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Abstract

Purpose
The main purpose of this report is to find out whether the OpenBCI ”Ultracortex Mark IV” Electroen-
cephalogram (EEG) headset is capable of differentiating EEG-signals of motor execution from neutral
state with recorded data and to find out whether it can differ motor executions between left and right
hand. Next to that, it is to be determined whether the OpenBCI headset was the optimal one for this
purpose.

Method
First, the specifications of different headsets were compared. Afterwards, a montage of the electrodes
was designed to detect motor execution and motor imagery, mainly centered around the locations C3,
Cz and C4, on the top of the scalp. The software ”Openvibe” was used to extract data from the headset
during experiments and to record it in a csv file. A subject was asked to follow a video with a sound
cue followed by a visual cue instructing to move either its left hand or right hand.

Result
Merging the left and right hand trial data together, the result is that the headset shows in the alpha
band (7-12 Hz) mostly a decrease (ERD) in magnitude around the visual cue, sometimes followed by
a bigger increase in magnitude (ERS). Looking at the extremes after the cue, it is seen that mostly
the difference in magnitude is around a factor 1.5 compared to the average magnitude of before the
visual cue. Splitting the trial data between left and right hand, similar results can be seen, but one hand
produces slightly more ERD or ERS than the other hand depending on the position of the electrode on
the left or right hemisphere of the brain.

Conclusion
The OpenBCI headset can in fact detect a difference between movement of the hands and the neutral
state. Differentiating between the movements of left and right hands seems possible from the results,
but the difference in the signal of left and right hand is minimal. It is recommended to repeat the
experiment with more trials and different subjects to get a more solid conclusion.
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1
Introduction

This paper is part of a project to design a brain computer interface (BCI) to play a game on a computer
using an EEG headset in real-time. The project is divided into three subgroups: measurement and
quality control, decoding and interface subgroup. This paper will present the work of the measurement
and quality control subgroup, which is responsible for measuring and pre-processing EEG signals with
an EEG headset and send the acquired data to the decoding group. The decode group will then de-
code the EEG signals, using a trained model, to a command to be used for the game created by the
interface group.
As described earlier, this project will make use of a BCI. Brain Computer Interface (BCI) is a popular
research topic for scientists and researchers. A BCI is a system that decodes brain waves into a com-
mand to be used in an external program, such as a game. A popular technique to record brain signals
is the Electroencephalogram (EEG). In recent years many wireless portable EEG devices have been
developed that cost less then €5000, which gives individuals more opportunity to work with EEG data.
The devices are non-invasive and small enough to be easily portable; this makes EEG amore attractive
option compared to other methods like MEG which is non-portable [22].
Several artifacts can cause disturbance to EEG recordings such as motion artifacts, heart rhythms,
eye movements and muscle activity. Artifacts from muscles will probably easy to filter as they are most
concentrated between 30 and 100 Hz[5]. However, it is more difficult to deal with motion artifacts as
they can easily occur and are difficult to filter out since they do not have a specific frequency. Eye
blinks however, will most probably not give a significant artifact as they will influence the signal for only
a short amount of time.
Based on the program of requirements, it will be decided which of the two available headsets, the
OpenBCI Ultracortex Mark IV and the Neurosky Mindwave, will be used during the project. Addition-
ally it will be decided which application will be used to extract and process the data from the chosen
headset. Multiple experiments will be conducted to decide if the data is high enough quality to be able
to distinguish different classes. The quality of the EEG signals will be determined by analysis tools like
a spectrogram and the power spectral densisty (PSD).
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2
Program of Requirements

The program of requirements is set to clearly state what the deliverables and goals of the measurement
and quality control group are. The main goal of the measurement and quality control subgroup is to
measure and pre-process EEG signals with an EEG headset. The requirements are divided into must
and should requirements. The must requirements are mandatory as these are needed to successfully
accomplish the goal of the measurement and quality control subgroup. The should requirements are
set in such way that it would be nice if these requirements are met and are needed to successfully inte-
grate the whole project, but will not contribute to the goal of the subgroup. If all requirements (including
the should requirements) are met, it will be possible to live-stream high quality motor imagery data to
the decode subgroup to decode the signals into a command using a training model. This model needs
to be trained with measured data. The must and should requirements for the measurement and quality
control subgroup are:

Must requirements:

• The own measurements must:

– Detect EEG of blinking; the measurements in time domain must show an amplitude differ-
ence of at least a factor 10 on average between a blink and no blink.

– Have at least 2 classes (rest and movement of both hands) must be distinguished in a EEG
recording in frequency domain; the measurements must show a magnitude difference of at
least factor 1.5 on average in the alpha band (7 - 12 Hz) during a motor execution compared
to neutral position.

– Have at least 50 trials of motor execution of both left and right hand to gain test and training
data for the decoding group.

• The must requirements set for the headset are:

– The electrodes of the chosen headset must be able to be placed at the areas to measure
the EEG signals of: blinking, motor execution and motor imagery.

– Headset cost must be under €5000.
– A sampling frequency of at least 60 Hz.

• The must requirements set for the acquisition software are:

– The used acquisition software must have at least support for the OpenBCI ”Ultracortex Mark
IV” and Neurosky ”Mindwave MW001” headset.

– The used acquisition software must be able to record the output of the headset and save a
sample of minimum two minutes into a csv file.
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3

Should requirements:

• Own measurement should satisfy:

– At least 2 classes (rest and imagery movement of both hands) must be distinguished in a
EEG recording in frequency domain; The measurements must show a magnitude difference
of at least factor 1.5 in the alpha band (7 - 12 Hz) during a motor imagery compared to
neutral.

– At least 25 trials of motor imagery from left and right hand to gain test and training data for
the decoding subgroup.

– At least 3 classes (left hand, right hand and rest) must be distinguished during the recording;
the measurements must show a magnitude difference of at least a factor 1.5 on average in
the alpha band (7 - 12 Hz) during a motor execution compared to neutral and the other hand.

• The should requirements set for the headset are:

– The location of the electrodes can be variably placed according to the 10-20 system [13].
– Headset cost should be as low as possible while complying with all the must requirements.

• The should requirements set for the acquisition software are:

– Be able to live-stream data to the decoding group.
– Should have support for (at least 10) different headsets,including the OpenBCI and Neurosky
Mindwave headset.



3
Hardware overview

This chapter will focus on the hardware that is used during the project which will consist of the EEG
headset. This chapter will decide, based on the set requirements, which headset is most suitable and
will explain the working of the selected headset.

3.1. Requirements headset
Recording the brain activity is the first step in controlling a game using brain activity. Invasive neural sig-
nals have a high spatial resolution, but has a high safety risk as the sensor, which has to be implanted
can cause immune response and callus after surgery. Non-invasive neural signals are safer than in-
vasive neural signals as they can provide an interface without surgery. To record the brain signals
an popular technique is the Electroencephalogram (EEG). EEG provides a descent time resolution, is
non-inavsive and is portable compared to other methods [22]. An EEG system is composed of a cap on
which the electrodes are placed, a signal amplifier and an analog-to-digital (A/D) converter. The signal
amplifier is needed as the signals from the brain have naturally a low amplitude. The A/D converter
is needed to convert the analog brain signals to digital signals, which can be read out digitally. This
digital signal can for instance be processed by a personal computer.
Before it is possible to select a headset to measure EEG signals, the requirements for the headset
have to be set. The must requirements that have been set for the headset are:

• The electrodes of the headsetmust be placed at the areas tomeasure the EEG signals of: blinking,
motor execution and motor imagery.

• Price must be below €5000
• A sampling frequency of at least 60 Hz.

One of the most important requirements is that the headset can measure blinking, motor execution
and motor imagery. To fulfill this requirement, the headset must have electrodes on specific places on
the head. For detecting blinking the headset must have electrodes on either location Fp1 or Fp2 [2]
according to the 10-20 system [13]. For motor execution and motor imagery the electrodes needs to
be placed close to the motor cortex area. The locations of the 10-20 system that correspond with this
are C3,C4,Cz, P3 and P4. More about the montage of the headset will be described in section 4.1.
The requirement of the locations for measuring eye blinks is set so that it is probably easier for the
decode group to filter out unwanted eye blinks. Also, if it occurs that detecting motor execution or
motor imagery is not possible, detecting eye blinks could be a good alternative. One aspect to also
take into account is the price of the headset. The upper limit for the price of the headset is set to €5000.
The last requirement is that the headset must have a sampling frequency of at least 60 Hz. This is
set because the EEG signals of motor execution and motor imagery will be between 7 and 30 Hz [15]
[14], so the highest frequency that the headset is required to measure is 30 Hz. If Nyquist is taken into
account, this will lead to a minimum required sampling frequency of 60 Hz.
Beside the must requirements, there are also two should requirements set for the headset: the location
of the electrodes can be variably placed according to the 10-20 system and the price of the headset
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3.2. Comparison selected headsets 5

should be as low as possible. The first should requirement is set to give the opportunity to place the
electrodes on the best places to meet the must requirements if the default layout on the headset is not
suitable for that. The second requirement is set to minimize the cost of the headset.

3.1.1. Types of electrodes
There are roughly two kind of electrodes: dry and wet electrodes. Both types have there own advan-
tages and disadvantages which will be discussed below.
Wet electrodes are commonly made of silver with a coating of silver chloride (Ag/AgCl). Additionally, a
gel containing chloride ions is applied between the electrode and the skin. This improves the conduc-
tion and reduces the skin-electrode interface impedance. Adding this gel requires extra preparation
time as the electrodes need to cleaned and dried. This gel will also give some inconvenience for the
subject as their hair needs to be cleaned. To improve the conductivity of wet electrodes, the skin needs
to be slightly scratched which can feel uncomfortable. Wet electrodes are commonly wire-connected.
The advantage of wet electrodes is that they can ensure a higher signal quality compared to dry elec-
trodes. This is also due to the fact that wet electrodes are less susceptible to mains interference and
movement artifacts than dry electrodes.
Dry electrodes were proposed to overcome the issues with the gel of wet electrodes. Dry electrodes
consist of a conductive material that couples with the skin. These electrodes could consist of different
kind of materials. The most significant disadvantage of dry electrodes is that the impedance of the
electrode is higher compared to that of wet electrodes. This increase in impedance can lead to poor
contact with the scalp, increased instability and more let the electrodes be more sensitive to noise. One
of the biggest advantages of dry electrodes is the quicker setup time compared to wet electrodes.
Research found that the impedance for dry electrodes is slightly higher compared to wet electrodes.
However, the resting state EEG power and event-related potentials were comparable between the two
types. The same research found that dry electrodes are more robust to 50 Hz line noise and other
electromagnetic interference from ambient noise [10]. Another study found that dry electrodes guaran-
tee the same amount of quality as wet electrodes [7]. As previous studies stated, there is almost no
benefit to using wet electrodes compared to dry electrodes. As a consequence, it was decided to use
dry electrodes during this project.

3.2. Comparison selected headsets
As stated in the previous section, it was decided to use dry electrodes. As a consequence of this, only
headsets which contain dry electrodes will be used in this project. There are different requirements set
for the headset, such as possibility to measure eye blinks, motor imagery, price and minimum sampling
frequency. Two EEG headsets are available for this project: the OpenBCI ”Ultracortex Mark IV” and
the Neurosky ”Mindwave MW001”. For completeness, two other commonly available EEG headsets
are included in the comparison as well: the InterAxon Muse 2 and the Emotiv Epoc. Table 3.1 shows
a comparison of the properties of the different headsets.

The OpenBCI Ultracortex Mark IV is an open-source 3d printable headset. The headset is standard
equipped with 8 electrodes, which can be extended to 16 using the available extension board. The
skeleton is 3d printed and contains 35 different locations based on the 10-20 international system to
place the electrodes. The OpenBCI headset requires assembly prior to use. As the electrodes of the
OpenBCI headset can be flexibly placed along 35 locations, detecting the EEG signals of eye blinks,
motor imagery and motor execution is possible. The main disadvantage of the OpenBCI headset is
the price, which is higher compared to the other headsets. The OpenBCI headset has a ground and
reference node which are placed at both earlobes of the subject.
The Neurosky ”Mindwave MW001” headset is a single-channel low-cost headset. The headset is the
cheapest headset with a price around €200. The headset has only 1 electrode which is placed at
the forehead of the subject. The placement of this electrode is limited adjustable. With a sampling
frequency of 512 Hz, this headset has one of the highest sampling frequencies. As the electrode
is only located on the forehead, it is not possible to detect motor imagery or motor execution. The
Neurosky headset contains of two reference nodes, one at the left earlobe (A1 location) and one on
location T4.
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Properties OpenBCI
Ultracortex
”Mark IV”

Neurosky
”Mindwave
MW001”

InterAxon
”Muse 2”

Emotiv ”Epoc”

Number of
electrodes

8 (can be ex-
tended to 16)

1 4 14

Placing electrodes
(according to 10-20
system)

35 locations Fp1 AF7, AF8, TP9
and TP10

AF3,F7,F3,FC5,
T7,P7,O1,O2,P8,
T8,FC6,F4,F8
and AF4

Sampling
frequency

250 Hz 512 Hz 256 Hz 128 or 256 Hz

Communication Bluetooth Bluetooth Bluetooth Bluetooth
Potential to detect
eye blinks

yes yes yes yes

Potential to detect
motor imagery

yes no no yes

Results on web of
science 1

82 137 17 425

Cost €2600 €200 €400 €850

Table 3.1: Comparison different EEG headsets [16]

InteraXon offers the muse 2, which contains 4 electrodes. These electrodes have fixed locations. It
should be possible to detect eye blinks with it, but no motor imagery or motor execution. The sampling
frequency is with 256 Hz lower than that of the Neurosky. The Interaxon muse 2 has the lowest results
onWeb of Science which implicates that the headset has probably been used prior in less projects. The
Interaxon muse 2 contains of 3 reference nodes which are all placed on the forehead of the subject,
The Emotiv Epoc contains 14 electrons which were placed on different positions. The positions of these
electrodes are limited adjustable. The headset has two reference nodes at location P3 and P4. The
Emotiv Epoc headset has the most results on Web of Science of all headsets which implies that there
are probably more research projects already done with this headset.
All headsets are communicating with the computer using Bluetooth. Looking at the requirements that
were set for the headset, one of the requirements was that it is possible to detect motor imagery and mo-
tor execution. Looking at the comparison, only the OpenBCI and the Emotiv will meet this requirement.
The difference between these two headsets is the number of electrodes and the placing of the elec-
trodes. Although the OpenBCI headset is the most expensive headset, it is decided for this project that
the OpenBCI headset is the most optimal. The main reason is the flexible placement of the electrodes.
This way the electrodes could be placed in the locations which are the most important for measuring
motor imagery. Besides that, OpenBCI offers a detailed documentation about their product.

3.3. OpenBCI headset
The OpenBCI Ultracortex ”Mark IV” headset can be divided into three components: the frame with the
electrodes, the processing module and the USB module.
The frame (Figure 3.1) is a 3d printed frame with 35 locations for electrodes. These locations are based
on the 10-20 international system. The layout of electrode locations of the headset can be found in
Figure 4.2b. There are two different dry electrodes available: a spikey one, which can be used in hair,
and a non spikey one, which can be used for nodes with no hair (like the forehead). The non spikey
electrodes are commonly placed at Fp1 and Fp2. Besides using these electrodes, it is also possible
to use so-called comfort units, which are similar to electrodes. The function of these comfort units is
to distribute the weight of the headset over the head of the subject to get a more comfortable feeling.
These units are not connected to the processing unit. The two kind of electrodes and the comfort units
can be found in Figure A.1. During the different experiments it was found that the spikey electrodes
can feel uncomfortable for some subjects. This is due to the fact that the electrodes have to make

1https://www-webofscience-com.tudelft.idm.oclc.org/wos/woscc/basic-search



3.3. OpenBCI headset 7

contact with the skin, which can be uncomfortable when using the spikey electrodes. A subject with
less hair will not or less experience this issue. More information about the used montage can be found
in section 4.1.

Figure 3.1: The OpenBCI ultracortex IV

All electrodes are wire-connected on the processing module. The standard connected board is the
OpenBCI Cyton board, which can handle up to 8 channels. Beside the 8 channels, the board contains
also a reference and a bias signal, which can be placed using clips on for example the earlobes. The
board contains the PIC32MX250F128B microcontroller [21]. The incoming data is sampled at 250 Hz
on each of the eight channels. The board is compatible with passive and active electrodes. Beside that,
the board contains an analog to digital converter (ADC), which is in this case the Texas Instruments
ADS1299 ADC [11]. It also contains 3 accelerometers to measure the movement of the head; the
LIS3DH accelerometer is used for this. The gain of the board is programmable to the following values:
1, 2, 4, 6, 8, 12 or 24. The Cyton board uses Bluetooth to communicate with the USB dongle.
The USB dongle establishes the connection using Bluetooth with the Cyton module. The USB dongle
establishes the connection between the headset and the PC. The USB module contains the radio
transceiver RFD22301 [6] for the Bluetooth low energy connection. The data is recorded using a 24
bit resolution. The data is saved following the format: timestamp, 8 channels EEG, 3 accelerometer
channels [25]. This data can be further processed by a computer by reading out the serial port.



4
Data acquisition

This chapter will focus on extracting data from the chosen OpenBCI Ultracortex ”Mark IV” EEG Headset
to differentiate the brain signals for motor imagery/control. To do so, there are multiple factors to take
into account, such as: the montage of electrodes on the human scalp, the software to decipher the re-
ceived signals from the headset, the pre-processing of the signals and the methodology of experiments
to ensure a as consistent acquirement of reliable data possible.

4.1. Montage
One of the first factors to take into account is the correct placement of the electrodes on the scalp. In
this project, the headset should receive motor control/imagery signals from the brain. To do so, one
must first know what regions of the brain has the most activity when a person moves or wants to move
a certain part of the body.
It was found that most of the signals for themotor functionality of a body were generated in the brain area
called the ”motor cortex” which lays near the frontal lobe of the brain (Figure B.1). This corresponds
mostly with the meta-analysis of Hardwick(2017)[8] on active regions during motor imagery and motor
execution, albeit the meta-analysis also showed some activity in the parietal lobes.

(a) Motor cortex area 1

(b) Meta analysis of active regions during motor imagery/execution

Figure 4.1: Figures of the motor cortex and Meta analysis of active regions during motor imagery/execution

With this knowledge, a correct placement of the electrodes could be derived. Looking at the commonly
used 10-20 system for the placement of the electrodes, it was hypothesised that the most important ar-
eas to place the electrodes and detect motor imagery/execution signals would be around the locations

1https://nba.uth.tmc.edu/neuroscience/m/s3/chapter03.html
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4.1. Montage 9

C3, C4 and Cz. Looking into the montages of papers which also conducted motor imagery experiments,
such as Zhang(2019)[34] our theory was highly plausible.

(a) Montage of Zhang(2019) [34] (b) Electrode layout of OpenBCI Ultracortex Mark
IV headset (In orange) 2

Figure 4.2: Figures of the montage of Zhang(2019) and the layout of the OpenBCI Ultracortex Mark IV headset

Table 4.1: 8 electrode configuration

Channel Position
1 Fp1
2 Fp2
3 Fz
4 Cz
5 C3
6 C4
7 P3
8 P4

Table 4.2: 16 electrode configuration

Channel Position Channel Position
1 Fp1 9 Cz
2 Fp2 10 C4
3 Fz 11 Cp5
4 Fc5 12 Cp1
5 Fc1 13 Cp2
6 Fc2 14 Cp6
7 Fc6 15 P3
8 C3 16 P4

Unfortunately, it was not possible to exactly replicate the existing montages since the OpenBCI headset
only supported a limited amount of pre-determined places to screw new electrodes into. Due to this
limitation, from the 8 electrodes, it was decided to place the 6 most important electrodes on Fz, Cz, C3,
C4, P3 and P4 as shown in table Table 4.1. The other 2 electrodes were placed on Fp1 and Fp2, for
the eyeblink detection that the decoding subgroup might need for their artefact removal algorithm or in
case that the motor imagery/execution signal received from the brain is not of high enough quality and
eye blinking has to be used to control the computer interface.

Initially, it was thought of to extend the amount of electrodes used from 8 to 16 and place them like
described in table Table 4.2. This way, an increased area of the motor cortex and parietal lobes can
be measured and can the activity during motor activities better be localized. Eventually, it was chosen
not to take measurements for training data with it due to the following reasons:

• With 8 electrodes, it could already be seen that sometimes the contacts of around 2 electrodes
would fail to reach the scalp due to the thickness and length of a test person its hair. This could
be fixed most of the time by brushing away the hair of said test person at the spot of the failing
electrode and adjusting the depth of which the electrode is screwed into the headset. With 16
electrodes, the amount of failing electrodes rose to 3-4 electrodes most of the time and to solve
the issue for every other test person is not worth the time investment.

• Next to that, due to the layout of the OpenBCI headset, 8 electrodes already cover the most
important places around the C3 and C4 areas. With 16 electrodes, it is possible to fill T7, CP5,

2https://shop.openbci.com/products/ultracortex-mark-iv
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CP1, FC1 and FC5 for example, which are the closest pre-determined places for electrodes to
C3. However, these places might already be too far from C3 to pick up any desirable signals.

• Lastly, every electrode is connected via a non-shieldedmale-to-male standard jumper cable, each
of which susceptible to noise from either unwanted electromagnetic waves or vibrations of acci-
dental movements of the test person. With double the electrodes, there was a fear of picking up
an increased amount of noise which would decrease the signal quality.

The last part of the montage was to decide what kind of referencing to use. The perfect reference point
would be one with zero or a constant potential, so that the measured signals from the brain correctly
reflect the actions of a test person. However, such a reference point does not exist, since there will
always be some sort of electrical interference on the human body.
Although not explicitly specified in the OpenBCI data-sheet, it can be assumed that the standard refer-
encing of the headset is an unipolar ”recording reference” between the ear and electrodes. This is due
to the OpenBCI headset having a single earclip to be attached to the earlobe to be used as a reference
point. The earlobe was most likely chosen due to its relative inactiveness in terms of brain activity and
its distance to the recording electrodes(Junghöfer et al., 1999). This referencing electrode on the ear-
lobe is used during the live-recording of data, hence the reference is called an online reference. When
the reference is only decided after the recordings, it is called an offline reference. The offline reference
might be useful if one would like to have more flexibility in the analysis of obtained signals. Some of
the unipolar offline options are[33][23]:

• Linked Mastoids (LM): One of the older referencing techniques. This unipolar method assumes
that average potential over two mastoids (ears) approximates zero. This method of referencing
is still one of the most used referencing in neuroscience, although it has its flaws. This method
is mostly used for recordings on the middle line of the scalp as there is distortion near the two
ears and can be used for offline or online recordings although the latter is not recommended as
physically linking the two electrodes creates a short-circuit that might disturb the distribution of
voltages across the scalp.

• Average Referencing (AR): This unipolar method will take the average potential of all electrodes
and use it as the reference signal to compare with the electrodes. This method is based on the
theory that in a perfect layered spherical head with neural currents spread out in an isotropic
way, the integral of all potentials over the heads surface sums up to zero[32]. The drawback of
this method resides in the fact that the average human head is not spherical, homogeneous or
isotropic. Next to that, the electrodes would need to be placed around the entire head its surface
for AR to work perfectly, which is not feasible. Thus AR can only approximate a zero potential
with sufficient (>128 channels)[33] electrodes.

• Reference Electrode Standardization Technique (REST): a re-referencing method using the off-
set voltage between a external standard reference electrode that has a stable and reproducible
potential and the electrode used for referencing during the measurements. The offset voltage is
determined by immersing both electrodes in a electrolyte solution and letting it reach a stable equi-
librium, after which the voltage difference between the two electrodes is measured. Using this off-
set, a correction factor can be derived and afterwards be applied to future measurements with the
calibrated reference electrode. Although this method works the best according to Yao(2019)[33],
this one needs the most time-investment and is relatively complex in comparison to the previous
two methods.

Another method to record data would be to use bipolar recording. Here, the voltage difference between
two adjacent electrodes are constantly measured. This method of extracting data can have advantages
compared to unipolar recording, the biggest one being that it can remove common artifacts that appear
in both electrodes since the difference is measured between them. Still, there is a downside. If for
instance a noise source comes from a certain direction in parallel with the bipolar configuration, one
electrode will receive the noise a fraction sooner than the other one and the measurement will be
inaccurate in the time-domain. For the OpenBCi headset that is used in this project, it was not recom-
mended to use bipolar recording since the headset is optimized for unipolar recordings and little to no
information was given on how to convert the headset to be suitable for bipolar recordings. Thus, it was
decided to keep recording with a unipolar reference which is the earlobe.
As for the offline re-referencing, due to time-constraints there was no opportunity to test every method.
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Only the AR re-referencing was tested, but it yielded no improvement over the standard referencing of
the headset (see chapter 5); this is most probably due to the insufficient amount of channels and a lack
of coverage of the head. Thus, it was chosen to do no special re-referencing and to rely on the build-in
common-mode noise rejection of the bio-chip of the headset.

4.2. Software
The data acquisition software is focused on providing an optimal workspace, suitable to extract and pro-
cess data of the headset efficiently. It should be able to save the acquired data into a csv-file for further
analysis and it should have support have support for the OpenBCI ”Ultracortex mark IV” and Neurosky
”Mindwave MW001” headset. Besides that, one of the should requirements for the program is that it
will also work with other headsets. This gives the opportunity to measure with another headset if it
occurs that the OpenBCI or Neurosky headset will not work properly. The second should-requirement
is that the application is able to live-stream data to other groups. This requirement is set to a should
requirement but it would be nice to achieve, as this will give the opportunity to send live data to the de-
code group and this is a must to let the whole project work as intended. Table 4.3 shows the different
software applications that were considered during the project[20].

The OpenBCI GUI is made by OpenBCI and as a consequence of this, it is fully optimized for the
OpenBCI headset. A disadvantage that has a high impact, is the fact that the program has no support
for other headsets, which limited the choice for a headset significantly. Although it is only compatible
with the OpenBCI headset, it has a built-in impedance check for the electrodes. Additionally it gives a
clear first view of all the signals.
Another program which was considered, is writing a Python code ourselves to extract and process the
data. The advantage is that it is possible to integrate all components in one code. However, the main
disadvantage is that there are not packages available for all headsets. Sometimes there is no manual
available about which protocol the headset uses to communicate with the computer, which makes it
hard to extract data without an available package.
OpenVibe [30] is a C++ based open-source software platform dedicated for designing, testing and use
of brain-computer interfaces, and is specially made for real-time neuroscience. At the time of writing,
OpenViBE is supported by Inria (French Institute for Research in Computer Science and Automation).
One of its most distinguishing features is its graphical language for designing signal processing chains.
The disadvantage of OpenVibe is that there are limited possibilities for different methodologies as the
user is limited to the built-in features of OpenVibe.
BCI2000 is, like OpenVibe, a C++ based platform. This application is not intended as a signal pro-
cessing design, but it has support for a wide range of different BCI experiments. The disadvantage of
BCI2000 is that only popular EEG headsets are supported by it, which does not include the Neurosky
Mindwave.
Simulink is a platform for simulation and model-based design for dynamic systems, which runs under
Matlab. It provides a graphical environment for processing and extracting data. Although it has no
built-in support for different headsets, it is possible to use most headsets by reading out the serial port.

All considered applications can write data to a csv-file so all applications will fulfill that requirement. An-
other requirement that was set was that the software must have support for the OpenBCI and Neurosky
Mindwave headset, which is not the case with the OpenBCI GUI and the Python code. Live streaming
data to the decode group is possible with all discussed programs.
It was decided to use OpenVibe as data acquisition software. The main reason is the fact that this will
work with several headsets (including the OpenBCI and Neurosky Mindwave headset), which makes
it possible to switch to another headset if necessary. Besides that, OpenVibe supports live-streaming
data. The OpenBCI GUI is used during the project to get a first view of the measured signals before
they will be recorded with the use of OpenVibe. The reason for this is that the OpenBCI GUI gives a
clear first view of the signals, with a proper y-axis and lines in the graph. OpenVibe does not provide
such functions.
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Software Advantages Disadvantages

OpenBCI GUI

• Optimized for OpenBCI headset
• IP/TCP streaming to external program
• In-built impedance check
• Good first view of signals

• No support for other headsets
• No possibility to integrate all compo-
nents

• Extra code/application needed to pro-
cess all data

Python
• Built-in integration of all components
• Package available for OpenBCI

• Not for all headsets packages avail-
able (including the Neurosky Mind-
wave)

• No graphical interface

OpenVibe

• Support for different headsets
• Specially made for BCI
• Possibility to integrate all components
• IP/TCP streaming to external program
• Possible to do in-built processing using
Matlab or Python

• Graphical interface

• Limited scenarios possible
• No proper first view of signals

BCI2000

• Real-time processing
• Specially made for BCI
• Support for different hardware
• Limited graphical interface

• Not intended as signal processing de-
sign

• No in-built TCP streaming
• Limited support in previous years.
• No support for the Neurosky Mindwave

Simulink

• IP/TCP receiving and streaming to ex-
ternal program

• Runs in Matlab environment
• Specially made for live signal process-
ing

• No in-built support for different head-
sets

Table 4.3: Comparison of different acquisition applications [20]

OpenVibe
As described earlier, it was decided to use OpenVibe during this project. OpenVibe consists of two
main components: the acquisition server and the designer [30].
The acquisition server provides the connection between the incoming signals from the headset and the
designer. It will read out the connected USB port and will access the device using the protocol from the
manufacturer. The acquisition server supports different kind of headsets, like EEG or MEG systems,
and different brands and models, but it has to be mentioned that not all supported headsets are stable.
This will be indicated in the acquisition server setup with ’unstable’ behind the specific headset. In
section 3.2, several different headsets were discussed. The acquisition server has built-in support for
the OpenBCI and Neurosky Mindwave headset. OpenVibe has no in-built support for the Emotiv Epoc
and the InterAxon Muse 2, but this can be fixed by using the LabStreamingLayer (LSL) which will need
additional acquisition software that delivers the acquired data to the acquisition server. This property
allows the user to create a hardware independent scenario. The acquisition box sends the information
to the acquisition client box in the designer using an IP port, which can be specified in the acquisition
server. The acquisition server will then send the data to the designer per block; the amount of samples
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can be adjusted under ’Sample count per sent block’. The default value is 32 samples per block. The
receiving applications can later convert the data to new buffer sizes (the buffers are usually called
epochs if they have been segmented from the signal stream using specific rules).
The designer is the main component of OpenVibe. The designer gives a visual interface for designing
scenarios. This can be done using the available boxes in the environment. These boxes can be
connected by lines to forward the data between boxes. There are several boxes available, but the
most important ones are: acquisition client, temporal filter and csv file writer. The acquisition client
reads out the data (in microvolt) from the acquisition server using the same IP port as the acquisition
server. The temporal filter box will filter the data using the specified configuration. There are two filter
methods available, Butterworth and Chebyshev. Additionally the specifications of the used filter can
be specified, like the filter type, order, pass band ripple and cut frequencies. The csv file writer writes
the incoming data to a csv file, with a default precision of 10 decimals. Figure B.3 shows a scenario
which is regularly used during the project. This scenario will run a video and will store the data in a
csv file. This scenario contains of an acquisition client, two filters and a csv file writer (which were all
discussed before). Besides that, it contains of the Graz motor imagery BCI stimulator box. This box
will run a program programmed (in lua programming language) by the user and will visualize it using
the Graz visualisation. The Graz motor imagery BCI stimulator box will send a signal to the csv writer
if a stimulation is sent, which will add an extra column to the csv file for the eventstamp, which marks
the exact time a stimulation occurred.
OpenVibe supports different kinds of live streaming. This can be done built-in by using the Python or
Matlab box. This allows the user to integrate everything in one program and to use the visual interface
of OpenVibe. During the project it was found that integration using this method is very difficult, due
to the specific Python layout required by OpenVibe. Instead of integrating all components inside the
OpenVibe program, it can also be done by sending data on an IP port to an external program. This
data stream can be read by other groups if they want. This way of integrating all components has not
yet been tested in the project.

OpenBCI GUI
As stated earlier, OpenVibe gives no proper fast view of the quality of the measured signals. As a
consequence of this, the OpenBCI GUI is used to check the signals of each electrode before recording
it with OpenVibe. This will decrease the chance of a bad recording, where one of the electrodes is not
working. The OpenBCI GUI will display the railing of each electrode, railing indicates that the measured
value is beyond the displayable range of -10000µV to 10000µV, meaning the data is clipping. This is
displayed in a range of 0 % to 100 % in which 100% means clipping. Figure B.5 shows an example of
how the OpenBCI GUI shows the railing per channel.
Additionally, a visual check is done. A visual check can be done by checking the presence of a blinking
spike on electrode Fp1 and Fp2, because blinking will give a peak with an amplitude which is higher
compared to the brain activity on both electrodes [2]. The last check that can be done is to check
for alpha waves. The frequency of an alpha wave ranges from 7 to 12 Hz and can be found in the
posterior regions of the head on either side. The locations P3 and P4 will best meet this location. A
higher amplitude will be found on the dominant side of the subject. Alpha waves are salient during
relaxed wakefulness with eyes closed (resting visual cortex), which also occurs during REM sleep [24].
Figure B.5 shows an example of an alpha wave using the OpenBCI GUI on channel 7 and 8. The alpha
wave can be detected using the characteristics described before. It can be found that there is an alpha
wave between approximately -3.5 seconds an -2.5 seconds. Which is repeated at around -2 seconds
to -1 second.

4.3. Pre-processing
The measurements will probably not only contain pure brain activity, but also activity from muscles and
other physical artifacts. As these signals are unwanted, there is the need to filter out these artifacts
as much as possible. The different frequencies can be divided in different bands: Delta(0.5-3Hz) ,
Theta(3-7Hz) , Alpha(7-12), Beta(12-35) and Gamma (35Hz>) [3]. The Delta band will mostly occur
during sleep, the Theta will be occur if a subject is deeply relaxed or inward focused. The Alpha band
will be recognizable when the subject is very relaxed and with passive attention. The beta band will say
something about the anxiety dominance, active, external attentions and how relaxed someone is. The
highest frequency band (gamma) will say something about the concentration of the subject [1]. The
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frequency of the muscles are around 30 to 80 Hz. As a consequence, the gamma band, which are all
frequencies above 35 Hz, is the most vulnerable to muscle artifacts [5]. To filter this, first a bandpass
filter from 0.5-30 Hz (fourth order butterworth) was used. The working of this filter will be shortly anal-
ysed in section 5.2. Figure B.4 shows the frequency response of this filter.
The frequencies that are correlated to movement-related processing such as motor imagery and ex-
ecution are in the range from around 7 to 30 Hz [14][15]. As a consequence, a new bandpass filter
is designed which is a fourth order Butterworth filter from 7 to 30 Hz. The working of this filter will be
analysed in section 5.2. Figure B.4 shows the frequency response of this filter.
Additionally, there is a notch filter around 50 Hz. This filter is implemented using a bandstop (fourth
order Butterworth) filter from 48-52 Hz. This filter is needed to filter out the frequencies from the power
supply, as this will give interference when the laptop is connected to the power supply. Figure B.4
shows the frequency response of the used filters.

4.4. Paradigms
For this project, we want to see if it is possible to distinguish motor control/motor imagery. For this,
different measuring methods are used as probably not all methods will give the best result. The results
of the used methods will be discussed in chapter 5. The different methods will be discussed in this
section:

• Method A: The goal of this experiment was to distinguish between left and right motor control.
The first 20 seconds of the experiment were used to let the subject relax and are needed for the
headset to stabilize. After this rest period, the subject was asked to clench one of their hands
three times. This sign is given every 10 seconds by someone who is next to the subject. There
are two different sequencesmade to ensure the subject doesn’t known which command is coming.
Every measurement consists of 12 trials (right or left hand clench).

• Method B: The goal of this experiment is to distinguish between rest and a motor control task.
This experiment is 60 seconds long with a stimulation at 30 seconds. The subject was asked to
clench both hands once. There was no extra rest period in this experiment.

• Method C: This experiment is somewhat different compared to the previous two, as the subject
was asked to clench their hands for 30 seconds. This implies that the subject has to clench
their both hands, open them and clench them again until the 30 seconds are over. There is a
10 seconds rest period before and after the activity. The start and stop stimulation are given
manually by someone who is next to the subject.

• Method D: This experiment was established after it was possible to make a video with OpenVibe.
This experiment follows the same methodology as method A, but can run without an extra person.
A video is setup to ensure the consistency of the measurement. Each measurement contains 10
trials (5 right and 5 left), with a 10 second rest period before the trials. At the beginning of a
trial, a cross will be shown on the screen. After 2 seconds, there will be an alert beep to attend
the subject that a stimulation is coming. One second later, a left or right arrow is shown on the
screen, which will stay 2 seconds. The subject is asked to clench their right or left hand (which
is randomly determined by the video) once the arrow appears. After that, a final 5 seconds black
screen will be shown as rest period. After that, a new trial will start. Every trial will follow the same
procedure. This method is used to acquire training data for training themodel of the decode group.
The OpenVibe scenario that is based on this methodology can be found in Figure B.3.

• Method E: This method is based on method C, but it will be more consistent. This is done by
using a short video instead of a extra person next to the subject. The experiment begins with a
10 second long rest period. After 10 seconds, there is an alert beep. The subject is asked to
clench both hands when they heard the alert beep. The experiment will stop after 15 seconds.

Figure B.2 shows an overview of the different methods that were used during the project.



5
Data analysis

In this chapter, the data extracted from the OpenBCI Ultracortex ”Mark IV” EEG Headset will be plotted
and analysed. First, the methods to transform the data received in time-domain to frequency-domain
will be explained. Secondly, the results from the measurements are plotted and analysed, after which
methods and results to potentially improve the signal are shown. Lastly, the importance of consistency
of the experiments and the focus of test subjects are discussed.

5.1. Background
First and foremost, one of the most important mathematical technique used in the analysis of EEG will
be briefly explained: The Fourier transform. Using this transform, it is possible to discover which fre-
quencies are most dominant in a signal. The continuous Fourier transform is given by the mathematical
formula:

F (ω) =

∫ ∞

−∞
f(t)e−iωt dt (5.1)

Where F (ω) is the transformed function in frequency domain, f(t) is the original signal in time-domain,
ω is the angular frequency and t is the time variable, integrated over all time values.
Its discrete version, also called DFT, is given by:

X[k] = ΣN−1
n=0 x[n]e

−j2πkn
N (5.2)

Where X[k] represents the complex amplitude of the k-th frequency component. x[n] is the discrete-time
original signal of length N. Which is multiplied with a complex exponential and summed for all values
from n=0 till N-1.
In the analysis of the recorded data, two variations of the Discrete Fourier transform (DFT) are used:
the Fast Fourier Transform (FFT) and the Short-Time Fourier Transform (STFT).

• The FFT algorithm is used to obtain the power spectral density (PSD) plot of a segment of the
recorded signal by squaring the absolute value of the FFT and dividing by the total amount of
samples. Although the ”original” Discrete Fourier transform could be used, the FFT algorithm is
able to compute the power of the frequencies at a time complexity of O(Nlog(N)), whereas the
DFT has a time complexity of O(N2). Due to the FFT’s speed, it is more suitable for transforming
the signal in real-time if needed. By splitting the input data sequence into halves until it reaches a
base case of a subsequence with length 2 (divide-and-conquer). Then bymultiplying the elements
in a single subsequence with a precomputed factor and combining the different subsequences
into bigger sequences, until the original length is achieved and rearranging the sequence, the
PSD is calculated given in units of µV 2. Not µV 2/Hz due to it being the discrete transform and
the signal is not integrated over time but dimensionless samples. As in the case of the continuous
Fourier transform.

• The STFT variation of the Fourier transform was used to obtain the spectrogram of a recorded
signal. The spectrogram is a two-dimensional plot that shows the magnitude of a frequency at

15
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a certain moment in time, which is useful to look for activity at a specific timestamp. Like the
FFT, the STFT takes input discrete signals as input as well as produces them. Difference is that
instead of transforming the whole signal into the frequency-domain like the FFT does, it applies
the Fourier transform to overlapping time windows. The most simple window is a rectangular
window. However, this window is not optimal to calculate the STFT of EEG signals due to its
high main lobe, meaning that adjacent frequencies do not get attenuated and can interfere with
each other causing spectral leakage. Fortunately, there are many other windows to choose from
with better attenuation of adjacent frequencies such as a Hamming, Hann, Kaiser and Blackman
window. In our application, it was chosen to use a Hann window due to its widespread use for
random signals [17] and its all-around capability to produce a, not optimal, but fair frequency
resolution and good spectral leakage protection compared to the other windows [9]. Depending
on the signal frequency, the window size and the amount of overlap between the windows, a
certain time or frequency resolution of the STFT analysis can be reached. By having a lot of
overlap and thus more redundancy, the time resolution increases, but the frequency resolution
decreases due to a reduced amount of independent segments the STFT can analyse. With little
overlap, the inverse happens of the latter. Same for the window size, a bigger window size results
in a decrease in time resolution, but a increase in frequency resolution, whereas a smaller window
results in exactly the inverse.
Lastly, the magnitude of each block in the spectrogram is given in µV since this spectrogram is
the summation of magnitude, and not power, of the frequencies.

5.2. Pre-processing
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(a) Raw data of forehead (fp2) during neutral state
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(b) Filtered data of forehead (fp2) during neutral state

Figure 5.1: Raw (Figure 5.1a)and filtered data (Figure 5.1b) of position Fp2 during neutral state; drift and high frequency noise
occurring in the raw data is filtered out by a 0.5 - 30 Hz bandpassfilter; which can also be used to show eye blinks.

First we tried to measure someone’s neutral state with occasionally some blinking. If looked at the
electrode at the forehead, which is channel 2 at position Fp2, although some peaks can be seen that
represent blinking, the raw data cannot be used for processing due to the amount of high frequencies in
the signal and the DC component pushing the measurement to 7500µV as seen in Figure 5.1a. It was
found that the frequency that correlates with motor imagery is from around 7 to 30 Hz[14]. However,
looking at dataset III used for motor imagery experiments from a BCI competition held in 2002 [4], a
bandpass filter of 0.5 to 30 Hz was used, so it was decided to try that filter first and see whether it
would work. Which produced Figure 5.1b when tested with the same data. This centered the signal
around zero volts and reduced the amount high frequencies drastically and the moment of eye-blinks
could easier be detected. Although this filter seemed to work at first, when we plotted the STFT spec-
trogram (see Figure 5.2a) of the data, most of the power is still around the DC component, which is not
unexpected. By looking at the unfiltered FFT plot( Figure C.1), it can be seen that the DC component
is magnitudes higher than the rest of the frequencies, meaning that a filter with a lower bound of 0.5 Hz
was not able to cancel out the DC components. Together with the decoding subgroup, it was decided
that a 7 till 30 Hz, fourth-order bandpass butter-worth filter served the best filtering properties in order
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(a) Spectrogram of 0.5 to 30 Hz filtered data channel 2 (b) Spectrogram of 7 to 30 Hz filtered data channel 2

Figure 5.2: Spectrograms of signals using different filters 0.5 - 30 Hz (Figure 5.2a) versus 7 - 30 Hz (Figure 5.2b). By taking
0.5 Hz as lower bound, it does not reduce DC component enough. Raising the lower bound to 7 Hz solves that problem

to filter the raw data such that the DC components are removed, but saving enough bandwidth for the
decoding team to get enough data for their test and training data. Applying the improved filter yields
the result in Figure 5.2b. It shows that the magnitude of the signal around the DC component has been
reduced, such that the other frequencies are better visible on the spectrogram. Notice that there is a
faint line at 50Hz, this is due to the many power outlets radiating a 50Hz frequency in close proximity
to the headset, increasing the noise that the headset receives. This problem was fixed by applying a
notch filter from 48 - 52 Hz and record data further from power outlets.

5.3. Measurements
To see how well the headset could pick-up instructions from merely brain signals, the experiment com-
plexity was increased step-by-step. As shown in the previous section, the neutral state was first mea-
sured mostly to verify whether the headset could receive a arbitrary signal and to test the functionality
of the filters. The next step was to verify whether the received brain signals generated by blinking were
distinct enough for the decoding subgroup to train a model, in order to filter them out from the recording.

5.3.1. Blinking
In the blinking experiment, the subject was asked to blink every three seconds when audio cue is
given, 10 seconds after the recording is started. If the headset would work correctly, one would expect
to see activity at the front-side of the head at the exact moment the subject blinks. By measuring the
electrode on the forehead(Fp2), the time plots are obtained can be found in Figure 5.3a, Figure 5.3b
and Figure 5.3c.
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(a) Blinking at channel 2
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(b) Blinking at channel 4
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(c) Blinking at channel 7

Figure 5.3: Blinking magnitude in time-domain at channel 2 (Figure 5.3a),4 (Figure 5.3b) and 7 (Figure 5.3c). It can be seen
that the further away from the forehead, the weaker the blinking signal gets. To detect eye blinks, measure on channels 1 and

2. Also recommended to always cut away the first 10 seconds of recorded data to cut away anomalies.
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It can be clearly observed that each time when the subject was blinking, a distinct voltage peak was
generated at the Fp2 position (channel 2). Looking at the other channels at the center of the head
(channel 4) and the back of the head (channel 7), the blinking signal gets progressively harder to dis-
tinguish from the noise. This indicates that the headset can in fact detect signals correctly at the right
places on the brain.
Another thing to notice is that during the first five seconds of the recording, anomalies occur in the
signal. Looking at the time plots, sudden peaks at the beginning of the recordings can be seen. Con-
sequently, the first 10 seconds of all the following recordings were always cut off before analysing the
measurements .

5.3.2. Motor execution
Following blinking, the next step was to detect brain signals on the top of the head by moving the left
and right hand. In general, what is to be expected is that at the time of a movement of either hands,
an change in power at the alpha band (7 - 12 Hz) and beta band(12 - 30 Hz) is observed [29]. Next to
that, the helmet should be able to detect the change in magnitude close to the exact time that a subject
moves its hands[28]. Lastly it is expected that the movement of the left hand will induce a bigger power
change than the right hand in the right hemisphere of the brain and vice versa [27].

Thus, the first thing to test was to confirm that the headset is able to detect the movement of either
hands. This was done by making a recording of fifteen seconds long and letting the subject clench
both their hands a single time when a audio cue was given at t = 10s, which corresponds to method
E described in section 4.4. Afterwards, the subject was instructed to stay still and do nothing except
involuntarily blinking. Using the recorded data, power spectrum density (PSD) plots were generated
such as the plot of channel 6 (Figure 5.4a), plotting a one second fragment of the exact time when a
subject moves its hands versus a one second fragment where the subject was not doing anything.

(a) PSD channel 6 (n = 20 for movement; n = 60 for rest) (b) Average PSD channel 6 (n = 20 for movement; n = 60 for rest

Figure 5.4: PSD of a single recording of 1 second (Figure 5.4a) and of an average of 20 recordings of movement and 60
recordings of rest, both of which are 1 second (Figure 5.4b) at channel 6 comparing movement vs rest. With a single recording,
no coherent conclusion can be deducted. However with an average of recordings, it can be clearly seen that there is a change

in power during movement compared to during rest. Thus the headset is able to differentiate two classes

With the plots, no coherent conclusion can be deduced due to the inconsistency of the signal across all
the different channels. The solution to this inconsistency is the averaging of data between all the trials
of this experiment. In Figure 5.4b the PSD during movement is an average composed of one second
fragments across 20 trials and the PSD during rest is an average composed of 60 segments of one
second across 3 measurements. Looking at the averaged plot, it can be seen that the data is much
more consistent across all frequencies and that the power during movement is higher than the power
during rest in the alpha and beta band. However by looking at the plots in Figure C.3 of all relevant
channels for motor execution, it can be seen that channel 4 at position Cz on the head is the only one
not showing any major differences between movement and rest, which indicates that Cz might not be
optimal for detecting motor execution signals.
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Although the PSD plots hinted that the headset is able to distinguish between movement and rest, the
PSD works best with stationary signals while brain signals are non-stationary. To see the performance
of the headset as a function of time, the STFT is used to generate a spectrogram. For the experiment, a
subject is tasked to clench either their left or right hand for each trial instructed by a video, as described
by method D described in section 4.4. To see if the headset is able to detect the brain signals to move
either hand, the data from trials for left and right hands are taken as one conjoined data set.
Like the PSD plot, generating a spectrogram plot from only onemeasurement will yield unreliable results
even if it might look like it corresponds with a hypothesis. For the following spectrograms in this report,
a Hann window with an overlap of 80% is used and a width of 0.5 seconds. With a sampling frequency
of 250 Hz of the headset, the time-resolution becomes 100ms. Of course, other window sizes can be
used. For example a smaller window size of 0.1 second (see Figure C.4) to increase time-resolution,
but then it can be seen in the spectrograms that the frequency resolution is very low like explained in
section 5.1, with the magnitudes of 5 - 15 Hz being lumped together. The inverse happens with a time
window of 1 second (see Figure C.5), where the frequency-resolution has clearly improved, but the
exact time of peaks is hard to pinpoint. So a compromise of a 0.5s window seemed logical.
Looking at plot Figure 5.5a which is zoomed in at a four second fragment of a trial where a visual cue
was given at t = 2s, there is a peak that begins around t = 2.5s, 0.5 seconds after the visual cue was
given, which corresponds with the average reaction time of 250 ms of a human[12]. Still, by averaging
over multiple trials, more certainty can be given about the correct functioning of the headset. In the
case of plot Figure 5.5b, an average over 60 trials (n = 60) was taken. The data of these trials are also
send to the decode group and used to train their decoding model.

(a) Spectrogram channel 6 (b) Average spectrogram channel 6; n = 60

Figure 5.5: Spectrogram of a single recording (Figure 5.5a) versus one of an average of 60 recordings (Figure 5.5b). Both
show a peak around 2.5 seconds, but the average spectrogram on the right confirms that the change in magnitude is consistent
around 2.5 seconds. Since the visual cue is at 2 seconds and the average human reaction is 250 ms [12], the timing of the

peak correlates with the visual cue

Although the spectrogram showed there is a change in magnitude after the visual cue, it is hard to draw
a conclusion from it since the spectrogram looks rather monochrome and only peaks are made a bright
colour, while dips compared to the average signal before the cue stay dark blue. To better represent
the changes in the alpha band, the magnitudes of the alpha band in Figure 5.5b are summed, averaged
and plotted on a magnitude-time scale with a standard error of σ√

n
, with σ the standard deviation and

n the amount of trials, the magnitude plots in Figure 5.6 are obtained. With this, it can more clearly be
seen that there is a change in magnitude around the time of the visual cue at t = 2s (red dotted line).
When the magnitude becomes lower than the average magnitude before the visual cue, it is called
event-related desynchronization(ERD). On the other hand, if it becomes higher, it is called event-related
synchronization(ERS). According to studies[28], (imagery) handmovements mostly result in ERD at the
moment of a cue and afterwards stabilises again to pre-cue level. Looking at channel 4 (Figure 5.6a)
located the center of the head and channel 5 (Figure 5.6b) located on the left side of the head, the
difference between rest and movement can even be seen due to a noticeable dip (ERD) in magnitude
at the time of the visual cue. However, it sometimes it can happen that after a ERD, a ERS occurs [27].
Channel 6 (Figure 5.6c) located on the right side of the head, exhibits such an ERS after a ERD. For
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all channels, a factor of around 1.5 in difference between the extremes after the cue and the average
before the cue can be seen. However, one would expect the dip to occur right after the time of the
visual cue, but in the plots it happens around 0.5s beforehand. This might be due to the window size,
which is also 0.5s, already calculating the STFT for the timestamps before the cue with data after the
cue, hence the dip before the red dotted line.
Notice the sudden drop in voltage at the zero and four second mark, that is not the headset losing
power, but the Hann window tapering the edges of the data towards zero.

(a) Average magnitude channel 4 (n = 60) (b) Average magnitude channel 5 (n = 60) (c) Average magnitude channel 6 (n = 60)

Figure 5.6: Average magnitude across 60 trials of channel 4 at Cz (Figure 5.6a), 5 at C3 (Figure 5.6b) and channel 6 at C4
(Figure 5.6c). For channels 4 and 5, an ERD (decreased magnitude than average before the cue) can be seen around the time
of the visual cue at t = 2s. For channel 6, a ERD can also be seen at t = 2s, but afterwards also a ERS (increased magnitude).

It can be concluded that the headset is able to differ movement from a neutral state at the time of the visual cue.

Looking at channel 7 and 8 (Figure C.6e and Figure C.6f) it is seen that those two channels do not
produce a distinct ERS and ERD with reference to the signal before the cue. This could indicate that
channels 7 and 8 might be too far from the active regions during motor execution. Next to that, it was
seen that the average magnitudes of the beta band (12-30 Hz) looked flat throughout the trial as shown
in Figure C.8 in the appendix, except for channel 3 where a slight ERD followed by a ERS was seen
after the cue. Nevertheless, compared to the alpha band, the magnitude difference between before
and after the cue is minimal in the beta band. As a consequence, it was decided to not use the beta
band to draw conclusions.

Lastly, to investigate whether a difference between left and right can be seen in the data. The average
sum of voltages in the alpha band is again taken. However, this time the trials are split into 30 left
hand trials (movement of left hand) and 30 right hand trials (movement of right hand). Since right hand
movement activates the left hemisphere and vice versa, it is expected that channel 5 exhibits increased
ERD and ERS during right hand trials and channel 6 the same during left hand trials[28]. Whereas the
channels in the center of the head do not have a large difference in synchronization activities since
they should receive equal amount of stimulation from both the left and right hemisphere of the brain.
Following the samemethod and using the same dataset as the previous paragraph, the plots for channel
5 and 6 were produced, which can be found in Figure 5.7.
It can be seen that for channel 5 (left hemisphere), the right trials produce a stronger ERD response
compared to the left hand trials in reference to the pre-cue magnitude of around 1.6µV (green dotted
line), which indicates that the right hand causes more activity on the left hemisphere of the brain. Look-
ing at channel 6 (right hemisphere), the inverse can be said. Here, it is seen that the left hand trials
show more ERD and ERS than the right hand trials, indicating that the left hand plays a larger role in
the right hemisphere of the brain. A smaller detail that can be seen is that while the ”stronger” hand
begins with ERD at the visual cue, around 0.2 seconds later, the ”weaker” hand initiates ERS, meaning
that while one side of the brain invokes more potential, the other side of the brain does the inverse for
a brief moment.
The results for channel 3 and 4 can be found in Figure 5.8. Looking at both channels, albeit not exactly
the same magnitude between the left and right hand trial. The shape of both trials per channel still
look like they fluctuate up and down at the same time, meaning both left and right hands have an even
impact on their respective area at the scalp.
Looking at the beta band plots in the appendix Figure C.9, it is seen that except for channel 3 and 5,
the difference of before and after the cue is not convincing, further confirming they should not be used
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(a) Average magnitude channel 5; (n = 30) (b) Average magnitude channel 6; (n = 30)

Figure 5.7: Magnitude plots of left and right trial at channel 5; left hemisphere of the brain(Figure 5.7a) and channel 6; right
hemisphere of the brain(Figure 5.7b). At channel 5 the right hand produces a stronger ERD than the left hand and at channel 6
the left hand produces a slightly stronger ERD and ERS then the right hand. This corresponds to the fact that the left hand

movement invokes a stronger response in the right hemisphere of the brain at C4 and the right hand a stronger response in the
left hemisphere at C3 [28] and the headset might be able to differ left hand movement from right hand movement. However, the

difference between left trials and right trials is too small to give a solid conclusion.

(a) Average magnitude channel 3; (n = 30) (b) Average magnitude channel 4; (n = 30)

Figure 5.8: Magnitude plots of left and right trial at channel 3 Figure 5.8a at Fz and Figure 5.8b at Cz, both located at the
center line of the scalp. It can be seen that both left and right hand trials fluctuate the same way for both channels, meaning

both channels receive an even impact from the left and right hemisphere of the brain.

to draw conclusions.
All in all, it seems that the headset is able to differentiate between left and right hand movements in
the alpha band. Nevertheless, only taking the changes in magnitude as the sole feature to differentiate
the movement of either hands is not recommended, since the effect of ERD and ERS might differ per
subject and the results of both trials are too close to each other to give a solid conclusion.

5.3.3. Motor imagery
The last step was to test whether it could be detected when a subject is only thinking of moving its
hands. Motor imagery was chosen as the hardest of all computer control signals since it is a weak
signal from the brain and thus hard to determine whether a change in the EEG-signal is actually due
to the motor imagery or another impulse from the brain. To generate ’valid’ motor imagery signals, it
requires the subject to have immense focus [26]. This focus is dependent on many factors under which
the mental state of the subject and even their posture in which they sit. A upright sitting position proved
to be beneficial for an increase in attention of the subject [26].
It was expected that experiments with motor imagery would yield the same results as the ones with
motor execution, albeit with perhaps less distinct peaks in the magnitude plots of the alpha wave. Un-
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fortunately, due to time restraints it was not possible to test motor imagery.

5.4. Quality improvement
To increase the visibility of event related potentials in the EEG signals it is needed to decrease the
noise as much as possible.

5.4.1. Human antenna
Firstly, it should be explained where noise may come from. As stated before in section 5.2, the 50
Hz interference comes from power outlets. This is because individuals can couple capacitively with
electromagnetic waves present in the area, functioning like an antenna of some sort.
Figure C.10a shows the voltage over time and the frequency (Bottom of figure) of the emitted signal of
an individual having the probe softly in the thumb of its right hand. Its left hand in this experiment is
close (approx. 1 m) to an active power supply. It can be seen that the 50Hz interference from the power
supply is strongly visible. Even more interference is detected if a laptop charger is close (approx. 1 m)
to the subject (Figure C.10b), it can be seen that there is still a strong 50 Hz component in the signal,
but now mixed with other frequencies. The effect of a power outlet can be seen in a spectrogram
like Figure 5.2b, where a noticeable 50 Hz line is seen. Figure C.10c shows the voltage when the
subject still has the probe in his right hand, but is at a distance of around two metres from the power
supply. As can be seen, there is significantly less interference from the power supply. So to reduce this
interference, a subject should be put farther away from power outlets and a notch filter can be used to
filter out the 50 Hz.

5.4.2. Pre-cautions
Some simple measures were taken to potentially decrease the noise in recordings.

• As seen in the the previous subsection 5.4.1, the further the subject is from a power outlet, the
weaker the coupling and thus the antenna effect of the human body. Thus, it was decided to place
a subject at least two metres from a power outlet.

• Since humans can act as antennas for EM waves, it is best to not let another person near the
subject during a recording session, since the electrodes might pickup unwanted frequencies. Be-
cause of this, it was decided that nobody can come inside a radius of two metres of the subject
during recording.

• It was seen that if the laptop, on which the Bluetooth dongle of the openBCI headset was con-
nected, was charging during a recording. Distortions would be produced in the measured signal
and be amplified if a person were to also touch the laptop during recording. Due to this, unplug
the charger from the laptop and the power outlet.

5.4.3. Noise reduction
In the previous section all pre-cautions were discussed. Moremethods will be discussed in the following
paragraphs to potentially reduce the noise.

Grounding
It was thought that grounding a subject might reduce the amount of noise the headset receives. This
is because when a subject is grounded, the electromagnetic interference in a building on the subject
drastically reduces as seen in Figure C.11a, due to the ground providing a low impedance path for the
interference to flow away. Next to that, it was also experimented with aluminium foil to see if it could
provide some sort of shielding against the interference for the non-shielded jumper cables. Wrapping
the charger in aluminium foil and grounding the foil yielded the result seen in Figure C.11b. It can be
seen that the interference of the charger has been reduced drastically or even cancelled and only the
interference from other power outlets remain.
Although initially it was thought to wrap the headset in aluminium foil and to ground the subject during
a recording session. It was chosen not to do so, because it was found that the internal amplifier of the
headset already has an extra measure to reduce noise. The right ear clip of the headset is used for
common mode noise rejection, which should already cancel out most of the noise across all electrodes.
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Inside versus outside
To determine whether the electromagnetic waves generated by power outlets and cables within a build-
ing are actually distorting the measurements. A baseline of noise should be determined. To do that, a
watermelon is used. A watermelon was used because of the fact that a watermelon consists of more
than 95% water, making it a good candidate to imitate a human head. In addition, a watermelon emits
no internal signals, so all the measured signals must be either from internal noise of the headset or
coming from an external source. Consequently, our hypothesis was that if the headset had a bad
common-mode rejection ratio and if the headset had a bad reference and hence not differentiating the
signal well between scalp and earlobe, a higher noise level would be measured inside a building com-
pared to the outside.
Of course, this hypothesis can only be proven if the watermelon actually is able to couple with the EM
waves present and function as an antenna like the human body. To prove that is able to, the watermelon
was brought inside and measured with the oscilloscope just like it was done with a human.
As can be seen in C.12, it gives the same response as the human head, albeit with a lower amplitude.
Now it is known that a melon can in fact couple with EM waves, the headset can be put on on the
watermelon to see whether the signal inside is any different from outside.
Figure C.13b shows the voltage plot of the watermelon outside from the tenth second of recording.
It can be seen that the magnitude of the measured signal is around 2 ∗ 10−9µV , which is also the
baseline of the noise the headset can receive. Figure C.13a shows the voltage plot of the watermelon
in time-domain, again with the first ten seconds omitted, measured inside a building. It shows that
the measured magnitude is also around 2 ∗ 10−9µV . From this it can be concluded that there is no
extra external noise added inside a building and that the recording reference and the common mode
noise rejection of the headset work as intended. To further confirm our hypothesis, a measurement
of voluntary blinking was also made inside and outside. Again, it can be seen in Figure C.14 that the
magnitudes of the peaks from eye blinks are almost equal for both inside and outside measurements.
further solidifying our argument that the CMR of OpenBCI headset works as intended.

Re-referencing
As discussed in section 4.1, only (common) average referencing (CAR) was tested as a re-referencing
method to potentially increase the signal quality. However the results plotted in Figure 5.9 show that
the re-referencing does not improve the signal we had obtained without the CAR method. Due to this,
it was chosen not to use common average referencing to improve the obtained measurement.

(a) No CAR channel 4 (b)With CAR channel 4

Figure 5.9: Difference in magnitude between measurement without CAR (Figure 5.9a) and with CAR. With CAR, it can be
seen that standard deviation grows and the signal gets flatter overall. Measurents without CAR look more coherent with bigger

differences between after the cue and before the cue.
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5.5. Consistency
Although the produced plots in section 5.3 can be used to conclude the headset can detect motor
execution signals. Consistently obtaining coherent data proved to be a hard task and could be due
to multiple factors. One of them is is a phenomenon called ”BCI illiteracy”. According to some stud-
ies[18][31], there is a possibility that some brains of subjects might not respond, or just a little, to an
event of a paradigm. Despite the fact that the percentage of BCI illiteracy is much higher with motor
imagery paradigms (53.7% over 54 subjects[31]), event related potential paradigms(11.1% over 54
subjects[31]) such like ours could still have been affected by a subject being BCI illiterate. That might
be the reason some of our own recorded data not seem to contain distinct peaks. Other reasons that
could also have been a factor on this consistency were the focus of the subject and the unique features
of individual subjects.

5.5.1. Focus
To clearly see a difference between EEGs of when a subject moves its hands or not, the subject needs
to be only focused on moving its hands and not accidentally think of moving, for example, its feet or
mouth. To further enhance the subject its focus, be place them at a quiet place not to be distracted
by factors such as sudden noise. To help the subject retain focus and to effectively order the subject
when to move their left, right or both hands, a stimulation video following method D or E explained in
section 4.4 was made with Openvibe. Next to that, according to studies, brain activity in mental fatigue
state might have differences between resting state and task state[19], which might impact someone its
focus. An example of this is the difference between two magnitude plots of the same subject, following
method section 4.4 where eventually 15 trials of left and right hand are lumped together in one dataset
of 30 trials. As far as we knew, the same external factors (same environment, sitting position, same
experiment time) are the same, except for its fatigue it felt during the recording.

(a) Average magnitude channel 5; no fatigue; (n = 30) (b) Average magnitude channel 5; fatigue; (n = 30)

Figure 5.10: Magnitude plots of subject without (Figure 5.10a) or with (Figure 5.10b) fatigue. In the plot where the subject is
not fatigued, a more distinct ERD and ERS can be seen compared to where the subject is fatigued. Suggesting that fatigue

plays a role in the quality of the obtained data.

As can be seen, there is a clear difference in the response directly after the cue at t = 2. With no
fatigue, the difference in strength of the signal compared to before the visual cue is marginally greater
than the difference of it with fatigue. However, there is a chance that this difference might also have
been induced by an external factor or an internal factor that we did not know during recording.
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5.5.2. Subject differences
Another factor to take into account is that the top of the head of each subject is different. Especially hair
density on the scalp plays a big factor in the quality of each recording. More hair on the scalp means
that there is a higher chance the electrodes are unable to touch the scalp and cannot receive the faint
EEG signals from the brain. Although the ’railing’ indicator in the OpenBCI GUI was used to adjust the
electrodes as best as possible to a subject’s head, it still could not prevent measurement errors caused
by the bad connection between a electrode and scalp. An example are the following plots ranged from
male test subjects with long to short hair, obtained with the same method as the method to see whether
fatigue has an impact on measurement.

(a) Average magnitude channel 4; long hair; (n
= 30)

(b) Average magnitude channel 4; medium
hair; (n = 30)

(c) Average magnitude channel 4; short hair; (n
= 30)

Figure 5.11: Magnitude plots of difference between subject with long hair (Figure 5.11a), medium long hair (Figure 5.11b) and
short hair (Figure 5.11c). A clear increase in standard error can be seen between long hair and the other plots. Next to that, the
medium long hair subject does not produce a distinct ERD or ERS where as the subject with short hair produces distinct ERD
and ERS. These results suggest that the shorter the hair, the higher the chance for high quality data, but they might have also

been influenced by the subject focus during recording.

Observe that the standard error and the average magnitude of the subject with long hair is much greater
than the other two results. Leading to less reliable data. The subject with medium long hair produced
lower standard error and average magnitude than the result with long hair, similar to the results of the
subject with short hair. However, whereas the short haired subject produced a distinct peak after the
cue, it could not be seen in the plot of the medium long haired subject. Still, this difference between
medium long hair and short hair might have been impacted more by a difference in focus rather than a
difference in hair length.



6
Conclusion and discussion

6.1. Conclusion
The goal of this subgroup was to see whether the chosen OpenBCI headset is able to see a difference
between motor execution and the neutral state of a subject. Next to that, the recorded data is to be
sent to the decoding group to decode them to actions.

Data acquisition
First a comparison, based on the set requirements, have been made between different headsets. Be-
tween the two available headsets, it was decided to use the OpenBCI headset instead of the Neurosky
Mindwave, due to its amount of electrodes and flexibility of the placement of it. The detailed documen-
tation from openBCI also played a role in this decision.
For the software, it was decided to use OpenVibe to extract data from the headset as this application
supports different headsets and is specially made for the acquisition and processing of EEG signals.
One of the requirements for the software was that it should be able to write recorded measurements to
a csv file, which is a build-in function of Openvibe. One of the should-requirements for the application
was it being able to live-stream data. OpenVibe supports different ways to stream data, one of the op-
tions is the in-built python box. Besides that, it is also possible to stream using TCP/IP. Unfortunately,
the research on how to best integrate all components was not finished before the deadline of this thesis
report.

Analysis
Using the OpenBCI headset and OpenVibe different experiments were done and analysed. To get rid
of the DC component and the 50 Hz power line frequency a bandpass (7-30 Hz) and notch filter (48-52
Hz) were applied. It was found that these filters worked as intended, since their presence in the spec-
trogram were nullified.
It was found during experiments with blinking that if the subject blinks it can be clearly observed in the
time-domain. This is due to the much higher amplitude of a blink in comparison the brain waves. The
next step was to distinguish between neutral state (rest) and a motor task. It was found that this is not
possible with only one measurement, but if the PSD of multiple measurements are averaged, a clear
difference was seen. Namely, it was found that using the average PSD there is a higher power during
movement compared to rest in most of the channels.
To see whether a change in magnitude occurs in time-domain during the exact moment a subject moves
its hands, several trials were conducted. In the trials, the subject was instructed to follow a stimulation
video where every 10 seconds a audio cue was given, followed by a visual cue with an arrow as indi-
cator to move either their left or right hand. Merging the results from both left and right hand trials to
create a magnitude- time plot, by comparing the magnitude of the extremes from zero seconds till two
seconds after the cue with the average magnitude of before the cue, it was seen that the difference is
around 1.4 - 1.6 times depending on the channel. This factor is around the set requirement, thus can
be concluded that it is possible to distinguish between 2 classes, movement and rest. After that, the
measurements were split again into separate trials of right and left hand. Using this and plotting the

26
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magnitude plot again, it was found that it looks like it is possible to distinguish between left and right
motor execution, due to the right hand having a slightly greater ERS/ERD response at the channel
on the left hemisphere of the brain and vice versa for the left hand on the right hemisphere channel.
However, due to the small difference in their respective responses, it cannot be said with certainty that
the headset is able to differentiate between left handed and right handed motor execution. As a conse-
quence the should-requirement for distinguish 3 classes is not met.One of the last requirements was
the measuring of training data for the decode group. This was done using stimulation videos and at
least 100 trials with four different subjects are made for this.

Quality improvement
Before doing the measurements different precautions were taken to improve the quality of the signal.
This includes for example: deplugging of the laptop charger during measurements, not touching the
laptop during measurements and sit at least 2 meter away from a power outlet. To further improve the
quality of the signal, different methods were thought of, like grounding and blocking external electromag-
netic waves with aluminium foil, re-referencing and determining the difference in interference between
outside and inside to see if the headset is able to remove unwanted noise by its build-in common-mode
noise rejection. After the measurement with a watermelon, which showed there was no difference in
noise inside versus outside, it was concluded that the referencing and the CMR of the headset worked
as intended. Due to this, the ideas of grounding a subject and wrapping aluminium foil around the
headset were eventually dropped. As for the re-referencing, average referencing was tried, but yielded
no improvement in signal quality.

6.2. Discussion
The result of the project sees promising. The analysis shows that it’s possible to distinguish between
2 classes (movement and rest) in a plot of the average over different measurements. It was seen that
if only one measurement is taken, the plots were not coherent enough to distinguish between the dif-
ferent classes.
During the project it was found that several factors are important for recording consistent measure-
ments; namely focus and the differences between subjects. This was experienced by the fact that the
data of the subject recorded on one day gives different results although the exact the same procedure
was followed on another day. The subject has indicated that he was more tired on the second day,
which could be a reason for the reduced quality in the data.
Besides that, it was experienced that recording consistent data, where a action takes place at the ex-
act same time, is a requirement to effectively distinguish between classes. Using a stimulation video
is thus recommended for future groups, as this will give the exact time of a stimulation even with the
delay of the headset and ensures that the subject will execute a movement at the same time across
multiple trials.

To extract the data from the headset in this project it was decided to use OpenVibe. OpenVibe shows to
be an application that met all requirements that were set, such as being able to write data directly into a
csv file. Next to that, its visual interface and broad library of different functions make it a attractive tool to
use for EEG data acquisition and processing. One of the complications that was found during the project
is the fact that integration of other codes, like Python, is difficult. Due to this difficulty the integration
was not yet finished, but this can be continued by using the IP streaming function of OpenVibe.

Future work
While the presented project results comply with almost all requirements, there are a number of improve-
ments that can be made in future projects:

• Due to time constrains it was in this project not possible to record measurements with motor
imagery. This could be an opportunity for future groups to investigate if the same conclusions
can be made using motor imagery. We would recommend to do as least 50 trials as this will
decrease the standard error of the measurements.
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• More subjects should be found and more trials per subject should be conducted in general. With
that, more data could be acquired and amore solid conclusion can be given about the functionality
of the OpenBCI headset or another EEG headset.

• Different windows, window sizes and overlaps could be experimented with to discover what the
best ratio of time-resolution and frequency-resolution for this project is.

• Too many paradigms were created in the beginning with most of them proving ineffective, next
to that the importance of a stimulation video was underestimated to obtain constant data. A
recommendation to following teams would be to start with the stimulation video from the very first
measurement and stick to a maximum of 2 - 3 paradigms after intensive research of papers with
a similar goal of obtaining motor execution and/or control data.

• The OpenBCI headset was not as comfortable and user friendly as hoped, due to the amount of
trouble to adjust the electrodes for each subject. Each electrode has to be disconnected from
the main board to prevent damage of the jumper cables and screwed further in or out to get the
electrodes to touch the scalp. However, this screwing in and out of the electrodes could not be
done while the headset worn by the subject, because their hair would get tangled in the pointy
electrodes. A recommendation for a future project might be to experiment with another headset
like the Emotiv Epoc, which does not have this mechanism of screw-in electrodes.
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A
Additional figures hardware overview

A.1. OpenBCI electrodes

(a) Spikey electrodes (b) Non spikey electrodes (c) Comfort units

Figure A.1: Different kind of electrodes available for the OpenBCI headset
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B
Additional figures data acquisition

B.1. Brain structure

Figure B.1: Brain structure 1

1hhttps://www.ninds.nih.gov/health-information/public-education/brain-basics/brain-basics-know-your-brain
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B.2. Overview methodologies

Figure B.2: An overview of the methodology of the used methods
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B.3. OpenVibe scenario

Figure B.3: A scenario in OpenVibe which will be used regularly during the project
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B.4. Pre-processing filters

(a) Frequency response butterworth bandpass filter from 7 till 30 Hz for different orders

(b) Frequency response butterworth bandstop filter from 48 till 52 Hz for different orders

Figure B.4: Frequency responses for the used pre-processing filters
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B.5. OpenBCI GUI

Figure B.5: An example of alpha waves using the OpenBCI GUI



C
Additional figures data analysis

C.1. Raw signal

Figure C.1: Raw signal fft plot
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C.2. PSD plots 39

C.2. PSD plots

(a) PSD channel 3 (b) PSD channel 4 (c) PSD channel 5

(d) PSD channel 6 (e) PSD channel 7 (f) PSD channel 8

Figure C.2: PSDs movement vs rest of channels 3 - 8

(a) Avg. PSD channel 3 (b) Avg. PSD channel 4 (c) Avg. PSD channel 5

(d) PSD channel 6 (e) Avg. PSD channel 7 (f) Avg. PSD channel 8

Figure C.3: Avg. PSDs movement vs rest of channels 3 - 8
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C.3. Window sizes

(a) Spectrogram channel 3 (b) Spectrogram channel 4 (c) Spectrogram channel 5

(d) Spectrogram channel 6 (e) Spectrogram channel 7 (f) Spectrogram channel 8

Figure C.4: Avg. Spectrogram channel 3 - 8; 0.1 second Hann window

(a) Spectrogram channel 3 (b) Spectrogram channel 4 (c) Spectrogram channel 5

(d) Spectrogram channel 6 (e) Spectrogram channel 7 (f) Spectrogram channel 8

Figure C.5: Avg. Spectrogram channel 3 - 8; 1 second Hann window
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C.4. Average magnitude plots

(a) Average magnitude channel 3; (n = 60) (b) Average magnitude channel 4; (n = 60) (c) Average magnitude channel 5; (n = 60)

(d) Average magnitude channel 6; (n = 60) (e) Average magnitude channel 7; (n = 60) (f) Average magnitude channel 8; (n = 60)

Figure C.6: Avg. magnitude of channels 3 - 8 in Alpha band (7 - 12 Hz)

(a) Average magnitude channel 3; (n = 30) (b) Average magnitude channel 4; (n = 30) (c) Average magnitude channel 5; (n = 30)

(d) Average magnitude channel 6; (n = 30) (e) Average magnitude channel 7; (n = 30) (f) Average magnitude channel 8; (n = 30)

Figure C.7: Avg. magnitude of channels 3 - 8 in Alpha band (7 - 12 Hz) between left an right trials
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C.5. Beta band magnitude plots

(a) Average magnitude channel 3; (n = 60) (b) Average magnitude channel 4; (n = 60) (c) Average magnitude channel 5; (n = 60)

(d) Average magnitude channel 6; (n = 60) (e) Average magnitude channel 7; (n = 60) (f) Average magnitude channel 8; (n = 60)

Figure C.8: Avg. magnitude of channels 3 - 8 in Beta band (12 - 30 Hz)

(a) Average magnitude channel 3; (n = 30) (b) Average magnitude channel 4; (n = 30) (c) Average magnitude channel 5; (n = 30)

(d) Average magnitude channel 6; (n = 30) (e) Average magnitude channel 7; (n = 30) (f) Average magnitude channel 8; (n = 30)

Figure C.9: Avg. magnitude of channels 3 - 8 in Beta band (12 - 30 Hz) between left an right trials
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C.6. Quality improvement
C.6.1. Human antenna

(a) Subject close to power supply
(b) Subject close to charger and power

supply
(c) Subject 2 meter away from power

supply

Figure C.10: Different experiment measuring voltage over time interference from power supply

C.6.2. Noise reduction
Grounding

(a) Grounded subject (b) Subject while aluminium foil around charger

Figure C.11: Ground and aluminium foil to potentially reduce noise

inside vs outside

(a) Interference close (b) Interference charger (c) Interference far

Figure C.12: Interference shown on oscilloscope of melon
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(a) Time domain plot melon measured inside (b) Time domain plot melon measured outside

Figure C.13: Time domain plot watermelon inside and outside

(a) Time domain plot blinking measured inside (b) Time domain plot blinking measured outside

Figure C.14: Time domain plot blinking inside and outside
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