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Abstract

Federated Learning (FL)[1] is a type of distributed
machine learning that allows the owners of the
training data to preserve their privacy while still be-
ing able to collectively train a model.
FL is a new area in research and several chal-
lenges regarding privacy and communication cost
still need to be overcome. Gradient leakage[1], for
example is the possibility of partially reconstruct-
ing the private data of a participant based on the
weight gradients they send over the network dur-
ing FL, which poses a great risk for privacy. Miti-
gations against this problem lead to an increase in
the computational complexity of the scheme or af-
fect the performance of the resulting fully trained
model. Other issues regarding trusting the central
server or the clients, or accounting for clients that
loose connection or drop out during training also
exist.
This paper is a literature survey about frameworks
for Horizontal Federated Learning (HFL), which is
a subset of Federated Learning, in which all clients
have the same type of data (same set of features).
The survey presents a summary of how 7 different
Horizontal Federated Learning frameworks work,
and compares them in terms of their performance
and the security guarantees they provide. More-
over, a summary of how each of the studied frame-
works resolves the trade-offs among data privacy,
framework performance and resulting model per-
formance is also provided.
Based on the studied frameworks it is concluded
that the privacy and performance issues of HFL still
need to be researched. Suggestions for future re-
search topics are also provided.

1 Introduction
Federated Learning is a distributed machine learning tech-
nique which allows training machine learning models with-
out the need to centralize large amounts of training data and
to compromise the privacy of the involved parties.

In the present, more and more software systems rely on ma-
chine learning models to meet the needs of humanity. How-
ever training these models requires large amounts of data,
which is often collected at the expense of the privacy of the
users.

Federated Learning is a highly researched topic nowadays,
as it offers a way to train models on large volumes of data
without compromising the privacy of any individual. How-
ever, the originally proposed algorithm for federated learn-
ing [1] is vulnerable to several attacks such as reconstruction
through inference [2], which entails extracting private infor-
mation from the weight gradients shared throughout the train-
ing process, or model or data poisoning [2] attacks, in which
malicious participants send weight gradients constructed to
prevent the convergence of the training process or to insert a
backdoor into the resulting model.

Horizontal Federated Learning has been used in multi-
ple fields such as: natural language processing [3], spoken
language understanding [4], vision and language grounding
problems [5], healthcare [6] [7], and IoT [8]. These applica-
tions all employ different frameworks for performing train-
ing in a HFL setup. These frameworks all make use of vari-
ous privacy preserving techiques such as encrypting data with
Homomorphic Encryption, adding noise to the transmitted
weight gradients to ensure differential privacy, or removing
the need for transmitting weight gradients altogether.

This paper aims to answer the following questions:
• How is Horizontal Federated Learning implemented?
• What privacy and performance trade-offs are made when

designing HFL frameworks?
• How do HFL frameworks compare in terms of com-

putational complexity, communication cost and privacy
guarantees?

In order to offer a clear picture of how existing horizontal
federated learning frameworks compare, this paper summa-
rizes the algorithms behind 7 different HFL frameworks and
compares them in terms of performance and security guaran-
tees.

The paper will start with a section which provides back-
ground on the main concepts referenced throughout the doc-
ument, followed by a section presenting an analysis of each of
the studied implementations of Horizontal Federated Learn-
ing. Next, a section summarizing implementations of HFL
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will follow. Finally, the reproduced results of a subset of the
studied frameworks will be presented along with the conclu-
sions of the study.

2 Background
This section presents the definitions of Federated Learning,
Horizontal Federated Learning and other related concepts or
algorithms that are mentioned in this paper.

2.1 Federated Learning
Federated Learning is a type of distributed machine learning
which helps ensure data privacy. In federated learning the
data on which the model is trained is stored on a number of
data owners. The model can be trained on the entire dataset
while each data owner keeps its data private.

Federated Learning is usually implemented with the client-
server architecture. In this context, the data owners act as
clients and a central server coordinates the training process.
The server sends out the current version of the model (ini-
tially, a model with random parameters) to all clients (data
owners). The clients train the model on their private data and
return the trained model parameters (or the parameter adjust-
ments) to the server. The server aggregates these by averaging
the parameter values it receives from each client. This consti-
tutes a round of federated learning. After multiple rounds, the
model typically converges and performs similarly to a model
that is trained on the aggregated private data of all data own-
ers.

This algorithm is the simplest form of Horizontal Feder-
ated Learning, as described in [1]. In the report this algorithm
will be referred to as Classic HFL.

2.2 Horizontal Federated Learning
Horizontal Federated Learning is a type of Federated Learn-
ing in which all data owners have similar types of data. Ide-
ally, in an HFL setup, the samples on each client are different
and have the same set of features. In practice, a scenario is
considered to be a Horizontal Federated Learning scenario
when the overlap between the feature sets of the data owners
is larger than the overlap between the set of samples.

2.3 Homomorphic Encryption
Homomorphic Encryption is a type of encryption which al-
lows mathematical operations to be performed on the cipher-
texts. [9]

The benefit of homomorphic encryption is that ”it can sep-
arate the ownership and processing rights of data”. [10] In the
context of federated learning it is used as a measure to protect
against attackers gaining insight into the private data of the
data owners by examining the gradients or parameters they
return to the server. Using homomorphic encryption, these
parameters can be encrypted and aggregated by the server
without the server being able to obtain the parameter values
or the aggregated result.

A homomorphic encryption scheme that is often used in
FL, is the Paillier scheme. The homomorphic property of this
scheme is that the product of two ciphertexts is decrypted to

the sum of the two corresponding plain text values. [11] In
other words:

Ek(m1) ∗ Ek(m2) = Ek(m1 +m2) (1)
where Ek is the encryption function using the public key k.

2.4 Differential Privacy
Differential privacy is a security guarantee that ensures that
no risk is incurred by joining a statistical database. More pre-
cisely, ε-differential privacy ensures that it is only possible to
determine whether or not an element is part of a dataset with
probability of at most ε based on an exposed summary of the
dataset.

According to Dwork [12], differential privacy has the fol-
lowing formal definition:

A randomized function K gives ε differential privacy if for
all datasets D1 and D2 differing on at most one element, and
all S ⊂ Range(K):

P [K1(D1) ∈ S] ≤ exp(ε)× P [K(D2) ∈ S] (2)

In most scenarios, differential privacy is achieved by
adding noise (usually Gaussian or Laplacian noise) to the ex-
posed summary. The amount of added noise depends on the
desired level of privacy (ε) and the sensitivity of the summa-
rizing function.

In the case of federated learning, the summarizing function
maps the private data of each user to the set of gradients re-
turned by it to the main server. By adding noise to these gra-
dients it becomes increasingly difficult to reach conclusions
about the underlying private samples of each participant.

3 Methodology
In order to achieve the goals defined in the introduction and
to answer the research questions posed a number of research
papers presenting HFL frameworks were read. Each of these
frameworks has been analyzed theoretically in terms of time
complexity and in terms of communication cost. These have
been determined based on the description of the algorithms or
the provided pseudocode and were expressed in terms of key
parameters of the HFL setup (such as the number of involved
clients, the number of samples per client or the number of
training rounds). Moreover, the privacy guarantees of each
framework and the attacks that they are vulnerable to have
been determined and presented in the report.

For a selected subset of the studied frameworks a reproduc-
tion of their experimental results was attempted. The process
of running these experiments and their results are presented
in Section 6.

4 Frameworks
This section will present a summary of each of the studied
frameworks, followed by an analysis of their computational
complexity and privacy guarantees.

For each framework, the time complexity, as well as the
number and size of exchanged messages will be presented
for the participants/clients and, if applicable for the server(s).
These will be expressed in terms of the variables defined in
Table 1.



Variable Definition
R Number of rounds of Federated Learning
C Number of clients / participants
N Total number of samples of all participants
n Number of samples per participant
M Number of features
T / TL / TG Training time of (local/global) model
S / SL / SG Size of (local/global) model
E Number of epochs of training (locally)

Table 1: Variables used when discussing computational complexity
of frameworks

4.1 FederBoost [13]
FederBoost is a Horizontal and Vertical Federated Learn-
ing framework for training Gradient Boosting Decision Trees
(GBDTs).

In FederBoost participants collaboratively train a model.
At the beginning of the algorithm one of the participants is
selected to act as the leader and be responsible of coordinat-
ing the training. In this section we refer to the selected leader
as the server and to the other participants as the clients.

The main distinguishing characteristic of FederBoost is
that during this protocol clients do not share any gradient or
weight values thus only lightweight secure aggregation is re-
quired to ensure the privacy of the participants. This is due to
the fact that the training process of GBDTs only relies on the
order of the samples (and how these are split into buckets)
and does not need any actual values from the training data
sets.

As this literature study is about HFL, only the horizontal
variant of FederBoost will be analyzed and described below.

Gradient Boosting Decision Trees
Gradient Boosting Decision Trees consist of a number of de-
cision trees. As with other decision trees each internal node
of the tree contains a condition which splits the samples be-
tween its children nodes, based on the value of a feature. Each
leaf node contains a label.

When using a GBDT for classifying a sample, first the sam-
ple is passed through each decision tree and the values of the
leaves to which the sample corresponds are summed. Based
on this sum the sample is then classified into one of the pre-
defined categories.

Training a GBDT
To train a GBDT one has to build a set of decision trees which
together accurately classify the samples in the training data.
Constructing a decision tree can be reduced to determining a
set of conditions which split the training samples into leaves
that are pure or as pure as possible. When training on a cen-
tralized dataset these conditions would be chosen such that
they maximize the following expression in terms of first and
second order gradients of the loss function:
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In practice the samples are sorted by each feature, split into
buckets of consecutive samples and only splits between the
buckets are considered. This reduces the amount of computa-
tions required to find a reasonably good split.

In FederBoost, the bucket construction is performed with
the newly proposed Distributed Bucked Construction algo-
rithm.

During Distributed Bucket Construction, the central server
performs a binary search trying to find the cut-off point be-
tween the first and the second bucket (the largest value in the
first bucket). At every iteration, it sends a proposed cut-off
value to all the clients and they respond with the number of
samples they have that would be part of the first bucket (are
smaller than the proposed cut-off point). These values ag-
gregated using a lightweight aggregation protocol similar to
double masking. If the aggregated number of samples below
the proposed cut-off point is too large or too small, the bi-
nary search continues in the expected manner and the process
is applied in a similar fashion to find the subsequent cut-off
points.

Note that for discreet features, a bucket is constructed for
each of the possible values of the feature, and the aforemen-
tioned algorithm is not needed.

After determining the buckets, the sum of the first and sec-
ond order gradients (G and H) of the samples in each bucket
are computed and aggregated with lightweight secure aggre-
gation. Then, each of the trees in the GBDT are constructed
by the clients and the server collectively by finding the best
splits for each node. The first tree is trained to predict as well
as possible the target labels of the samples, subsequent trees
all aim to predict the difference between the previous predic-
tion and the actual labels.

Performance
After performing a theoretical analysis of the training process
of FederBoost, the computational complexity and communi-
cation cost of the framework were determined in terms of the
variables defined in Table 1, with the additional variables: q,
Z, |t| denoting the number of buckets, number of decision
trees and the size of the decision trees used, respectively.

The time complexity for each client is O(C + M ∗ (q ∗
logN ∗ (logn+ C)) + Z ∗ (M ∗ n+ |t| ∗M ∗ q ∗ C + n)).

For the server, it isO(C +M ∗ (q ∗ logN ∗ (logn+C))+
Z ∗ (M ∗ n+ |t| ∗ (M ∗ q ∗ C + C) + n)).

The number of messages exchanged during the protocol is:

• (C−1)2 messages sent for setting up secure aggregation

• 2∗M ∗q∗ logN ∗C messages sent for distributed bucket
construction

• Z ∗ |t| ∗ q ∗C messages sent for secure aggregation of G
and H values

• Z ∗ |t| ∗ (C − 1) messages sent for transmitting the best
split to each client

Each message has a constant size (O(1)).

Security Guarantees
FederBoost assumes honest-but-curious participants and
server. The secure aggregation protocol used ensures the pri-
vacy of the local data. The privacy of any given participant



is only compromised if all other participants are malicious
and colluding or the participant chosen to play the role of the
server is malicious.

The convergence of the resulting model is only guaranteed
if all participants follow the protocol, therefore the framework
is vulnerable to data and model injection attacks.

In terms of robustness, the framework assumes that all par-
ticipants are available at all times during the training process.

4.2 GRAFFL [14]
GRAFFL (from Gradient-free Federated Learning) is a Hor-
izontal Federated Learning framework for training genera-
tive machine learning models without exchanging gradients
or weights during training.

GRAFFL assumes that each participant has horizontally
distributed data with possibly different distributions and in-
tends to train a generative model that can reflect the sample
diversity found in each client’s dataset.

Training within GRAFFL is done through the ABC rejec-
tion sampling algorithm.

ABC rejection sampling
In summary, ABC rejection sampling is a process in which
the central server proposes various parameters for the gen-
erative model it is training and evaluates these parameters
by sampling the distribution defined by them and comparing
these samples to summaries of the training samples of each
client.

Before performing ABC rejection sampling, each client
summarizes the samples in their dataset using an autoencoder,
as described in the following section. Next, the central server
chooses a set of parameters for the generative model and gen-
erates a number of samples for each of the parameters. The
central server splits these samples up among the clients and
sends them to them. Each client compares the received sam-
ples with their own summarized samples and reports back the
value of a discrepancy metric between these. This process
is repeated a number of times. Finally, the server selects the
parameters with the lowest discrepancy values as the actual
model parameters.

SuffiAE
In GRAFFL, clients make use of an autoencoder network
called SuffiAE to summarize their training samples.

An autoencoder is a type of neural network that consists of
two parts: the encoder and the decoder. The encoder receives
samples of D dimensions (D features) and outputs summaries
of d ¡ D dimensions. The decoder network reconstructs the
original samples based on these summaries.

A sufficient autoencoder such as SuffiAE, has the addi-
tional properties that the summaries it outputs contain enough
information to fully reproduce the original samples and these
summaries cannot be converted back to the original samples
unless the weights of the decoder are known.

By summarizing samples in this way, GRAFFL ensures
that no private data is leaked, as the original samples are never
directly compared to the generated samples, only their sum-
maries are.

Performance
After performing a theoretical analysis on GRAFFL, the com-
putational complexity and communication cost of the frame-
work were determined in terms of the variables defined in Ta-
ble 1 and the additional variables d and TSuffiAE denoting
the number of dimensions of the summarized samples and the
training time of SuffiAE, respectively.

The time complexity for each client is: O(C+TSuffiAE+
R ∗ n ∗ d). For the server, it is O(C +R ∗N ∗ d+R ∗N ∗
log(R ∗N)).

The number of messages exchanged among the clients (to
agree on d) is C ∗ (C − 1). The size of these messages is of
orderO(1). The number of messages exchanged between the
clients and the server is 2∗R ∗C. The size of these messages
is of order O(d)

Security Guarantees
Due to the fact that all samples are summarized with SuffiAE
before training, the protocol protects the privacy of the par-
ticipants’ data against a malicious server and/or clients, even
in case of collusion among them.

The protocol requires every client and the server to be
available at all times during training.

4.3 SplitFed [15]
SplitFed is a machine learning framework which combines
Federated Learning with Split Learning in order to obtain the
benefits of both of these approaches.

By using Split Learning, it ensures an almost fully paral-
lelizable training process and, by making use of Federated
Learning (and differential privacy), it aims to increase the
data privacy of the participants.

Split Learning [15] is a distributed machine learning tech-
nique which consists of splitting a neural network into two
networks, one consisting of the first K layers and the other
half containing the rest, and training the first half of the net-
work in parallel on the clients that have the training data and
training the latter half on a central server. The forward- and
backpropagation are also done partially by the clients and par-
tially by the server.

SplitFed’s architecture consists of two servers and a num-
ber of clients. The clients own the data and train the client
side network. One of the servers, referred to as the central
server, plays the role of the server in split learning, having
the responsibility of training the server side half of the net-
work. The other server, referred to as the federated server,
plays the role of the server in a federated learning setup and
has the responsibility of aggregating the client side networks
in a privacy preserving manner.

One training round consists of a number of forward- and
backpropagation (across the clients and central server), fol-
lowed by the aggregation of the local models on the federated
server and updating the local models to the results of the ag-
gregation.

Performance
After performing a theoretical analysis on SplitFed, the com-
putational complexity and communication cost of the frame-
work were determined in terms of the variables defined in



Table 1 and the additional variables SC , LS and LC , denot-
ing the size of the cut layer, the number of layers in the server
side of the network and the number of layers in the client side
of the network respectively.

The time complexity for each client isO(R ∗ (LC +SC)).
For the central server, it is O(R ∗ C ∗ (LS + SC)). For the
federated server, it is O(R ∗ C ∗ LC).

The number of messages exchanged between the clients
and the central server is 2∗R∗C. The size of these messages
is of order O(SC).

The number of messages exchanged between the clients
and the federated server is 2 ∗ R ∗ C. The size of these mes-
sages is of order O(LC)

Security Guarantees
The framework assumes honest-but-curious participants and
servers. It protects the privacy of the data by adding noise to
the shared smash data and local weight gradients. It does not
defend against data or model poisoning attacks.

In case a client drops out during the protocol, training can
continue without it.

4.4 Fusion Learning [16]
Fusion Learning is a one-shot, machine learning technique.
One-shot, in this context, refers to the method requiring only
a single communication round between the server and each
client to fully train a model.

Fusion Learning aims to overcome the high communica-
tion overhead of the classic HFL algorithm, which requires
an exchange of model parameters or gradients between the
server and each client in every round.

When applying Fusion Learning, each client is required to
send a model trained on their local dataset, along with the
distributions of each of the features present in this dataset, to
the server. The server then uses each client’s distribution to
generate samples that are characteristic to them, and labels
these using the model sent by the same client. Then, these
generated samples are used to train the final model on the
server, without requiring any further communication.

Therefore, Fusion Learning can be seen as a variation of
federated learning in which the clients send one, fully trained
model to the server instead of training a model over multiple
rounds and transmitting gradients repeatedly.

Kasturi, Ellore, and Hota [16] claim that Fusion Learn-
ing is able to achieve accuracies that are comparable to those
achieved by the classic HFL algorithm. The paper presents
several experiments and shows a list of accuracies achieved
by models trained using Fusion Learning on various bench-
mark datasets. These experiments have been partially repro-
duced and are presented in more detail in Section 6

Performance
After performing a theoretical analysis on Fusion Learning,
the time complexity and and communication cost have been
determined in terms of the variables from Table 1, with the
additional variable ng denoting the number of generated sam-
ples per client.

The time complexity for each client is O(M + TL + SL).
For the server, it is O(C ∗ (SL + ng) + TG).

During the protocol C messages are sent to the server and
C messages are sent from the server to the clients.

The size of each message sent to the server is O(M + SL)
and the messages sent to the clients have the size O(SG).

Security Analysis
This approach does not offer complete data privacy to its par-
ticipants as the distribution of each of the features in the pri-
vate dataset is shared by each client with the server.

The privacy issue inherent to this approach is that the client
must provide enough information to the server to allow it to
generate and label samples similar to the ones found in the
client’s private dataset. Although the private samples them-
selves are kept secret, a potentially large amount of private
information can be obtained about the client by generating
and analyzing samples that are similar to their private data.

4.5 Two-Phase Multi-Party Computation Enabled
Privacy-Preserving Federated Learning [17]

Two-Phase Multi-Party Computation Enabled Privacy-
Preserving Federated Learning is a federated learning algo-
rithm which makes use of Two-Phase MPC to ensure the data
privacy of every participant involved in training.

Two-Phase MPC is a novel approach to MPC that improves
upon the previously used Peer-to-Peer MPC by decreasing
the communication overhead of the protocol at the cost of its
resilience to colluding malicious participants.

Peer-to-Peer MPC is a technique which allows secure com-
putation over the private data of multiple parties, without re-
quiring the parties to share this data.

In the context of federated learning it solves the problem of
securely summing (or averaging) the gradient tensors of each
participant.

This can be achieved using the Additive Secret-Sharing
MPC Protocol, which works in the following way. In case of
a network of N clients, every client generates a set of N ran-
dom tensors which sum to their secret gradient tensor. These
are the secret shares of the client, and they are given each to
a separate client. Then, every client sums the secret shares it
receives and broadcasts the sum to all other clients. Finally,
every client sums the broadcasted tensors to obtain the result
of the computation, which is equal to the sum of the secret
tensors of each client.

A more secure alternative to Additive Secret-Sharing is
Shamir’s Secret Sharing Protocol [18], which works similarly
but makes use of the multiplication operation defined over
polynomial rings instead of using addition over real numbers.
[17]

Two-Phase MPC
Two-Phase MPC consists of two phases. In the first phase, a
committee of M clients is elected using Peer-to-Peer MPC
(e.g. through random voting). In the second phase, each
client only creates M secret shares and sends each of them
to one committee member. The committee then aggregates
the shares of all the clients using Peer-to-Peer MPC.

The number of messages exchanged in this protocol is
lower than in the Peer-to-Peer case, as the first phase (which
requires C ∗ (C − 1) messages to be exchanged) is only ex-
ecuted once. In every round of training fewer messages are



exchanged, as the secure MPC is performed within the com-
mittee of K << C members.

Performance
After performing a theoretical analysis on Two-Phase Multi-
Party Computation Enabled Privacy-Preserving Federated
Learning, the computational complexity and communication
cost of this framework were determined in terms of the vari-
ables from Table 1, with the additional variable K, denoting
the number of committee members.

The computational cost for each client is O(C +R ∗ (T +
K ∗ S)). For committee members, it is O(C +R ∗ (T +K ∗
S + C ∗ S + C/K ∗ S)).

During the protocol 2 ∗ C ∗ (C − 1) small messages and
R ∗ C ∗ K + R ∗ K ∗ (K − 1 + C/K) large messages are
exchanged. The size of each small message is of order O(1)
and the size of each large message is of order O(S).
Security Analysis
The Two-Phase MPC protocol provides data-privacy for each
participant, assuming that not all committee members are ma-
licious and colluding. The correctness of the protocol is only
guaranteed if the participants are honest. The protocol can
continue if participants outside the committee drop out, how-
ever the availability of committee members is required at all
times.

4.6 FLOP: Federated Learning on Medical
Datasets using Partial Networks [19]

FLOP is a FL framework which defends against inference at-
tacks by only requiring clients to share a subset of the weights
of their locally trained models.

The training process of FLOP is similar to the classic HFL
algorithm’s, with the only difference being the fact that the
models trained on each client are split into two disjoint mod-
els: the private and the shared model. The private model is
only trained on the private data of the client while the shared
model is trained with federated averaging, on the data of all
clients. The example presented in the [19] is an image classi-
fier that is split up into a shared feature extractor and a private
classifier.

Accuracy
Similarly to Fusion Learning, FLOP also alters how the re-
sulting model is trained (beyond just optimizing the process
of training it), therefore it is interesting to discuss the perfor-
mance achieved by models trained with this framework.

The paper presenting FLOP includes experiments on both
real life and benchmark datasets. Experiments on the bench-
mark datasets have been reproduced for this literature study
and are presented in Section 6.2.

Performance
Based on a theoretical analysis of FLOP, its computational
complexity and communication cost have been determined
in terms of the variables from Table 1, with the additional
variable SS denoting size of the shared model.

The computational cost for each client isO(R∗ (T +SS)).
For the server, it is O(R ∗ C ∗ SS).

The number of messages exchanged during the protocol is
2 ∗R ∗ C. The size of each message is of order O(SS).

Security Analysis
As FLOP is essentially a variation of the classic HFL algo-
rithm in which only a subset of the model is shared, it will
have at least the same privacy guarantees as this algorithm.

Yang et al. [19] claim that FLOP reduces privacy and secu-
rity risks by only sharing a subset of the model, however the
extent to which this is the case is not discussed or presented.
More research is required to verify this claim and to quantify
the impact that sharing a partial model has on privacy.

4.7 Paillier Federated Multi-Layer Perceptron
(PFMLP) [20]

PFMLP is a federated learning framework that ensures the
privacy of the participants by encrypting the weight gradients
with a homomorphic encryption algorithm, specifically with
an optimized version of the Paillier scheme.

Using homomorphic encryption in FL, has the great disad-
vantage of adding a large computational overhead to training.
To address this, PFMLP proposes the use of the improved ver-
sion of the Paillier scheme described in [21], which has the
computational complexity of O(|n|2α), instead of the com-
plexity of the naive Paillier scheme, which is O(|n|3) (where
n denotes the size of the encryption key and α < n is a pa-
rameter of the algorithm.

Another disadvantage of using a homomorphic encryption
scheme is that it requires the presence of an additional entity,
the key server, which is responsible with generating and dis-
tributing the encryption keys to the participants and must be
trusted.

Training Process
Before the training starts, each client requests a key pair from
the key server. Then, each client initializes their local model
and training begins.

In round i of federated learning, each client trains their lo-
cal model, encrypts the weight gradients with the public key
of client i and sends them to the central server. The server
aggregates the encrypted gradients and sends back the aggre-
gated gradient to each client. The clients then use the private
key of client i to decrypt the aggregated gradient and adjust
their weights accordingly.

Performance
Based on a theoretical analysis of FLOP, its time complexity
and communication cost have been determined in terms of the
variables from Table 1, with the additional variables k and α,
denoting the size of encryption key and a parameter of the
encryption scheme respectively.

The time complexity for each client isO(R∗(T+k2∗α∗S).
For the server, it is O(R ∗ C ∗ S).

During the protocol 2∗R∗C large messages andC+R∗C
small messages are exchanged.

The size of each large message is of order O(S).
The small messages are used to request the encryption keys

from the key server and have a constant size.

Security Analysis
The PFMLP protocol provides privacy against an honest-but-
curious server, keyserver and honest-but-curious clients, if



there is no collusion between the keyserver and any other in-
volved party.

The availability of the server, keyserver and clients is re-
quired for the entire duration of the training process.

5 Framework comparisons
The studied frameworks make various trade offs among
model accuracy, data privacy and performance (training time
and communication cost). This section will briefly summa-
rize the advantages and disadvantages of each framework by
comparing them with each other.

FederBoost has low time complexity as it leverages prop-
erties of GBDTs to simplify the training process. However, it
has a relatively high communication cost due to the secure ag-
gregation algorithm it uses. It is also limited to only training
GBDTs. To address its high communication cost, using ho-
momorphic encryption instead of the lightweight secure ag-
gregation could be considered. As the messages exchanged
are relatively small in size the encryption will likely not add
a significant overhead to the algorithm, but will reduce the
communication cost.

GRAFFL has the strongest privacy guarantees out of all the
algorithms. This privacy is given by autoencoder network it
uses. However, it has a relatively high communication cost
and it is limited to only training parametric generative mod-
els.

SplitFed is one of the more efficient frameworks presented,
however it does not offer privacy protection against inference
attacks, therefore it is not suitable in most situations, as most
use cases of FL require data privacy.

Fusion Learning is an efficient framework in terms of com-
munication cost, however it exposes the distribution of the
private client data, which compromises the privacy of the par-
ticipants and is unacceptable in most situations. It also has the
disadvantage of training the final global model on a single
machine, which is inefficient compared other frameworks.

Two-phase MPC is more efficient than the classic Peer-to-
Peer MPC, however it is still slower than most of the other
studied frameworks due to its high communication cost. It
has the advantage of not requiring a central server and doing
all computations in a distributed fashion within a peer-to-peer
network and does not sacrifice the privacy of its participants.

FLOP is promising in terms of the apparent amount of
privacy it provides at little to no cost in model accuracy or
computational performance [19], however it needs a more in
depth security analysis to determine the precise security and
privacy guarantees it offers.

PFMLP offers protection against gradient leakage without
sacrificing the accuracy of the final model. However, even
though it uses an improved version of Paillier encryption, it is
still comparatively slow to other studied frameworks (Feder-
Boost, FLOP). Perhaps applying this encryption algorithm to
frameworks which exchange little data would result in a faster
HFL framework with high privacy guarantees.

Tables 2, 3, 4 and 5 summarize the results of the analysis
performed for this literature study. The variables used in the
tables are defined in the previous sections and are listed in
Appendix A.

Framework Time Complexity
Classic HFL O(R ∗ (T + C ∗ S))
FederBoost O(M ∗ logN ∗ (logn+ C)) +M ∗ n+M ∗ C)
GRAFFL O(C + TSuffiAE +R ∗ n ∗ d+R ∗N ∗ log(R ∗N))
SplitFed O(R ∗ (SC + LS + C ∗ LC))
Fusion Learning O(M + TL + C ∗ (SL + ng) + TG)
Peer-to-Peer MPC O(R ∗ (T + C ∗ S))
Two-Phase MPC O(C +R ∗ (T +K ∗ S + C ∗ S + C/K ∗ S))
FLOP O(R ∗ (T + C + SS))
PFMLP O(R ∗ (T + k2 ∗ α ∗ S + C ∗ S))

Table 2: Comparison of time complexities of the studied frameworks

Table 2 contains the total time complexities of the algo-
rithms, combining the client and server side time complex-
ities and accounting for operations that happen in parallel.
Some of the complexities have been expressed in terms of
fewer variables to simplify comparisons, and algorithms such
as the classic HFL algorithm and the Peer-to-Peer MPC based
HFL algorithm have been added for reference.

Framework Communication cost Messages sent
Classic HFL O(R ∗ C ∗ S) 2 ∗R ∗ C

FederBoost O(C2 + 2 ∗M ∗ logN ∗ C) (C − 1)2 + Z ∗ |t| ∗ (C − 1)+
2 ∗M ∗ q ∗ logN ∗ C + Z ∗ |t| ∗ q ∗ C

GRAFFL O(C2 +R ∗ C ∗ d) C ∗ (C − 1) + 2 ∗R ∗ C
SplitFed O(R ∗ C ∗ (SC + LC)) 4 ∗R ∗ C
Fusion Learning O(C ∗ (SL +M) + C ∗ SG) 2 ∗ C
Peer-to-Peer MPC O(C2 ∗ S) R ∗ C ∗ 2 ∗ (C − 1)

Two-Phase MPC O(C2 + (R ∗ C ∗K+
R ∗K2 ∗ S)

2 ∗ C ∗ (C − 1) +R ∗ (C ∗K+
K ∗ (K − 1 + C/K))

FLOP O(R ∗ C ∗ SS) 2 ∗R ∗ C
PFMLP O(R ∗ C ∗ S) 4 ∗R ∗ C + C

Table 3: Comparison of communication cost of studied frameworks

The communication cost in Table 3 is the order of the num-
ber of bytes exchanged in the protocols.

Framework Privacy-preserving measure Ensures privacy against
Classic HFL None None
FederBoost Simplified Masking Protocol Honest-but-curious clients

GRAFFL Using summaries of private data
Not sharing gradients/weights

Fully-dishonest, curious (and colluding)
server and/or clients

SplitFed Differential Privacy Fully-dishonest, curious (and colluding)
server and/or clients

Fusion Learning Not sharing gradients/weights None
Peer-to-Peer
MPC Secure MPC Honest-but-curious participants without

collusion
Two-Phase
MPC Secure MPC Honest-but-curious participants without

collusion
FLOP Only sharing part of model Unknown

PFMLP Homomorphic Encryption Honest-but-curious server, keyserver and
clients without collusion

Table 4: Comparison of privacy measures and guarantees of the
studied frameworks



Framework Supported models
Classic HFL Neural Networks
FederBoost GBDTs
GRAFFL Parametric Generative Models
SplitFed Neural Networks
Fusion Learning Any Model
Peer-to-Peer MPC Neural Networks
Two-Phase MPC Neural Networks
FLOP Neural Networks
PFMLP Neural Networks

Table 5: Comparison of the rage of models supported by the studied
frameworks

In conclusion the main trade-offs made when choosing a
Federated Learning Framework are among the final model’s
accuracy, the performance (training time and communication
cost) and the security guarantees of the protocol.

6 Reproduced Results
For two of the aforementioned frameworks, experiments have
been reproduced. This section presents the setup of these ex-
periments and the obtained results.

The two studied frameworks are Fusion Learning and
FLOP. In the case of both frameworks, experiments which
assess the accuracy and loss of the trained models have been
reproduced. This was achieved by simulating the behavior of
clients and servers within one Python script.

The advantage of this approach is that the results can eas-
ily be reproduced, given the fact that the experiments can be
run locally, on a single machine, without requiring a network
of computers. Moreover the resulting trained models will be
equivalent to the models trained by distributed implementa-
tions of these frameworks, therefore allowing the analysis of
model performance obtained with these frameworks.

The main disadvantage of this approach is that no conclu-
sions can be drawn regarding the runtime of the training or the
communication cost of these frameworks. For these aspects
of the framework, a theoretical analysis has been conducted
and presented in the previous section of the report.

6.1 Fusion Learning experiments
In [16] four experiments are presented, which apply Fu-
sion Learning to train a model on four different benchmark
datasets: the Credit Card, Breast Cancer, Gender Voice and
Audit datasets from [22]. Unfortunately the Gender Voice
dataset was not present in the aforementioned repository and
thus the experiment on it could not be reproduced.

To reproduce these experiments a simulation of this frame-
work has been implemented in Python. The code for this sim-
ulation can be found on GitHub [23].

The simulation first randomly splits the training set into
10 subdatasets, which represent the private datasets of the 10
clients. Then, for each subdataset individually, the best fitting
distribution is determined for each feature, according to the
Kolmogorov–Smirnov test. Next, 10 models are trained, one

on each of the subdatasets. These models represent the local
models of the 10 clients participating in the protocol.

Following this, the central server’s behavior is simulated.
First, for each of the 10 clients, 1000 samples are gener-
ated by sampling the best fit distributions found previously.
Each of these samples is labeled as classified by the model
trained on its corresponding client’s dataset. Finally, a model
is trained on the 10000 generated samples and the accuracy
of the model is measured on the test dataset.

In order to achieve the accuracies presented in [16], a slight
deviation from the original experiment was required, namely,
the use of upsampling to combat the imbalanced datasets.

The reproduces accuracies are presented in Table 6.

Dataset Original Accuracy Reproduced Accuracy
Credit Card 81.09 78
Breast Cancer 95.62 95.91
Audit Data 97.42 97.4359

Table 6: Fusion Learning: Reproduced results compared to original
results

Interestingly, the results of the experiment on the credit
card dataset could not be reproduced. The models trained
with the aforementioned simulator achieved around 78% ac-
curacy, which is an unacceptable performance considering
that only 22% of the samples have the positive label (and the
rest have the negative label).

Based on these results we can conclude that Fusion Learn-
ing can indeed be used to train machine learning models that
have a comparable performance to the original Horizontal
Federated Learning framework. However, some of the results
presented in [16] cannot be reproduced, which suggests that
some implementation details of the experiment might have
been omitted from the paper.

6.2 FLOP experiment
Experiments on the FLOP framework have also been con-
ducted. Specifically, the experiment performed on the Fash-
ion MNIST dataset that is presented in [19] has been repro-
duced. The FLOP framework has been simulated locally, in
one Python script, similarly to how the Fusion Learning ex-
periments have been conducted. The experiment’s code can
be found on GitHub [24].

To compare the results of the reproduced experiment with
the results of the original one, in every FL round the test set
loss of the clients is averaged and plotted in Figure 1.

The plot clearly shows that the model converges, confirm-
ing that a model can be trained with HFL while only sharing a
subset of the weights. When comparing this plot with the plot
in the original paper, shown in Figure 1. it can be seen that the
range of values is different, indicating a possible difference in
the way it is computed.

7 Responsible Research
The main aspect of responsible research that relevant to
literature studies containing experiments is reproducibility.
To ensure the reproducibility of the presented experiments,



(a) Loss in reproduced
experiment

(b) Loss in original
experiment

Figure 1: Loss over epochs in FLOP experiment

the code written for each experiment has been published to
GitHub and a detailed description of how the experiment can
be reproduced has been provided in the repositories, along
with a list of versioned dependencies.

This literature study will have a positive impact on ethi-
cal computer science, as it is intended to help developers or
researchers compare HFL frameworks and choose the most
suitable one for their use-case, thus encouraging the use of
FL. Using FL is more ethical than collecting user data in most
scenarios, as it honours the value of individual privacy by not
collecting or forcing the users to expose their private data to
participate in training a model.

8 Conclusions and Future Work
In conclusion, there are multiple approaches to achieving
secure federated learning. Some improve upon previously
developed frameworks (such as Two-Phase MPC Enabled
Federated Learning), others exploit particularities of certain
classes of models to increase privacy (e.g. FederBoost).

These frameworks each have their own advantages and dis-
advantages. The trade-offs made by them can be viewed as
trade-offs among the following three factors: privacy of in-
dividual users, performance/accuracy of the resulting model
and performance of framework (runtime and communication
overhead). The various techniques employed by the studied
frameworks can be used to shift the focus of FL from one
factor, to another. For example, by adding various degrees
of noise to the transmitted gradients, the trade-off between
model accuracy and data privacy can be explored, while hav-
ing little to no impact on the training time or communication
cost. Employing Homomorphic Encryption, ensures that no
information can be leaked through the weight gradients, while
not affecting the quality of the model, so this shifts the focus
of the framework to privacy and model accuracy, while sacri-
ficing the performance of the overall framework.

The framework comparisons section presents how the stud-
ied frameworks fit in this model and which of the three as-
pects they emphasize or sacrifice. Undoubtedly, there is no
single best framework for all use cases of FL, as the impor-
tance of each of the aforementioned factors varies based on
the situation. The summaries and analysis presented in this
paper are intended to help with determining which FL frame-
work is most suitable for any given use case.

In the future it would be beneficial to develop and
study more approaches to Federated Learning, especially ap-
proaches similar to FederBoost, which manage to achieve all
of the three aforementioned desired qualities of a FL frame-

work, by limiting the range of models that can be trained with
it.

Moreover it would be valuable to further study the security
and privacy guarantees offered by FLOP, as these cannot be
trivially deduced from the description of the algorithm.



Appendix
A Variables used when discussing

computational complexity of frameworks
summarized

Variable Definition Specific to framework
R Number of rounds of Federated Learning
C Number of clients / participants
N Total number of samples on all participants
n Number of samples owned by one participant
M Number of features
T / TL / TG Training time, training time of local/global model
S / SL / SG Size of model, size of local/global model
E Number of epochs of training (locally)
q Number of buckets / quantiles FederBoost
Z Number of decision trees in the GBDT FederBoost
|t| Size of a decision tree in the GBDT FederBoost
d Number of dimensions of summarized samples GRAFFL
TSuffiAE Training time of SuffiAE GRAFFL
SC Size of cut layer SplitFed
LS Number of layers on the server side of the network SplitFed
LC Number of layers on the client side of the network SplitFed
ng Number of generated samples Fusion Learning
K Number of committee members Two-Phase MPC enabled FL
SS Size of shared model FLOP
k Size of encryption key PFMLP
α Parameter of encryption scheme PFMLP

Table 7: Complete list of variables used when discussing computa-
tional complexity of frameworks and their definition
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