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A B S T R A C T   

The measurement of wave forces acting on marine structures is a complicated task, both during physical ex
periments and, even more so, in the field. Force transducers adopted in laboratory experiments require a min
imum level of structural movement, thus violating the main assumption of fully rigid structure and introducing a 
dynamic response of the system. Sometimes the induced vibrations are so intense that they completely nullify the 
reliability of the experiments. On-site, it is even more complex, since there are no force transducers of the size 
and capacity able to measure such massive force intensity acting over the very large domain of a marine 
structure. To this end, this investigation proposes a Bayesian methodology aimed to remove the undesired effects 
from the directly (laboratory applications) or indirectly (field applications) measured wave forces. The paper 
presents three applications of the method: i) a theoretical application on a synthetic signal for which MATLAB® 
procedures are provided, ii) an experimental application on laboratory data collected during experiments aimed 
to model broken wave loading on a cylinder upon a shoal and iii) a field application designed to reconstruct the 
wave force that generated recorded vibrations on the Wolf Rock lighthouse during Hurricane Ophelia. The 
proposed methodology allows the inclusion of existing information on breaking and broken wave forces through 
the process-based informative prior distributions, while it also provides the formal framework for uncertainty 
quantification of the results through the posterior distribution. 

Notable findings are that the broken wave loading shows similar features for both laboratory and field data. 
The load time series is characterised by an initial impulsive component constituted by two peaks and followed by 
a delayed smoother one. The first two peaks are due to the initial impact of the aerated front and to the sudden 
deceleration of the falling water mass previously upward accelerated by the initial impact. The third, less intense 
peak, is due to the interaction between the cylinder and remaining water mass carried by the individual wave. 

Finally, the method allows to properly identify the length of the impulsive loading component. The impli
cations of this length on the use of the impulse theory for the assessment or design of marine structures are 
discussed.   

1. Introduction 

Impulsive loading due to a breaking wave or to the initial impact of a 
broken wave is of great interest for the design of offshore and coastal 
structures. The transient nature of this load, relatively short duration (e. 
g. some 0.02 s (Goda et al., 1966)) and high intensity, makes it of great 
interest not only from the hydraulic point of view but also from the 

structural one, Dermentzoglou et al. (2020). The time domain repre
sentation of impulsive loading is characterised by sharp shapes that are 
not adequate to properly highlight its particular nature and danger
ousness. However, a frequency domain approach better serves to present 
how the content of energy within an impulsive load can be dangerous for 
every kind of structure. Indeed, the energy is spread among a large range 
of frequencies (theoretically from 0 to ∞, e.g. Fig. 1) so that the risk for 
induced resonance, and consequently, amplification of the effective 
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load, is significant. Fig. 1 shows, through the well-known Kronecker 
delta, these phenomena wherein the upper panel presents the time series 
of the Kronecker delta and the lower panel its Hilbert-Huang spectrum 
(HHs) with energy spreading through all the analysed frequencies. 

This is true not only for on-site conditions, where the amplification of 
the effective load can be detrimental for the structure integrity (Ser
inaldi and Cuomo, 2011), but also when the impulsive wave force has to 
be measured in a hydraulic laboratory. As a result, the measurement of 
wave forces acting on marine structures is a complicated task, both 
during physical experiments and, even more so, in the field. Force 
transducers adopted in laboratory experiments require a minimum level 
of structural movement, thus violating the main assumption of fully 

rigid structure and introducing a dynamic response of the system that 
masks the hydrodynamic load (Dassanayake et al., 2019a). On-site, it is 
even more complex, since there are no force transducers of the size and 
capacity able to measure such massive force intensity acting over the 
very large domain of a marine structure. Field wave pressures have been 
measured to determine the overall loading, producing benchmark in
formation for understanding the interaction between wave and struc
tures (Bullock et al., 2007). Wave pressures have been measured with 
success in several experimental campaigns (Cuomo et al., 2010; Cuomo 
et al., 2007; de Almeida and Hofland, 2020; de Almeida et al., 2019; 
Stagonas et al., 2016); however, the overall description of the total wave 
forces is affected by several assumptions and possible inaccuracies in the 

List of symbols 

d(t) displacement of the mass or measured force 
h(t− τ)or IRF unit-impulse response functions 
F(τ) external system perturbation 
M mass (or equivalent mass) of the modelled body 
k dimensional system stiffness 
c the dimensional system viscous damping coefficient 
ωn system natural frequency 
ωd system damped natural frequency 
ζ system damping ratio 
t time; 
d recorded force response time vector 
m unknown external load time vector 
G Toeplitz matrix representing the convolution operation 
t time vector 
CD data covariance matrix 
q(m|d) posterior distributions 
p(m) prior distributions 
f(d|m) conditional probability 
mprior prior distributions expected value 
CM prior distribution covariance matrix 

V right singular vector matrices 
U left singular vector matrices 
S singular values matrix 
I identity matrix 
CR prior distributions correlation matrix 
CM,R non-diagonal prior covariance matrix 
hr response of the laboratory model to the force exerted by 

the impact hammer 
hh force exerted by the impact hammer 
Gh Toeplitz matrix representing the convolution operation 

when the exerted impact hammer force is known and the 
system IRF is unknown 

R matrix resulting from the QR decomposition 
Hm0 spectral significant wave height 
Hm0MAX maximum recorded significant wave height 
TP spectral peak wave period 
TS spectral significant wave period, TS = TP/1.07 
Tm = spectral mean wave period TS = TP/1.19 
dP spectral peak wave direction 
CHi accelerometer ith signal 
H0.21% wave height with exceedance probability equal to 0.21%  

Fig. 1. (a) Theoretical (Kronecker delta) impulsive load and (b) its Hilbert-Huang spectrum (HHs).  
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spatio-temporal integration of those pressures (Lamberti et al., 2011; 
Martinelli et al., 2018). Therefore a force reconstruction method is 
required with its inherent downsides due to the solution of the under
lying inverse problem (Maes et al., 2018; Sanchez and Benaroya, 2014). 

The problem of characterising the impulsive wave loadings has 
attracted researchers’ interest since 1958, when Hall performed the first 
laboratory experiments aimed to characterize the breaking wave forces 
on a circular pile located on a sloping beach, (Hall, 1958). Several au
thors follow these pioneering tests and are nicely summarized by Tu 
(2018) and Tu et al. (2017a). Goda et al. (1966) were the first to 
formalize a mathematical model to describe breaking wave loading and 
to highlight the need to consider within the description of the loading 
condition the dynamic of the affected structure, at both the model and 
prototype scale. Goda based his final formula on the combination of 
experimental results and von Karman theory (Von Karman, 1929). Later 
(Campbell, 1980), performed drop tests instead of wave impact tests, in 
order to achieve a reasonably large Froude number (e.g. > 0.6) so that 
the total load was mainly dominated by the slamming component. 
Despite achieving high rigidity in test set-up (natural frequency around 
550 Hz), the amplification due to the dynamic response was large 
enough to mask the hydrodynamic load. Hence, to properly describe the 
pure hydrodynamic load, the experimental system was modelled as a 
lumped mass and was forced with a hyperbolic function. The goal of the 
method was to identify which shape of the hyperbolic function allowed 
the best match between the dynamic response of the experimental set-up 
and the response of the single degree of freedom (SDoF) model. More 
recently (Wienke and Oumeraci, 2005), performed a large scale test 
aimed at identifying the breaking wave loading on vertical cylinder 
under the action of focused wave groups. The model comprised a cyl
inder installed in deep water and fastened at both ends. Also in this case 
the transient nature of the impulsive wave loading induced dynamic 
response of the experimental set-up, so they applied a similar method to 
that of Campbell (1980), though removing a known quasi-static force 
from the experimental dynamic response. The approach allowed the 
verification of the assumed theoretical description of the impulsive load 
by contrasting a SDoF model response and the measured dynamic force. 
However, both Campbell (1980) and Wienke and Oumeraci (2005) 
avoided the use of the inverse method, and under the hypothesis of 
linear response of the experimental structures, instead verified their 
formula by means of the convolution process between the developed 
empirical equation and the impulse response function (IRF) of the 
structure. Dynamic amplification of breaking wave loading during 
experimental study was also highlighted by Choi et al. (2015), where 
they quantified, and subsequently removed, this unwanted effect by 
means of the combined use of the Empirical Mode Decomposition (EMD) 
and Computational Fluid Dynamic model (CFD). Later, a similar 
approach based on Ensemble Empirical Mode Decomposition (EEMD) 
was applied by Dassanayake et al. (2019a) and Dassanayake et al. 
(2019b) to remove the effects of the vibration induced by broken waves 
on the experimental set-up aimed to model an offshore rock lighthouse. 
Despite the EEMD approach being more accurate in removing the dy
namic response of the structure than EMD, it still presents disadvantages 
related to the overestimation of the quasi-static force component, as also 
highlighted by Tu (2018). 

It was only within the WaveSlam project (HYDRALAB IV framework) 
that the inverse estimation of the breaking wave force acting on marine 
structures has been successfully undertaken. Four different approaches 
were proposed within Tu’s related PhD thesis (Tu, 2018), all of them 
based on the deconvolution between the recorded wave force and the 
dynamic response of the structure. The first method, called opti
mization-based deconvolution (OBD) (Tu et al., 2015), is based on the 
minimization of the Euclidean distance between the measured force and 
the modelled force given by the superimposition of the scaled and 
shifted hammer test responses. The other three methods are mainly 
based on the deconvolution between the IRF and the measured dynamic 
response of the structure under the breaking wave action. The so-called 

“horizontal approach” is a two-step approach based on the impact 
hammer test results. The IRF is identified by means of conjugate gradient 
technique while it is later applied to the recorded dynamic response 
through a weighted eigenvector expansion method in order to obtain the 
wave slamming force. The horizontal approach relies on two main pa
rameters for the regularization of the solution, the stopping factor and 
the weighting factor for the first and second steps respectively. Both are 
defined by the user in order to control the noise effect in the IRF defi
nition (first step) and to discriminate the smallest eigenvalues of the 
deconvolution matrix (second step), thus reducing the risk of numerical 
instability through a regularization approach (Tu et al., 2017b). The 
so-called “vertical approach” uses the linear regression technique. Simi
larly to the horizontal approach, it also reconstructs the wave impact 
force at each investigated location by using the hammer impact force, 
the hammer response force, and the wave response force at the same 
measurement location. For each investigated location, the wave impact 
force is conceived of as a result of the hammer hitting this location with 
different amplitudes many times in a row, hence the interval between 
every two imaginary hammer impacts is an input required from the user 
and is called step factor. The step factor indirectly controls the size of the 
deconvolution matrix and the accuracy of the reconstructed impact 
force. The last proposed approach is the “extended vertical approach”. 
Similarly to the OBD, the extended vertical approach accounts for the 
contribution of the impacts at different locations into the measured force 
responses, while treating each transducer simultaneously. In this 
approach, the response locations and the impact locations are distin
guished. More recently Maes et al. (2018) applied a recursive joint 
input-state estimation algorithm for the inverse estimation of the 
breaking wave loading on hydro-elastic model scaled wind turbine 
monopile and the induced members forces at the base of the flexible 
structure. The algorithm is based on the dynamic behaviour of the 
flexible monopile along the incoming wave direction where the modal 
parameters are experimentally identified via impact hammer tests. The 
results show relatively close agreement between the measured and 
reconstructed forces with an average absolute error around 27% for the 
impact force and 19% for the overturning moment. However, the overall 
method relies on the assumption of triangular pressure distribution for 
which there is no evidence that it can be used within the whole loading 
process. Despite this assumption, Maes et al.’ work sets a foundation for 
the inverse wave force identification through the dynamic response of 
the structures. Finally, to estimate the magnitude of the slamming load 
on offshore wind turbine, Paulsen et al. (2019) applied a simplified 
dynamic model of the laboratory set-up to describe the transfer function 
and hence partially remove the dynamic oscillation of the cylinder. 
However, the methodology is not described in detail by Paulsen et al. 
because of the different focus of the analysis. 

This work intends to make progress in the application of the inverse 
method to reconstruct wave forces exerted on marine structures. We aim 
to present a new Bayesian inverse method to reconstruct both field and 
laboratory forces due to breaking or broken waves. While tackling the 
three main downsides of the inverse methods, i.e. solution existence, 
uniqueness and stability (Aster et al., 2018), the proposed approach will 
provide not only a proper framework to analyse future laboratory and 
field data from offshore and coastal structures, but also a tool to account 
for the prior knowledge on breaking wave forces and a formal approach 
for the uncertainty quantification of the results through the posterior 
distribution. Therefore, this paper is not aimed at producing a compre
hensive description of the specific impulsive load due to the broken 
waves on a cylinder upon a shoal, but instead at presenting and 
describing a useful Bayesian methodology to achieve a more compre
hensive and general result. In order to achieve this, the paper presents an 
introductory overview on the experimental problems related to the 
measurement of the wave forces and on the issues connected with the 
inverse methodology required to solve the inevitable violation of fully 
rigid model assumption, based on linear systems theory. The convolu
tion between the input signal and the IRF is the core concept of the 
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methodology, therefore, the assumption of linear elastic behaviour of 
the structure is implicitly adopted. From the statistical point of view, the 
main hypothesis is related to the noise affecting the data that is 
considered normally distributed and independent. Through the devel
opment of the paper, the method is applied to both laboratory and field 
data. Despite the different nature of the recorded experimental and field 
vibrations - one is a laboratory effect whereas the other is a real struc
tural response - the methodology is successfully applied to reconstruct 
both wave forces. 

The method will be presented in the following chapter where the 
main theoretical background and numerical issues will be treated in 
order to provide the required background knowledge. The proposed 
method will then be applied to the laboratory force measurements 
(chapter 4) and field accelerations measurement (chapter 5) as illus
trative examples of application. Finally, discussions about the main re
sults of the applications and the resolved issues will be gathered in 
chapter 6. 

2. Method 

The proposed solution for the inverse problem is a merger of struc
tural and statistical models, thus it requires a proper formulation of the 
fundamental hypotheses for both aspects. The approach describes the 
dynamic behaviour of the investigated structure by means of damped 

single degree of freedom model (SDoF) (whether it is laboratory or 
prototype one), under the main structural hypothesis of linear time- 
invariant behaviour. This means that the wave loading that is to be 
reconstructed, cannot generate plastic deformation and also that the 
structure has fully elastic behaviour under such loading. This allows the 
calculation of the response (d(t), e.g. displacement of the mass or 
measured force) to an arbitrary time-varying external perturbation (e.g. 
the wave force) by means of the superposition of a series of unit-impulse 
response functions (IRF or h(t− τ)) due to a series impulses composing the 
external perturbation (F(τ)). This concept is well known within the 
earthquake engineering as Duhamel’s integral (Rajasekaran, 2009) or 
more generally under the mathematical concept of Fredholm integral 
equation of the first kind (Aster et al., 2018) and is represented in eq. (1): 

d(t) =

∫t

0

F(τ)⋅h(t− τ)dτ (1)  

while the displacement IRF for damped SDoF can be written as shown in 
eq. (2). 

h(t− τ) =
1

M⋅ωd
⋅ e− (ζ⋅ωn ⋅(t− τ)) ⋅ sin(ωd ⋅ (t − τ)), t ≥ τ and t> 0 (2)  

where M is the mass (or equivalent mass) of the modelled body, k and c 
are the dimensional stiffness and viscous damping coefficient, ωn is the 
natural frequency calculated through the well-known equation ωn =

̅̅̅
k
M

√

, ζ is the damping ratio expressed by ζ = c
2

̅̅̅
k
M

√ and ωd is the damped 

natural frequency described by ωd = ωn⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ζ2

√
. 

Most often in civil engineering the damping ratio does not exceed 
20%, thus the damped and natural frequencies tend to be the same (Lee 
et al., 2018; Martinelli and Lamberti, 2011; Rajasekaran, 2009). How
ever, despite the optimum laboratory set-up making use of stiff 

instruments, the nature of the connection of the sought instruments with 
additional elements (as in the case presented in this paper) could 
perhaps introduce damping to a level requiring distinction of damped 
and natural frequencies. 

The proposed method aims to solve the inverse deconvolution 
operation that will remove the dynamic effect of the structure (i.e. h(t− τ)
in eq. (1)) and allows the reconstruction of the wave force F(τ). As an 
illustrative example, we can assume that the measured data (d(t)) is the 
response of a force transducer to an external load F(τ) that we want to 
reconstruct by removing the dynamic response due to the model set-up. 
Standard laboratory force measurements rely on transducers that inte
grate strain gauges, thus the structure must be free to move, hence 
violating the hydraulic modelling assumption of a fully rigid structure. 
Therefore, to reconstruct a force resulting from the dynamic response of 
the system, e.g. a force transducer connected with a structure, the 
required IRF should not be expressed in term of displacement per unitary 
impulse (i.e. m/Ns) as in eq. (2), but in term of inertia force per unitary 
impulse, (i.e. N/Ns), Fig. 2. Knowing the analytical expression of the 
displacement IRF, the calculation of the force IRF is easily achievable by 
means of the multiplication between the laboratory structure mass (M) 
and the second time derivative of eq. (2). Eq. (3) shows the resulting 
expression, in which M can be simplified as presented in eq. (5). For the 
illustrative example, the numerical values of the dynamic parameters 
are described in Fig. 2.  

The convolution integral in eq. (1) can be rewritten in more conve
nient matrix notation as presented in eq. (4): 

d=Gm (4)  

where the symbols in bold denote a vector of values varying in time, i.e. 
d is the recorded force response time series, m is the sought unknown 
external load and G is a square Toeplitz matrix representing the 
convolution operation. G comprises lagged IRFs, so that the rows are 
time-reversed and the columns are non-time-reversed versions of the IRF 
lagged by i and j as shown in eq. (5). The resulting convolution matrix 
with example columns are presented in Fig. 3. 

G(i,j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ω2
n⋅ζ2⋅e(− ωn ⋅ζ⋅(ti − tj))⋅sin

(
ωd⋅

(
ti − tj

))

ωd
−

2⋅ωn⋅ζ⋅e(− ωn ⋅ζ⋅(ti − tj))⋅cos
(
ωd⋅

(
ti − tj

))
−

ωd⋅e(− ωn ⋅ζ⋅(ti − tj))⋅sin
(
ωd⋅

(
ti − tj

))

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋅Δt ⇔
(
tj ≥ ti

)

0 ⇔
(
tj ≤ ti

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5) 

The fundamental statistical hypothesis of the method is related to the 
noise affecting the data (d(t)), that is assumed to be normally and inde
pendently distributed with a corresponding diagonal covariance matrix 
CD. Moreover, the proposed approach relies on Bayes’ theorem as pre
sented in eq. (6). Hence, the sought model is assumed to be a random 
variable so that the final solution is a probability distribution q(m|d) for 
the model parameters, often called the posterior distributions. 

q(m|d)=
f (d|m)p(m)

∫

all mo|delsf (d|m)p(m)
(6) 

IRF =M⋅
(

ω2
n⋅ζ2⋅e(− ωn ⋅ζ⋅t)⋅sin(ωd⋅t)

M⋅ωd
−

2⋅ωn⋅ζ⋅e(− ωn ⋅ζ⋅t)⋅cos(ωd⋅t)
M

−
ωd⋅e(− ωn ⋅ζ⋅t)⋅sin(ωd⋅t)

M

)

(3)   
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where p(m) denotes the prior distributions and f(d|m) is the conditional 
probability, that, given a particular model m, corresponding data d will 
be observed. 

In other words, and more specifically related to the inverse force 
reconstruction, we aim to identify a probability distribution for each 
instant (ti) described by the time vector (t) that our identified model 
(m(ti)) might have generated the measured response (d(ti)). Furthermore, 
we want to probabilistically describe how our model (m(ti)) is effective in 
modelling the real unknown wave force (F(τi)) that generated the 
measured response d(ti). The Bayesian approach allows the natural 
incorporation of the prior information about the final solution that 
comes from previous knowledge or experience by means of the time- 
varying prior distributions p(m(ti)). Therefore, the previously devel

oped knowledge on wave impact (e.g. Dassanayake et al. (2019a); 
Dassanayake et al. (2019b); Pappas et al. (2017); Wienke and Oumeraci 
(2005)) and on the structural dynamic behaviour (e.g. Antonini et al. 
(2019); Brownjohn et al. (2019); Brownjohn et al. (2018); (Pappas et al., 
2017; Pappas et al., 2021); Pappas et al. (2019) (Raby et al., 2019b)) can 
be directly considered within the analysis. The prior distributions are 
assumed to be normal distributions varying with time as in eq. (7), with 
expected value mprior and associated covariance matrix CM. 

p(m)∝e−
1
2(m− mprior)

T
C− 1

M (m− mprior) (7) 

The likelihood that given a particular model, a response vector (d) 
will be observed is expressed by the likelihood function f(d|m) eq. (8). 

Fig. 2. Analytical force IRF for a linear system having mass (M) equal to 20 kg, natural (ωn) and damped (ωd) frequency the same and equal to 10 Hz, stiffness (k) 
equal to 1000 Nm and damping ratio (ζ) 2%, sample time step (Δt) equal to 0.001 s. 

Fig. 3. Convolution matrix and example of columns for the illustrative IRF example in Fig. 2.  
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f (d|m)∝e− 1
2(Gm− d)T C− 1

D (Gm− d) (8) 

Therefore, through the resolution of the integral in eq. (6) the prior 
and posterior distribution are related in a way that makes the compu
tation of q(m|d) possible. The final result of the method is a series of 
normal distributions (i.e. one for each sampled data value), describing 
the unknown wave force as shown in eq. (9). 

q(m|d)∝e−
1
2((Gm− d)T C− 1

D (Gm− d)+(m− mprior)
T

C− 1
M (m− mprior)) (9) 

It must be noted that q(m|d) does not provide a single value that we 
can consider “the wave force”, thus to provide a single model output of 
the wave force, the maximum a posteriori value (MAP), i.e. the wave force 
associated with the largest value of q(m|d), is proposed as suggested by 
Aster et al. (2018), leading to a simplification of eq. (9) in eq. (10) and 
eq. (11), as proposed by Tarantola (1987). 

q(m|d)∝e−
1
2(m− mMAP)

T C− 1
M′ (m− mMAP) (10)  

CM′ =
(
GT C− 1

D G + C− 1
M

)− 1 (11) 

Rewriting C− 1
M and C− 1

D in terms of matrix square root by means of, for 
example the Singular Value Decomposition (SVD), the MAP solution can 
be now calculated by the minimization of the exponent in eq. (9) 
resulting in a standard linear least-squares problem presented in eq. 
(12). 

min

⎡

⎣
C− 1/2

D G
C− 1/2

M

⎤

⎦m −

⎡

⎣
C− 1/2

D d
C− 1/2

M mprior

⎤

⎦

2

2

(12)  

where the multiplication of C− 1/2
D with d and of C− 1/2

M and m can be seen 
as a transformation that makes the data (affected by random noise) and 
the unknown models (intrinsically stochastic due to the Bayesian nature 
of the methodology) independent with a normalised standard deviation 
for both the data and model space respectively. 

3. Theoretical example 

Usually the convolution matrix as given by eq. (5) and shown in 
Fig. 3 is mildly to severely ill-conditioned, hence the inverse problem is 

Fig. 4. Singular values matrix G for the example presented in Fig. 2 and 3.  

Fig. 5. Theoretical example: input force (black), theoretical measurement (red dotted) and noisy measurement (blue). (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.) 
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not straightforward because we can anticipate a severe amplification of 
the noise contained within the real data. In the example proposed above 
the condition number of the matrix G is slightly larger than 88′800 due 
to its wide range of singular values between 24 and 2.7 × 10− 4, Fig. 4. 
Therefore, even assuming optimistically the recording signal is affected 
by a 0.01% noise level, the results of the inverse process will be domi
nated by the amplified noise. 

For explanation purposes, we can conceive the reconstruction of an 
impulsive wave force (black line in Fig. 5) acting on the laboratory set- 
up characterised by the force IRF in Fig. 2 and that the force measure
ment (i.e. the system response) is affected by some white noise (blue line 
in Fig. 5). A standard approach to tackle this inverse problem would be 
through the application of the least-squares method with the support of 
the Singular Value Decomposition (SVD). Indeed, the system presented 
in eq. (4) (i.e. d = Gm) can be solved for m once the inverse of the matrix 
G is obtained via the SVD decomposition as presented in eq. (13). 

m=VS− 1UT d (13)  

where V and U are the right and left singular vector matrices respec
tively and S is the singular values matrix. The reconstruction of the 
impulsive wave force from the theoretical measurement (i.e. the noise
less red dotted line in Fig. 5) fits its noiseless data perfectly, being 
essentially identical to the original impulsive force (Fig. 6a). If the same 
procedure is applied to more realistic white noise data (i.e. the blue line 
in Fig. 5, CD = 0.65⋅I) the solution is meaningless. The information 
about the original impulsive wave force is overwhelmed by the noise, 
enormously amplified by the inversion process (Fig. 6b). 

To control the unstable character of the proposed inverse problem, a 
first preliminary method can rely on the property of the Fourier trans
form. Indeed, the Fourier transform of a convolution between two ele
ments is equal to the product of the two Fourier transforms, so that the 
solution is trivial within the frequency domain. However, the solution of 
the inverse problem remains extremely sensitive to small changes in the 
records (d) and requires a regularization process that can be achieved by 
imposing equal to zero the smallest elements of the Fourier transform of 
the records, hence obtaining a sort of truncated Fourier transform. Even 

Fig. 6. Application examples of the truncated Fourier transform and least square method and SVD for the reconstruction of the incident force: a) theoretical data; b) 
noisy data; c) noisy data, truncated SVD and truncated Fourier transform. 

Fig. 7. Trapezoidal shaped zero-covariance prior distribution.  
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though this method is rather effective in term of computational time, 
does not come without downside aspects. The threshold that defines the 
level of the “smallness” of the Fourier transform elements to be zeroed is 
unknown and depends on the noise realisation, therefore for each case it 
should be properly defined introducing a subjective selection of this 
fundamental parameter. The result of this simplified method is pre
sented in Fig. 6.c with the cyan colour. 

To overcome the instability issue due to the ill-conditioning of the 
convolution matrix a truncated SVD (i.e. the inverse of the matrix G is 
obtained by using only the largest singular values) can be applied in 
order to reconstruct a reasonable estimation of the original force and 
avoid the subjective selection of the above mentioned threshold. Fig. 6.c 
shows the reconstructed force obtained using the L-curve criterion 
(Hansen, 1992; Hansen, 2007) as a guide for selecting the Tikhonov 
regularization parameter (Tikhonov and Goncharsky, 1987) where only 
the first 168 singular vectors of the matrix V are used within the inverse 
process. The SVD truncated approach allows the detection of the 
essential features of the original impulsive force; however, this tech
nique, as well as the truncated Fourier transform, introduces some 
spurious oscillations and loss of resolution generating a wider impulse 
and reduced amplitude as shown in the zoomed box in Fig. 6.c. 

3.1. Informative prior distributions 

In order to properly apply the previously developed Bayesian 

method, the prior distributions need to be defined. Having described the 
dynamics of the system, this information can be incorporated into the 
process by means of informative priors. It is reasonable to believe that 
the force shown in Fig. 5 should have been applied to the system at least 
some instants before the change of its status (i.e. t = 0.5 s). After that, it 
is reasonable to assume that the maximum force value (calculated, for 
example, using the Wienke and Oumeraci (2005) approach) should have 
been applied to the structure at least a short time after the maximum 
response value (i.e. t = 0.57 s) after which the incident force should have 
dropped to 0. Moreover, assuming that the incident force is an impulsive 
wave force there is enough knowledge (e.g. Cuomo et al. (2010); Cuomo 
et al. (2007); Wienke and Oumeraci (2005)) to believe that the rising 
slope is steeper than the decreasing one. Hence we can assume a 
trapezoidal-shaped zero-covariance prior distribution that preferentially 
concentrates the model structure around the instant of the maximum 
response by imposing a zero prior with small standard deviation far from 
the maximum system response (Fig. 7). 

Fig. 8 shows the comparison of the Bayesian inverse approach and 
the least square method approach. It is evident that the Bayesian solu
tion is still severely affected by some noisy oscillation and large un
certainties around the reconstructed force. Because the prior 
distribution has zero covariance, the resulting model realisations are 
quite rough. 

Therefore, the prior distributions can be designed to enforce a 
smoothness constraint on the realisation of the posterior distribution by 
specifying a non-diagonal prior correlation matrix (CR). The positive 
definiteness of CR can be guaranteed by constructing the matrix so that 
each column is the autocorrelation of a pre-selected function in which 
the zero-lag (unit) maximum is centred on the diagonal of CR. Due to the 
particular shape of the impulsive wave loading, i.e. close to a triangle 
with the highest corner corresponding to the peak force, the autocor
relation of a triangle function that produces a cubic approximation to a 
Gaussian function is selected. Moreover, we can base the correlation 
time scale on the previously developed knowledge of the impulsive wave 
force duration (Cuomo et al., 2010; Goda et al., 1966; Wienke and 
Oumeraci, 2005) so that the prior correlation function falls off with a 
time scale of 0.05 s, i.e. the zero-lag (unit) maximum of the correlation 
sequence is centred on the element i and zero at approximately i ± 0.05 s 
(Fig. 9). Hence, given the non-uniform diagonal elements of the 
covariance matrix CM and the correlation matrix CR, the non-diagonal 
prior covariance matrix CM,R is defined as in eq. (14): 

CM,R = diag(CM)⋅CR (14) 

Fig. 8. Application examples of Bayesian inverse method with informative trapezoidal shaped zero-covariance prior distribution.  

Fig. 9. A correlation function for the prior distribution. CR’s 4000th column (i 
= 4000). 
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Fig. 10 shows the final result of the developed Bayesian inverse 
method, in which full use of the previous knowledge about both the 
dynamic behaviour of the system and the physical knowledge about the 
breaking wave loading have been incorporated within the prior distri
butions and therefore within the inverse process. The obtained solution 
is, not surprisingly, considerably improved by the more restrictive prior 
model. This is because the true model is highly restricted and thus 
consistent with the prior distributions. Moreover, it can be recognised 
that, despite the restrictive prior model, the information carried by the 
data is not overwhelmed by the prior distribution. The zoomed box in 
Fig. 10 clearly depicts a smaller credible interval for the rising part of the 
impulsive force (i.e. 0.5 ≤ t ≤ 0.538) than for the falling one (i.e. 0.38 <

t ≤ 0.8) even if the assumed prior variance is the same. Thus, it can be 
argued that the slope of the original signal can be interpreted as an index 
of the relative importance or strength, within the Bayesian process, 

between the information carried by the data and that carried by the prior 
model. The 95% credible interval is not the standard 95% confidence 
interval, rather it is the 95% probability interval calculated from the 
posterior distributions, so that there is 95% probability that each m(ti)

value lies within the corresponding symmetric interval around the MAP 
value. 

In this chapter, three different methods to solve the inverse problem 
aimed to reconstruct the incident wave force from a noisy signal 
recorded on a, or from a structure have been presented. The first and 
more simplified method makes use of the Fourier transform properties 
and the subjective selection of the threshold to solve the instability issue 
due to the noise affecting the records. The second is based on the SVD 
decomposition of the convolution matrix, the Tikhonov regularization 
criterion and the L-curve technique for the selection of the threshold 
aimed to identify the largest singular values to consider within the 

Fig. 10. Application examples of Bayesian inverse method with informative trapezoidal shaped zero-covariance prior distribution.  

Fig. 11. Overall laboratory set-up.  
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resolution of the deconvolution process. The third, and most compre
hensive one, is based on the Bayes theorem, it provides the framework to 
inherently quantify the uncertainty in the final solution and to account 
for the prior knowledge about impulsive wave loading and structural 
dynamic. All the proposed methods allow a reasonable reconstruction of 
the incident force, each of them with its own downsides, but still all of 
them applicable to further case studies involving coastal and offshore 
structures under impulsive wave loadings. 

The above theoretical example, as well as the following laboratory 
and field applications, have been entirely developed within the MAT
LAB® environment. The entire procedure chain adopted to complete the 
theoretical example is also released as additional material to this 
document, aiming for a straightforward easy application to different 
case studies. 

4. Laboratory application 

4.1. Laboratory setup 

A series of physical model tests on a vertical cylinder upon a variety 
of 2D shoals was performed within the STORMLAMP (STructural 
behaviour Of Rock Mounted Lighthouses At the Mercy of imPulsive 
waves) research project framework in the wave flume of the COAST 
Laboratory, University of Plymouth. The flume is 35 m long, 0.6 m wide 
and 1.2 m high. A lighthouse is modelled as a vertical aluminium cyl
inder (weight 9.88 kg) installed at the middle of the shoal, while the 
adopted foreshore steepness for the test reported here is 1:5. The water 
surface is measured by means of 16 wave gauges (WG), spread before 
and after the shoal, while two cameras, standard and high-speed ones, 
are used to capture the wave development along the foreshore (standard 
ones) and at the cylinder (high speed one) (Fig. 11 and Fig. 12). The high 
speed camera records were also used to evaluate the runup along the 
cylinder by means of the methodology presented by Dassanayake et al. 
(2019a). The offshore flume bed is flat and the mean free surface is 
coincident with the upper part of the shoal, i.e. 0.5 m (Fig. 11). The 
cylinder diameter (D) is 0.12 m, while the width of the upper shoal 
platform is 0.36 m. The 0.5 m high cylinder is suspended from its top and 
behaves as a vertical cantilever, leaving a minimal gap (i.e. 0.7 mm) 
between the cylinder bottom surface and the shoal. The top of the cyl
inder is connected to a 6 degrees of freedom load cell (mod
el:6A40B-500/20 – weight 0.4 kg (Interface, 2019),), that in turn is 
connected to a beam which is part of the main supporting structure 
(Fig. 12). The height of the force transducer is 40 mm, while the origin of 
the coordinate system is located 32 mm above the cylinder top surface, 
so that the cylinder bottom surface is at 532 mm from the origin. The 
load cell is equipped with 6 temperature-compensated bridges providing 
output for each of the 6 degree of freedom. Therefore the output signals 
have to be post-processed by means of a 6 × 6 calibration matrix in order 
to extract the force and moment values. The set-up enables force mea
surements along three perpendicular axes with three simultaneous 

Fig. 13. Raw recorded force (upper panel) and induced moment (middle panel) together with their HHs, the colour palettes indicating the instantaneous energy. 
Lower panel shows the measured runup and measured surface elevation at 0.5 m from the lighthouse, WG11 in Fig. 11. This example refers to a regular wave case 
characterised by H = 0.18 m and T = 1.5s. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 12. Shoal (1:5)-cylinder set-up details.  
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moments. The sample frequency is 5120 Hz, but all the signals have been 
decimated to 1000 Hz in order to reduce the computational effort of the 
inverse process. Regular, irregular and focused waves were run; how
ever, this investigation considers the applied methodology to recon
struct the wave force, hence results from regular waves only are 
presented. The assumption of 2D model is valid for the present test, 
hence, the wave force is acting along the negative y-direction and the 
induced moment is positive around the x-direction, Fig. 11. 

The cantilever scheme leads to a versatile set-up but also to an un
avoidable reduction in the overall system stiffness, requiring the need to 
properly address the wave-induced vibrations. Fig. 13 upper and middle 
panels show the typical recorded force and moment patterns for a reg
ular wave case characterised by wave height (H) equal to 0.14 m 
measured at WG11 on the shoal (water depth 0.1 m and distance from 
the cylinder 0.5 m) and period (T) equal to 1.5 s (Fig. 13 dotted line 
lower panel). A similar vibration pattern is present for all the wave 
states, highlighting the overwhelming effects of the structural dynamic 
response on the recorded force. Fig. 13 also shows the raw records and 
the Hilbert-Huang spectrum (HHs) presenting a clear pattern due to the 
natural frequency of the laboratory set-up which becomes the dominant 
feature of the records. Between 3.0 and 3.2 s a sudden jump in the 
instantaneous frequency and energy is detectable which is likely to 
indicate the instant at which the wave impacted the structure, as 
confirmed by the measured runup (lower panel solid line). Proceeding 
along the signal development, the natural frequency of the structure 
becomes dominant as shown by the instantaneous energy concentration 
between 12 and 12.5 Hz. Less energetic intrinsic mode functions (IMFs) 
are also grouped around the lower frequencies close to the incoming 
wave frequency equal to 0.66 Hz, however due to the large difference in 
instantaneous energy they are barely discernible. Overall, it is evident 
that the recorded force is not the wave force but the response of the 
model to an external perturbation. Finally, we want to stress that, 
although in this example the dynamic response is particularly effective 
in corrupting the measurement, any impulsive wave force measure
ments should be properly post-processed with different deconvolution 
techniques in order to extract real features and intensity of the incident 
force, regardless of whether the laboratory model is relatively stiff. 

4.2. Laboratory Bayesian inverse method application 

As for any dynamic system, the first step is the identification of the 
dynamic behaviour. In order to properly describe the dynamic response 
of the laboratory model, impact hammer tests have been performed with 
the aim to experimentally reconstruct the force IRF. The impact hammer 
tests made use of a piezoelectric impact hammer equipped with a rubber 
head (Fig. 14) which was used to hit the dry cylinder, i.e. without any 
surrounding water, 3 times around a lower location where the wave 
impact is expected (Fig. 15). By using the dry IRF within the inverse 
process, we are implicitly assuming that the dynamic parameters of the 
laboratory model remain the same during the interaction with the wave. 
From the preliminary results of wet IRFs, we identified that the damping 
ratio increases and the natural frequency decreases due to the additional 
viscous damping and added mass due to the surrounding water. How
ever, the uncertainty in the level of the water that should have been 
considered to properly reproduce the wave impact conditions do not 
allow the use of the wet IRF within the inverse process and therefore the 
dry IRF has been used through the entire paper. The final adopted IRF is 
the time average of 3 IRFs each of them calculated, as will be described, 
by dividing the signals shown in Fig. 15 in shorter and equally spaced 
segments with a length equal to 2.06 s and highlighted by the red dotted 
lines. 

The sought IRF can be seen as the time domain image of the fre
quency response function (FRF) of the system, so that the IRF can be 
calculated as the inverse Fourier transform of the ratio between the 
Fourier transform of the system output (lower panel in Fig. 15) and the 
Fourier transform of the system input (upper panel in Fig. 15) or simply 

the time domain deconvolution of the two. Under the hypothesis of fully 
rigid cylinder and supporting structure the overall laboratory set-up can 
be approximated by a single degree of freedom system with a strict 
relation between the rotation at the force transducer and the displace
ment at the tip of the cylinder so that the same IRF can be used for both 
force and moment. Appendix A presents the derivation of the IRF and the 
comparison between the IRF, calculated under the above-mentioned 
hypothesis and by explicitly taking into account both the force and 
the moment. However, despite the robust theoretical basis, the opera
tion as described above in the case of noisy discrete measurements is ill- 
conditioned, so that a regularization procedure needs to be applied also 
at this stage. Here, the issue is tackled by means of the least-squares 
solution supported by the QR decomposition. Each of the three experi
mental IRFs, calculated by means of the three signal segments identified 
in Fig. 15, is calculated as the solution of the linear system presented in 
eq. (15): 

Fig. 14. Impact hammer tests and impact location.  
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hr∫
hh dt

=Gh⋅IRF (15)  

where hr is one of the three segments representing the response of the 
laboratory model to the impulsive force exerted by the impact hammer 
(i.e. hh) that in turn is divided by the time integral of the impulsive force 
recorded by the impact hammer, i.e. hh. Gh is a matrix defined using the 
same method of matrix G (eq. (4)) with the main difference that, in this 
case, each column is defined as a lagged hammer force, i.e. hh. There
fore, the sought solution is the IRF that minimises both the norms in eq. 
(16). 
⎧
⎪⎨

⎪⎩

min
⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒Gh⋅IRF −

hr∫
ha dt

⃒
⃒
⃒
⃒

⃒
⃒
⃒
⃒

min||IRF||
(16) 

The applied regularization approach is aimed at treating the smallest 
elements along the diagonal of the matrix R (obtained from the QR 
decomposition of the matrix Gh) as zeros, so that the effect of the noise in 
the impact hammer records does not play a major role in the final so
lution. Plotting the elements along R’s diagonal is enough to identify a 
reasonable regularization threshold that in this example is set to 0.5; 
however this value should be evaluated for each case. Fig. 16 shows the 
calculated average IRF that has been adopted for all the following 
analysis. The clear presence of multiple components with their own 
frequency (13, 90, 475 and 535 Hz, see Appendix A) might be related to 
the quasi-rigid rotation of the cylinder around the transducer (13 Hz), to 
the second flexural mode of the cylinder, having the centre of mass 
moving in phase opposition relative to the tip (90 Hz), to the first natural 
mode of a cylindrical cantilever element (475 Hz) and to the supporting 
structure vibrations (535 Hz). 

Fig. 16. The identified IRFs for both horizontal force and moment.  

Fig. 15. Impact hammer tests records and the used three segments (red dotted lines). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 
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Finally, in order to identify the intrinsic noise within the data, and 
then define the covariance matrix (CD) associated with the data, the 
signal is assumed to comprise a smoothly varying function plus additive 
Gaussian noise with zero mean and variance to be estimated; the 
methodology described by D’Errico (2007) is applied here, for the 
estimation of the signal noise variance. The identified variance values 
are 0.0015 N2 and 2.5 × 10− 6 (Nm)2 for the force and moment, 
respectively, and are assigned to the elements along CD’s principal 
diagonals. 

4.3. Laboratory informative prior distributions 

As presented in the theoretical example, the definition of the prior 
distributions is based on the previous knowledge on the impulsive wave 
loading on cylindrical structures (Goda et al., 1966; Tanimoto et al., 
1987; Von Karman, 1929; Wienke and Oumeraci, 2005). Despite alter
native approaches being available, recently the work of Wienke and 
Oumeraci has been successfully applied in preliminarily investigations 
of wave loading on offshore rock lighthouses (Trinh et al., 2016), hence 
it is used as reference for the definition of the prior distribution. How
ever, a large proportion of the waves that interact with the lighthouse, 
and accordingly, also in the present laboratory experiments, rarely 

Fig. 17. Recorded signals and normal prior distributions (mean and standard deviation).  

Fig. 18. Example result for regular wave T = 1.5s and wave height around the breaking point 0.14 m. a) water surface elevation recorded at WG11 (0.1 m water 
depth and 0.5 m from the cylinder) and Runup, b, d) the identified incident wave force and moment and c, e) the Hilbert-Huang spectrum. 
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break directly onto the structure, instead they mostly reach the structure 
already broken with an initial aerated and turbulent front (Bressan et al., 
2018). Therefore a modification is applied to the standard Wienke and 
Oumeraci approach and the wave celerity (Cb) is calculated according to 
the method of Bonneton (2004) for broken waves in the surf zone, 
resulting in a value 1.5 m/s. Hence, the maximum value for the prior 

distribution is kept equal to the maximum force calculated according to 
the modified Wienke’s method, i.e. 31 N and is approximately applied at 
0.06 m from the bottom of the cylinder (i.e. 0.47 m from the origin of the 
axis). These dimensions are associated with a curling factor of 0.46 and 
wave crest of 0.08 m at the breaking point (Fig. 13 upper panel). 

Finally, due to the large uncertainties on the multitude of phenom

Fig. 19. Detailed results of the laboratory data analysis. a) the identified incident wave force together with a zoom on the posterior distribution for the maximum 
value and, b) the incident wave force Hilbert-Huang spectrum. c) the measured runup and the identified application point for the wave force and related posterior 
distribution. 

Fig. 20. Wolf Rock lighthouse from the helicopter during the field campaign (courtesy of Trinity House) and the vertical cross-section of the.  
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Fig. 21. Left panel: modal parameters from GRFP with mode shapes normalised to unity at battery level (shaker location). M indicates the modal mass for mode 
shape scaled to unit at the battery level, fn is the natural frequency and ζt is the damping ratio. Right panel: the modal ordinates values for the two identified 
mode shapes. 

Fig. 22. Wave hindcast data from HOMERE model (Ifremer, Boudière et al. (2013)). Deep water wave conditions south-west of Wolf Rock lighthouse at 49◦56′4.7′′ N 
- 5◦49′46′′ W. 
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ena affecting the interaction between the flow and the structure, a 
relatively non-restrictive standard deviation is assumed. Thus, a value 
equal to half the mean value is assigned to the standard deviation in 
order to fully describe the prior normal distributions for both horizontal 
force and overturning moment, as shown in Fig. 17. Due to the non-fully 
breaking nature of the waves action, for the definition of the prior dis
tribution, the time length of the impulsive force is initially estimated to 
be 0.04 s, according to Goda et al. (1966) who presented the longest 
values among the available impulsive model lengths, i.e. D

2⋅Cb
. Hence, the 

prior correlation function falls off with a time scale of 0.04 s. 

4.4. Laboratory results 

Results of the analysis are shown in Fig. 18 for a record of 5 incident 
regular waves, with 1.5 s period and wave height around the breaking 
point of 0.14 m (a movie of the 5 incident waves and the obtained results 
is available as additional material to this document). Panel a) shows the 
water surface elevation recorded at WG11 situated on the shoal (i.e. 
water depth 0.1 m and distance from the cylinder 0.5 m) and the 
measured runup, while panels b & d) show the identified wave force and 
induced moment respectively, and panels c & e) their HHs. The runup is 
defined as the level B runup proposed by Grue and Osyka (2021), i.e. the 
runup of a thin layer of water and air mixture, and water layer which 
was no longer attached to the surface of the pile, or high spray 
concentration. 

The dynamic amplification due to the structure is completely 
removed from the records allowing the description of a clear signal and 
the identification of the main loading features due to the broken waves. 
The detected force and moment highlight the presence of common 
features within the signals. Two peaks are clearly visible for all the 
loading events while a third one is slightly less pronounced but still 
present for all the events. The first peak is related to the violent impact of 
the first broken aerated front (red arrow Fig. 18b,d), the second is 
mainly due to the sudden deceleration of the falling down water mass 
previously upward accelerated by the impact with the cylinder (green 
arrow Fig. 18b,d). A third, less intense, peak due to the remaining water 
mass carried by the wave is also detected and is clearly visible for the 
third wave (purple arrow Fig. 18b,d) but it is also present within the 
other loading events with a smaller intensity. Despite the above- 
described loading mechanism is confirmed by the movie provided 
with this document some doubts arise regarding the effects of the cyl
inder compliance and movement. The moment transducer actually 
measures a small transducer deformation and rotation of the cylinder 
that due to the moderately high frequency of the induced oscillations 
and distance from the hinge point may result in a significant velocity of 
the cylinder in contact with water. However, to what extent this process 
affects the reconstructed force is not trivial to define and it has been 
assumed negligible in this work in light of the reasonable agreement 
with the later-described field results. As identified by Liu et al. (2019) 
and Kristiansen and Faltinsen (2017) for breaking wave on a vertical 
deep water cylinder, the content of energy for the impulsive load part is 
spread over a frequency range broader than the incident wave fre
quency. For the analysed case the waves break before the structure, 
hence the front that first impacts on the cylinder is extremely turbulent 
inducing a longer rise time but also energy content at higher frequencies 
that reach up to 40 times the wave frequency (i.e. 0.66 Hz), as shown by 
the HHs in Fig. 18c,e. This is particularly relevant for stiff structures, like 
the granite masonry offshore rock lighthouses, for which the observed 
natural frequencies for the first two modes are in the range between 4 
and 8 Hz, (Brownjohn et al., 2019; Brownjohn et al., 2018). Therefore, a 
detailed description of the higher wave load harmonics is essential to 

describe the induced dynamic response. Moreover, a constant low fre
quency component with a value close to the incident wave frequency (i. 
e. 0.66 Hz) is visible all along the time series shows in Fig. 18c,e. For all 
the impact events, a sudden jump in the instantaneous frequency is 
detected with a concentration of energy during the rising part of the 
impulsive load, particularly pronounced for the fourth event. The 
detected rise times range between 7% and 9% of the wave period (i.e. 
1.5 s) and between 20% and 30% of the whole impulsive loading 
duration that lasts around 0.2 and 0.3 s. It is important to highlight this 
aspect because several approaches, e.g. Goda et al. (1966), (Goda et al., 
1966); Wienke and Oumeraci (2005), do not consider the rise time when 
describing the breaking wave force time series, whereas it is indeed the 
part of the impulsive load where the energy is largely concentrated for 
the broken wave action. 

Fig. 19 shows details of the results for the third event in Fig. 18, in 
which the detected wave force application point is shown together with 
the runup in panel c. The runup measurement is obtained by the auto
mated image processing method described in Dassanayake et al. 
(2019a), while the application point is the crude ratio between the 
moment and the force. 

As expected, both the wave force and the induced moment are 
related to the runup as already highlighted by Peregrine (2003) for a 
vertical wall under breaking waves. The initial increase in runup 
(Fig. 19.c: 3.0–3.05 s) is largely due to the jet and the aerated water mass 
generated by the wave breaking before the cylinder, therefore little or no 
pressure is exerted on the structure. Subsequently, the primary front of 
the broken wave reaches the structure. It is projected upward by the 
pressure gradient due to the high pressure developed during the contact 
between the water mass and the cylinder (Fig. 19: 3.05–3.15 s) until it 
reaches the maximum runup level (Fig. 19: 3.15 s). The force application 
point correlates reasonably with the magnitude of the force, reaching its 
maximum slightly later than the maximum force, thus also inducing a 
different phase between the maximum force and maximum moment, 
then it suddenly drops as the force decreases. At the point of maximum 
runup, the water is in a nearly in free fall (Fig. 19: 3.15–3.25 s), exerting 
little pressure on the water below and resulting in the reduction of the 
force and moment. As it falls down, the water must be decelerated by a 
pressure gradient that is again supported by high pressure at the base of 
the cylinder and therefore by a second peak in the horizontal force and 
moment, (Fig. 19: 3.25–3.30 s). As expected the application point for the 
second peak is quite low and more steady than the first one, highlighting 
the non-impulsive nature of this loading cycle. The sudden drop of the 
runup around 3.3 s is mainly due to the inaccuracy of the video camera 
technique that failed to distinguish between the thin layer of water that 
was no longer continuously attached to the cylinder surface as shown in 
the additional video available with the paper. After the end of the 
impulsive loading component (Fig. 19: 3.30 s) the remaining part of the 
water mass carried by the wave reaches the cylinder generating a sec
ondary load cycle (Fig. 19: 3.35–3.45 s) that is less violent than the 
primary one, but still shows a slightly impulsive nature. On average it 
was observed that the intensity of this secondary load cycle ranges be
tween 15% and 25% of the primary one and it lasts for a duration that 
ranges between 5% and 12% of the wave period and between 40% and 
60% of the primary impulsive load. However, despite the reduced in
tensity of the secondary load cycle, it consistently shows a relatively 
high application point that ranges between 60% and 80% of the runup 
levels; thus it might have important effects on the structural response. As 
expected and highlighted by the HHs in Fig. 19.b he energy is concen
trated around the first loading event with energy spread on a large range 
of frequencies. The presence of a force component coherent with the 
lower frequency identified within the IRF (i.e. 13 Hz), might signify that, 
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despite the removal of the cylinder vibrations from the recorded signal, 
the original loading process was affected by the non-fully rigid nature of 
the experimental set-up. Hence the exerted hydrodynamic loading might 
not be exactly the same that would have occurred in a situation with a 
fully rigid structure. 

Although the proposed method allows the identification of most of 
the main features of the wave loading, the description of the application 
point, calculated by the crude ratio between the overturning moment 
and the horizontal force, is still affected by some inaccuracies that are 
reflected in the gaps within the time series. The main reason is the level 
of noise that is present in the MAP solution. Indeed, the gaps in the 
application point time series (black line and grey area in Fig. 19c) 
correspond to the lower values of the identified wave force, so that the 
division between the moment and small force values provides unrealistic 
results. Furthermore, few values of the application point fall above the 
detected runup. This is associated with the inaccuracy of the image 
processing based measurement of the runup that sometimes fails to 
properly detect the high turbulent or aerated water mass. In Fig. 19.c, for 

the sake of visual rendering, all the values of the application point 
related to forces smaller than 2 N have been removed. Both Fig. 18b, 
d and Fig. 19a,c shows the credible interval around the MAP solution for 
the force, the moment and the application point; however, due to the 
small signal-to-noise ratio the posterior distributions are quite narrow, 
so that the shaded grey area is slightly obscured. Two examples of 
posterior distributions are presented in Fig. 19a,c for the instant related 
to the maximum identified force (i.e. 3.153 s) and are overlapped with 
the main time series within the smaller plot boxes at 3.153 s. Note how 
the uncertainty in the application point is quite large for small values of 
force, whereas it becomes relatively small for the main impulsive load, 
as a result of the stronger information carried by the data in the Bayesian 
process. Finally, Fig. 19.c also shows the average least-square solution 
for the application point as a black horizontal dotted line with the 
associated uncertainty, again quite small and barely visible in the figure. 
From the comparison between the time varying application point and 
the overall least-square solution it is clear the potential of the proposed 
analysis method and the need for a proper post-processing procedure for 

Fig. 23. Remote logging system set-up and October 16, 2017 Wolf Rock lighthouse acceleration records during Hurricane Ophelia and the selected impact event.  
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the laboratory wave force time series. 

5. Field measurement application 

5.1. Field data: Wolf Rock lighthouse 

In order to show the capability of the proposed approach, the same 
methodology is applied to the field acceleration measurements recorded 
during Hurricane Ophelia (October 2017) on Wolf Rock lighthouse. The 
idea is to use the lighthouse as full-scale force transducer and recon
struct the wave load that induced the shaking of the structure. However, 
the field nature of this application requires more detailed characterisa
tion of the dynamic behaviour of the structure, so that the modal pa
rameters must be identified by means of a dedicated field modal 
campaign. The same approach can be applied to more common marine 
structures such as: vertical wall breakwaters, crown-walls, offshore wind 
turbines and offshore platforms. 

5.2. Wolf Rock lighthouse: location, features and modal analysis 

Wolf Rock lighthouse (49◦56.72′N - 05◦48.50′W), Fig. 20 left panel, 
is situated 13 km offshore the most south-westerly point of UK, halfway 
between the Isles of Scilly and Land’s End. It is one of the most exposed 
lighthouses in the British Isles, being surrounded by more than 35 m 
water depth on all sides but the south-east, Brownjohn et al. (2018); 
Raby et al. (2019a). The tower is composed of 70 granite courses, and 
extends to a height of 41 m from foundation to highest course. If the 
extent of the helideck is also considered (the first one constructed on top 
of a lighthouse, in 1973) it reaches a height of 43.1 m. Each granite 
course of the tower is subdivided into 16 sectors, each masonry course 
and sector being connected with their neighbours through vertical key 
and dovetail joints. The outside diameter reduces from a maximum of 
12.68 m at the complete 2nd course to a minimum 5.18 m at the 68th 
course. The total volume of the granite is 1260 m3 having a mass of 
3350 t. The lower landing platform extends north-east for about 25 m 
and is covered by granite blocks about 0.15 m thick. More detailed 

descriptions of the Wolf Rock lighthouse can be found in Raby et al. 
(2019b) and Brownjohn et al. (2018). 

A field campaign aimed to identify the lighthouse modal parameters 
such as modal masses, natural frequencies, damping ratios and mode 
shapes was performed in 2016 as part of the STORMLAMP project ac
tivities (Brownjohn et al. (2018)). During the two day campaign, both 
ambient and forced vibrations were recorded at the 8 + 1 floors (ma
sonry tower and helideck) of the lighthouse. Orthogonal pairs of Hon
eywell QA-750 quartz-flex accelerometers were arranged at the inner 
wall of the masonry tower at the same compass bearing with respect to 
the lighthouse vertical axis, Fig. 20 right panel, while a shaker was 
located at the battery room and acted along both the x and y directions. 
The ambient vibration data were post-processed with standard Eigen
system Realisation Algorithm (ERA) (James et al., 1993) allowing the 
identification of natural frequencies, mode shapes and damping ratios. 
The forced vibrations were analysed with both Global Rational Fraction 
Polynomial (GRFP) (Richardson and Formenti, 1985) and circle fit 
(CFIT) functions (Kennedy and PANCU, 1947), additionally allowing the 
identification of the modal masses (Fig. 21). 

Modal masses are most important for relating wave loading to 
response, but often they can be misunderstood because of the way they 
are linked to mode shape scaling. Therefore we define the modal mass as 
the integral with respect to height of mass weighted by squared hori
zontal modal ordinate (Brownjohn and Pavic, 2007), while the scaling 
sets the mode shapes to have unitary value at the level where the shaker 
is located (i.e. battery room). Accordingly, the physical response at this 
location is obtained by considering each mode as a SDoF system with 
this “unity scaled” value of modal mass. Fig. 21 shows the obtained 
results from the GRFP in which the first two identified mode shapes are 
presented. The mode shapes with large helideck ordinate have much 
larger modal mass. This is because the contribution to the modal mass 
calculation goes with the square of the modal ordinate. Furthermore, 
since the open helideck structure is practically transparent to horizontal 
loads due to breaking wave impacts, response of the masonry towers in 
these modes is expected to be relatively low. 

Fig. 24. Experienced inertial force at the battery room during one wave impact during the Hurricane Ophelia.  
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5.3. Hurricane Ophelia 

Hurricane Ophelia, the tenth and final consecutive hurricane of the 
very active 2017 Atlantic hurricane season, was the strongest storm that 
affected the south-western UK and Irish coasts. Formed on 3rd October 
from a broad low-pressure area offshore the Azores, it began to strike the 
British and Irish coasts at the beginning of 12th October (Guisado-
Pintado and Jackson, 2018). At the Wolf Rock nearest deep water node 
(49◦56′4.7′′ N - 5◦49′46′′ W), available within the NORGASUG model 
(Boudière et al., 2013), the hurricane reached its maximum intensities in 
term of significant wave height on 16th October during the afternoon 
between 13:00 and 16:00 (Hm0MAX = 7.15 m; TP = 13.3s, TS = 12.4s, Tm 
= 11.2s and dP = 222◦N) and 21st October, during the morning, be
tween 10:00 and 13:00 (Hm0MAX = 7.55 m; TP = 14.7s, TS = 13.7s, Tm =

12.4s and dP = 242◦N), Fig. 22. The following analysis will focus on the 
16th October peak. 

5.4. Remote acceleration acquisition system 

During the same period a remote logging system, aimed to acquire 
the wave-induced acceleration, was installed in the lighthouse battery 
room, i.e. 7th floor. The system comprises a single JA-70SA triaxial servo 
accelerometer, therefore two horizontal (i.e. CH1 and CH2) and one 
vertical signals are available for the analysis. The vertical acceleration is 
negligible for the aim of the proposed analysis. CH1 points 282◦N and 
CH2 is perpendicular, i.e. it points 192◦N, Fig. 23 upper panel. The 
recorded accelerations are shown in Fig. 23 lower panels at different 
time scales, i.e. the entire day, the 6 h of the storm and the selected 
acceleration time series together with their HHs. 

The original recorded CH2 acceleration is rotated by approximately 
30◦ from the hindcast wave direction; thus, to extract the acceleration of 
the lighthouse only along the wave direction the simultaneous records of 
both perpendicular channels are iteratively rotated (by step of 1◦) from 
0 to 180◦ clockwise. Moreover, the rotation analysis also allows the 
assessment of coherence between the acceleration measurements and 

the hindcast wave direction. The integral of the energy spectrum for 
both rotated signals is calculated and used as a proxy for the estimation 
of the impact direction. The maximum value of CH2 energy spectrum 
integral is obtained for a clockwise rotation equal to 34◦, hence it can be 
argued that the wave generating the shaking of Wolf Rock lighthouse at 
14:28 on 16th October was coming from 226◦N in close agreement with 
the hindcast wave direction. Thus in the following study the 34◦ rotated 
CH2 signal is considered, i.e. the considered alignment is 226◦N. 

To identify the wave force generating the shaking at the battery 
room, the experienced inertia force should be described through the 
modal masses presented in Fig. 21 (Brownjohn et al., 2019; Brownjohn 
et al., 2018) and then used within the inverse process. In other words, we 
want to use the measured acceleration of an elastically linked mass to 
evaluate the force acting on the mass itself. In the lower panels of Fig. 23 
the HHs for both CH1 and CH2 show that the impulsive wave load 
response is mainly concentrated within the second natural mode, i.e. 
around 6.8 Hz. Thus, under the assumption of linear behaviour of the 
structure, the experienced inertial force at the battery room can be 
calculated as the product between the acceleration and the modal mass 
related to the second natural mode (i.e. 436 t) as shown Fig. 24. To 
summarise this preliminary analysis of the acquired signal, impulsive 
wave load will be reconstructed by the application of the previously 
described inverse method considering the inertial force and the IRF 
related to the second natural mode. 

The process follows the same steps adopted for the laboratory data 
analysis; however, since it is impossible to test the lighthouse with an 
impact hammer, the IRF for the second natural mode is reconstructed 
from its theoretical expression. The process requires the deconvolution 
between two homogenous signals, hence the IRF expressed in term of 
displacement is converted in terms of force by means of the product 
between the second mode modal mass and the second time derivative of 
the displacement IRF as in eq. (3). In this case the modal parameters 
identified through the field modal analysis are adopted within eq. (3). In 
this regard, it should be mentioned that we are assuming that the dy
namic parameters identified through the dry modal analysis, i.e. when 

Fig. 25. Detailed example result of the field data analysis. The identified incident wave force (left axis) together with a zoom on the posterior distribution for the 
maximum value and the Hilbert-Huang spectrum (right axis). 
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no water was in contact with the lighthouse, remain valid also during the 
wave impact; whereas in Brownjohn et al. (2019) the results of the 
non-stationary modal analysis during Hurricane Ophelia show the 
increasing of the damping ratio together with the decreasing of the 
natural frequencies during the period of maximum wave agitation. In 
such cases, it is reasonable to argue that the water surrounding the 
structure during the impact exerts additional damping and contribution 
to the inertia of the structure through the added mass. However, the 
limited number of observations and the uncertainty on the added mass 
do not allow the systematic use of these non-stationary parameters 
within the inverse process. 

5.5. Field (almost) uninformative prior distributions 

The lack of information about the individual wave that might have 
generated the analysed lighthouse shaking imposes the use of uninfor
mative prior distributions about the intensity of the impulsive wave 
loading. Therefore, time constant normal prior distributions charac
terised by mean value equal to zero and relatively large standard devi
ation (i.e. 4 times the maximum calculated inertial force at the battery 
room) are adopted. Such a large value of the standard deviation makes 
the prior similar to a uniform distribution for the range of investigated 
values. In contrast, the time duration of the impulsive loading can be 
estimated with reasonable accuracy. We assume that the linear phase 
celerity is valid for the estimation of the velocity of the water mass that 
hits the lighthouse, hence, knowing the water depth (i.e. 35 m) and 
assuming that the largest waves are associated with the significant 
period equal to 11.75 s (Goda (2000)), the wave phase celerity is equal 
to 15.40 m/s. Moreover, applying Goda et al. (1966) impulsive loading 
duration model and considering the diameter equal to 12.68 m (the 
maximum at the base of the lighthouse) it is possible to make a pre
liminary estimate of the duration of the loading impulsive component of 
0.41 s, hence the prior correlation function falls off with the same time 
scale. A detailed sensitivity analysis on the effect of the prior distribu
tions on the final result is presented in appendix B for sake of 
completeness. 

5.6. Field results 

The result of the inverse process applied to the field data is presented 
in Fig. 25, where the overall inertia force due to the 16th October event 
is shown as a dotted light blue line. The reconstructed force experienced 
at the battery level due to the wave impact is presented with a solid 
black line (the credible interval is not visible due to the scale) the lower 
panel shows its HHs. The lower left box shows the detail of the posterior 
distribution related to the maximum reconstructed force value, while 
the upper right box is the enlargement of the reconstructed peak force. 

Not only for the well-controlled laboratory data, but also for the 
more complex field data it can be said that the inverse method works 
properly and a large amount of the structural dynamic effects are 
removed from the signal, allowing a clear description of the wave force 
features. Weak background oscillations remain in the final reconstructed 
force due to the theoretical nature of the adopted IRF that does not 
provide an ideal kernel for the deconvolution of complex field data. 
Some of the dynamic features of the lighthouse are not perfectly 
removed from the final solution, as shown by the oscillations charac
terised by a frequency slightly larger than the first natural mode be
tween 14:28:40 and 14:28:42. However, despite this spurious less 
energetic component in the final result, the impulsive components are 
properly captured. 

Similar features that were previously identified in the laboratory 
result are also detectable for the field outcomes. The two close peaks 
characterising the first impulsive loading component are properly 
reconstructed and likely to be due to the impact of the first front and the 
following deceleration of the falling water mass. Although the initial 
impulsive component does not show the same characteristics of a fully 
breaking wave loading, its slightly longer character remains rather 
similar to a slamming force. The energy is concentrated within a few 
tenths of second, between the beginning of the rise time and the end of 
the second peak. The instantaneous frequency shows the typical feature 
of the impulsive load, with energy content spread over a rather large 
frequency band, ranging between 0.8 and 40–50 Hz. While the labora
tory results showed clearer concentration of energy at the beginning of 

Fig. 26. Upper panel: Battjes and Groenendijk distribution at the toe of Wolf Rock lighthouse for the analysed wave state; middle panel: wave force application point; 
lower panel: corresponding modal ordinate (left axis) and wave force scale factor, i.e. modal ordinate inverse (right axis). 
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the rise time, here the maximum energy is detected at the beginning of 
the second peak; however, a sudden increase of the instantaneous fre
quency is also visible at the beginning of the overall impulsive load, 
highlighting again the importance of this initial part of the load. 

The first, double peak, impulsive component lasts for about 0.06 s 
(slightly before 14:28:39) that in turn makes the nature of the load 
nearly dynamic with respect to the behaviour of the structure (i.e. the 
ratio between the impulsive loading length and the natural period is 
larger than 0.25 (Chen et al., 2019; Oumeraci and Kortenhaus, 1994)). 
This aspect is particularly relevant for the accurate modelling of the 
response of the structure under wave action. Indeed, if the first mode 
would have been the most significant one, the structural analysis could 
have been carried out according to the impulse theory presented by 
Chen et al. (2019), whereas, in this situation, the time-varying nature of 
the impulsive wave load must be taken into account. Proceeding along 
the reconstructed incident wave loading, a third less intense peak is 
present and highlighted by the sudden increase of the instantaneous 
frequency at about 14:28:39.5. The similarity between this third peak 
and the identified one in the laboratory result is clear. However, a 
slightly different time sequence, i.e. time lag between the main impul
sive component and the third peak, is also evident and likely to be due to 
the uncertain condition at the base of the lighthouse and the induced 
effects on the wave breaking process. 

Up to this point in the analysis, the adopted methodology has 
virtually assumed the application of the incident wave force at the 
battery level, i.e. 32.6 m above the first full course of the lighthouse or 
34.7 m above the chart datum. Evidently, the wave action could not be 
directly applied to such a high level. One last step is therefore required 
to translate the application point from the battery room to a more 
realistic lower application point, and accordingly re-scale the wave force 
intensity. This final step can be achieved by knowing the modal ordi
nates at different elevations of the structure. Within the proposed 
analysis, the battery room modal ordinate was always kept equal to 1. 
Hence, in order to reconstruct the force at a lower level, the recon
structed force time series should be divided by the modal ordinate (in 
this case related to the second mode) corresponding to the estimated 
application point. However, since no direct measurements of the inci
dent individual wave height are available for Wolf Rock lighthouse, a 
preliminary estimation of the wave force application point is carried out 
through the available methods in the literature. The statistical 

distribution proposed by Battjes and Groenendijk (2000) is adopted to 
describe the individual wave heights at the toe of the lighthouse (Fig. 26 
upper panel), while the application point is calculated under the 
assumption of uniform vertical pressure distribution exerted along the 
upper 46% (i.e. curling factor equal to 0.46) of the asymmetric wave 
crest described by means of Hansen (1990) method (Fig. 26 middle 
panel). 

Once the application point is known, the modal ordinate value is also 
known and can be used as the scale factor for the intensity of the 
reconstructed force (Fig. 26 lower panel). From Fig. 23 the analysed 
impact is the 2nd highest in 3 h (i.e. 13:00 to 16:00) characterised by 
almost uniform HS around 7.15 m. Hence, considering the mean period 
(Tm) associated with the underlying Jonswap spectrum, 812 events can 
be estimated and accordingly an exceedance probability of 0.21% for the 
second-highest event can be calculated. Fig. 27 shows the final results of 
the overall inverse force reconstruction process. Due to the lack of direct 
measurement of the incident waves, the results about which wave had 
generated the recorded shaking are still affected by some uncertainties, 
however, they lay the foundation for a process-based assessment of the 
structure, where no empirical formulae are required to describe the 
incident wave loading. 

6. Discussion and conclusion 

This work intends to make progress in the application of the inverse 
method to reconstruct wave forces exerted on marine structures, 
providing a sound framework for a large number of field and laboratory 
applications. The presented methodology is based on linear theory and 
therefore assumes the elastic behaviour of the investigated structure, an 
aspect that should first be checked when the method is applied to field 
measurements under extreme wave actions. The paper provides a 
comprehensive presentation of the method by addressing three different 
applications: a theoretical one, where the impulsive load is recon
structed from the response of a theoretical single degree of freedom 
system; a laboratory application, where the force exerted by a broken 
wave is identified from the force measured on a vertical cylinder upon a 
shoal; and a field application, where a wave force exerted on Wolf Rock 
lighthouse is described from the accelerations measured during the 
Hurricane Ophelia. In the following, the main aspects of the three ap
plications are discussed and some conclusions gathered. 

Fig. 27. Example results of the rescaled incident wave force H0.21%.  
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The theoretical example shows, in a simplified and controlled case, 
the main issues related to the inverse process. The effect due to the 
(inevitable) presence of noise within the real signal is highlighted and 
analysed in detail. The methodology is applied and the results compared 
with the Tikhonov regularization and the truncated Fourier transform. 
Although the truncated Fourier transform is rather time-efficient (the 
computational time is way smaller than the other methods) and effective 
to reconstruct the unknown force, the method requires the subjective 
selection of the threshold to overcome the sensitivity of the results to 
small changes in the input records (noise) and the results show loss of 
resolution and some spurious oscillations. The Tikhonov method is 
effective for the reconstruction of the essential features of the impulsive 
input signal, the truncated singular values show their influence through 
the introduction of spurious oscillations and loss of resolution in the 
final solution. On the other hand, the Bayesian methodology allows a 
detailed reconstruction of the input signal. The improvements due to the 
introduction of process-based informative prior distributions are evident 
on both the final solution and the narrow posterior distribution; indeed 
the sharp nature of the impulsive wave loading is reconstructed without 
the presence of substantial spurious oscillations. The theoretical 
example is also available as additional material in the form of MATLAB® 
procedures. 

For the laboratory data application, the use of an impact hammer 
aimed to define the experimental force IRF is presented. The related ill- 
conditioning issues are tackled through the combined use of the least- 
squares method and QR decomposition. The identified experimental 
IRF is then applied to five regular waves. The main features of the load 
due to the broken waves are captured in detail by the method, allowing 
an accurate time-varying description. The load is characterised by an 
initial impulsive component constituted by two consecutive peaks and a 
delayed one. The first peak is mainly due to the impact of the first 
aerated front, while the second is due to the sudden deceleration of the 
falling water mass at the base of the structures. The third peak has a 
smoother shape, is less intense and is longer than the first ones. It is due 
to the impact of the remaining water mass carried by the individual 
wave. Both wave force and overturning moment are reconstructed with 
a good level of accuracy, allowing the identification of the point of 
application of the force. The application point time series is partially 
affected by the remaining small spurious oscillations in the final solu
tion. The effect is particularly evident for low force intensity. In this 
condition, the resulting time series is overcome by the spurious oscil
lations making part of the application point results unreliable. However, 
the application points for the impulsive loading conditions are properly 
captured. The goodness of the final result is further corroborated by the 
comparison between the force, overturning moment and force applica
tion point with the detected cylinder runup. Although the overall 
analysis provides trustful results some uncertainties remain on the ef
fects of the structure compliance and its movements during the inter
action with the water mass, however, they are hardly quantifiable and 
assumed to be negligible. 

The application of the Bayesian method to the field vibration data is 
slightly more complex. An accurate dynamic characterisation of the 
structure is required in order to identify the main dynamic parameters 
and mode shapes. The data is initially pre-processed to indirectly iden
tify the direction of the incident wave generating the recorded shaking. 
The identified wave direction agrees with the direction coming from the 
hindcast model, validating the adopted analysis procedure. For Wolf 
Rock lighthouse only the second identified mode seems to respond to the 
impulsive wave loading. Based on this finding the deconvolution process 
is based on the theoretical IRF of the same mode. The final result allows 

the identification of the time-varying nature of the wave load. The same 
features identified for the laboratory results are also detected for the 
field data. Three peaks characterize the reconstructed wave loading and 
can be argued that they are generated by same physical phenomena 
observed in the laboratory experiments. The field data do not allow the 
identification of the overturning moment or the direct measurement of 
the incident wave; accordingly also the wave force application point is 
not directly described. To overcome this lack of information a statistical 
description of the possible incident waves is performed in order to es
timate the constant application point of the force and then rescale the 
intensity of the reconstructed force via the inverse of the modal ordinate. 
According to the second natural mode, the lower the wave force appli
cation point, the larger should have been the force intensity. From the 
recorded vibrations a preliminary estimation of the probability of ex
ceedance of the analysed event is inferred equally to 0.21%, accordingly 
the generating individual wave and force application point are 
calculated. 

Overall, the proposed methodology allows the reconstruction of the 
wave force directly from structural dynamic measurements, laying the 
foundation to analyse unclear physical phenomena such as breaking and 
broken wave loading on rigid structures. The method can be extended to 
multiple degrees of freedom as well as to structures that respond to the 
wave loading with a combination of multiple natural modes. Here, it has 
been applied to a laboratory cylinder or to an offshore rock lighthouse; 
however, we expect that the same procedure should be effective also for 
more common marine structures such as caissons, crown-walls, wind 
turbine monopile and offshore platforms. For future field applications, 
we strongly advise the planning of a measurement campaign where the 
simultaneous record of the structural vibration and individual incident 
wave heights are considered. 
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Appendix A. Laboratory unit-impulse response function 

A theoretical unit-impulse response function (IRF) can be calculated as in eq. (17): 

IRF =

IFFT
(

FFT(System output)
FFT(System impulsive input)

)

∫ t1
0 System impulsive input dt

(17)  

where t1 is the length of the available record, FFT is the fast Fourier Transform and IFFT is its inverse. Moreover, it must be noted that the ratio in the 
argument of the IFFT is just the time domain deconvolution between the system output and input that can be resolved by the matrices operation 
presented in eq. (16). In the proposed laboratory application the overall signal presented in Fig. 15 is divided in three parts of the same length equal to 
2.06 s that are later used to calculate three IRFs that in turn are averaged to obtain the final IRF used in the inverse method. 

In the specific case of the laboratory force measurements the IRF is calculate as in eq. (18): 

IRFFY =

IFFT
(

FFT(Foutput(t) )
FFT(Finput(t) )

)

∫ t1
0 Finput(t) dt

(18)  

where Foutput(t) is the force time series as recorded by the force transducer and Finput(t) is the applied force as recorded by the impact hammer. If the same 
is applied to the calculation of the moment IRF the product of the force and its application point should be considered as in eq. (19): 

IRFMX =

IFFT
(

FFT(Foutput(t) ⋅b(t))
FFT(Finput(t) ⋅b(t))

)

∫ t1
0 Finput(t) ⋅b(t) dt

(19)  

where b(t) is the time series of the application point of the applied force via the impact hammer, but also the application point comprising the moment 
measured by the moment transducer. b(t) is the same in both numerator and denominator of the IFFT argument, so the value can be cancelled out and 
therefore considered negligible for the calculation of the moment IRF. Obviously, the normalising integral should be redefined as in eq. (18), however, 
its result is a scalar that is only needed to normalise the IRF and therefore it only affects the amplitude of the IRF oscillations whereas the other features 
remain unchanged.

Fig. 28. Laboratory time domain (upper panel) and frequency domain (lower panel) comparison between the force and moment IRF calculated according eq. (18) 
and eq. (19) respectively. The assumed constant application point is equal to 0.525 m from the origin of the reference system shown in Fig. 11. 

Fig. 28 shows the comparison of the two IRFs calculated by explicitly taking into account both impact hammer test response for the force and the 
moment under the assumption of a distance between the reference system origin and the impact hammer application point equal to 0.525 m. This 
distance was not measured during the impact hammer tests. Indeed, despite the fact that we roughly applied the impact hammer around the area 
affected by the wave action, we could not precisely measure the position and had to estimate it afterwards, introducing an additional uncertainty in the 
model. Both upper and lower panels show a high-frequency component for the force IRF that is not present for the moment IRF, approximately around 
500 Hz as highlighted in the spectrum (lower panel). This high-frequency component can only be due to the internal transducer set-up, as both the 
force and moment have been measured by the same integrated transducer. In light of this difference in the frequency contents and the uncertainty due 
to an erroneous impact hammer application point, we had to make a choice about what could be considered negligible. The choice was to proceed only 
with the force IRF for better control we could have on the final solution and the reasonable theoretical background provided above (Fig. 29). 
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Appendix B. Prior distribution sensitivity analysis 

Due to the limited prior process-based knowledge on the wave event generating the shaking of Wolf Rock lighthouse on October 16, 2017 almost 
uninformative uniform prior distributions have been applied for the proposed analysis. However, to investigate the effect of the different prior dis
tributions parameters, a sensitivity analysis on the final results has been performed. Being the impulsive load component, the most interesting part 
from a structural point of view, we focused the sensitivity analysis on three features describing this component, i.e. the maximum force, the time 
duration and its impulse quantity. The wave slamming component is defined as the reconstructed wave load time series between the zero-down and 
–up crossing points nearest to the maximum reconstructed force, while its underlying impulse is defined by the integral of the force-time series 
between these two points, Fig. 29.

Fig. 29. Example of Wolf Rock lighthouse reconstructed wave force and the adopted parameters for the prior distributions sensitivity analysis  

The sensitivity analysis focused on two main parameters. The standard deviation (std) for the prior normal distribution, expressed in term of 
percentage of the maximum absolute value of the recorded inertial force (Fig. 24), with values between 10% and 600%. While the second parameter is 
the correlation time lag, that has been varied from 0.026 s to a maximum of 0.78 s. The results for both parameters are presented in Fig. 30, where the 
right column shows the results related to the prior distribution std and the left column the results related to the correlation time lag. It is evident that, 
except for small values of the std the selection of different parameters do not largely affect the final result. Indeed, for std values larger than 2 times the 
maximum recorded inertial force no evident variation in the final result can be detected, while also the correlation time lag is not a critical parameter 
being quite weak the trend within the results. Therefore, we adopted middle values for both the parameters, keeping the prior std equal to 4 times the 
maximum recorded inertial force and the correlation time lag around 0.41s also according to the preliminary estimation of the impulsive component. 
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Fig. 30. Effects of the prior distribution on the reconstructed impulsive load component  
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