts, memory inefficiencies, or incorrect model224

counts. This rigorous evaluation aims to identify areas for225

improvement in solvers.226

5 Methodology227

The primary objective of this research is to explore the full228

feature space of the “horn-clauses-fraction” feature while229

minimizing the impact on other key features of #SAT in-230

stances. While this goal is theoretically straightforward, in231

practice, certain features are tightly coupled. To address this,232

we developed an approach to systematically controls other233

features while varying the horn-clauses-fraction.234

5.1 Feature Selection and Monitoring235

To ensure meaningful and balanced #SAT instance genera-236

tion, we selected 8 additional SATZilla features spanning di-237

verse structural and statistical properties to monitor and sta-238

bilize during the generation process:239

1. vars-clauses-ratio: The ratio of variables to clauses,240

representing problem size.241

2. VCG-VAR-mean: The mean variable node degree in242

the Variable Clause Graph.243

3. VCG-CLAUSE-mean: The mean clause node degree in244

the Variable Clause Graph.245

4. cluster-coeff-mean: The mean weighted clustering co-246

efficient in the Variable Clause Graph.247

5. reducedClauses: The number of clauses remaining af-248

ter preprocessing the SAT formula.249

6. reducedVars: The number of variables remaining after250

preprocessing the SAT formula.251

7. BINARY+: The fraction of clauses with 2 or more liter-252

als.253

8. TRINARY+: The fraction of clauses with 3 or more254

literals.255

Feature Name NCV Value
CNFuzzDD Competition

horn-clauses-fraction 0.06118 0.35889
BINARY+ 0.23235 0.68741
VCG-VAR-mean 0.13415 0.22757
VCG-CLAUSE-mean 0.13410 0.23705
cluster-coeff-mean 0.08751 1.50337
vars-clauses-ratio 0.04495 0.50339
reducedClauses 0.00729 0.29252
reducedVars 0.00677 0.41309
TRINARY+ 0.06654 0.36689

Table 1: Normalized Coefficient of Variation (NCV) values
for selected features across 200 instances generated with CN-
FuzzDD generator and Track 1 of 2024 MC Competition.

These features were chosen from 56 calculated by 256

SATZilla software. Many were excluded for being tightly 257

coupled with horn-clause fraction. Some measured compu- 258

tation times, making them too difficult to stabilize. SATZilla 259

also includes derived features like variance and higher-order 260

values. These are helpful as data for machine learning but 261

less relevant for our application. We manually analysed all 262

features with help of a Pearson Correlation Matrix (found in 263

section ??) and picked the most meaningful ones. The final 264

set is distinct, loosely coupled, and important for hardness. 265

Stabilizing these features ensures that horn-clause vari- 266

ations are isolated. This ensures that behaviour of 267

horn-clauses-fraction values can be independently 268

examined. 269

5.2 Challenge 270

Maintaining the eight selected features’ values constant 271

across many instances is inherently challenging. Interde- 272

pendencies among features complicate varying the Horn- 273

clause fraction from 0% to 100%. For instance, chang- 274

ing the horn-clauses-fraction directly influences the ratio of 275

positive to negative literals, which in turn affects structural 276

features like cluster-coeff-mean, VCG-VAR-mean 277

and VCG-CLAUSE-mean. Additionally, features like 278

reducedVars and reducedClauses are influenced 279

by preprocessing heuristics that depend on the initial dis- 280

tribution of literals and clauses. Likewise, arity of 281

clauses should also be kept same, and although not in- 282

fluenced by polarity of literals, is also structurally impor- 283

tant. Arity affects vars-clauses-ratio, BINARY+ and 284

TRINARY+. This indicates that our instances should be con- 285

structed well so that preprocessing doesn’t significantly sim- 286

plify them. 287

5.3 Normalized Coefficient of Variation (NCV) 288

To evaluate the performance of the generators, we designed a 289

metric called the Normalized Coefficient of Variation (NCV). 290

The NCV measures the variability of a feature across its the- 291

oretical range, adjusted by the coefficient of variation (CV). 292

The CV is calculated as: 293

Coefficient of Variation (CV) =
σ

µ
,



where σ is the standard deviation of the feature values across294

generated instances, and µ is the mean value of the feature.295

This measures the relative dispersion of the feature.296

The NCV is obtained by multiplying the CV with an ad-297

justment factor that accounts for the observed range of the298

feature relative to its theoretical range. Specifically:299

Adjustment Factor =
ObsMax− ObsMin

TheorMax− TheorMin
,

where ObsMax and ObsMin are the maximum and mini-300

mum observed values for the feature across instances, and301

TheorMax and TheorMin are the theoretical maximum and302

minimum values.303

To calculate the theoretical range, we conducted a thor-304

ough examination of all features and their calculation meth-305

ods. Additionally, we analysed feature values produced by306

all generators seen in Figure 1. This analysis validated and307

supported our calculations.308

The NCV is then calculated as:309

NCV = CV · Adjustment Factor.

This NCV metric captures both the variability of the fea-310

ture and its dispersion across its theoretical range. High NCV311

values indicate greater variability and feature exploration,312

while low NCV values suggest limited variability. In this re-313

search the threshold of lower variability has been chosen as314

0.1.315

5.4 Visualization of Results316

Table 1 summarizes the NCV values for selected features,317

providing insights into the variability achieved during in-318

stance generation. The values reflect the generator’s ability319

vary feature of values across generated instances. Features320

with higher NCV values, such as cluster-coeff-mean321

in case of Competition instances, demonstrate effective ex-322

ploration, whereas lower values indicate limited variability.323

6 Implementation324

In this section, we describe the design of our custom #SAT325

instance generator [Jurišić, 2025a]. The generator ensures326

controlled Horn-clause fractions while maintaining stability327

in other selected features. By adapting post-processing and328

solution-fitting techniques from prior works, it achieves both329

diversity and consistency, meeting the requirements outlined330

in Section 4.331

6.1 Objective332

The generator’s primary objective is to produce #SAT in-333

stances with Horn-clause fractions ranging from 0% to 100%.334

We also aim to preserve stability in other selected features.335

Specifically, we targeted an NCV below 0.1 for all monitored336

features, which we estimated as sufficient to test Horn-clause337

fractions independently. This goal addresses the limitations338

of existing generators in SharpVelvet, which fail to explore339

the full Horn-clause fraction feature space.340

Algorithm 1 Horn-Generator Pseudocode
Input: F - CNF instance with v variables and c clauses, n -

amount of instance to generate
Output: Set of n CNF instances with varying horn clause

counts
1 step← c/n
2 instances← ∅
3 for i← 0 to 100 do
4 Ftemp ← F
5 target← i× step
6 count← horn clauses(Ftemp)
7 if count < target then
8 for clause in Ftemp do
9 if clause is not Horn and count < target then

10 Flip positive literals to negatives
11 end
12 end
13 end
14 if count > target then
15 for clause in Ftemp do
16 if clause is Horn and count > target then
17 Flip negative literals to positives;
18 end
19 end
20 end
21 if rand() < 0.75 then
22 Fit a solution to Ftemp for satisfiability
23 end
24 instances← instances ∪ Ftemp

25 end
26 return instances

6.2 Algorithm Design 341

To answer RQ1, the algorithm employs a post-processing 342

technique inspired by [Crowley et al., 2024,Giráldez-Cru and 343

Levy, 2016]. It begins with an existing #SAT instance and 344

modifies it to achieve the desired Horn-clause fraction while 345

preserving other structural properties. The input instance can 346

be any CNF formula, though instances without unit clauses 347

(arity 1) are preferred since these clauses are always Horn. 348

The generator has been validated using instances from CN- 349

FuzzDD, FuzzSAT, PairSAT, and G2SAT [You et al., 2019]. 350

The adjustment of the Horn-clause fraction is accom- 351

plished by flipping the polarity of literals, ensuring that other 352

structural features remain stable, as described in Algorithm 1 353

on lines 10 and 17. On line 10, positive literals are flipped to 354

negative to convert non-Horn clauses into Horn clauses, while 355

on line 17, the opposite operation is performed for negative 356

literals. The algorithm minimizes the number of flips to retain 357

the structure of the original instance as much as possible. The 358

choice of which literals to flip is random; however, to ensure 359

reproducibility, the randomization process is tied to a seed. 360

In addition to adjusting the Horn-clause fraction, the al- 361

gorithm incorporates a solution-fitting step, as shown on line 362

22 of Algorithm 1. The pseudocode for this step is provided 363

in Section A.1. During this process, the algorithm traverses 364

the clauses linearly and assigns an observed polarity to each 365



Figure 2: Horn-clause percentages generated by existing gen-
erators with our generator in purple.

literal, thereby creating a set of assignments, a solution. If366

any clause is not satisfied by the generated solution, the liter-367

als within that clause are flipped while preserving the overall368

Horn-clause fraction. This step is applied with a 75% prob-369

ability to ensure that a majority of the instances remain sat-370

isfiable, while leaving some instances unsatisfiable. Unsatis-371

fiable instances are important for benchmarking solvers. The372

concept of solution fitting is adapted from [Escamocher and373

O’Sullivan, 2022].374

7 Experiments and Results375

This section details the experimental evaluation of our imple-376

mentation and presents the results obtained. The primary ob-377

jective of this study is to address RQ2, investigating how vari-378

ations in the Horn-clause fraction influence the performance379

of model counting solvers. The findings demonstrate the ef-380

fectiveness of our generator in producing instances that chal-381

lenge state-of-the-art solvers while maintaining control over382

structural features.383

7.1 Implementation Results384

A total of 200 instances were generated using our custom385

Horn generator to evaluate its ability to vary the Horn-clause386

fraction compared to existing generators. Figure 2 illustrates387

the generator’s capability to produce a uniformly distributed388

range of Horn-clause fractions, showcasing its effectiveness389

in addressing the limitations of current tools.390

To assess the stability of other features while varying391

the Horn-clause fraction, we created an additional 1010 in-392

stances. The generation was performed using 10 base in-393

stances, selected as follows: 3 from the FuzzSAT genera-394

tor, 3 from PairSAT, 3 from CNFuzzDD, and 1 from G2SAT.395

For each base instance, 101 variants were generated using396

the Horn generator. The number 101 comes from each of397

the percentages of Horn-clause fraction value from 0% to398

100%. Table 2 presents the Normalized Coefficient of Vari-399

ation (NCV) values for these features, confirming that the400

generator achieves high variability in the Horn-clause frac-401

tion while ensuring minimal deviation in other structural fea-402

tures. These results validate the generator’s ability to produce403

diverse instances with controlled feature stability, answering404

the objective in RQ1.405

Feature Name NCV Value
horn-clauses-fraction 0.570534
cluster-coeff-mean 0.011602
vars-clauses-ratio 0.000648
reducedVars 0.000259
reducedClauses 0.000098
VCG-VAR-mean 0.000015
VCG-CLAUSE-mean 0.000015
BINARY+ 0.000014
TRINARY+ 0.000000

Table 2: Normalized Coefficient of Variation (NCV) values
for selected features across 1000 #SAT instances generated
with Horn generator. Feature with highest value is high-
lighted.

7.2 Experimental Setup 406

All experiments were conducted on TU Delft’s HPC clus- 407

ter [Delft High Performance Computing Centre (DHPC), 408

2024] using the p2 cluster for its higher CPU frequency, 409

needed for #SAT tasks. Each task was allocated one core 410

and 8 GB of memory, this being the memory limit per solver. 411

Tasks ran in parallel, with solvers operating independently 412

without sharing memory. 413

The solvers tested were d4 [Lagniez and Marquis, 2017], 414

ganak [Sharma et al., 2019], and gpmc [Hashimoto, 2023]. 415

Identical hardware and instances were used to ensure fair per- 416

formance comparisons. Each solver had 10 minutes to solve 417

an instance. Instances not Solved within this limit were clas- 418

sified as Unsolved. 419

7.3 Evaluation Metrics 420

To measure solver performance, we used solving time. We 421

also tracked key features for consistency. We ensured NCV 422

remained below 0.1. We checked that after each generation. 423

If NCV exceeded 0.1, we stopped. Then we refined our gen- 424

erator. This has however not happened once during the testing 425

process. 426

7.4 Results 427

We measured solving time on each generated instance, with 428

SharpVelvet enforcing a 10-minute time limit and 8 GB of 429

memory per solver. This memory limit is measured solvers 430

recorded their own memory usage however it is further en- 431

sured by the DelftBlue. For reliability checks, we compared 432

solver outputs across repeated runs of identical instances. 433

Three large experiments were conducted using 3-CNF in- 434

stances, a common focus in #SAT research. Each exper- 435

iment comprised 1010 instances, aiming to solve approxi- 436

mately 75% within the prescribed limit. 10 base instances 437

were used with horn generator creating 101 instances from 438

each with 0% to 100% of horn clauses. We fixed the vari- 439

able count at 400 and varied the number of clauses (90, 100, 440

110), guided by earlier observations that problems near a 4:1 441

clause-to-variable ratio pose particular difficulty [Nudelman 442



Figure 3: Solver performance on 3-CNF instances with 400
clauses and 90 variables.

Figure 4: Solver performance on 3-CNF instances with 400
clauses and 100 variables.

Figure 5: Solver performance on 3-CNF instances with 400
clauses and 110 variables.

et al., 2004, Escamocher and O’Sullivan, 2022]. Prior ex-443

perimentation with DelftBlue hardware found that instances444

of about 400 clauses are suitable for our 10 minute timeout.445

Base instances were generated via PairSAT to ensure consis-446

tent control over arity and size.447

Figure 3 presents solver performance on instances with 90448

clauses over a 12-hour horizon. All instances were eventu-449

ally solved, though ganak and d4 timed out on four instances450

(fewer than 5% of Horn clauses) prior to the 10-minute cut-451

off. Figures 4 and 5 show results for 100 and 110 clauses, re-452

spectively, confirming a “U-shaped” performance curve tied453

Figure 6: Correlation between gpmc solver runtime and
model count across instances with varying Horn-clause frac-
tions.

to varying Horn-clause fractions. For 100 clauses, about 9% 454

of instances timed out, with gpmc showing stronger perfor- 455

mance than d4. Increasing to 110 clauses led to a 23.5% 456

timeout rate, aligning with the intended 75% solve threshold. 457

Instances with Horn-clause fractions below 15% or above 458

90% were particularly challenging. Across these conditions, 459

ganak narrowly outperformed gpmc in terms of successful 460

solves, with timeouts at 21.9% and 22.5%, respectively. 461

7.5 Result Analysis 462

A notable observation from the experiments is a pronounced 463

“U-shaped” solve time curve, where instances with either a 464

very low or very high Horn-clause fraction require more time 465

to solve. Initial efforts to correlate this phenomenon with 466

other structural features were inconclusive, suggesting that 467

the Horn-clause fraction itself might be driving the observed 468

difficulty. Instances at the extremes of Horn-clause fraction 469

exhibit similar polarity assignments for their variables, result- 470

ing in a large number of solutions (high model count). This 471

lead us to investigate the relationship between solve time and 472

model count. 473

To quantify this relationship, we plotted the model count 474

against solver runtime for the dataset with 400 variables and 475

100 clauses, as shown in Figure 6. The Spearman rank cor- 476

relation coefficient between model count and solving time 477

was 0.972, indicating a strong monotonic association. Since 478

model counts may span several orders of magnitude, we sus- 479

pected an exponential relationship between model count and 480

solving time. This initial analysis suggested that model count 481

plays a critical role in influencing solver performance, partic- 482

ularly for instances at extreme Horn-clause fractions. 483

After testing various transformations, we found the fourth- 484

root transformation (i.e., 4
√

model count) to exhibit the high- 485

est Pearson correlation coefficient of 0.862 (Figure 7). This 486

transformation improved linearity and demonstrated how the 487

model count tightly predicts solver runtime. A similar pat- 488

tern emerged in the 90-clause dataset, for which we measured 489

a Spearman coefficient of 0.918 and a Pearson correlation 490

of 0.842 after applying a cubic-root transformation. These 491

findings underscore that extreme Horn-clause fractions yield 492

large solution spaces, thereby correlating strongly with the 493

heightened computational cost of model counting. 494



Figure 7: Correlation between gpmc solver runtime and
model count across instances with varying Horn-clause frac-
tions with transformation function f(x) = 4

√
x applied to

model count.

8 Responsible Research495

Research integrity is paramount in ensuring the credibil-496

ity and reproducibility of scientific work. In alignment497

with the “Netherlands Code of Conduct for Research In-498

tegrity” [Netherlands Organisation for Scientific Research499

(NWO), 2024], we adhered to the principles of honesty,500

scrupulousness, transparency, independence, and responsibil-501

ity throughout this study.502

To ensure honesty, all reported results were obtained with-503

out manipulation or bias. The experimental setup, method-504

ologies, and metrics used for evaluation are explicitly doc-505

umented to facilitate transparency. Where applicable, state-506

of-the-art approaches were incorporated, and the latest ad-507

vancements in #SAT instance generation and model counting508

solvers were considered.509

To promote reproducibility, the implementation of our cus-510

tom #SAT instance generator, will be made publicly available511

on a GitHub repository [Jurišić, 2025a]. Additionally, test-512

ing instances and evaluation scripts will be shared to enable513

the community to validate and extend our findings. Follow-514

ing recommendations for open research practices [Foster and515

Deardorff, 2017], we also ensured that no proprietary or per-516

sonal data was used during this research.517

By adhering to these principles, we aim to contribute to the518

advancement of reproducible and responsible research in the519

field of model counting.520

9 Discussion521

In this section, we analyze the unique contributions of our522

Horn-driven generator, focusing on its ability to expand the523

range of benchmarks, the difficulty of generated instances,524

solver performance, and limitations.525

Our generator distinguishes itself from tools like FuzzSAT526

and CNFuzzDD by covering a broader range of Horn-clause527

fractions (0% to 100%). Unlike existing generators, which528

are constrained to a narrower spectrum, this range enables529

more diverse and rigorous benchmarking of solvers. No-530

tably, instances generated by our approach demonstrate sig-531

nificantly higher complexity, as indicated by longer solve532

times, affirming the generator’s capacity to stress-test solvers533

effectively.534

Generated instances posed challenges beyond those of 535

traditional benchmarks, particularly at extreme Horn-clause 536

fractions. The observed “U-shaped” performance curve re- 537

flects the computational challenge imposed by extreme con- 538

figurations, likely due to the high model count. This high- 539

lights the value of integrating such instances into benchmark- 540

ing suites to evaluate solvers thoroughly. 541

A minor yet noteworthy observation was the occurrence of 542

discrepancies in model counts across solvers for less than 1% 543

of cases. These differences, often by a single count, appear 544

linked to very high model counts, exceeding integer limits. 545

While non-reproducible locally, these anomalies show a pos- 546

sible need for enhanced precision handling in solvers for ex- 547

treme scenarios. This is however, subject to future research. 548

Solver behaviour varied considerably across the gener- 549

ated instances. d4 struggled with extreme Horn-clause frac- 550

tions, particularly at the higher end, while ganak and gpmc 551

demonstrated better resilience. However, the consistent diffi- 552

culty at extremes for all solvers suggests a potential area for 553

algorithmic improvements, such as strategies for handling ex- 554

pansive solution spaces more efficiently. 555

10 Conclusions and Future Work 556

This research introduced a feature-driven generator for #SAT 557

instances, capable of varying the Horn-clause fraction sys- 558

tematically across the full range (0% to 100%), directly ad- 559

dressing RQ1. By maintaining stability in key structural fea- 560

tures, the generator enables precise evaluation of solver per- 561

formance under varying Horn-clause configurations, filling 562

gaps in existing tools. 563

Several limitations remain. The generator can’t work with 564

unit clauses in base instances, as these restrict the achievable 565

Horn-clause fractions. Future enhancements should address 566

this constraint and refine heuristic methods to further stabilize 567

features. Additionally, the minor model count discrepancies 568

observed in less than 1% of cases, likely due to numerical lim- 569

itations in handling extremely high counts, require in-depth 570

investigation. 571

Our results show that the generator effectively reveals 572

solver limitations, with performance following a “U-shaped” 573

curve tied to extreme Horn-clause fractions. This insight, ad- 574

dressing RQ2, highlights the computational challenges posed 575

by large solution counts, found at extreme Horn-clause frac- 576

tions. 577

For solver developers, our findings suggest focusing on op- 578

timizing algorithms for high model count instances. For ex- 579

ample, strategies to efficiently manage large solution spaces 580

could improve solver performance. While solvers like 581

ganak, gpmc, and d4 exhibited similar performance on 582

most instances, d4 struggled on instances with extreme val- 583

ues of Horn clause fraction, further emphasizing need for im- 584

provement. 585

The promising correlation between solve times and model 586

counts suggests a pattern we didn’t find in literature before, 587

though the derived transformation function requires valida- 588

tion on larger datasets. Future work should expand on this 589

analysis, diving deeper into relation between solve time and 590

model count. 591



A Appendix592

A.1 Solution Fitting Algorithm593

Algorithm 2 provides the pseudocode for the solution-fitting594

step referenced in line 21 of Algorithm 1. This step adjusts595

the polarity of literals within clauses to ensure the generated596

instances remain satisfiable while aiming to match the tar-597

get Horn clause count. The process involves flipping liter-598

als strategically, prioritizing minimal disruption to the origi-599

nal formula’s structure. This step is critical for maintaining600

feature stability while systematically varying the Horn clause601

fraction.602

Algorithm 2 Pseudocode for the Solution Fitting Algorithm.
Input: F – CNF Formula, target – target Horn count
Output: A modified CNF formula F that is satisfiable.

27 solution← generate solution(F )
28 current← count horn clauses(F )
29 foreach clause c in F do
30 if not satisfied(c, solution) then
31 P ← {all positive literals in c}
32 N ← {all negative literals in c}
33 current← {Count of horn clauses}
34 if current ≤ target then
35 if |P | > 1 then
36 Flip literals in P if negative in solution
37 if satisfied(c, solution) and c is Horn then
38 current← current+ 1;
39 end
40 else
41 Flip literals in P or N so that c is satisfied
42 if satisfied(c, solution) and c not Horn then
43 current← current− 1;
44 end
45 end
46 else
47 if |P | > 1 then
48 Flip literals in N if positive in solution
49 if satisfied(c, solution) and c is Horn then
50 current← current+ 1;
51 end
52 else
53 Flip literals in N if positive in solution
54 if satisfied(c, solution) and c is no longer

Horn then
55 current← current− 1;
56 end
57 end
58 end
59 end
60 end
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