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Abstract. Contemporary research explores the possibilities of integrat-
ing machine learning (ML) approaches with traditional combinatorial
optimisation solvers. Since optimisation hybrid solvers, which combine
propositional satisfiability (SAT) and constraint programming (CP),
dominate recent benchmarks, it is surprising that the literature has paid
limited attention to machine learning approaches for hybrid CP–SAT
solvers. We identify the technique of minimal unsatisfiable subsets as
promising to improve the performance of the hybrid CP–SAT lazy clause
generation solver Chuffed. We leverage a graph convolutional network
(GCN) model, trained on an adapted version of the MiniZinc benchmark
suite. The GCN predicts which variables belong to an unsatisfiable subset
on CP instances; these predictions are used to initialise the activity score
of Chuffed’s Variable-State Independent Decaying Sum (VSIDS) heuris-
tic. We benchmark the ML-aided Chuffed on the MiniZinc benchmark
suite and find a robust 2.5% gain over baseline Chuffed on MRCPSP
instances. This paper thus presents the first, to our knowledge, success-
ful application of machine learning to improve hybrid CP–SAT solvers,
a step towards improved automatic solving of CP models.

1 Introduction

Neuro-symbolic approaches to combinatorial optimisation problems include
improving optimisation solver performance or robustness by incorporating
machine learning (ML). This trend shows successful promise in integer pro-
gramming [2,10,14,26], propositional satisfiability (SAT) [22,25] as well as con-
straint programming (CP) [1,9,24]. Hybrid CP–SAT solvers are the state of
the art for CP according to recent MiniZinc Challenge competitions [19]. Such
solvers, labelled as Lazy Clause Generation (LCG) solvers [21], combine the con-
flict learning ability from SAT solvers with finite domain propagation from CP
solvers.

However to the best of our knowledge there have not been research to date
on combining machine learning to improve the performance of hybrid CP–SAT
solvers. For example, Song et al. [24] show that machine learning can be used
to automatically learn variable ordering heuristics for traditional constraint sat-
isfaction solving. Portfolio approaches have shown excellent performance [1,13],
but such methods select one of the solving strategies in a portfolio rather than
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directly modify a LCG solver. Similarly, applications that combine machine
learning and constraint programming have been studied (e.g., [5]), but the
machine learning part does not influence the internal hybrid CP–SAT algorithm.

We aim to utilise machine learning to improve a single component of hybrid
CP–SAT solvers, namely the activity-based variable selection heuristic (VSIDS).
Our approach is motivated by Neurocore [23], a method that uses ML to influ-
ence the variable selection of SAT solvers. Given that LCG solvers use SAT
solvers in their inner-workings, a natural question to ask is whether an approach
such as Neurocore can be employed in constraint programming. While related
ideas may be exploited, a direct application of Neurocore in CP is not possible.
Neurocore trains its learned model on clauses derived from the proof of unsatis-
fiability. However, unsatisfiability proofs are not an established concept in CP.
Current SAT techniques are not easily extendable, as CP considers optimisation
problems, possibly using integer variables, and complex constraints that may
require an exponential number of clauses when encoding into SAT. There has
been progress in this direction using cutting planes reasoning, but only for spe-
cific problems or constraints [7,11,12]. For similar reasons, the machine learning
features used in SAT may not directly translate to (LCG-based) CP.

This paper provides a first demonstration of the value of using ML within
the LCG solver Chuffed [4]. We develop a modified version of Neurocore for con-
straint programming and employ it to learn initialisation values for the activi-
ties used in the variable-selection heuristic. We benchmark our ML-aided app-
roach on problems from the MiniZinc benchmark suite and find a statistically-
significant 2.5% average gain over the baseline Chuffed on MRCPSP instances.

2 Background

The Satisfiability problem (SAT) is concerned with deciding whether or not there
exists an assignment of truth values to variables such that a given propositional
logic formula is satisfied. A SAT solver is an algorithm that explores the space
of possible assignments with the aim of either finding a satisfying assignment
or proving that the formula is unsatisfiable. For the purposes of this paper, the
search may be viewed as a backtracking algorithm over the variable assignments.

The Variable-State Independent Decaying Sum (VSIDS) [17,20], originally
developed as a variable selection heuristic for SAT solver Chaff, is commonly
used in LCG solvers. When using VSIDS in a SAT solver during search, variables
are selected according to their activity. Intuitively, the activity score indicates
the likelihood that the variable will quickly lead to a conflict, and selecting
such variables early in the search is beneficial. Initially, the activity value of
each variable is initialised to zero. Once the solver encounters a conflict, i.e., it is
detected that the current partial assignment is infeasible, analysis is performed to
determine the reason for the conflict. The reason is recorded as a learned clause,
which consists of a subset of the variables from the partial assignment. Each
time a variable is involved in a conflict, its activity is increased. To emphasise
recent conflicts, the activity scores of all variables are periodically non-linearly
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decreased. As a result, variables recently involved in conflicts have the highest
scores. LCG solvers make use of VSIDS in their internal SAT solver.

SAT solvers, upon concluding that a problem is unsatisfiable, may provide a
certificate of unsatisfiability. Intuitively, the certificate consists of a set of clauses
and a sequence of logic derivation steps result that in the empty clause, i.e.,
unsatisfiability. A related concept in CP is a minimal unsatisfiable subset, which
is a set of constraints that unsatisfiable together, but are not unsatisfiable if any
constraint is removed from the set. Conceptually, SAT solvers operate on the low-
level of propositional logic, whereas CP solvers consider a more expressive CP
setting, e.g., complex constraints over integer variables. Hybrid CP–SAT solvers
[21] maintain a dual view of the problem: in addition to the CP view, a portion
of the problem is converted into propositional logic. An internal SAT solver
is invoked on the propositional logic formula, augmented with CP propagators
to infer variable assignments based on the current partial assignment. Once
a conflict is encountered, the conflict analysis procedure from SAT operates as
usual, with the exception that variables set by propagators are queried to provide
the reason for their propagation in the form of a clause. Since all reasons are
clausal, this allows the solver to use the SAT conflict analysis procedure while
still retaining the benefit of CP. In this way, hybrid CP–SAT solvers combine
SAT and CP solving techniques.

The Neurocore [23] approach uses machine learning to influence the variable
selection heuristic of a SAT solver. Since a SAT solver may make thousands of
decisions per second using VSIDS, a possible replacement of variable selection
is expected to run with a tight time budget. Hence Neurocore does not directly
use ML to replace the variable selection heuristic, but instead indirectly influ-
ences the selection procedure by periodically modifying the activity values of the
variables. The ML model, represented as a graph convolutional network (GCN),
is trained to assign a confidence value between zero and one for each variable
depending on its features. The estimate represents the probability that the vari-
able is part of an unsatisfiable core. The first assumption is that variables that
are used in the proof of unsatisfiability are likely to quickly lead to conflicts dur-
ing search, and therefore the solver should aim to select these variables as soon as
possible. The second assumption is that, even though unsatisfiable cores do not
exist in satisfiable instances, the GCN predictions will nevertheless be valuable
even for satisfiable instances to identify highly conflict-inducing variables.

3 Approach

Recall our goal is to predict the initial values of variable activity for a CSP
instance. Since it is difficult to formulate directly learning VSIDS initialisations
as a feasible learning problem (as discussed later), instead we leverage the anal-
ogous precedent in SAT solving discussed above [23].

By default, the activity values in LCG solvers are set to zero or to random
values at the start of the search. The scores do not provide any meaningful
information to the solver in the beginning but they gradually become more
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useful as search proceeds. By providing useful initial values we posit that the
solver performance can be improved; improvements at the start of search are
particularly valuable. In the absence of meaningful VSIDS values, Chuffed [4], the
LCG solver used in this work, typically uses (user-specified) search annotations
if provided, before switching to VSIDS for making branching decisions.

Our approach is to train a graph convolutional network model on unsatisfiable
instances, to make a prediction on which variables belong to an unsatisfiable
subset. The trained model is then used as part of the LCG solver to classify
the variables of input instances at the start of the search. The classification is
done by assigning a value between zero and one for each variable, which may
be interpreted as the probability that the variable is in an unsatisfiable subset.
These values are used to initialise the activity values for VSIDS.

Whereas training is done on unsatisfiable instances, the target instances used
afterwards do not necessarily need to be unsatisfiable, e.g., it is expected the
instances represent optimisation problems for which a feasible solution exists.
Note that for satisfiable instances, no unsatisfaible subset exists, but the predic-
tions made by the network are still valuable since, intuitively, higher predicted
values indicate variables that are more likely to engage in a conflict.

It is important to note that, similar to the approach proposed by Selsam
and Bjørner [23] – and with works in the predict-and-optimise paradigm [6,8]
– our ambition is not to achieve the best possible ML predictions. The reason
for this is that more accurate predictions do not necessarily imply that they
are more useful for the solver; rather the metric to optimise is the runtime
of the solver. The hypothesis is that, even though satisfiable instances do not
have unsatisfiable cores, the confidence of classifying a variable to be part of an
unsatisfiable set correlates with the effectiveness of branching on that variable.
This can be seen as a surrogate for the runtime. The true metric that directly
optimises the runtime remains an open question.

An alternative could be to learn based on the final VSIDS scores. However
such scores are biased towards the last few conflicts before termination even
though many other conflicts were needed to prove optimality. On a related note,
in core-boosted MAxSAT [3], after the core-guided (lower bounding) phase, it
was beneficial to nullify the VSIDS scores before switching to the linear search
(upper bounding) phase, as opposed to keeping the final VSIDS scores of the
lower bounding method, indicating that VSIDS scores that are good for one
phase of the search may not be good for another phase.

3.1 Machine Learning Model

We adopt the Graph Convolution Network (GCN) model of Kipf and Welling
[15].1 A GCN learns a function of the features on a graph: in our case the
constraint graph. The features we choose pertain to the variables: 1. Categorical
features indicating if a variable is declared as a Boolean, integer, float or set.
2. Minimum value within the variable domain. 3. Maximum value within the

1 Code available at https://github.com/tkipf/gcn; we use their default settings.

https://github.com/tkipf/gcn
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variable domain. 4. The range of the variable domain. 5. A set of identifiers of
variables which co-occur in some constraint. Then the input of the GCN is:

1. A feature matrix of size N×D. Here N represents the number of variables
and D the number of selected features.

2. An adjacency matrix of size N×N . In this matrix variables are considered
adjacent if they co-occur in a constraint.

3. The labels in an N × C matrix. Here C represents the number of out-
put classes, in our case two: one for variables which are part of a minimal
unsatisfiable subset (MUS) and the other for variables which are not.

The output of the model is a N × C matrix, the softmax outputs – which can
be interpreted as the probability for each variable to belonging to each class.
Because we consider two classes only, it is possible to express the output of
the ML predictions with a single value, which is the prediction confidence of a
variable belonging to a MUS.

4 Empirical Study

We now examine experimentally the effectiveness of the proposed approach.
We compiled from source three different versions of Chuffed: Chuffed0 OG,
Chuffed1 Ex and Chuffed1 Inc. All three versions were configured to switch
to VSIDS as soon as 100 conflicts have been encountered.2 While all three ver-
sions have an identical configuration, they are different in the way the ML was
integrated. Chuffed0 OG was otherwise left completely unmodified, and serves
as a baseline. Chuffed1 Ex was modified to have the VSIDS scores initialised
with the predictions obtained after being trained on a training set which con-
tained only instances from other problem types. Similarly, Chuffed1 Inc was
modified to initialise the VSIDS scores with predictions after being trained on
all training instances, including from the same problem type.

4.1 Data Sets

We require two different datasets containing CP instances. One of these datasets
should only contain unsatisfiable instances to train on; the other should contain
satisfiable instances to solve for evaluation. The MiniZinc benchmark suite [18]
supplies over 13,000 satsifiable instances for evaluation. Since we found no public
CP dataset contained sufficiently many unsatisfiable instances for training a ML
model, the constraint optimisation problem (COP) instances from the MiniZinc
benchmark suite were modified to become unsatisfiable. This was done by first
solving them for their optimal value; then the original instance was modified by
bounded the objective variable to be strictly better than the optimal value.

Using this procedure allows the creation both the satisfiable datset as well as
the unsatisfiable dataset. For the unsatisfiable dataset the labels were generated

2 This is lower than the Chuffed default, in order to ensure that VSIDS is used.
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Table 1. Experiments on MRCPSP benchmarks

Instances Chuffed0 OG Chuffed1 Ex Chuffed1 Inc

Avg. runtime (s) Avg. runtime (s) Avg. runtime (s)

mrcpsp10900 4.507 4.356 4.461

mrcpsp36 2.399 2.428 2.410

mrcpsp4425 311.565 296.139 302.595

mrcpsp4777 5274.736 5153.284 5155.367

mrcpsp4871 892.922 865.954 865.404

mrcpsp4960 32.713 32.241 32.099

mrcpsp7051 16.091 15.884 16.028

mrcpsp896 0.152 0.155 0.189

mrcpsp9880 0.236 0.241 0.240

mrcpsp9994 0.033 0.034 0.035

Total(s) 6535.354 6370.715 6378.829

Standard Deviation 282.493 273.983 271.103

Relative(%) 100.0% 97.5% 97.6%

using MiniZinc’s findMUS command [16]. Note findMUS often returns multiple
different MUS combinations and a variable is deemed being part of a MUS
if it is in any one of them. The datasets contained 13,667 problem instances
for which features were available and 8,057 instances for which labels could be
extracted. These latter instances contain 1,532,444 variables, of which 623,293
(40.7%) are part of at least one MUS. The dataset is dominated by a single
problem type, namely the Multi-mode Resource-Constrained Project Scheduling
Problem (MRCPSP): over 90% of total instances. Additionally, over 80% of the
instances in the dataset could be solved in less than 0.1 s. These non-challenging
instances were excluded as being of limited use for training and testing.

4.2 Experimental Configuration and Results

In training the two learning Chuffed variants, the parameters of the GCN model
were set as follows, based on initial trial runs: Learning rate: 0.3; Number of
epochs: 200; Number of units in the first hidden layer: 16; Dropout rate: 0.1;
Weight decay: 5e−4; Tolerance for early stopping: 10; Prediction accuracy at the
point of early stopping was between 0.7 and 0.8.

The three Chuffed versions were used to solve test-sets containing instances
respectively from the four largest problem types: MRCPSP, bin-packing, price-
collecting and fastfood. The experiments were run on a Linux machine with a
16-core 2.50 GHz Xeon Gold 6248 CPU and 32 GB RAM. The code and datasets
are available at doi.org/10.4121/14259635.

The box-plot in Fig. 1 shows the resulting distribution of the the total run-
times of all instances from the each of the four largest problem types, averaged

http://doi.org/10.4121/14259635
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(a) MRCPSP (b) bin-packing

(c) price-collecting (d) fastfood

Fig. 1. Box-plots of total runtime of all test instances averaged over 100 runs.

over a total of 100 runs. A more detailed summary of the results is presented for
the two larger domains in Tables 1 and 2, which show the average runtime over
100 runs for each of the instances from the test-set as well as statistics on the
total runtime. Table 3 reports the outcome of two-tailed t-tests.

The t-test analysis shows that the machine learning enhanced version signif-
icantly outperform the unmodified version for both MRCPSP and bin-packing
instances. The gain is about 2.5% for MRCPSP and 1–2% for bin-packing.
There is no sufficient statistical evidence to conclude any significant differ-
ence between the results obtained with Chuffed1 Inc and Chuffed1 Ex for
MRCPSP. However, for bin-packing, there is a statistically significant difference
between Chuffed1 Ex and Chuffed1 Inc, of about 1%. This may indicate
that bin-packing shares less ‘learn-able’ concepts with other problem types than
MRCPSP. For price-collecting and fastfood there is insufficient evidence to con-
clude statistically-significant differences between any of the different Chuffed
versions. The most likely explanation is not about the dis-similarity of these
instances to other problem types, but because the tested instances were not
sufficiently large.
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Table 2. Experiments on bin-packing benchmarks

Instances Chuffed0 OG Chuffed1 Ex Chuffed1 Inc

Avg. runtime (s) Avg. runtime (s) Avg. runtime (s)

2DLevelPacking238 171.700 151.000 152.580

2DLevelPacking23 1563.956 1499.611 1512.328

2DLevelPacking492 1221.866 1275.854 1237.965

2DPacking13 5065.462 5037.534 5025.021

2DPacking165 683.933 708.044 641.285

2DPacking168 2511.413 2430.075 2431.017

2DPacking62 58.744 57.180 57.587

Total(s) 11277.074 11159.298 11057.783

Standard Deviation 381.016 359.230 347.639

Relative(%) 100.0% 99.0% 98.1%

Table 3. Pairwise t-test analysis

MRCPSP t-stat p-value

Chuffed0 OG – Chuffed1 Ex 4.163 4.693e-5

Chuffed0 OG – Chuffed1 Inc 3.978 9.761e-5

Chuffed1 Ex – Chuffed1 Inc -0.209 0.834

bin-packing t-stat p-value

Chuffed0 OG – Chuffed1 Ex 2.238 0.026

Chuffed0 OG – Chuffed1 Inc 4.230 3.577e-5

Chuffed1 Ex – Chuffed1 Inc -2.020 0.045

price-collecting t-stat p-value

Chuffed0 OG – Chuffed1 Ex -0.226 0.821

Chuffed0 OG – Chuffed1 Inc -1.506 0.134

Chuffed1 Ex – Chuffed1 Inc -1.390 0.166

fastfood t-stat p-value

Chuffed0 OG – Chuffed1 Ex -1.316 0.190

Chuffed0 OG – Chuffed1 Inc -1.907 0.058

Chuffed1 Ex – Chuffed1 Inc -0.648 0.518

5 Conclusion

This paper shows that it is possible to use machine learning approaches designed
for solving SAT instances to improve lazy clause generation solving techniques.
Specifically, we have shown how to use unsatisfiable core learning in its CP
flavour as minimal unsatisfiable subsets, to improve the performance of the LCG
solver Chuffed. We do this by learning the probability a variable is involved
in a MUS, as a proxy for initial values of Chuffed’s VSIDS scores. With CP–
SAT approaches dominating recent MiniZinc benchmarks it is noteworthy that
the proposed approach is able to consistently achieve an improved performance
on sizeable instances. Although the relative margin of improvement is small
(up to 2.5% on MRCPSP scheduling benchmarks), it is statistically significant
in the largest two tested problem domains. This suggests that the similarity of a
variable with variables from MUSs seen during training is a proxy for determining
the conflicting nature of a variable.

Our work demonstrates the first, to our knowledge, successful application of
machine learning to aid a CP–SAT optimisation solver. This paper thus opens
the door to further research. For instance, integrating the classification part
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directly into the solver can be investigated; this would require embedding the
feature extraction part directly into the solver together with additional computa-
tional resources, e.g., a GPU as in the Neurocore approach. Moreover, one could
consider alternative surrogates other than MUS membership to learn important
variables for branching in CP–SAT solvers.
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