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Abstract: Spaceborne Global Navigation Satellite Systems (GNSS) receivers have become ubiquitous
sensors for spacecraft navigation, especially in Low Earth Orbits (LEOs), often also supporting science
endeavors or as acting dedicated science payloads. Due to the large number of space-capable GNSS
receiver models available, spacecraft designers, as well as scientists, may find it difficult to have or
gain an overview of suitable state-of-the-art models for their purposes and constraints. Based on a
literature review that included more than 90 different receiver models, this paper aims to provide an
overview of space-capable GNSS receivers that have a heritage in space missions. It analyses trends
from the collected data and provides an outlook on miniaturized GNSS receiver models, which have
a high potential of being used in future space missions.

Keywords: GNSS; space receivers; space missions; COTS; miniaturization

1. Introduction

The benefits of using the Global Navigation System (GPS) to track user satellites have
been explored since 1982, when the first GPS receiver, the single-frequency GPSPAC (GPS
receiver and processor package designed at JHU/APL, with NASA as the co-sponsor, built
by Magnavox) was flown on the Landsat-4 satellite [1,2]. At this time, long before GPS’ full
operational capability and with only five active GPS satellites in space, it was recognized
that receivers in LEO could not only successfully track GPS satellites but also that this
technology had the potential to reduce or avoid the dependency on costly ground-based
tracking and provide precise onboard timing. In 1992, the operational use of GPS-based
precise orbit determination (POD) was first established when the GPSDR (GPS Demon-
stration Receiver) dual-frequency receiver (developed by Motorola Inc. under contract by
JPL), also known as Monarch, was flown onboard the TOPEX/Poseidon mission [3,4] to
directly support scientific altimetry requirements. All subsequent altimetry and gravimetry
missions have carried one or more geodetic-quality GNSS receivers for POD purposes. A
new dedicated science capability for atmospheric sensing made possible by GPS in LEO
was realized by the GPS/MET experiment on board MicroLab-1 in 1995, which was the
first to collect GPS-based spaceborne radio occultation (GNSS-RO) measurements [5]. The
first spaceborne GNSS-Reflectometry (GNSS-R) measurements were made in 2000 onboard
the space shuttle by the SIR-C instrument at a relatively low altitude of 208 km [6].

In terms of technology, spaceborne receivers were developed that supported the
increasing number of frequencies and signals of a single GNSS [7]. In addition, efforts to in-
tegrate other GNSS constellations, i.e., GLONASS, Galileo, BeiDou, QZSS and NavIC, have
been realized for many modern receivers [8]. The characteristics of the GPS, GLONASS,
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Galileo, and BeiDou systems in terms of their signal-in-space range error (SISRE) for LEO
satellites have been analyzed in [9]. Additionally, the era of space-capable Commercial
Off-the-Shelf (COTS) receivers started, pushed by the University of Surrey and realized by
Surrey Satellite Technology Ltd. (SSTL), United Kingdom [10]. However, using COTS GNSS
equipment onboard satellites requires extensive testing and qualification efforts, as shown
by way of example for radiation testing [11], which included not only single-frequency but
also geodetic-grade, dual-frequency receivers.

The first survey of spaceborne GPS receivers was published as early as 1992 and
included 18 receivers with their Size, Weight and Power (SWaP) characteristics [12]. In [13],
an overview of GPS receivers and associated missions is provided as well, including
a roadmap of future GPS receiver technology developments and applications, such as
onboard autonomy and formation flying. An overview and trends in space-capable GPS
receivers are also presented in [14]. More recent overviews of space-capable GNSS receivers
can be found in [15,16]. However, as the market for these receivers is rather dynamic, these
overviews do not fully reflect the current status. In addition, they are focused primarily on
high-end receivers for Precise Orbit Determination (POD) or for science applications. In
particular, they do not cover the recent developments in terms of the further miniaturization
of GNSS receivers developed, e.g., for the Internet Of Things (IoT) and mobile phone
markets, with the potential to be modified and used in space. Online resources concerning
spaceborne GNSS receivers include [17] which, however, only focuses on missions before
2005. The company satsearch B.V. provides an online directory of satellite products, mostly
tailored to small satellites, including GNSS receivers [18]. However, this directory is by far
not complete and does not provide a comprehensive overview and analysis.

We restrict our overview to those GNSS receivers that are specifically applicable to user
spacecraft navigation. Thus, receivers that are designed for launchers and sounding rockets,
such as the ACC-G3IR-LV or Navika-251-HD of the Indian company Accord Software
& Systems Private Limited, are not fully characterized in this article. Similarly, GNSS
receivers that have been designed primarily for science applications, such as GNSS Radio
Occultations (GNSS-RO) and GNSS Reflectometry (GNSS-R), have not been considered.
Examples of GNSS-RO receivers and their associated missions comprise GOLPE on SAC-C,
GPS/MET on OrbView, GRAS on MetOp A to C, ROSA on OceanSat-2, IGOR on Formosat-
3/COSMIC and TriG on Formosat-7/COSMIC-2. Examples of GNSS-R receivers and their
associated missions comprise PYCARO on 3Cat-2 [19] and the SSTL SGR-ReSI onboard the
TechDemoSat. A collection of these earlier GNSS-RO and GNSS-R receivers can be found
in Table 6.4 and Table 6.14 of [20].

When selecting an appropriate GNSS receiver for any space mission, the mission
requirements and constraints govern any informed decision. They may vary tremendously,
depending on the specific mission. In Table 1, a number of key criteria in the selection of
GNSS receivers are listed together with reasons why these are relevant.

The overall performance of receivers in real space missions, in particular the accuracy
that can be achieved, depends not only on the receiver itself but also on the spacecraft
design, such as the GNSS antenna and its orientation, and the usage of the receiver’s
data, such as which data types are used and how they are processed. A good overview of
aspects impacting the performance of GNSS receivers is provided in [16] and other related
chapters. Even if receivers have already been flown on other satellites, extensive functional
testing, including the use of a GNSS Signal Simulator (GSS), is an absolute necessity on
top of rigorous integration testing. In addition, and, in particular for COTS receivers,
environmental testing is mandatory and can require considerable effort [21]. It typically
comprises pyrotechnic shock, random vibration, thermal–vacuum and electromagnetic
interference (EMI), electromagnetic compatibility (EMC) (e.g., according to a tailored Mil-
Std-461F standard) and radiation testing.
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Table 1. Key criteria for GNSS receiver selection and their relevance.

Area Criteria Relevance

Performance Position accuracy Key criteria without postprocessing
Performance Velocity accuracy May impact prediction performance
Performance Time-To-First-Fix (TTFF) Time-critical and robust operations
Architecture Frequencies High-accuracy science applications
Architecture Channels Quality and robust operations
Architecture Antennas Science or ADCS 1 requirements

Data and I/O 2 Raw data Data postprocessing
Data and I/O PPS 3 Payload or onboard time tagging
Data and I/O Update rate Temporal resolution

Operations Initialization Effort of operations
Physical Form factor Physical spacecraft constraints
Physical Mass Subsystem budgets and launch cost
Physical Power EPS 4 subsystem budget
Physical Radiation tolerance Robustness and longevity

Programmatic Cost Test effort and mission cost
Programmatic Legal and regulatory Specific to country of origin

1 Attitude Determination and Control System. 2 Input/Output. 3 Pulse Per Second 4 Electric Power System.

The objective of this paper is to provide an overview of the heritage, status and outlook
of space-capable GNSS receivers. This overview is intended to support mission designers
and engineers with data that can help them select a space-capable GNSS that can adhere
to the needs and constraints of a space mission. Additionally, it can help scientists who
are interested in GNSS-based spaceborne data to identify possible candidate receivers for
their applications. As no current overview of space-capable receivers exists, this paper will
provide essential information for both user groups.

Section 2 provides an overview of space-capable GNSS receivers, their heritage and
current status, with a focus on SWaP characteristics and the constellation and frequency
information used. Section 3 presents an overview of future candidate space receivers as well
as trends in the current receiver development with a focus on miniaturization and special
receivers, such as snapshot receivers, which provide interesting promises. Associated
challenges in these areas, related to the usage of such receivers in space, are also discussed.

2. Heritage and Status

This section presents space-capable GNSS receiver models and their characteristics.
It has been compiled from an extensive literature study and also used online resources,
either as introduced in Section 1 or the data sheets of individual receiver suppliers. The
qualification as being space-capable is either based on the fact that the receivers have
already been flown on specific space missions or the fact that it is based on an explicit
statement of the manufacturer that the particular receiver is suitable for use in space.
Receivers specifically designed for launchers or sounding rockets have not been included
in the overview.

The receiver characteristics are mostly taken from publicly available information, such
as scientific publications or data sheets. The type of collected data comprises five regimes:
model, supplier and country of origin, radio frequency (RF) and tracking characteristics,
including number of supported antennas, SWaP values, radiation tolerance, as well as
sample heritage space missions, in which those receivers have been used. Performance
characteristics, such as TTFF and the accuracy of measurements or position fixes, have not
been included, as they may depend on the specific circumstances under which the receivers
were tested.

2.1. Overview and Statistics

A total of 57 space-capable GNSS receivers have been identified. These include
receivers that are currently available on the market as well as receivers that may no longer
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be available. Since the availability of receivers may change rapidly and depends on
companies’ business plans, availability was not included in the overview. In contrast, a
few receivers, especially used in missions where agencies are involved, show a long period
over which they are considered. An example is Javad’s TRE-G3T receiver, which will be a
core part of the ACES experiment onboard the ISS [22].

Figure 1 shows the distribution of the number of space-capable GNSS receiver models
per country. The number of GNSS receiver models per country is explicitly shown if more
than one. Five countries have developed one model. Those have been summarized under
“Var” in Figure 1. It is obvious that the US, by far, dominates this overview, while other
countries, such as India, entered the market not too long ago with various models. This
is of key importance as space-grade receivers might be export-controlled and difficult to
source in many countries.
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2.2. GNSS Navigation Receivers

Table A1, Appendix A, outlines 57 space-capable GNSS receivers used for navigation
purposes.

2.3. Analysis

It is instructive to analyze two aspects of space-capable GNSS receivers: one based
on their SWaP values and one on their architecture. Figure 2 shows the mass and max-
imum power distribution of those receivers, below 14 kg and 35 W, respectively. Two
receivers, TriG and Trig-RO of JPL and Moog Broad Reach, have power consumptions
higher than this threshold, with 55 and 60 W, respectively, and thus, are not shown in the
figure. Similarly, two receivers have masses of more than 14 kg, the GPSDR (Monarch)
of JPL with 28 kg and the SAAB GRAS/GPSRS receiver with 30 kg and are, therefore,
also not shown in Figure 1. Obviously, a mostly linear relation of mass and power
(P [W] = 2.045 + 2.871 m/kg, R2 = 0.79) can be observed with high scatter. Here, R2 is
a measure of goodness of fit, which is the proportion of variance in the dependent vari-
able that is explained by the model. Certainly, it is more important to recognize that the
34 receivers with masses below 1 kg are mostly newer receivers, stressing the trend towards
miniaturization, which is further discussed in Section 3.
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Further, the histogram of the maximum number of channels over the entire data set of
space-capable receivers is shown in Figure 3. It can be seen that receivers with 13 or fewer
channels have the highest count, with 15 (28%). A closer look reveals that many receivers
have channel numbers of multiples of i*12, with i = {1, 2, 4}, which may show the relation
of the receiver architectures with the nominal GPS constellation size of 24 satellites.
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3. Outlook and Trends

Table A1 and Figure 2 show a clear trend towards the miniaturization of space-capable
receivers. While for receivers with a heritage of use in space, there could be made a
distinction between robust L1 receivers used for onboard navigation and geodetic-grade
dual-frequency receivers for science purposes; this distinction is getting more and more
blurred. An example of this trend towards high-quality dual-frequency receivers with
small form factors is the Polarx-2 receiver of Septentrio [23], with a mass of less than 0.2 kg.

In addition, the use of COTS receivers has gained more and more relevance for mis-
sions that in the past considered the use of custom receivers. While single, large spacecraft
of space agencies, like the mini-satellite CHAMP of DLR and NASA, were designed to
address scientific objectives, commercial companies are currently providing data to NASA
and NOAA to support scientific applications ranging from atmospheric and ionospheric
monitoring to observations of the surface properties of the Earth. Recently, several com-
mercial companies have launched and operated small satellites with science payloads
for GNSS-RO and GNSS-R applications. Examples include STRATO on Spire Global’s
LEMUR [24], CION on GeoOptics CICERO [25], and Pyxis on PlanetIQ’s GNOMES [26]
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constellations. The receivers on these low-cost, 3U-12U CubeSats process multiple constel-
lations of GNSS signals through delay Doppler maps (DDM) and/or open loop tracking to
generate measurements for atmospheric, ionospheric, and Earth surface observations. This
is a paradigm change in three key aspects: from agency-driven towards industry-provided
approaches, from single to multiple satellite architectures and from large spacecraft (the
mini-satellite CHAMP had a launch mass of 500 kg) to highly miniaturized spacecraft (each
Lemur satellite has a mass of about 6 kg).

3.1. Future Candidate Space Receivers

Based on the trends described above, a list of 41 GNSS receivers has been compiled
in Appendix B, Table A2, which have not yet been used in space. This list is by no means
complete, however. It originated from literature research on companies that have already
produced GNSS receivers with space heritage but provide a larger portfolio of GNSS
receivers than the explicit space-capable receivers (e.g., Septentrio, Hexagon|Novatel) or
by companies that have developed receivers for the mass market and have not yet made a
step towards providing space-capable receivers (e.g., u-blox).

In the United States of America prior to 2016, GPS receivers designed to operate at
orbital velocities and altitudes were included on the United States Munitions List (USML)
and subject to export restrictions under International Traffic in Arms Regulations (ITAR)
controlled by the U.S. Department of State. The respective limits were set to a maximum
height of 18 km (60,000 ft) and a speed of less than 515 m/s (1000 nm/h). However, the
Export Control Initiative [27,28] resulted in a review and modification of the USML such
that commercial spaceborne receivers are now covered under the Export Administration
Regulations (EARs) process on the Commerce Control List (CCL) Item 9A5115.x controlled
by the U.S. Department of Commerce [28]. So, while some export review for spaceborne
receivers is required, the process is less restrictive and onerous under the current framework.
The European Commission applies in its European regulation a speed limit of 600 m/s [29].

Apart from these legal and regulatory aspects, receivers not yet flown in space would
need to undergo an extensive testing program, as outlined in Section 1. The development of
the GNSS, with its increasing number of constellations, augmentation systems, frequencies
and signals, as well as the innovations in receiver technology, such as software-defined
radios, are clearly visible in Figure 4. Here, while still almost 25% of the receivers have less
than 100 tracking channels, some receivers offer up to 874 tracking channels.
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3.2. Miniaturization

The miniaturization of GNSS receivers is not a new trend. Already in 1998, an ad-
vanced GPS receiver for spacecraft was announced under the title “GPS On A Chip”, which
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led to the BlackJack receiver, with a mass of 3.2 kg [30]. The trend toward miniaturiza-
tion was also described in [14]. Based on the dataset presented in Table A2, the SWaP
distribution of those receivers is shown in Figure 5. It is obvious that even well below the
one-kilogram limit, the vast majority of receivers have a mass below 0.1 kg and require less
than 10 W of power. Similarly, as for the space-capable receivers, a linear relation between
mass and power can be observed (P [W] = 0.938 + 23.041 m/kg, R2 = 0.74).
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possibly be used in space.

Obviously, there is only a vague relationship between maximum power and the
number of channels. This is an interesting phenomenon. A possible explanation could
be the different technologies used by the receivers as well as the quality of the data given
by the suppliers, which may not follow a standardized approach on how to arrive at the
power values given in the data sheets. Other factors include the duty cycle and date rate of
the onboard processing. Average power may be a better indicator of the receiver power
consumption.

Since energy consumption is a key driving factor, particularly for very small satellites,
GNSS receivers requiring very little power may become relevant for space applications in
the future. One special type is a GNSS snapshot receiver. In contrast to traditional GNSS
receivers, snapshot receivers sleep for most of the time and wake up at defined intervals to
record short snapshots, e.g., milliseconds, of GNSS signals. These receivers then digitize the
raw signals and store them locally, while the processing of these signals and the estimation
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algorithms is performed across separate processors. An example of such a snapshot
receiver is the SnapperGPS [31], with an estimated form factor of 30 × 30 × 10 mm3, an
estimated mass of 0.003 kg and a power consumption of 12.6 mAh per year. The use of a
snapshot receiver in space is not new. In fact, as part of the “Falcon Gold” experiment, a
hosted payload comprising a NAVSYS TIDGET sensor attached to a Centaur upper stage
collected in November 1997 data from signal acquisition of GPS satellites [32] in a snapshot
mode. In February 1998, the microGPS receiver started to collect snapshots for navigation
purposes onboard the SNOE mini-satellite [33]. GNSS snapshot receivers are used for orbit
determination on Planet’s Dove satellites [34]. The use of these receivers for positioning is
also considered in the framework of Internet of Things (IoT) applications [35]. The use of
such snapshot receivers onboard satellites to improve the empirical density models of the
upper thermosphere for enhanced Space Situational Awareness (SSA) has recently been
proposed [36].

4. Conclusions

Based on an extensive literature study, an overview is presented of 57 space-capable
GNSS receivers and their characteristics to help spacecraft designers and scientists alike
with informed decisions on the receiver selection. The receivers’ SWaP characteristics are
discussed, showing a clear trend of miniaturization. Additionally, their architecture is
characterized based on their number of tracking channels. In addition, a total of 41 GNSS
receivers are presented along with their characteristics, which may be suitable candidates
for future usage onboard satellites. There are three areas that still inhibit such usage:
commercially, the low numbers of receivers in space are not attractive to suppliers to
establish commercial usage; technically, they need to undergo a thorough test and validation
program to qualify them for the harsh space environment; and third, legal and regulatory
constraints would have to be overcome, which could technically be solved by removing
the velocity limits imposed by dual-use regulations and by adapting the Doppler tracking
windows.
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Appendix A

Table A1. Space-capable GNSS navigation receivers and their characteristics.

Model
Supplier (Country)

Channels
Signals Ant. Power

[W]
Mass
[gr]

Size
[mm]

TID
[krad] Missions Reference

Viceroy
General Dynamics (US)

12–18
GPS L1 C/A 1–2 7.0 1100 N/A 15 MSTI-3, Seastar, MIR,

Orbview [16]

Viceroy-4
General Dynamics (US)

12
GPS L1 C/A 1–2 7.0 1100 152 × 132 × 43 N/A MIR, KompSat-1, GOES [37]

Sentinel M-Code
General Dynamics (US)

64
GPS L1 & L2, C/A Code, P(Y), M-Code,

L2C optional
2 <9 2500 180 × 60 × 60 100 Classified [38]

Explorer
General Dynamics (US)

12
GPS L1 C/A 1–2 7.0 1200 160 × 142 × 43 N/A N/A [39]

GPSDR (Monarch)
JPL/Motorola (US)

6
GPS L1, C/A, L2, P 1 29.0 28,000 N/A N/A Topex/Poseidon 1992 [3]

GEM-S
Rockwell Collins (US)

5
GPS L1 C/A P 1 6.5 400 140 × 150 × 15 N/A BIRD [40]

TurboRogue
NASA/JPL (US) N/A N/A N/A N/A N/A N/A MicroLab-1, Oersted [5]

BlackJack (TRSR-2)
NASA/JPL (US)

48
GPS L1, P1, P2 4 15.0 3200 N/A N/A CHAMP [41]

IGOR
Broad Reach Eng. (US)

16 × 3
GPS L1 C/A, L1/L2 P(Y) 4 10.0 4600 N/A 20 Formosat-3/COSMIC,

TerraSAR-X, TanDEM-X [16]

TriG
JPL, MOOG Broad Reach

(US)

24 × 2
GPS/GLO L1/L2, (GAL E1/E5a) 4 55.0 6000 190 × 220 × 120 N/A Formosat-7/COSMIC-2 [16]

TriG RO
MOOG Broad Reach (US)

16
L1 L2 L5 Lx 4–16 60.0 5200 190 × 220 × 120 N/A Sentinal 6A [42]

TriG POD
MOOG Broad Reach (US)

16
GPS L1 L2 L5 Lx 4 20.0 2800 190 × 140 × 120 N/A OTB-1 (Orbital Test

Bed-1) [42]

Navigator
MOOG Broad Reach (US)

12
GPS L1 C/A 2 12.0 2300 190 × 240 × 80 >100 MMS, Shuttle-HSM-4 [42]
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Table A1. Cont.

Model
Supplier (Country)

Channels
Signals Ant. Power

[W]
Mass
[gr]

Size
[mm]

TID
[krad] Missions Reference

Pyxis POD
MOOG Broad Reach (US)

12
GPS L1, L1G, E2 4 20.0 2800 190 × 140 × 120 N/A N/A [15]

TRE-G3T
Javad (US)

216
GPS L1, L2, L5, Galileo E1, E5a, E5b,

AltBOC, E6, Beidou B1, B2
N/A 3.60 77 80 × 100 N/A ACES Experiment on

ISS [43]

TR-2G
Javad (US)

216
GPS L1, Galileo E1, BeiDou E1, QZSS

B1, SBAS L1, KFK WAAS/EGNOS
1 N/A 21 57 × 88 × 12 N/A N/A [44]

Stratos
Spire (US)

N/A
GPS L1, L2 N/A ~4 ~200 N/A N/A Lemur [45]

GPSRM 1
Pumpkin Inc. (US)

24
GPS L1/L2/L2C and GLONASS L1/L2 1 1.3 106 96 × 90 × 12 N/A N/A [46]

OEMV-1G
Hexagon | NovAtel (CA)

14
GPS L1 N/A 1.0 21 46 × 71 × 13 N/A RAX, CanX 4/5 [47]

OEM4-G2L
Hexagon | NovAtel (CA)

24
GPS L1, L2, L3, L5, Galileo E1, E5a, E5b,

AltBOC, Beidou B1, B2 (all tbc)
N/A 1.6 56 100 × 60 × 16 N/A CASSIOPE, CanX-2 [48]

OEM4-719
Hexagon | NovAtel (CA)

555
GPS L1, L2, L5, Galileo E1, Beidou B1

(all but E6,B3)
N/A 1.8 31 46 × 71 × 11 N/A Bobcat-1 [49]

PODRIX
RUAG (AT)

18 × 2
GPS L1/L2/L5, Galileo E1/E5a 1 15.0 3000 N/A 50 (SWARM, Sentinel-3) [15]

GPS POD
RUAG (AT)

8 × 3
GPS L1 C/A, L1/L2 P(Y) 1 8.5 2800 N/A >20 SWARM, Sentinel,

ICEsat-2 [16]

PolaRx2
Septentrio (BE)

48
GPS L1, L2 N/A N/A 190 180 × 100 × 15 9 Tet-1 [23]
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Table A1. Cont.

Model
Supplier (Country)

Channels
Signals Ant. Power

[W]
Mass
[gr]

Size
[mm]

TID
[krad] Missions Reference

NaviLEO
SpacePNT (CH)

< = 48
GPS L1 C/A L5I/Q Galileo E1b E5a E6 1–2 8.0 1300 234 × 121 × 66 N/A N/A [50]

PODRIX
Beyond Gravity (CH)

2 × 18
GPS L1, L2, Galileo E1, E5a 2 15.0 3000 280 × 240 × 81 Sentinel-6A [51]

Celeste
Spacemanic, s.r.o (CZ)

N/A
N/A 1 0.1 25 67 × 42 × 7 N/A [52]

LION
Airbus (DE)

36
GPS L1/L2/L5, Galileo E1/E5a 1–4 15.0 6000 N/A 50 SARah, CSO, Metop-5G [16]

Mosaic GNSS
Airbus (DE)

8
GPS L1 C/A 1 10.0 4000 N/A 10 SARLupe, TerraSAR-X,

Aeolus [16]

Phoenix-S
DLR (DE)

12
GPS L1 C/A 1 0.9 100 N/A 15 PROBA-2 & -V,

PRISMA, TET [16]

GPS-110
BST (DE)

N/A
N/A 2 3.0 285 91 × 84 × 41 N/A Kent Ridge-1 [53]

TopStar 3000
Thales-Alenia (FR)

12–16
GPS L1 C/A 1–4 1.5 1500 N/A >30 Demeter, Kompsat-2 [16]

Lagrange
Thales-Alenia (FR)

12 × 3
GPS L1 C/A, L1/L2 P(Y) 1 30.0 5200 N/A 20

Radarsat-2,
COSMO-Skymed,

GOCE
[16]

Tensor
Thales-Alenia (FR)

9
GPS L1 C/A 1–4 15.0 4000 N/A 100 Globalstar, SAC-C, ATV [15]

GNSS S/W Rcv.
Syrlinks (FR)

9
GPS L1 C/A, Galileo E1 1 5.0 1000 N/A 10 Taranis [16]

N-SPHERE
SAFRAN (FR)

N/A
N/A N/A N/A N/A N/A 15 GOMX-5 Gomspace

A/S [54]

GNSS-701
AAC ClydeSpace (GB)

120
GPS L1, Beidou B1, Galileo E1 1 1.0 160 94 × 56 × 26 10 N/A [55]
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Table A1. Cont.

Model
Supplier (Country)

Channels
Signals Ant. Power

[W]
Mass
[gr]

Size
[mm]

TID
[krad] Missions Reference

SGR-05U
SSTL (GB)

12
GPS L1 C/A 1 (tbc) 0.8 45 70 × 45 × 10 >11 N/A [56]

SGR-10
SSTL (GB)

24
GPS L1 C/A 2 5.5 1000 N/A 10 Tsinghua-1, BILSAT,

DART [16]

SGR-20
SSTL (GB)

24
GPS L1 C/A 4 6.0 1000 160 × 180 × 50

(est.) N/A TopSat, Uo-Sat 12,
OCO-3, Proba-1 [57]

SGR-Axio
SSTL (GB)

24
GPS L1 C/A, Option G2, E1, L2C 1–4 4.0 1000 160 × 180 × 50 <5 N/A [58]

SGR-Ligo
SSTL (GB)

24
GPS L1 C/A, Option G1, E1 1–2 <0.5 90 92 × 87 × 12 >5 N/A [59]

GRAS/GPSOS
SAAB (SE)

12
GPS C/A, P1/2 3 30.0 30,000 N/A N/A METOP [15]

NGPS-03-422
NewSpace Systems (ZA)

12
GPS L1 1 1.0 130 96 × 96 × 18 10 N/A [60]

NGPS-01-422
NewSpace Systems (ZA)

12
GPS L1 1 1.5 500 155 × 76 × 34 10 N/A [60]

Orion B16-C
Navspark (TW)

230
Dual-frequency

GPS/GLONASS/Galileo/Beidou/QZSS
act. 0.21 1.6 12 × 16 × 3 N/A N/A [61]

GS50
GranStal (CN)

48
GPS L1, GLONASS Lq, Beidou B1 1 0.8 30 51 × 17 N/A N/A [62]

GSD700
GranStal (CN)

440
GPS: L1, L2C/L2P, L5GLONASS L1, L2,

BeiDou: B1, B2, B3,
Galileo E1, E5a, E5b,

SBAS L1 C/

1 1.7 45 100 × 60 × 9 N/A N/A [63]

COSGNSS
COSATS Co., Ltd. (CN)

N/A
BDS B1/B2, GPS L1/L2 1 2.4 150 56 × 54 × 11 N/A N/A [64]
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Table A1. Cont.

Model
Supplier (Country)

Channels
Signals Ant. Power

[W]
Mass
[gr]

Size
[mm]

TID
[krad] Missions Reference

J150
Beidoustar (CN)

GPS L1/L2, BDS B1/B2/B3, GLONASS
G1/G2 N/A 2.0 100 41 × 71 × 13 N/A Q-Sat N/A

ACC-GPS-NANO-DR
Accord (IN)

2 × 32
GPS L1 1 0.5 45 65 × 75 × 20 20 N/A [65]

ACC-GPS-NANO-NR
Accord (IN)

32
GPS L1 1 0.5 45 65 × 75 × 20 20 N/A [66]

ACC-GPS-NavIC-NANO
Accord (IN)

25
GPS L1 1 1.35 <45 50 × 70 × 14 20 N/A [67]

ACC-GPS-NANO
Accord (IN)

32
GPS L1, SBAS GAGAN 1 0.5 45 64 × 75 × 1.5 20 N/A [68]

GPS module
WARPSPACE (JP)

167
GPS L1 C/A, GLONASS L1 1 0.15 3 24 × 24 × 5 N/A N/A [69]

Act. = active. N/A = Not available; SBAS = Satellite-based Augmentation Systems; GAGAN = GPS-aided GEO augmented navigation [70].

Appendix B

Table A2. Candidates for future space-capable receivers and their characteristics.

Model
Supplier (Country)

Channels
Signals Ant. Power

[W]
Mass
[gr]

Size
[mm] Constraints * Reference

TR-G2T
Javad (US)

216
GPS: L1/L2/L2C/L5

Galileo: E1/E5A
SBAS

1 1.60 34 57 × 66 NLS [71]
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Table A2. Cont.

Model
Supplier (Country)

Channels
Signals Ant. Power

[W]
Mass
[gr]

Size
[mm] Constraints * Reference

TR-3N
Javad (US)

864
GPS: C/A, L1C (P+D), P1, P2, L2C (L+M), L5(I+Q)

GLONASS: C/A, L2C, P1, P2, L3 (I+Q)
Galileo: E1 (B+C), E5A (I+Q), E5B (I+Q), AltBoc

BeiDou: B1, B1-2, B1C(P+D), B5A (I+Q), B2, B5B (I+Q)
QZSS: C/A, L1C (P+D), L2C (L+M), L5 (I+Q), SAIF

SBAS: L1, L5
IRNSS L5

1 3.50 54 57 × 88 × 12 NLS [72]

TR-3S
Javad (US)

874
GPS: C/A, L1C (P+D) including TMBOC (6,1,4/33), P1, P2, L2C (L+M), L5 (I+Q)

GLONASS: C/A, P1, P2, L2C, L3 (I+Q)
Galileo: E1 (B+C) including CBOC (6,1,1/11), E5A (I+Q), E5B (I+Q), AltBoc, E6

(B+C)
Beidou: B1, B1C (P+D) including TMBOC (6,1,4/33), B2B (I+Q), B2, B2A (I+Q),

AltBoc, B3
QZSS: C/A, L1C (P+D) including TMBOC (6,1,4/33), L2C (L+M), L5 (I+Q), L6

(L61/L62), L1S, L1Sb, L5SL1, L5 (P+D)
SBAS: L1, L5 (P+D)

IRNSS: L5, S

1 N/A 30 66 × 57 × 11 NLS [73]

TR-2S
Javad (US)

874
GPS: C/A, L1C (P+D) including TMBOC (6,1,4/33), P1, P2, L2C (L+M), L5 (I+Q)
GLONASS: E1 (B+C) including CBOC (6,1,1/11), E5A (I+Q), E5B (I+Q), AltBoc,

E6 (B+C)
Galileo: E1 (B+C) including CBOC (6,1,1/11), E5A (I+Q), E5B (I+Q), AltBoc, E6

(B+C)
BeiDou: B1, B1C (P+D) including TMBOC (6,1,4/33), B2B (I+Q), B2, B2A (I+Q),

AltBoc, B3
QZSS: C/A, L1C (P+D); TMBOC (6,1,4/33), L2C (L+M), L5 (I+Q), L6 (L61/L62),

L1S, L1Sb, L5S
SBAS: L1, L5 (P+D),

IRNSS: L5

1 N/A 20 55 × 40 × 11 NLS [74]
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Table A2. Cont.

Model
Supplier (Country)

Channels
Signals Ant. Power

[W]
Mass
[gr]

Size
[mm] Constraints * Reference

TRE-3S
Javad (US)

N/A
GPS: C/A, L1C (P+D) including TMBOC (6,1,4/33), P1, P2, L2C (L+M), L5 (I+Q)

GLONASS: C/A, P1, P2, L2C, L3 (I+Q)
Galileo: E1 (B+C) including CBOC (6,1,1/11), E5A (I+Q), E5B (I+Q), AltBoc, E6

(B+C)
QZSS: C/A, L1C (P+D) including TMBOC (6,1,4/33), L2C (L+M), L5 (I+Q), L6

(L61/L62), L1S, L1Sb, L5S
BeiDou: B1, B1C (P+D) including TMBOC (6,1,4/33), B2B (I+Q), B2, B2A (I+Q),

AltBoc, B3
IRNSS: L5, S

SBAS: L1, L5 (P+D)

1 3.7–5.6 87 80 × 100 NLS [75]

TRE-DUO
Javad (US)

864
GPS: C/A, L1C (P+D), P1, P2, L2C (L+M), L5(I+Q)

GLONASS: C/A, L2C, P1, P2, L3 (I+Q)
Galileo: E1 (B+C), E5A (I+Q), E5B (I+Q), AltBoc

BeiDou: B1, B1-2, B1C(P+D), B5A (I+Q), B2, B5B (I+Q)
QZSS: C/A, L1C (P+D), L2C (L+M), L5 (I+Q), SAIF

SBAS: L1, L5
IRNSS L5

2 4.30 120 100 × 120 NLS [76]

TRE-Quattro
Javad (US)

864
GPS: C/A, P1, P2, L2C (L+M), L1C (I+Q)

Galileo: E1 (B+C)
GLONASS: C/A, P1, P2, L2C

QZSS: C/A, L2C (L+M), L1C (I+Q), SAIF
BeiDou: B1,B1R, L1C (I+Q)

SBAS: L1

4 7.20 130 100 × 120 NLS [77]

Quattro-R
Javad (US)

216
GPS: L1, L2, L2C 4 5.20 130 100 × 120 NLS [78]
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Table A2. Cont.

Model
Supplier (Country)

Channels
Signals Ant. Power

[W]
Mass
[gr]

Size
[mm] Constraints * Reference

OEM615
Hexagon|NovAtel

(CA)

120
GPS: L1, L2, L2C

GLONASS: L1, L2
BeiDou: B1
Galileo: E1

SBAS
QZSS

N/A 1.00 <24 46 × 71 × 11 VL [43]

OEM628
Hexagon|NovAtel

(CA)

120
GPS: L1, L2, L2C, L5

GLONASS: L1, L2
BeidDou: B1, B2

Galileo: E1, E5a, E5b, AltBOC
SBAS

QZSS: L1, L2C, L5

N/A 1.30 37 60 × 100 VL [43]

OEM7500
Hexagon|NovAtel

(CA)

N/A
GPS: L1 C/A, L1C, L2C, L2P, L5

GLONASS: L1 C/A, L2 C/A, L2P, L3
Galileo: E1, E5a, E5b, AltBOC

BeiDou: B1I, B1C, B2I, B2a, B2b
QZSS: L1 C/A, L1C, L1S, L2C, L5

NavIC (IRNSS): L5
SBAS L1, L5

L-Band up to 5 channels

N/A 1.50 12 33 × 55 × 4 VL [79]

OEM7600
Hexagon|NovAtel

(CA)

555
GPS: L1 C/A, L1C, L2C, L2P, L5

GLONASS: L1 C/A, L2 C/A, L2P, L3, L5
Galileo: E1, E5 AltBOC, E5a, E5b
BeiDou: B1I, B1C, B2I, B2a, B2b

QZSS: L1 C/A, L1C, L1S, L2C, L5
NavIC (IRNSS): L5

SBAS: L1, L5
L-Band: up to 5 channels

N/A 1.80 31 35 × 55 × 13 VL [80]
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Table A2. Cont.

Model
Supplier (Country)

Channels
Signals Ant. Power

[W]
Mass
[gr]

Size
[mm] Constraints * Reference

OEM7700
Hexagon|NovAtel

(CA)

555
GPS: L1 C/A, L1C, L2C, L2P, L5

GLONASS: L1 C/A, L2 C/A, L2P, L3, L5
Galileo: E1, E5 AltBOC, E5a, E5b, E6
BeiDou: B1I, B1C, B2I, B2a, B2b, B3I

QZSS: L1 C/A, L1C, L1S, L2C, L5, L6
NavIC (IRNSS): L5

SBAS: L1, L5
L-Band: up to 5 channels

N/A 1.80 31 46 × 71 × 8 VL [81]

OEM7720
Hexagon|NovAtel

(CA)

555
GPS: L1 C/A, L1C, L2C, L2P, L5

GLONASS: L1 C/A, L2 C/A, L2P, L3, L5
Galileo: E1, E5 AltBOC, E5a, E5b
BeiDou: B1I, B1C, B2I, B2a, B2b

QZSS: L1 C/A, L1C, L1S, L2C, L5
NavIC (IRNSS): L5

SBAS: L1, L5
L-Band: up to 5 channels

2 2.70 29 46 × 71 × 8 VL [82]

OEM729
Hexagon|NovAtel

(CA)

555
GPS: L1 C/A, L1C, L2C, L2P, L5

GLONASS: L1 C/A, L2 C/A, L2P, L3, L5
Galileo: E1, E5 AltBOC, E5a, E5b, E6
BeiDou: B1I, B1C, B2I, B2a, B2b, B3I

QZSS: L1 C/A, L1C, L1S, L2C, L5, L6
NavIC (IRNSS): L5

SBAS: L1, L5
L-Band: up to 5 channels

1 1.80 48 60 × 100 × 9 VL [83]



Sensors 2023, 23, 7648 18 of 26

Table A2. Cont.

Model
Supplier (Country)

Channels
Signals Ant. Power

[W]
Mass
[gr]

Size
[mm] Constraints * Reference

simpleRTK2B lite
ArduSimple (AD)

N/A
GPS: L1C/A L2C

GLONASS: L1OF L2OF
Galileo: E1-B/C E5b

BeiDou: B1I B2I
QZSS: L1C/A L2C

SBAS: WAAS, EGNOS, MSAS, GAGAN and SouthPAN

1 0.40 7.8 41 × 28 NLS [84]

simpleRTK3B pro
ArduSimple (AD)

448
GPS: L1C/A L1PY L2C L2P L5

GLONASS: L1CA L2CA L2P L3 CDMA
Galileo: E1 E5a E5b E5 AltBloc E6

BeiDou: B1I B1C B2a B2I B3
QZSS: L1C/A L2C L5

Navic: L5
SBAS: WAAS, EGNOS, MSAS, GAGAN, SDCM (L1 L5)

1 1.50 24 69 × 53 NLS [85]

AsteRx4
Septentrio (BE)

544
GPS: L1, L2, L5

GLONASS: L1, L2, L3
Galileo: E1, E5ab, AltBoc, E6

BeiDou: B1, B2, B3
IRNSS: L5

QZSS: L1, L2, L5
Galileo, Beidou, IRNSS, E6/B3 and AltBoc are optional features

N/A 3.00 55 61 × 82 VL [43]

mosaic-X5
Septentrio (BE)

448
GPS: L1C/A, L1PY, L2C, L2P, L5

GLONASS: L1CA, L2CA, L2P, L3 CDMA
Beidou: B1I, B1C, B2a, B2b, B2I, B3
Galileo: E1, E5a, E5b, E5 AltBoc, E6

QZSS: L1C/A, L1 C/B, L2C, L5
Navic: L5

SBAS: Egnos, WAAS, GAGAN, MSAS SDCM (L1, L5)
On module L-band

N/A 0.60 7 31 × 31 × 4 VL [86]
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Table A2. Cont.

Model
Supplier (Country)

Channels
Signals Ant. Power

[W]
Mass
[gr]

Size
[mm] Constraints * Reference

PolaRx2e@
Septentrio (BE)

48
L1, L2

SBAS: EGNOS, WAAS
3 5.00 120 160 × 100 ×

13 VL, HL [87]

PolaRx2eh
Septentrio (BE)

48
L1, L2

SBAS: EGNOS, WAAS
2 5.00 120 160 × 100 ×

13 VL, HL [87]

ZED-F9P-04B u-blox
(CH)

184
GPS: L1C/A L2C

GLONASS: L1OF L2OF
Galileo: E1B/C E5b

BeiDou: B1I B2I
QZSS: L1C/A L1S L2C

SBAS: L1C/A

N/A 0.21 2.0 (est.) 17 × 22 × 2.4 CoCom [88]

MAX-M8Q
u-blox (CH)

72
GPS: L1 C/A

QZSS: L1 C/A SAIF
GLONASS: L10F

BeiDou: B1I
Galileo: E1B/C

SBAS: L1 C/A: WAAS, EGNOS, MSAS, GAGAN

N/A 0.07 2.0 (est.) 9.7 × 10.1 ×
2.5 CoCom [89]

MAX-M8W
u-blox (CH)

72
GPS: L1 C/A

QZSS: L1 C/A SAIF
GLONASS: L10F

BeiDou: B1I
Galileo: E1B/C

SBAS: L1 C/A: WAAS, EGNOS, MSAS, GAGAN

N/A 0.07 2.0 (est.) 9.7 × 10.1 ×
2.5 CoCom [90]
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Table A2. Cont.

Model
Supplier (Country)

Channels
Signals Ant. Power

[W]
Mass
[gr]

Size
[mm] Constraints * Reference

MAX-M8C
u-blox (CH)

72
GPS: L1 C/A

QZSS: L1 C/A SAIF
GLONASS: L10F

BeiDou: B1I
Galileo: E1B/C

SBAS: L1 C/A: WAAS, EGNOS, MSAS, GAGAN

N/A 0.07 2.0 (est.) 9.7 × 10.1 ×
2.5 CoCom [91]

NEO-M8Q-01A
u-blox (CH)

72
GPS: L1 C/A

QZSS: L1 C/A
GLONASS: L10F

BeiDou: B1I
Galileo: E1B/C

SBAS: L1 C/A: WAAS, EGNOS, MSAS, GAGAN

N/A 0.07 2.0 (est.) 12.2 × 16.0 ×
2.4 CoCom [92]

piNAV-NG
SkyFox Labs (CZ)

15
GPS: L1 C/A 1 0.13 24 71.1 × 45.7 ×

11 NLS [93]

Q20
QinetiQ (GB)

12
C/A L1 1 (act.) 0.1–

1.522 N/A 35 × 50 × 5 VL [94]

NTL102.SMT
NTLab (LT)

N/A
GPS: L1, L5

NavIC: L5, S-band and SBAS L1
2 <0.65 <15 30.5 × 25.5 ×

4.2 NLS [95]

NTL103.SMT
NTLab (LT)

N/A
GPS: L1, L2

GLONASS: L1, L2
NavIC: L5,S-band and SBAS L1

2 0.19–0.8 <15 38 × 25.5 ×
3.5 NLS [96]
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Table A2. Cont.

Model
Supplier (Country)

Channels
Signals Ant. Power

[W]
Mass
[gr]

Size
[mm] Constraints * Reference

NTL104.SMT
NTLab (LT)

256+128
GPS: L1, L2, L5

GLONASS: L1, L2
Galileo: E1, E5a, E5b

BeiDou: B1, B2
NavIC (IRNSS) L5, S-band and SBAS L1

2 3.20 <25 71 × 46 × 10 NLS [97]

NTL106.SMT
NTLab (LT)

256
GPS: L1, L2/L5

GLONASS: L1, L2
Galileo: E1, E5a/E5b

BeiDou: B1, B2
NavIC (IRNSS) L5, S-band and SBAS L1

1 2.70 25 71 × 46 × 10 NLS [98]

TESEO-LIV3F
STMicroelect-

ronics N.V. (NL)

N/A
GPS: L1C/A

GLONASS: L1OF
BeiDou: B1

Galileo: E1B/C
SBAS: L1C/A
QZSS: L1C/A

1 0.08 N/A 9.7 × 10 NLS [99]

STA8089G
STMicroelect-

ronics N.V. (NL)

48
GPS, Galileo, GLONASS, BeiDou and QZSS 1 0.04 N/A 7 × 7 × 1.0 NLS [99]

S1216F8-GI3
SkyTraQ (TW)

56
GPS: L1

GLONASS: L1
Gagan: L1

NavIC L5, (not GPS L5)

1 0.40 2 12 × 16 NLS [100]

S1216F8-GL
SkyTraQ (TW)

167
GPS: L1 C/A

GLONASS: L1 C/A
1 0.13 1.6 12.2 × 16 NLS [101]
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Table A2. Cont.

Model
Supplier (Country)

Channels
Signals Ant. Power

[W]
Mass
[gr]

Size
[mm] Constraints * Reference

PX1122C
SkyTraQ (TW)

230
GPS: L1/L2C

Galileo E1/E5b
Beidou: B1I/B2I
QZSS: L1/L2C

1 0.17 1.7 12 × 16 NLS [102]

Venus816
SkyTraQ (TW)

N/A
GPS: L1

GLONASS: L1/L2
QZSS, SBAS Capable

2 0.07 0.3 (est.) 5 × 5 VL, HL [103]

Venus828F
SkyTraQ (TW)

N/A
GPS: L1

Beidou: B1
QZSS, SBAS

N/A 0.07 0.2 7 × 7 × 1.4 VL, HL [104]

Venus838FLPx
SkyTraQ (TW)

167
L1, B1 N/A 0.10 0.3 10 × 10 × 1.3 VL, HL [105]

NanoSense GPS Kit
GomSpace A/S (DK)

167
GPS: L1 N/A 1.80 31 46 × 72 × 11 CoCom

removed [106]

SoftSpot
Syntony (FR)

555
GPS: L1 C/A; L1C; L2C; L5

Galileo: E1-OS; E5a; E5b; E6-CS
GLONASS: G1 & G2

BEIDOU: B1 & B2
SBAS: WAAS; EGNOS; MSAS

Military codes, IRNSS, GBAS, DGPS

N/A 10.00 500 131 × 106 ×
25 N/A [107]

* NLS = No Limits Specified; VL = Velocity Limits; HL = Height Limits. Act. = active; CoCom = Coordinating Committee for Multilateral Export Controls; DGPS = Differential GPS;
EGNOS = European Geostationary Navigation Overlay Service; GAGAN = GPS-Aided Geo-Augmented Navigation [70]; GBAS = Ground-Based Augmentation System; IRNSS =
Indian Regional Navigation Satellite System; MSAS = Multi-functional Satellite Augmentation System; SAIF = Submeter-class Augmentation with Integrity Function; SouthPAN =
Southern Positioning Augmentation Network; SBAS = Satellite-based Augmentation Systems; SDCM = System for Differential Corrections and Monitoring; WAAS = Wide-Area
Augmentation System.
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