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a b s t r a c t 

Urban pluvial flooding is a threatening natural hazard in urban areas all over the world, especially in recent years 

given its increasing frequency of occurrence. In order to prevent flood occurrence and mitigate the subsequent 

aftermath, urban water managers aim to predict precipitation characteristics, including peak intensity, arrival 

time and duration, so that they can further warn inhabitants in risky areas and take emergency actions when 

forecasting a pluvial flood. Previous studies that dealt with the prediction of urban pluvial flooding are mainly 

based on hydrological or hydraulic models, requiring a large volume of data for simulation accuracy. These 

methods are computationally expensive. Using a rainfall threshold to predict flooding based on a data-driven 

approach can decrease the computational complexity to a great extent. In order to prepare cities for frequent 

pluvial flood events – especially in the future climate – this paper uses a rainfall threshold for classifying flood 

vs. non-flood events, based on machine learning (ML) approaches, applied to a case study of Shenzhen city in 

China. In doing so, ML models can determine several rainfall threshold lines projected in a plane spanned by 

two principal components, which provides a binary result (flood or no flood). Compared to the conventional 

critical rainfall curve, the proposed models, especially the subspace discriminant analysis, can classify flooding 

and non-flooding by different combinations of multiple-resolution rainfall intensities, greatly raising the accuracy 

to 96.5% and lowering the false alert rate to 25%. Compared to the conventional model, the critical indices of 

accuracy and true positive rate (TPR) were 5%-15% higher in ML models. Such models are applicable to other 

urban catchments as well. The results are expected to be used to assist early warning systems and provide rational 

information for contingency and emergency planning. 
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. Introduction 

.1. Background 

Urban pluvial flooding is a threat to a great number of cities world-
ide, especially given its increasing frequency of occurrence in recent
ears ( Martina et al., 2006 ; Atta-ur-Rahman et al., 2016 ; Ziegler, 2012 ).
ts impact, including loss of life and damages to both public and private
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roperties, can be further deepened by climate change and accelerated
rbanization ( Falconer et al., 2009 ). This type of flooding usually oc-
urs when intense rainfall exceeds the capacity of an urban drainage
ystem. Recent extreme precipitation events have raised awareness from
oth authorities and citizens to the challenges of predicting and man-
ging urban pluvial floods. In July 2019, heavy rain caused at least
8 deaths and triggered massive transport disruptions in Mumbai, In-
ia ( BBC, 2019 ). In the UK, about 40% of damages and associated
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2  
conomic losses in cities are estimated to result from pluvial flooding
 Douglas et al., 2010 ). In China, 98% of cities are exposed or vulnera-
le to frequent floods ( Jiang et al., 2017 ). A survey, conducted between
008 and 2010, showed that 218 Chinese cities suffered severe urban
luvial flooding at least once, and more than 100 cities experienced
t more than three times ( Jiang et al., 2018 ). Therefore, urban pluvial
ood prediction and management is a critical topic in the context of
rban water management. 

In order to prevent pluvial flooding and its consequences, city au-
horities (e.g. meteorological offices, emergency agency offices or water
uthorities) usually need to make predictions of pluvial floods. This is
ased on good prediction of precipitation characteristics, such as peak
ntensity, arrival time and duration. Many studies investigate the predic-
ion of pluvial flooding by hydraulic models ( Li, 2020; Li and Willems,
019 ), by simulating the inundated area and depth given certain histor-
cal or predicted rainfall scenarios ( Babaei et al., 2018 ; Thorndahl et al.,
016 ; Xing et al., 2019 ). However, hydraulic models need a large vol-
me of data and computational resources. As a result, the output of a
ydraulic model is usually case-specific. In other words, we have to run
he model to make predictions for flooding duringeachseparate rainfall
cenario. On the other hand, using a rainfall threshold based on data-
riven models can provide an easy and intuitive solution. By comparing
he current/predicted rainfall with the threshold, one can straightfor-
ardly estimate the likelihood of the city being flooded ( Martina et al.,
006 ; Montesarchio et al., 2011 ; Tian et al., 2019 ; Yang et al., 2016 ).
pecifically, a rainfall threshold specifies one or several rainfall depth(s)
ver certain time windows, above which a pluvial flood is likely to occur.
oreover, rainfall-threshold-based hazard prediction is widely applied

o landslides ( Garcia ‐urquia and Axelsson, 2015 ; Giannecchini et al.,
012 ; Golian et al., 2015 ; Hong et al., 2018 ; Martelloni et al., 2012 ),
ebris flow ( Nikolopoulos et al., 2014 ; Pan et al., 2018 ; van Asch et al.,
014 ) and flash floods( Montesarchio et al., 2011 ; Norbiato et al., 2008 ;
hai et al., 2018 ). To determine a cumulative rainfall threshold, a
hysically-based model is usually needed to compute critical rainfall
hresholds over time ( Norbiato et al., 2008 ; Yang et al., 2016 ), or a
tatistical, data-driven analysis can be applied ( Carpenter et al., 1999 ;
olian et al., 2010 ; Martina et al., 2006 ; Montesarchio et al., 2011 ).
owever, on the one hand, there is a gap in short-term prediction capa-
ility of physical models ( Costabile and Macchione, 2015 ). Short lead
ime flood prediction is of crucial importance for highly urbanized areas
n order to provide timely warnings to residents ( Zhang et al., 2018 ); on
he other hand, statistical models have a limitation on the accuracy of
rediction ( Fawcett and Stone, 2010 ). Furthermore, urban catchments
ften lack sufficient data on both the drainage network and topogra-
hy, complicating the estimate of rainfall threshold ( Yang et al., 2016 ).
achine learning (ML) models can deal with data scarcity based on an

nsemble method ( Breiman, 2001 ). Therefore, in this paper, we use ML
pproaches to derive the flooding thresholds for different rainfall dura-
ion periods. 

ML is a family of algorithms derived from statistics and computer
cience, which aims to train mathematical models to make predictions
r decisions based on observed samples. ML is suggested as an effec-
ive tool to explore the connectedness between human and water sys-
ems ( Shen et al., 2018 ). The latter is anticipated to be a key interdis-
iplinary issue to deal with in future hydrological studies ( Vogel et al.,
015 ). Moreover, ML models can numerically reproduce flood nonlin-
arity, solely based on historical data, without requiring knowledge
bout the underlying physical processes ( Mosavi et al., 2018 ). There-
ore, this study utilizes ML algorithms to attempt to classify the pres-
nce or absence of flooding based on rainfall characteristics. Although
L algorithms have shown powerful applicability to flood prediction

nd forecasting ( Liu et al., 2017 ; Mosavi et al., 2018 ; Noymanee et al.,
017 ; Tayfur et al., 2018 ), there are still very few studies that utilize
L to classify or predict urban pluvial flooding, which is a challenge

ue to lack of flood inundation data, drainage system data, and fine res-
lution topography data ( Yang et al., 2016 ). Therefore, we aim to test
L algorithms for classifying urban flooding in the city of Shenzhen,
hich is frequently flooded. A sudden rainstorm event claimed 11 lives

n April 2019 in Shenzhen ( Hua, 2019 ), attracting great attention for
he local authorities to reconsider the early warning system for pluvial
ooding in the city. Moreover, Shenzhen is a pioneer city in terms of
igh-technology development, socio-cultural development and disaster
mergency management. This experience can be shared with other cities
n China and abroad. 

The paper is organized as follows. Section 2 describes the study area
nd data used for this study, and introduces the conventional and ML
ethods for flood prediction. Section 3 shows the results of the models

nd proposes the rainfall threshold for Shenzhen. Section 4 compares
he ML results for rainfall thresholds to the current rainfall threshold
nd cumulative rainfall threshold in Shenzhen. Section 5 presents the
onclusions and recommendations. 

. Materials and methodology 

.1. Study area 

In the past decades, Shenzhen has grown rapidly from a rural area to
 prosperous economic zone and an important industrial city in Southern
hina. It is located on the central coast of Guangdong Province, which

s the passageway from mainland China to Hong Kong (See Fig. 1 ). It is
lso an important city in the Pearl River Delta (PRD). It has a total land
rea of 1,948 km 

2 . The average elevation is 3-4 m above mean sea level.
ainstorm-induced catastrophes in Shenzhen city are mostly caused by
ersistent short-duration heavy rainfall in the summer ( Zhou et al.,
017 ). Pluvial flooding is one of the primary natural hazards in Shen-
hen. In recent years, urbanization has increased the surface runoff and
ntensified the flood frequency ( Shi et al., 2007 ; Yan et al., 2019 ). 

Shenzhen is identified as an area under a high flood risk, since many
roperties are built in flood-prone areas, such as the harbour-front area
 Chan et al., 2014 ). The total average annual precipitation is ~1,900
m/y, of which rainstorms caused by typhoons (July – September)
ake up 36% (i.e., 689 mm/y) and approximately 85% of precipita-

ion occurs from April to September (See Fig. 2 ) (Data source: Meteo-
ological Bureau of Shenzhen (SMB)). Convective (March – June) and
yphoon rainstorms (July – October) are the two main rainfall sources
n this region. 

As of 2019, Shenzhen has a population of 13 million, with a pop-
lation density of 6,234 people/km 

2 . Most of the city is drained by a
eparated storm sewer system (4,883.92 km) whereas the remaining
rea (1,693 km) is drained by a combined sewer system (i.e. wastewater
ombined with rainwater sewer system), with a drainage pipe density
f 12.5km/km 

2 (SSB, 2019 ). In total, 126 municipal pumps with a ca-
acity of 671 m 

3 /s are used to drain stormwater out of the city (SSB,
019 ). 

Short duration, high intensity rainfall is the main driver of pluvial
ooding in Shenzhen. Due to the rapid pace of urbanization, the im-
ervious area has significantly increased while the water storage area
uch as rivers, lakes and wetlands has decreased. With climate change
increasing frequency of typhoon occurrence and intensity of torrential
ainfall) ( Tracy et al., 2007 ), pluvial flooding has a high likelihood of
ccurrence in the paved area. On May 11, 2014, for instance, the daily
ainfall volume reached 233 mm, and some districts experienced a peak
ainfall intensity of 310 mm in 6 hours ( Cai, 2014 ). Currently, SMB uses
 rainfall threshold for predicting urban pluvial flooding, only based on
0-min rainfall depth (i.e., 20 mm) or 3-h rainfall depth (i.e. 80 mm)
 SMB, 2019 ). In the subsequent sections, we will further testify and com-
are this threshold with that from the proposed ML models. 

.2. Records of flood events 

Records of historical flood events from 1 June 2014 to 14 June
017, consisting of 1,110 days and 663 records in total, were retrieved
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Fig. 1. Location and land use maps of the city of Shenzhen. 

Fig. 2. Monthly average rainfall volumes for the city of Shenzhen, based 

on historical data from 1970 to 2015 (Data source: SMB). 
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Fig. 3. Spatial distribution of 640 inundation records between 2014 – 2017 and 25 rainfall gauges in Shenzhen, China. 
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rom the water sector of Shenzhen municipality ( http://swj.sz.gov.cn/ ),
hich has developed and implemented a disaster reporting system (i.e. a
ood report APP named‘shenzhensanfang’) since 2014. Citizens of Shen-
hen can report flood events via this system at any time. These records
egister the date, the location (geotagging), and a description. As most
f the records indicating pluvial flood events fall in the period between
une and September (640 records, i.e., 96.5%), we only consider data
oints in the summer of each year, namely, 413 days in total over the 3-
ear study period. In doing so, we can exclude hundreds of non-flooding
vents to lower the imbalance of the dataset (too many non-flooding
vents and too few flooding events). Note that the high frequency of the
ooding record corresponds to the precipitation characteristics in Shen-
hen. The 640 records were registered over 24 days (c.a. 27 records/d),
hich are regarded as days with floods . The remaining 389 days of the

tudy period are regarded as days without floods . These records are
patially distributed throughout the whole city (see Fig. 3 ). It should be
oted that as the inundation records were submitted by citizens, socio-
conomic background (such as age, education level and experience with
revious pluvial flooding) may affect the recording. This may cause false
lerts or missed alerts. 

.3. Rainfall observations 

The rainfall intensity each minute at 25 rainfall gauges (see
ig. 3 ) from 1 June 2014 to 14 June 2017 was retrieved from SMB
 http://weather.sz.gov.cn/ ). We used areal average rainfall intensity to
epresent the study area, which stands for the mean value of rainfall
ntensities of all study sub-areas (districts). The original database con-
isted of 1-min rainfall intensity. These1-min rainfall intensities were
ggregated to rainfall volumes of longer temporal scale, namely, 5, 10,
5, 30, 60, 120, 360, 720, and 1440 mins. Each day, the maximum rain-
all volume at each temporal scale, denoted as Rd x (in mm), is calculated
y Eq. (1) ( Tian et al., 2019 ). 

 𝑑 𝑥 = max 
𝑗 

{ 

𝑥 ∑
𝑘 =1 

𝑅 1 ( 𝑘 ) , … , 

( 𝑗+1 ) ∗ 𝑥 ∑
𝑘 =1+ 𝑗∗ 𝑥 

𝑅 1 ( 𝑘 ) , … , 

1440 ∑
𝑘 =1441− 𝑥 

𝑅 1 ( 𝑘 ) 

} 

(1)

here j = 0,1,…,1440/ x [min]; x = 1, 5, 10, 15, 30, 60, 120, 360, 720,
440 [min]. Note that each item in the bracket of Eq. (1) stands for
 -min rainfall volume accumulated from 1-min rainfall intensity in the
nterval [1 + j ∗ x , ( j + 1) ∗ x ] 

.4. Flood classification models 

In this study, we first apply a conventional rainfall curve method
s a benchmark. Then we further develop multiple parametric and
on-parametric ML models to classify flooding and non-flooding events
ased on rainfall intensities. With respect to a binary classification
roblem, four possible predicted outcomes are expected (See Table 1 ),
amely, true positives (TP or correctly classified flooding events), false
ositives (FP or falsely classified flooding events), true negatives (TN
r correctly classified non-flooding events), and false negatives (FN or
issed flooding events). Ideally, an urban flood classification model

hould achieve a high true positive rate (TPR), a high true negative
ate (TNR) and high overall accuracy (ACC). On the other hand, a pre-
iction model with a low positive predictive rate (PPR) or a low TPR
mplies that a number of actual flood events are wrongly labeled or un-
xpectedly missed. ACC is also called the proportion of correct forecasts
 Wilks, 2005 ). 

.5. Conventional model with cumulative rainfall volume thresholds 

The cumulative rainfall volume threshold is a reference curve, repre-
enting a cumulative amount of rainfall over a certain time window (see
ig. 4 ). When the observed cumulative rainfall exceeds the threshold at
 given moment, flooding is expected to occur. 

We propose a way to determine a threshold curve via the following
teps: 

1) Calculating the cumulative rainfall (max. in 24 hours), based on the
1-min rainfall intensity, for all flooding and non-flooding events. 

2) Computing the lower 𝛼 percentile of the 1-min rainfall for all flood-
ing events, denoted as T 𝛼 . Note 𝛼 is to be determined in step (5).
In doing so, T 𝛼 depicts a curve that a certain number of cumulative
rainfall curves for flooding events stay above. For instance, all curves
of flooding events are above the curve T 𝛼| 𝛼= 0. 

3) Computing the upper 𝛽 percentile of the 1-min rainfall for all non-
flooding events, denoted as T 𝛽 . Note 𝛽 is also to be determined in

http://swj.sz.gov.cn/
http://weather.sz.gov.cn/
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Table 1 

Confusion matrix for quantifying the performance of a classification model. 

True classes 

Flooding Non-flooding 

Predicted classes Flooding True positives (TP) False positives 

(FP) 

Positive predictive rate 

(PPR) = TP/(TP + FP) 

Non-flooding False negatives 

(FN) 

True negatives 

(TN) 

Negative predictive rate 

(NPR) = TN/(TN + FN) 

True positive rate 

(TPR) = TP/(TP + FN) 

True negative rate 

(TNR) = TN/(FP + TN) 

Accuracy 

(ACC) = (TN + TP)/(TP + TN + FN + FP) 

Fig. 4. An example of a cumulative rainfall threshold curve (when actual rain- 

fall exceeds the rainfall threshold, pluvial flooding is expected to occur), modi- 

fied from Martina et al. (2006) . 
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step (5). The definition of T 𝛽 is analogous to that of T 𝛼 . T 𝛽 depicts a
curve that a certain number of cumulative rainfall curves for flooding
events stay below. 

4) Constituting a linear combination of T 𝛼 and T 𝛽 , based on a weight
μ, namely, T ( 𝛼, 𝛽, μ) = μ∗ T 𝛼 + (1- μ) ∗ T 𝛽 . As a result, we obtain a
rainfall threshold based on three variables: 𝛼, 𝛽, and μ. Any assigned
values can result in a given cumulative rainfall threshold curve and
its corresponding model performance. 

5) Solving an optimization problem that maximizes the model perfor-
mance by tuning 𝛼, 𝛽, and μ. Three optimal combinations for 𝛼, 𝛽,
and μ were pursued, aiming forthe maximum TPR, the highest TNR,
and the highest ACC: 

max 
𝛼,𝛽,𝜇

Perfofmance determined by 𝑇 ( 𝛼, 𝛽, 𝜇) 

Perfofmance = TPR , TNR , or Accuracy 
(2) 

.5.1. Machine learning (ML) algorithms 

Machine learning (ML) algorithms are a collection of computational
ata-driven methods. Without utilizing a pre-defined equation as the
asic model, ML algorithms train a model, using a certain type of al-
orithms, fully based on known data whereas the trained model can be
pplied to new data. As the number of training data sets increases, the
erformance of ML algorithmscan improve. ML consists of two families,
amely, supervised learning and unsupervised learning. 

Specifically, supervised learning algorithms aim to find functions
hat are able to map inputs to labeled outputs, also including two cat-
gories, classification and regression. Flooding prediction is commonly
n application of classification ( Jhong et al., 2018 ; Tayfur et al., 2018 ;
hou et al., 2018 ), which aims to distinguish flood events vs. no-flood
vents based on hydrological variables, i.e., a binary classification prob-
em. 

Given the size of the database available, we adopt a collection of
odels in this study that usually show good performance for small- to
edium-sized data sets.14 classification algorithms from 5 major ML
amilies are considered to classify urban pluvial flooding based on rain-
all intensities of multiple temporal scales ( Table 2 ). Brief introductions
f these algorithms follow: 

• Decision trees: Decision trees build a tree-shaped top-down struc-
ture from the roof (at the top) to leaf nodes (at the bottom)
( Breiman et al., 2017 ). Each leaf node represents a predicted re-
sponse. Given the fact that we focus on a binary classification prob-
lem, the bifurcation starts from one parent node of a given layer to
two child nodes of a subsequent lower layer, relying on different
values of variables. Specifically, to find the optimal bifurcation, we
maximize Gini’s diversity index but stop maximization when (i) a
node only contains a single-class of data, (ii) a child node to be gen-
erated contains fewer than five data points, or (iii) the number of
layers exceeds a pre-defined criterion (five for a coarse decision tree
and twenty for a medium decision tree). In general, decision tree
learning is one of the fastest algorithms. Its resultsare also easy to
interpret. We built the decision tree model in Matlab by using the
function fitctree . 

• Discriminant analysis: discriminant analysis (DA) classifiers assumes
a Gaussian distribution for data of each class. The Gaussian dis-
tribution is determined by the sample mean of each class and the
identical covariance matrix for linear DA or different class-based co-
variance matrices for quadratic DA. Under this assumption, linear
or quadratic DAs make predictions by minimizing prediction costs
based on Bayes’ theorem. Note that the prediction costs are the sum
of the multiplication of the posterior probability of a given class k for
a data sample and the cost of classifying a sample as y but its actual
class is k (0 for accurate classification and 1 for misclassification).
Readers can refer to ( Ledoit and Wolf, 2004 ; T. Hastie, R. Tibshirani,
2008 ) for more details. Note that this study considers both linear and
quadratic discriminant analyses. As their names suggest, linear dis-
criminant analysis can only learn linear boundaries, while quadratic
discriminant analysis can learn quadratic boundaries, both of which
are fast to run and easy to interpret. We build the discriminant anal-
ysis model in Matlab by using the function fitcdiscr . 

• Support vector machine: linear support vector machine (SVM) ap-
plied to binary classification aims to find an optimal hyperplane that
separates two classes with a margin of the maximal width. In other
words, we look for the maximum margin widthwhile keeping the
data of two classes on each side of the margin. Samples that are mis-
classified are penalized. Using kernel functions, such as quadratic
and cubic kernels, can turn a linear SVM into a non-linear SVM.
The latter is more flexible but also requires more computational re-
sources and becomes less straightforward to explain. Readers can
refer to ( Ng, 2000 ) for more details. We build the support vector
machine model in Matlab using the function fitcsvm . 

• K-nearest neighbor: K-nearest neighbor is a distance-based learn-
ing technique that determines the predicted response of a given
point by checking the major class of the k closest points ( Cover and
Hart, 1967 ). Note that we use the Euclidean and cosine distance as
the metric to measure the closeness between points. The KNN algo-
rithm is one of the easiest and most intuitive learning techniques
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Table 2 

14 machine learning models applied in this study. 

No. Algorithm categories Models Settings 

1 Decision trees Coarse tree Maximum number of layers = 5 
2 Medium tree Maximum number of layers = 20 

3 Discriminant analysis Linear discriminant Based on a linear classifier 

4 Quadratic discriminant Based on a quadratic classifier 

5 Support vector machine (SVM) Linear SVM Based on a linear kernel 

6 Quadratic SVM Based on a quadratic kernel 

7 Cubic SVM Based on a cubic kernel 

8 K nearest neighbor (KNN) Fine KNN Based on Euclidean distance, number of NN = 1 
9 Medium KNN Based on Euclidean distance, number of 

NN = 10 

10 Cos KNN Based on cosine distance, number of NN = 100 

11 Cubic KNN Based on Euclidean distance, number of 

NN = 10 

12 Ensemble algorithms Bagged trees Number of learners = 50 

Learning rate = 0.1 

13 Subspace discriminant Number of learners = 30 

Subspace dimension = (number of features)/2 

14 Subspace KNN Number of learners = 30 

Subspace dimension = (number of features)/2 
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widely used in many applications ( Cheng et al., 2014 ; Zhang, 2016 ).
However, it is also very sensitive to outliers ( Ramaswamy et al.,
2000 ), which we may encounter frequently when predicting urban
flooding based on rainfall intensities. We build the K-NN model in
Matlab using the function fitcknn . 

• Bagged trees ( Breiman et al., 1984 ; Breiman, 2001 ): Bagging stands
for a type of ensemble learning, which is used to reduce the variance
of a single decision tree. To build a bagged tree model, we create
multiple subsets of new data from original samples, which are chosen
randomly with replacement. As a result, we obtain an ensemble of
decision trees, also referred to as weak learners, and they are proven
to be more robust than a single decision tree. We build the bagged
trees model in Matlab using the function fitcensemble . 

• Subspace ensembles: the random subspace method is also an ensem-
ble technique to increase the accuracy of the discriminant classifier
and KNN classifier. The subspace ensemble aims to train random
sample features, rather than the entire feature set. It is proven to
be an effective method to deal with the issue of high-dimensional
feature sets and small training sets. As the name suggests, classi-
fiers are constructed in a random subspace of data feature space and
then combined by simple majority voting. Readers can refer to (Tin
Kam Ho, 1998 ) for details. ( García-Pedrajas and Ortiz-Boyer, 2009 ;
Skurichina and Duin, 2002 ) also prove that the random subspace
method can be further used for DA and KNN, which are applied in
our study. We build the subspace-DA and subspace-KNN models in
Matlab using the function fitcensemble . 

.5.2. Feature selection and model validation 

All the models listed in Table 2 are first tested on ten features, which
re the ten multi-temporal rainfall accumulations Rd x (see Eq. (1) ). Later,
e also run a principal component analysis (PCA), based on the singu-

ar value decomposition method ( Madsen et al., 2004 ), to reduce the
umber of dimensions and find the most meaningful components for
redicting flooding events. 

As we only have a small dataset with 413 data points, it is difficult
o divide the whole dataset into several subsets for building, calibrating
nd validating the model. Instead, we use the 10-fold cross-validation
echnique ( Bengio and Grandvalet, 2004 ) to deal with this issue. We
andomly partition the dataset into 10 subsets of an equal size. Then we
ompute the mean value of the model performance for each subset. If
he 10-fold cross-validation error is close to the error using the entire
ataset, it means the model built from the entire dataset is unlikely to be
ver-fitted. In doing so, we are able to examine the performances of all
odels. In the subsequent section, the accuracy of the model indicates
he mean value of the accuracies of 10 models based on all data subsets.

. Results 

.1. Conventional model 

The conventional method is based on a linear combination of the
ower percentile of the cumulative rainfall volumes of flooding events
nd the upper percentile of the cumulative rainfall volumes of non-
ooding events. Fig. 5 -(a) shows all the cumulative rainfall curves of
et days (daily rainfall depth > = 0.1 mm) from 1 June 2014 to 14 June
017. More than 60% of flooding events occur with intensive rainfall of
hort temporal scale, e.g., 60 min to 360 min, but also with larger ac-
umulation (blue dashed lines). More than 90% of non-flooding events
ave small rainfall volumes, for instance, daily accumulation being less
han 20 mm. However, there are also exceptions,where events with large
ainfall volumes were reported as non-flooding and vice versa. 

We conducted an exhaustive search for all possible values of 𝛼, 𝛽,
nd μ between 0 and 1 and derived 112 Pareto optimal threshold curves,
hown in Fig. 5 -(b). Four representative rainfall threshold curves are se-
ected, which havethe highest rate for at least one of the five model qual-
ty metrics.Threshold 1 has the highest values in terms of TNR (0.98),
PR (0.73) and ACC (0.91), but also the lowest value of TPR(0.46);
hreshold 2 has the highest ACC (0.91) but medium TPR (0.5); Thresh-
ld 3 has the highest NPR (0.98) and Threshold 4 has the highest TPR
0.96), which are presented in Fig. 5 -(c) and Table 3 . We can see that
hresholds 1 and 2 ensure more non-flooding events are correctly clas-
ified, but also miss many flooding events. Thresholds 3 and 4 are more
nclined to correctly classify flooding events, which implies that many
on-flooding events can be labeled as flooding events based on these
wo thresholds. Threshold curves #1 and #2 are based on the lower 0-
ercentile ( 𝛼 = 0) of the rainfall depth for all the flooding events and the
pper 100-percentile ( 𝛽 = 1) of the rainfall depth for all the non-flooding
vents. These curves use a coefficient of 0 and 0.2 to make the linear
ombination. Both curves have a low TPR, meaning many actual flood-
ng events are missed, and a high TNR, meaning non-flooding is well
aptured. ACC is thus relatively high, at 0.91. Curves #3 and #4 have
he highest NPR and TPR, respectively, but very low ACC. This is because
he threshold is low in Fig. 6 -(b), ensuring flooding events are correctly
lassified, but missing non-flooding events. In general, it is difficult to
nd a threshold curve that can robustly indicate both flooding and non-
ooding events, based on only the cumulative rainfall depth. Therefore,



Q. Ke, X. Tian and J. Bricker et al. Advances in Water Resources 145 (2020) 103719 

Fig. 5. (a) Cumulative rainfall volumes over time for all events on wet days; (b) performance indicators for all the candidate thresholds with the four selected ones 

highlighted; (c) four selected rainfall thresholds. 

Table 3 

Four cumulative rainfall threshold curves for the conventional method each target different performance metrics. 

Threshold A 𝛽 μ TPR NPR TNR PPR ACC 

1 0 1 0 0.46 0.93 0.98 0.73 0.91 

2 0 1 0.2 0.5 0.93 0.97 0.71 0.91 

3 0.05 0.85 0.6 0.92 0.98 0.49 0.2 0.54 

4 0.08 0.90 0.8 0.96 0.97 0.18 0.15 0.27 

Range [0, 0.2] [0.8, 1] [0, 1] [0.46, 0.96] [0.86, 0.98] [0.04, 0.98] [0.12, 0.73] [0.15, 0.91] 
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e need other variables, rather than only the cumulative rainfall depth,
o make a better classification. 

.2. Machine learning (ML) 

.2.1. Prediction results with 10 features 

The first collection of ML models was trained based on ten rainfall
olumes at 1, 5, 10, 15, 30, 60, 120, 360, 720, and 1440-min tempo-
al resolutions, with definitions given in Eq. (1) . All of the ML mod-
ls have an ACC between 0.94 and 0.96 ( Fig. 6 ), except for one model
ith an ACC of 0.92.This implies that only 16 to 25 events, out of 413

vents, were misclassified in thirteen of the ML models used. This shows
 slightly better performance than that of the conventional model. On
he other hand, the TPR has a larger variation, ranging from 0.29 to
.75. In other words, the miss rate ranges from 0.25 to 0.71. Among all
he fourteen models, the DA family shows the most satisfactory perfor-
ance. Specifically, the Quadratic DA (Model 4) has the highest TPR
0.75), implying that 18 out of 24 actual flooding events can be well
redicted while the ensemble DA (Model 13) has the highest ACC of
.96 (See Fig. 6 ). All the performance metrics are listed in Appendix X1.

Although each ML model is easy to run with the complete set of all
en features, the result cannot be visualized in a ten-dimensional space,
esulting in difficulty interpreting results.Therefore, we need to further
educe the number of dimensions to three or even fewer, as shown in
he subsequent section. 

.2.2. Prediction results with 2 features 

The second collection of ML models were trained by using two prin-
ipal components, which were derived from ten rainfall accumulations
y running a principal component analysis. The new features are linear
ombinations of the ten daily peak rainfall intensities at different tem-
oral resolutions, with a set of coefficients given in Table 4 . The first
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Table 4 

Coefficients of ten temporal resolutions of rainfall ( Eq. (1) ) for two principal components. 

Coefficients Rd 1 Rd 5 Rd 10 Rd 15 Rd 30 Rd 60 Rd 120 Rd 360 Rd 720 Rd 1440 explained 

Feature 1 0.02 0.05 0.08 0.11 0.15 0.21 0.28 0.43 0.53 0.61 97.5% 

Feature 2 0.05 0.16 0.25 0.31 0.40 0.44 0.42 0.15 -0.23 -0.46 2% 

Fig. 6. True positive rates (TPR) and model accuracies (ACC) of 14 trained ML 

models based on rainfall accumulations at 10 temporal resolutions. Models 4 

and 13 are marked in red as they have the best performance in terms of TPR 

and ACC, respectively. Model numbers correspond to Table 2 . 
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Fig. 7. True positive rates (TPR) and model accuracies (ACC) of 14 trained ML 

models based on two principal components. Models 3, 5, and 13 are marked in 

red as they have the best performance for either TPR or ACC. Model numbers 

correspond to Table 2 . 
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eature is a weighted sum with larger temporal scales receiving more
eight, explaining 97.5% of the total variance, while the second feature
as more weight at time scales between 30 and 120 min, explaining 2%
f the total variance. Therefore, using these features can explain 99.5%
f the original dataset when classifying the labeled events. In principle,
ne can easily compute the values of the two features for present or fu-
ure events based on the combination of rainfall accumulation volumes.
f a study area has a coarser temporal resolution of rainfall measurement
han that used here, principal component analysis can be run based on
istorical data of coarser resolution to generate two new sets of weights.

All models using two features have a performance that is slightly
orse than that of the ten-feature models presented in Section 3.2.1 . The
CC only drops by 0.01 to 0.02 for some models such as the medium
ecision trees (Model 2) and the fine/subspace KNN (Models 8 and 14),
hile other models (Model 3,4, 5,7 and 13) do not see reduced ACC.

n terms of the TPR, fewer models reach 0.5 or higher, compared to
he models in Section 3.2.1 .However, as seen from Fig. 7 , the subspace
A (Model 13) is still one of the best performing models. Two linear
odels, namely, the linear DA (Model 3) and the linear SVM (Model
) also show a Pareto optimal performance in terms of ACC and TPR.
t should be noted that Pareto optimality is a situation that cannot be
odified so as to make any one individual or preference criterion better

ff without making at least one individual or preference criterion worse
ff. Models 3, 5, and 13 are adopted for further discussion because they
ave the best performance regarding either TPR or ACC. As shown in
ig. 7 , these three models (in red) perform better than other models (in
lue) for both performance indicators. The performance metrics of other
odels are listed in Appendix X2. 

With two decision variables (i.e., features), we are able to visualize
he outcome of the models in a two-dimensional plane. As shown in
ig. 8 , Models 3, 5, and 13 determine rainfall threshold lines based on
ombinations of principle component feature 1 and feature 2. Flooding
nd non-flooding events occur to the right-hand and left-hand sides of
ach line, respectively. Among these three models, the threshold line
rom the linear DA model is furthest left, so classifies more events as
ooding, while the linear SVM is the furthest right, so classifies fewer
vents as flooding. The subspace DA provides a threshold line in between
he other two. Note that Fig. 8 offers an intuitive look-up graph that
ne can easily tell whether an event is flooding or not based on the
alues of two features. For instance, a combination of feature 1 of 60
m and feature 2 of 10 mm is predicted to not be a flooding event, but a

ombination of feature 1 of 100 mm and feature 2 of 10 mm is predicted
o be a flooding event according to all models. However, further effort
s still required to classify an event falling in the area between the lines
f Model 3 and Model 5,as the three models may give different answers.
e further elaborate on the fact that the nature of the data can lead to

ifferent thresholds from each of the three ML models in the Discussion
ection below. 

. Discussion 

.1. ML model compared to current rainfall threshold and cumulative 

ainfall threshold 

We first elaborate on how the proposed ML model estimates the rain-
all threshold better than the current empirical threshold provided by
he local authority ( SMB, 2019 ) The threshold suggests any event is re-
arded as a pluvial flood if either 30-min rainfall depth is over 20 mm
r 3-h rainfall depth is over 80 mm. This threshold, and the historical
ata points, are shown in Fig. 9 . As the 3-h rainfall threshold is placed
oo high, many flooding events are missed, resulting in a bad result for
he TPR (only 0.25) although the overall ACC is good (0.95) as a large
umber of non-flooding events are correctly predicted. In other words,
he miss rate for flooding events is very high, i.e., 0.75. 

Even if the ML model is built based on a single feature, namely 30-
in or 3-h rainfall depth, the ML model is still able to explore the dataset

nd find thresholds. We used one of the proposed ML models, specifi-
ally the subspace DA model, as one of the models with the best per-
ormance, to test the performance when using the same feature(s) of
0-min rainfall depth, 3-h rainfall depth, or their combination. The DA
odel suggests that the threshold should be either 30-min rainfall depth
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Fig. 8. Rainfall thresholds from three selected ML models 

which have the best performance with respect to the TPR or 

ACC. Note that a PCA was run in advance to derive two fea- 

tures which represent 99.5% of the original dataset. 

Fig. 9. The current empirical rainfall threshold (dashed lines) 

for urban pluvial flooding in Shenzhen, based on 30-min and 

3-h rainfall depths, compared with historical data points. 
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f 12.5 mm ( Fig. 10 -(a)), 3-h rainfall depth of 29.1 mm ( Fig. 10 -(b)), or
 combination of these ( Fig. 10 -(c)). Performance TPR’s are all higher
han 0.54, which is more than twice the TPR using the empirical rainfall
hreshold. Detailed metrics are shown in Appendix X3. This means that
he machine learning models can improve the current empirical rainfall
hreshold to a great extent. 

Next, we compare the performance of conventional cumulative crit-
cal rainfall curves to those derived from the ML models. The results
how that ML models, especially linear discriminant analysis, can clas-
ify flooding and non-flooding by two principle components, raising the
CC and TPR to 96% and 58%, respectively; and lowering the false alert
ate to 25%. Compared to the conventional model, the critical indices of
CC and TPR were 5%-15% higher in ML models. Therefore, in general,
L models can better classify flooding and non-flooding events than the

onventional empirical method, based on different temporal resolutions
f rainfall measurements. 

The minimum temporal resolution for the input of our ML models
s 1 minute. However, the method is generic. The minimum temporal
esolution can also be 5-min or 10-min to re-train the model. To train the
L model, the user needs reports or observations of flooding and non-
ooding events. These inputs (rainfall and flood reports) are identical
o the inputs needed by the conventional method. 
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Fig. 10. Performance of single and dual feature rainfall thresholds calculated by the subspace DA model based on observed records. (a) performance of single 

threshold – 30-mins of 12.5 mm; (b) performance of single threshold – 3-hours of 29.1mm; (c) performance of dual threshold (30-mins together with 3-hours). 

Fig. 11. Performance of outstanding ML models (models 3, 5 and 13) in terms of ACC and TPR using two principle components. Each model categorizes events to 

the left of its threshold line as non-flooding, and to the right of the line as flooding. 
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.2. Pros and cons of the machine learning (ML) model 

ML models can successfully produce rainfall thresholds for urban
luvial flooding. The model only needs to be run once and the water
ystem manager/operator can simply use a look-up graph to determine
hether a pluvial flood is likely to occur. The features can be flexibly

elected, using either the entire 10 features, or fewer representative fea-
ures by running a PCA. 

However, ML is a data-derived method, which largely relies on the
uantity and the quality of data available. For example, five points
which are circled in Fig. 11 ), regarded as ‘tricky events’, can influence
he output when using different models. These events have similar rain-
all conditions but they are categorized by the ML models differently; in
eality, three are flooding events and two are non-flooding events. The
odels only make decisions based on data, resulting indifferent thresh-

ld lines for Models 3, 5 and 13. Model 3 includes these five points in
he set of flooding events, thereby making two predictions incorrectly.
odel 5 excludes these five points from the set flooding events, thereby
aking three predictions incorrectly. Model 13 draws a threshold line

n between, thereby making only one prediction incorrectly. Potentially,
ore data points lying in between the threshold line of Model 3 and the
hreshold line of Model 5 can improve the model to make predictions
ore precisely. 

In this work, historical inundation records were collected through a
ood report system (a smart phone application). However, not all the
unicipality’s citizens are aware of this reporting system. This limits

he number of the records, thus affecting the TPR (i.e. increased missed
lerts). In addition, each citizen’s socio-economic background, educa-
ion level and experience with pluvial flooding influence the records as
ell. For instance, inundation caused by blockage of sewers/pipes at
ome can be wrongly reported as inundation caused by rainfall; this
ndoubtedly increased the number of false positives. Since the current
ood report system does not provide information on the reasons for in-
ndation, false inundation records cannot be filtered out. 

It should also be noted that our ML models were applied over the
ntire city of Shenzhen in this study, due to the limited number of data
oints. If more data become available, the model can be further refined
o a district, a community, or a street. Similarly, it can also be applied
o other urban/rural catchments given an available rainfall-flooding
atabase. As more available data can be collected in the future, even
ith images and text descriptions, we also aim to test deep learning
lgorithms to increase the accuracy of the flood prediction model. 



Q. Ke, X. Tian and J. Bricker et al. Advances in Water Resources 145 (2020) 103719 

5

 

t  

o  

o  

i  

r  

p  

fl  

t  

r  

c  

A  

a
 

w  

A  

p  

fl  

i  

i  

a  

fl  

b  

(  

p  

w  

t  

t  

m  

s  

d  

w

D

 

i  

t

C

 

-  

r  

r  

s  

t  

V  

L

A

 

N  

N  

5  

(  

f  

U  

S  

S  

(  

v  

a  

r  

i

S

 

t

A

 

b

 

b

 

b  

r

R

A  

 

B  

 

B  
. Conclusion 

Despite uncertainty about the inundation records and ML models,
his data-driven method provides a basis for generating rainfall thresh-
lds for flood early warning and emergency response in Shenzhen. The
bjective of this paper is to predict the occurrence of urban pluvial flood-
ng by ML approaches. It concludes that ML models can determine the
ainfall flooding threshold as a line projected in a plane spanned by two
rincipal components, thereby providing a binary result (flood or no
ood). Compared to the conventional empirical critical rainfall curve,
he proposed models, especially the subspace discriminant analysis algo-
ithm, can better classify flooding and non-flooding events by different
ombinations of multi-resolution rainfall intensities, greatly raising the
CC to 96.5% and lowering the false alert rate to 25%. Such models are
pplicable to other urban catchments as well. 

Extreme weather events in the future due to global climate change
ill bring high-intensity rainfall of short duration ( Westra et al., 2014 )
dvanced techniques, such as radar observations, can efficiently im-
rove very short-range rainfall forecasts, which are essential for accurate
ood prediction ( Yang et al., 2016 ). Precipitation is the dominant input

nfluencing the flood prediction result. Other factors like soil character-
stics, drainage capacity and topography (e.g. land subsidence) would
ffect the result as well, emphasizing the need for updated, data-driven
ooding thresholds. Since rainfall-threshold-based flood prediction can
e executed rapidly and simply, this method allows decision makers
e.g. emergency managers) time for a high-level assessment of flood risk,
roviding valuable lead time for citizens in the flood-prone areas to be
arned. Probability thresholds, which can help understand the uncer-

ainties involved, need to be investigated further. Although the inunda-
ion records contain information about occurrence locations and (esti-
ated) inundation depths, these data were not utilized/analysed in this

tudy. Further study on the correlation of spatial distribution of inun-
ation and inundation depth with the spatially varying rainfall records
ill be valuable as well. 
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ppendices 

X1. Performance metrics of 14 trained machine learning models
ased on 10 features. 

No Models TP FN FP TN TPR TNR PPR NPR Accuracy 

1 Coarse tree 13 11 7 382 0.54 0.98 0.65 0.97 0.956 

2 Medium tree 14 10 11 378 0.58 0.97 0.56 0.97 0.949 

3 Linear discriminant 14 10 7 382 0.58 0.98 0.67 0.97 0.959 

4 Quadratic discriminant 18 6 29 360 0.75 0.93 0.38 0.98 0.919 

5 Linear SVM 11 13 2 387 0.46 0.99 0.85 0.97 0.964 

6 Quadratic SVM 11 13 2 387 0.46 0.99 0.85 0.97 0.964 

7 Cubic SVM 10 14 6 383 0.42 0.98 0.63 0.97 0.952 

8 Fine KNN 11 13 9 380 0.46 0.98 0.55 0.97 0.946 

9 Medium KNN 10 14 3 386 0.42 0.99 0.77 0.97 0.959 

10 Cos KNN 7 17 4 385 0.29 0.99 0.64 0.96 0.950 

11 Cubic KNN 10 14 3 386 0.42 0.99 0.77 0.97 0.959 

12 Bagged trees 12 12 6 383 0.50 0.98 0.67 0.97 0.956 

13 Subspace discriminant 14 10 5 384 0.58 0.99 0.74 0.97 0.964 

14 Subspace KNN 14 10 10 379 0.58 0.97 0.58 0.97 0.951 

X2. Performance metrics of 14 trained machine learning models
ased on 2 features derived from a PCA. 

No Models TP FN FP TN TPR TNR PPR NPR Accuracy 

1 Coarse tree 10 14 8 381 0.42 0.98 0.56 0.96 0.947 

2 Medium tree 10 14 16 373 0.42 0.96 0.38 0.96 0.927 

3 Linear discriminant 14 10 6 383 0.58 0.98 0.70 0.97 0.961 

4 Quadratic discriminant 14 10 10 379 0.58 0.97 0.58 0.97 0.952 

5 Linear SVM 12 12 3 386 0.50 0.99 0.80 0.97 0.964 

6 Quadratic SVM 9 15 4 385 0.38 0.99 0.69 0.96 0.954 

7 Cubic SVM 7 17 3 386 0.29 0.99 0.70 0.96 0.952 

8 Fine KNN 8 16 12 377 0.33 0.97 0.40 0.96 0.932 

9 Medium KNN 7 17 1 388 0.29 1.00 0.88 0.96 0.956 

10 Cos KNN 0 24 1 388 0.00 1.00 0.00 0.94 0.939 

11 Cubic KNN 5 19 1 388 0.21 1.00 0.83 0.95 0.952 

12 Bagged trees 10 14 10 379 0.42 0.97 0.50 0.96 0.942 

13 Subspace discriminant 13 11 4 385 0.54 0.99 0.76 0.97 0.964 

14 Subspace KNN 7 17 11 378 0.29 0.97 0.39 0.96 0.932 

X3. Performance metrics of 14 trained machine learning models
ased on (a) 30-min rainfall (b) 3-h rainfall (c) both 30-min and 3-h
ainfall. 

No Models TP FN FP TN TPR TNR PPR NPR Accuracy 

a Based on 30-min 

rainfall 

13 11 9 380 0.54 0.98 0.59 0.97 0.952 

b Based on 3-h rainfall 15 9 7 382 0.63 0.98 0.68 0.98 0.961 

c Based on 30-min and 

3-h rainfall 

14 10 5 384 0.58 0.99 0.74 0.97 0.964 
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