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Abstract

For causal inference, sufficient overlap is needed.
It is possible to use propensity scores with the
positivity assumption to ensure overlap is present.
However, positivity is not enough to properly iden-
tify the region of overlap. For this, propensity
scores need to be used in combination with den-
sity estimation. This project aims to evaluate this
method, discovering in which scenarios it performs
well or fails in identifying the region of overlap.
More specifically, how it scales with more features
or outliers, and how using different classifiers af-
fects the performance. The method was tested with
samples from a simulated dataset. The predicted
overlap was compared with the true overlap of the
known distributions. Following the experiments,
the method seems to perform best when the treat-
ment and control groups share one region of over-
lap. In this case, logistic regression works best out
of the classifiers that were tested. The overall per-
formance drops when the two groups have multi-
ple regions of overlap. For this, the random for-
est classifier performs best instead. Throughout all
scenarios, the performance of the model drops with
increasing dimensionality. Furthermore, having a
small percentage of outliers only slightly affects the
model. With more outliers, logistic regression is the
only classifier further affected.

1 Introduction
When researchers want to see the effects of a newly devel-
oped vaccine, the participants in the treatment group and con-
trol group that will be compared need to be similar. When
there is a subset that contains participants from both the treat-
ment and control groups that are similar to each other, it is
called overlap. With a sufficient amount of overlap, factors
irrelevant to the research or experiment that may negatively
influence the results are minimized [2]. However, sufficient
overlap is not a given when performing observational studies.
Here the researchers have no influence on the allocation of
treatments to the subject. As such this allocation is not ran-
domized and will likely not have sufficient overlap. Thus, it
is crucial to find out if there is sufficient overlap, and if there
is not, which samples do make for sufficient overlap.

One can account for sufficient overlap with the positivity
assumption that comes with propensity scores. The propen-
sity score is the conditional probability that a person or sam-
ple belongs to the treatment group [12]. The positivity as-
sumption says that the propensity score should be bounded
away from 0 and 1 [7]. This assumption ensures that all
samples have comparable samples in the other group, keep-
ing the groups similar to each other. However, the typical
methods used to verify positivity are not fit to identify the
exact region of overlap. Features describe the participants
(e.g. age, height, etc.) and each participant has their own
values for each feature. Propensity scores only represent the
conditional probability of a participant’s feature values given

which group the participant belongs to. Overlap on the other
hand, relies on the opposite conditional probability: which
group the participant belongs to given the participant’s val-
ues. By using both propensity scoring and density estimation,
it is possible to get the latter conditional probability and make
predictions that more accurately resemble the actual region of
overlap.

In this project, instead of using the typical propensity score
methods, propensity scoring in combination with density es-
timation will be used to identify the region of overlap. The
aim is to answer the following research question:

When do propensity score methods with density estima-
tion work well and when do they fail to identify overlap
for different types of datasets?

Thus, the aim of the project is to evaluate this method and
discover when they perform well or when they can be less re-
liable. For instance, how do they scale with more features or
outliers? It is common to use logistic regression for propen-
sity score methods [15], but how do other classifiers perform
in comparison?

While evaluating the method in different contexts, it will
be implemented to be part of a shared open-source package
in Python, containing several other similar methods that also
aim to evaluate overlap. This package will make these meth-
ods more accessible for other researchers who may need to
evaluate overlap for their own research.

The structure of the paper is as follows. Section 2 cov-
ers the problem description, providing the background for
the project. The methodology will be discussed in section
3. Section 4 is about the experiments and the results. Sec-
tion 5 looks into responsible research and how it is handled
throughout the project. Section 6 is the discussion and fi-
nally, section 7 contains the conclusions and possible future
work that could be done.

2 Problem Description
This section will give more context about the problem and ex-
plains how this project aims to answer the research question.
It will also look at other works related to this project.

2.1 Background
For a given threshold 0 < ϵ < 1, overlap is defined as the
region of X where:

P (X = x|T = t) > ϵ for both T = 1 and T = 0 (1)

Where T = 1 indicates the sample belonging to the treat-
ment group and T = 0 indicates the control group. Con-
founding factors are factors that were not accounted for in
the experiments, but which may still negatively influence the
results. To minimize confounding factors, samples in the
treatment group and control group should be similar to each
other [2].

One way of accounting for sufficient overlap is with the
positivity assumption that comes with propensity scores. The



propensity score is P (T = 1|X = x), the conditional proba-
bility that a person or sample belongs to the treatment group
[12]. The positivity assumption states that the propensity
score should be bounded away from 0 and 1 [7]. For ob-
servational studies, if a sample would violate this, it would
mean that there would be no comparable samples in the other
group. Thus, the results may be biased if the positivity as-
sumption is neglected.

However, the positivity assumption cannot precisely iden-
tify the region of overlap. For the actual region, by our def-
inition, P (X = x|T = t) is needed. The positivity as-
sumption is only concerned with the conditional probability
P (T = 1|X = x). To more accurately predict this region of
overlap, density estimation can be used in combination with
propensity scoring.

By Bayes’ theorem:

P (X = x|T = t) =
P (T = t|X = x)P (X = x)

P (T = t)
(2)

Where P (T = t|X = x) is the propensity score and
P (T = t) can be estimated by the treatment and control
group size. P (X = x) can be estimated with density estima-
tion. With this equation P (X = x|T = t) can be obtained,
from which the region of overlap can be estimated.

2.2 Related works
Several other methods have been proposed, with the aim to
identify if a sufficient amount of overlap is present.

Crump et al. [4] proposed a method in which the samples
outside the interval [α, 1 − α] are discarded, more specifi-
cally the interval [0.1, 0.9]. This is in line with the positivity
assumption and follows the common practice of researchers
discarding sets of samples that do not have a similar coun-
terpart in the other group. They showed this method reduced
the asymptotic variance of the average treatment effect (ATE)
compared to using the whole dataset.

Traskin and Small [16] criticized this method for not be-
ing interpretable, as it is hard to understand the propensity
scores that the method uses. They aimed to improve upon
this method by using a classification tree. This method would
result in a tree diagram, which described the study popula-
tion. However, while it was more interpretable, it performed
worse than the method of Crump et al.

Oberst et al. [8] also had the same criticism and came
up with an even more interpretable method called OverRule.
This rule-based classification method uses the predicted over-
lap labels from another overlap estimator, a propensity score
estimator for example. From this, it creates intuitive rules
and a region of overlap. These rules are human-readable and
can even be understood by people without a background in
machine learning.

3 Methodology
This section will go over how the data was generated, the
metrics used to measure the performance of the model, and
the estimators used for the model.

3.1 Simulated Data
For these experiments, simulated data is used as opposed to
real data. This is because it is possible to set up and tune the
data, such that it represents a specific scenario of choice. Not
only does this apply to the initial distributions of the treat-
ment and control group, but also adding outliers can be done
according to what is needed. This makes it very flexible and
consistent in use. The simulated data is generated using the
NumPy [6] library. The same experiments were performed
15 times with different random seeds, after which the results
were averaged out.

To measure the accuracy of the model, the true over-
lap needs to be known. To find the true overlap, SciPy
[17] was used, specifically the module scipy.stats.
multivariate normal. Using this, it is possible to get the
probability density function and thus the density of the distri-
bution for a specific location. It is then possible to get the re-
gion of overlap where the densities of both classes are higher
than the overlap threshold ϵ.

3.2 Metrics
The primary accuracy metric used in this project is Intersec-
tion over Union (IoU). IoU is the most used metric when
it comes to comparing two overlapping shapes [10], for in-
stance when performing object detection. The main concept
is intuitive, as the intersection (the area that is shared) is com-
pared to the union (the total area the shapes cover). For clas-
sification, the IoU can be calculated as follows:

IoU =
TP

TP + FP + FN
(3)

Where TP, FP, FN are True Positive, False Positive, False
Negative respectively, as can be found in the confusion ma-
trix. In this scenario, a positive sample means a sample lo-
cated in an overlap region, whereas a negative sample is lo-
cated outside any overlap region.

3.3 Estimators
The propensity score method relies on using a machine learn-
ing classifier to compute the propensity scores. Logistic re-
gression is most commonly used for this [19]. However, it is
a linear classifier, so it will have more difficulty when a prob-
lem is non-linear. As such, decision tree classifiers and ran-
dom forest classifiers, which are non-linear, will also be used
in this project. Their performance will be compared with lo-
gistic regression in specific scenarios. Scikit-learn [9], a ma-
chine learning package in Python, was used for the classifiers
in the code.

Additionally, to more accurately predict the region of over-
lap, we want to use the probability distribution, which can be
found with density estimation. In this project, kernel density
estimation will be used for this. It is a non-parametric estima-
tor, which makes it very flexible. In the code of this project,
Scikit-learn was used to implement this method.

In order to perform well, the hyperparameters of the clas-
sifiers and the kernel density estimator need to be tuned.
Since Scikit-learn was used for these, it is possible to use
sklearn.model selection.GridSearchCV. This module
exhaustively generates all combinations of the parameters it



is given. By using cross-validation, it tries to find the best
combination of hyperparameters.

Instead of the default “accuracy” scoring method, the “log-
loss” measure was used for tuning the classifiers with Grid-
SearchCV. The log-loss measure is most suited for scoring
the predicted probabilities [18]. Log-loss penalizes the model
more heavily if the model is confidently wrong about its pre-
dictions. Since the predicted probabilities need to correctly
correspond to the confidence level for propensity scoring, it
makes sense to use the log-loss measure here.

3.4 Method

As such, the method works as follows:

• Firstly, the model is initialized with the machine learning
classifier of choice.

• As input it needs to know for each sample which class it
belongs to and its values for each feature. Additionally,
the overlap threshold ϵ needs to be chosen.

• The optimal hyperparameters of both the classifier and
density estimator need to be chosen.

• The model will be fitted to the training data.

• Finally, it will predict for each sample if they are in the
overlap region or not. The output of the model will be
calibrated, returning the calibrated probabilities instead.

4 Experiments and Results

This section will go over the experiments that were conducted
and will discuss the results that were produced. These experi-
ments aim to answer how scalable the method (using different
classifiers) is with number of features, with a linear and non-
linear problem, and how well it performs with an increasing
amount of outliers.

4.1 Scalability with Number of Features and
Samples

In the following experiments, the method will be tested with
an increasing number of features, increasing the dimension-
ality of the sample data. The overlap threshold ϵ was kept at
0.05 across all experiments that were performed.

When generating the same distributions, but increasing the
dimensionality, the region of overlap changes significantly.
To make fair comparisons between the different dimensions,
it was decided to keep the size of the overlap region (the per-
centage of samples in the overlap region) approximately the
same. This was done by changing the means and the stan-
dard deviations of the distributions. In these experiments, the
overlap region was kept around 30%.

One Region of Overlap
Firstly, the two classes will be normal distributions next to
each other. This means there is only one region of overlap
between the two classes.

Figure 1: True overlap of two Gaussians (red points) in 2D, 500
samples each. Non-overlapping points of class 1 in blue and class 2
in green.

Figure 2: Performance using different classifiers with an increasing
number of features. One region of overlap (30% of the data) between
two classes. The uncertainty in the Figure is the variance of the
model.

An example can be seen in Figure 1 above. The example
has 2 features, so 2 dimensions. The green and blue points
are the non-overlapping samples from the two classes. The
red points are the samples in the overlap region.

After performing the experiment, the results were plotted
in Figure 2. Figure 2 shows that logistic regression generally
performs better than the other two classifiers, with the random
forest classifier being better than the decision tree classifier.
This problem, two Gaussians overlapping, is perfect for a lin-
ear classifier because it is linearly separable. As such, it is
expected that logistic regression works well in this scenario

The performance for all classifiers generally seems to drop
with higher dimensionality. This may be caused by the “curse
of dimensionality” that the classifiers suffer from [3, 5, 14].
With higher dimensions, a bigger increase in sample size is
needed to keep the same accuracy. Since the sample size is
kept the same in this experiment, the accuracy of the model is



Figure 3: A closer look at the model identifying the overlap in 1D and 2D with two regions of overlap (30% of the data) between two classes.
Different classifiers were used: logistic regression (left), decision tree classifier (middle), and random forest classifier (right).

expected to decrease. Not only the classifiers, but also the ker-
nel density estimator that is used alongside the classifiers is
affected by the “curse of dimensionality” [13]. Another cause
for the decrease in performance could be that the propensity
score represents all dimensions with a single value, which
may start to falter with higher dimensionality.

It should also be noted that the performance of logistic re-
gression drops quite a lot with higher dimensions, to the point
where it crosses with the random forest classifier going to the
sixth dimension. As such, one should be careful when using
data with more than five features, since logistic regression
might not be the optimal choice anymore.

Figure 4: A closer look at the true overlap of a nonlinear problem
when the data has 1 and 2 features (1D and 2D). One class is split
into two normal distributions on either side of the other class’s dis-
tribution. For the 500 samples used, the overlap region was kept at
around 30%.

Two Regions of Overlap
When the problem is nonlinear, however, linear classifiers
like logistic regression are usually less accurate than nonlin-
ear classifiers. Though this model does use logistic regres-
sion weighted by a kernel density estimator, which makes the
model not completely linear. As such, to find out how sen-
sitive this model is when applied to nonlinear problems, for
the second experiment there will be two regions of overlap in
two different locations. One class is split into two normal dis-
tributions on either side of the other class’s distribution. This
means that the two classes are not linearly separable, mak-
ing this a nonlinear problem. Figure 4 shows two examples
of this. For this experiment, the region of overlap was also
kept at approximately 30% of the full data across different
dimensions by adjusting the means and standard deviations.



Figure 5: Different classifiers identifying the overlap in 2D when the classes have overlapping distributions on two separate locations.

Figure 6: Performance using different classifiers with an increasing
number of features. Two regions of overlap (30% of the data) be-
tween two classes. The uncertainty in the Figure is the variance of
the model.

In Figure 6, as expected, logistic regression performs far
worse than in the previous scenario. The nonlinear classi-
fiers also perform worse than in the first experiment though.
The random forest classifier seems to perform better than the
other two in this scenario. Similarly to the first experiment,
all classifiers perform worse with higher dimensionality.

Unlike the first experiment however, the performance of
the model starts low and goes up with higher dimensions, be-
fore going back down again. Because of this, one set of pre-
dictions was plotted in Figure 3 (on the previous page) to take
a closer look at this behaviour. The Figure contains the pre-
dictions for both one feature and two features (1D and 2D),
since the performance jumped the most between these two
dimensions. Plots of the true overlap regions can be seen in
Figure 4, at the start of this section covering two regions of
overlap.

Using logistic regression, the model seems to classify the
two overlap regions, the area in between, and a bit around it
as overlap for both 1D and 2D. However, the IoU is higher in
2D, with the False Positive (FP) rate lowering from 62% to
38%. One explanation could be that with more dimensions,
there are fewer non-overlapping samples located between the
two overlap regions.

Figure 7: For both 1D to 2D, the general regions with non-
overlapping samples are highlighted. The region between the two
overlap regions is in dashed purple. The region outside the two over-
lap regions is in dotted yellow.

As Figure 7 shows, the region between the two overlap
regions (dashed purple) gets smaller from 1D to 2D. Mean-
while, the region outside the two overlap regions (dotted yel-
low) gets larger. The model is most likely to get the samples
wrong in the dashed purple area, as it tends to interpret the
two overlap regions as one big region of overlap (the plots in
the leftmost column of Figure 3 showcase this). As such, the
region the model most likely gets wrong shrinks when going
to a higher dimension, which makes the model perform better.

The middle column in Figure 3 shows that the decision
tree classifier also primarily made mistakes regarding the
samples between the two overlap regions. Perhaps the reason
for the decision tree classifier gaining performance from 1D
to 2D is similar to the reason for logistic regression, albeit
less severe.

Unlike the other two classifiers, the random forest classifier
did not seem to start low in performance. This may be due to
the fact that random forests do not overfit [11]. The rightmost
column in Figure 3 shows that it indeed did not falsely predict
any overlap between the two overlap regions.

After the fourth dimension the performance does not seem
to rise anymore, but instead drops again. This corresponds
with the drop in performance seen in the first experiment, in
Figure 2. The gain in performance becomes less and is likely
negated by the loss in performance with higher dimensions.



Figure 8: True overlap in 2D when the two classes (500 samples
each) have overlapping distributions on two separate locations. Non-
overlapping points of class 1 in blue and class 2 in green

Separate Clumps with Overlap
After the second experiment, another specific scenario was
tried out and plotted to observe the behaviour of the different
classifiers when there are separate clumps of samples contain-
ing overlap. Here the two classes are each split into two Gaus-
sians, resulting in two regions of overlap, as seen in Figure 8.
For this example there are two features and the total amount
of overlap is 30%. Figure 5 (on the previous page) shows that
logistic regression severely overestimates the overlap region,
classifying 82% of the samples to be in the overlap region.
The nonlinear classifiers underestimate the overlap, as the de-
cision tree and random forest classifier classify 15% and 11%
of the samples as overlap.

Interestingly, even though each clump looks exactly the
same as the distributions in the first experiment (Figure 1),
logistic regression performs poorly when there are multiple
cases of this scenario at the same time. This is due to it no
longer being a linear problem, unlike the first experiment.

It is important to note that the IoU of the examples in Fig-
ure 5 ranged from 0.34 to 0.40. Even with drastically differ-
ent predictions, the IoU was close between the three different
classifiers. This indicates that it is hard to gather from the
IoU alone how the model behaves precisely. One could use
accuracy instead, which looks at the number of correct classi-
fications. However, when using accuracy, a model that classi-
fies all samples as non-overlapping would get a score of 0.70
in the case of 30% overlap, thus favouring underestimating
models (in the case of 30% overlap or less). Aside from mea-
suring the performance of the model, one could take a closer
look at the FP and FN (False Positive and False Negative)
rates to get a better indication of whether the model is over-
estimating or underestimating. As expected, in this example
logistic regression had a very high FP rate of 54% and just an
FN of 1%, while the nonlinear classifiers had somewhat high
FN rates around 17% with their FP around 2%.

Figure 9: An example of how outliers are applied to the scenario
depicted in Figure 1. Here 2.5% of the samples consist of outliers,
located around the mean (5,5). The main distribution has one region
of overlap (30% of the data) between two classes with 2 features (2
dimensions).

4.2 Outliers
In these experiments, the method will be tested with an in-
creasing number of outliers.

For this experiment, the data will have two features, so it
will be two-dimensional. The same distributions from Figure
1 will be used. For both classes, a percentage of the train-
ing samples will be in a smaller, identical distribution, but
in a different location. While the main portion of the sam-
ples lies around mean (0,0) and (1,1), the outliers (samples
of both classes) will be around mean (5,5). This may cause
the model to identify overlap there as well. This is accept-
able, as long as the main region of the predicted overlap is
not affected. The expectation is that logistic regression will
be affected the most, because with enough outlier points a
smaller second region of overlap would appear for the classi-
fier. And as seen before, logistic regression has difficulty with
a nonlinear problem like that, since it is a linear classifier.

Figure 10: Performance using different classifiers with an increas-
ing amount of the data consisting of outliers. Two regions of overlap
(30% of the data) between two classes with 2 features (2 dimen-
sions).



As Figure 10 shows, the performance drops with an in-
crease in outliers up to 5% for all classifiers. As expected,
logistic regression is affected the most, decreasing in perfor-
mance by more than the other two. However, logistic regres-
sion still performs best up to 5%, but this is because the sce-
nario of two Gaussians is favourable for logistic regression,
as seen in the first experiment.

With more than 5% consisting of outliers, the performance
of logistic regression seems to drop below that of the random
forest classifier. Though, it should be noted that 10% of the
samples being outliers might be a lot. With 2.5%, the de-
crease in performance is more comparable to the decrease in
performance of the nonlinear classifiers. And up to 5% it still
outperforms the other classifiers in this scenario.

5 Responsible Research
When conducting research, it is important to do so properly
and responsibly. As a student, it is expected of me to inter-
nalize the Netherlands Code of Conduct with the guidance
of my supervisors [1]. This section will focus on certain as-
pects of responsible research that are especially relevant to
this project. As such, the possible future use cases, acces-
sibility, and reproducibility of the code will be discussed in
more detail.

This project is about overlap in causal inference. Causal in-
ference is often used in the medical field, where the effects of
certain treatments need to be assessed. This is a high-stakes
field, where biased or incorrect results of the research con-
ducted can have major consequences. As such, the programs
and code used for this need to be reliable. We should be sure
about the capabilities of our model and not overpromise on
its performance.

The code and the data used in this project need to be ac-
cessible and reusable. To ensure this, the code used for this
project will be available as a GitHub repository1. This en-
ables others to revisit or replicate this project in the future.
For the simulated data that is used in this project, data is ran-
domly generated in Python. To make sure the experiments
can be repeated, the seeds used for the experiments can be
found in the repository as well.

Additionally, the open-source package implemented for
this project is written in Python, a very interoperable lan-
guage. It is flexible, widely used, and can interface with many
other languages and tools. Importantly, Python programs can
run on most personal computers using free software, making
it very accessible.

6 Discussion
Following the experiments, the model performs best with one
region of overlap between the two classes. In this scenario
logistic regression works best, since it is a linear problem.
However, the model drops in performance with multiple re-
gions of overlap, even when using a nonlinear classifier. For
these nonlinear problems, the random forest classifier does
perform the best overall. Importantly, when there are multiple

1GitHub repository can be found at:
https://github.com/JonathanTjong/propensity with density

separate clumps of data, for instance in Figure 5, the model is
also not accurate. This is also true even if each clump resem-
bles the ideal scenario from the first experiment. Addition-
ally, the experiments show that the model generally performs
worse with higher dimensionality.

When it comes to outliers, logistic regression dropped the
most in performance, while the nonlinear classifiers were
affected slightly. Still, logistic regression dropped not as
quickly in performance before 2.5% of the samples were out-
liers. For up to 5% of the samples being outliers, logistic
regression still performed better than the nonlinear classifiers
in the case of one region of overlap.

This project does have some limitations, mainly due to the
limited time frame that was set for the project. The experi-
ments that were performed aimed to cover the most important
cases of interest: the scalability with the number of features
and the number of outliers. However, it was not possible to
test the model on many other different aspects. For exam-
ple, exploring how having more than two classes affects the
model’s performance. Furthermore, only a few distributions
and situations were tested in the experiments. This only gives
an idea of how the model may behave in general, but it does
not cover all cases that may occur. To test the model in a more
realistic setting, real data could be used. Even though the true
overlap regions would not be known, observing the model’s
behaviour and comparing it to other models could give more
insight into how it would perform with real data.

7 Conclusions and Future Work
Identifying the region of overlap between two classes can be
accomplished using propensity scoring with density estima-
tion. This project explored how this method performs in dif-
ferent scenarios (one or multiple regions of overlap) and how
well it scales with an increasing number of dimensions and
outliers. Additionally, three classifiers were used for comput-
ing the propensity scores and compared to each other: logistic
regression, decision trees, and random forests.

The results from the experiments show that the model per-
forms best with only one region of overlap, dropping signif-
icantly in performance when it comes to multiple regions of
overlap. For the former case, using logistic regression is pre-
ferred, while in the latter case, the random forest classifier
seems to perform best. Furthermore, the model generally
drops in performance with higher dimensionality. Regard-
ing outliers, the model’s performance drops slightly with up
to 2.5% of the samples consisting of outliers. With more out-
liers, only logistic regression is significantly affected, while
the nonlinear classifiers (decision trees and random forests)
are not.

The experiments in this report only looked at certain sce-
narios using simulated data. Following these experiments,
the behaviour of the model using real datasets could be ex-
plored further. Perhaps another avenue that could be explored
is identifying overlap between more than two classes, using
multiclass classification.

The results in this report give an intuition of when the
method performs well and which classifiers should be used.
These intuitions can be taken into account and explored fur-



ther when using this method for identifying overlap for causal
inference in the future.
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