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Abstract 

The multi-functional space of sports arena is highly related to the long-span structure. To support the 

integration of these two aspects, design optimization combining parametric modeling, performance 

simulations, and searching algorithm can be used. However, optimization is powerful in dealing with 

quantitative performance, but for some soft requirements on buildings, design exploration of geometries 

based on the judgments of architects is still necessary. Self-organizing map (SOM), as a model-based 

clustering algorithm, can be used to support this kind of explorations on geometric typology. 

Nevertheless, it is difficult to ensure the accuracy of clustering, especially for complex parametric 

models. To support the design exploration on geometry (besides the exploration on quantitative 

performance supported by optimization) during the conceptual design of sports arenas, this paper 

proposed a process based on a versatile and flexible parametric model for sports arenas and self-

organizing map (SOM). Within this process, to increase the accuracy of SOM clustering, a pre-

processing step for the parameters of design alternatives is also proposed. A design of a hypothetic sports 

arena is used as a case to demonstrate and verify the process.  

Keywords: design exploration, self-organizing map (SOM), clustering, parametric modeling, multi-objective optimization 

(MOO), multi-functional space of sports arenas, long-span structure 

1. Introduction 

The multi-functional space of sports arena is highly related to the long-span structure. The integration 

of these two aspects mainly defines the overall geometry of the building and influences some important 

performances (viewing quality of spectators, acoustics, structural self-weight, etc.) of the building.  

To support integrated designs, design optimization, as a design process consisting of parametric 

modeling, building simulations, and searching algorithm, is used to combine different aspects into the 

conceptual design phase. Within this process, parametric model associates different aspects into a 

variable model and generate various design alternatives by changing the values of parameters. Building 

simulation imitates real condition for the alternatives to obtain the indicating values of related 

performances. Searching algorithm iteratively selected well-performing solutions according to 

assessment criteria.  

Nevertheless, optimization selects well-performing solutions based on quantitative performances but not 

soft requirements (e.g. aesthetics). It can lead to a result that the well-performing solutions selected by 

optimization may not be appreciated by architects, since the geometries of such solutions do not meet 

some soft requirements. So far, such soft requirements cannot be effectively evaluated by numbers and 

have to be assessed based on the judgment of human designers (architects). Although some interactive 
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optimizations allow designers to select solutions during optimization process according to their 

preference [1, 2], the range of selections is still limited, since some design solutions may be outside the 

searching path and have no chance to be investigated during optimization. 

Hence, for conceptual design, besides optimization, it is crucial to explore diverse design alternatives 

based on geometry. To achieve this, parametric modeling can be used to provide diverse design 

alternatives for selection, and self-organizing map, as a clustering algorithm, can be used to facilitate 

designers to explore these alternatives and select preferred solutions according to geometric types. 

1.1 Parametric Modelling and Optimization for Sports Arena Design 

As mentioned, design optimization combining parametric modeling, building simulations, and searching 

algorithm is widely used. For sports arena design, a series of works have been done to generate variable 

seating bowl for stadiums by parametric modeling [3, 4, 5]. Some other works associated the seating 

bowl with specific roof structures based on parametric modeling [6, 7, 8]. Furthermore, some works do 

optimization focusing on the performances of structure, energy, daylighting, or ventilation, based on the 

parametric model with fixed types of geometry [8, 9, 10].  

These productive works can be used to support the integrated design of sports arenas efficiently, but 

there are still some limitations. The geometric types of the design alternatives included in these 

parametric models are limited and lack of diversity, which constrains the range of design exploration. 

Furthermore, the optimization based on this kind of parametric models can only select solutions that are 

similar in geometry, which possibly impedes the finding of well-performing solutions. These processes 

are suitable for the case that architects have strong ideas for one or several types of geometries in their 

minds, but for most of the time, architects would like to study diverse geometries at the beginning of 

design [11]. Hense, it is crucial to provide a flexible and versatile parametric model including design 

alternatives with diverse geometries.    

It worth noting that, even though diverse design alternatives can be provided by a flexible parametric 

model, optimization may select limited types of them which are well-performing for some quantitative 

performances. However, architectural design is not a process that only selects the well-performing 

solutions, but a process that also needs to consider geometry/form and related soft requirements. So far, 

these aspects cannot be effectively assessed by computers, but have to be judged by human designers. 

Hence, it is also crucial to provide designers a chance to explore diverse design alternatives (generated 

by flexible parametric model)  based on geometric typology. This requires a tool which can group 

numerous design alternatives according to their geometries. 

1.2 Self-Organizing Map as a Clustering algorithm  

To satisfy the proposed requirement, clustering (cluster analysis), as an unsupervised learning process 

dealing with data partition according to their features, can be used. Generally, clustering can be 

considered as a process to arrange objects into various groups (clusters) according to the calculation of 

their data related to specific features, so that the objects within the same cluster should be as similar as 

possible in the features, while the objects in different cluster should be as different as possible [12, 13].  

The similarity/dissimilarity for quantitative objects is defined by distances related to the input data [13]. 

Various algorithms can be used to achieve clustering in different ways, the classifications and the details 

of these algorithms can be found in [13].  

Among various algorithms for clustering, self-organizing map (SOM), an artificial neural network 

(ANN) model proposed by Teuvo Kohonen [14], is considered as a model-based algorithm [13]. To 

cluster the objects, the nodes of the artificial neural net move to and capture different objects iteratively, 

according to specific functions and regulations, and the objects captured by the same nodes belong to 

the same clusters. Such process is fulfilled based on a series of steps [15]: (1) Before the iteration, a net 

is formulated by users to define the number of nodes and the topology of the net; (2) For each iteration, 

every object is investigated one by one, to find the nearest node based on a distance function. Such node, 

which is called the Best Matching Unit (BMU), then move to the related object in a distance; (3) The 

neighbor nodes near the BMU also move with it to the related object. The neighbor nodes are defined 

by a neighborhood function. (4) The above two steps repeat for each iteration. Simultaneously, the 
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distance, with which the BMUs and their neighbor nodes move to the related objects, reduces gradually 

as the iteration times increasing. Such reduction of moving distance makes the net transforming largely 

at the beginning of the process and becoming stable at the end. (5) The process will stop when the 

iteration time meets the terminal condition. 

Comparing to other frequently used clustering algorithms (e.g. k-means, hierarchical clustering), one of 

the advantages of SOM is that it not only groups similar objects in the same cluster but also gather 

similar clusters closely and make different clusters being far away on the network (map) [15]. This 

characteristic of SOM illustrates the distribution of the objects (design alternatives), based on which 

designers can have a quick glimpse of the data space and select preferred clusters. 

Based on this characteristic, SOM has been used for design exploration for architectural conceptual 

design. For the design exploration based on performance, the input data for SOM clustering are the 

indicating values of performances, alternatives with similar performances are grouped together [16]. For 

the design exploration based on geometry, Harding use the parameters related to geometry as the input 

for clustering, and based on which, diverse design alternatives are well-arranged on a 2D map according 

to the features of the geometries and colors [17]. 

For these applications of SOM clustering in design exploration, it worth noting that there is no any pre-

process for the input data of the objects (design alternatives). For the design exploration based on 

performances, since the input data are the values of performance indicators which are considered be 

independent to each other, there is no problem for the lack of pre-process of input data. For the design 

exploration based on geometries, the input data are the parameters which define the geometry. If the 

parametric model is simple and the parameters are not highly interrelated, it is no problem without pre-

process of the input data. However, for most of the design practices, parametric models are usually 

complex. In these models, the parameters are highly interrelated and hierarchical, and some parameters 

largely impact the geometry than others. Furthermore, for clustering, different scales of the ranges for 

different parameters also influence the results. Hence, it is not reasonable to treat all the parameters 

equally in these cases, therefore, effective pre-process for these parameters are necessary to ensure the 

accuracy of the clustering results. 

1.3 Further Requirements 

Based on the analyses above, for the current design optimization process and SOM clustering applied to 

the conceptual design of sports arenas, some further requirements should be satisfied. First, diverse 

design alternatives are essential for the formulation of good design. Second, explorations for design 

alternatives based on both quantitative performance and geometry are crucial. Third, for the application 

of SOM clustering to support the exploration based on geometry, the pre-process of the input parameters 

is necessary to ensure the accuracy of clustering.  To satisfy these requirements, a design exploration 

process is proposed for sports arena design.  

2 Proposed Process  

The workflow of the proposed process begins with a proposed versatile and flexible parametric model 

and the design space formulated by it. Based on the design space, the process divided into two paths 

(Fig.1). The first path (the upper one in Fig.1), which is based on a conventional multi-objective 

optimization (MOO), focuses on searching well-performing solutions (according to quantitative 

requirements) in the whole design space, without consideration of the preference of architects on 

geometry. The second path focuses on the solutions with preferred geometries, based on the clusters of 

design alternatives selected by architects in design exploration. Both the two resulting solutions will be 

finally presented for architects to make the final decision.  
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Figure 1: Workflow of the proposed process 

For the second path, the exploration of clusters of design alternatives is supported by SOM. To increase 

the accuracy of clustering, the parameters (which are also the variables for the MOOs) are pre-processed 

by two operations: standardization and assigning of weights. Then, the pre-processed parameters of all 

the design alternatives are set as input for SOM clustering. Based on the clustering result, architects can 

explore various clusters of design alternatives and selected the preferred ones to formulate a ‘selected 

design space’. After that, another MOO is applied to searching for well-performing solutions among the 

selected alternatives. If the number of selected design alternatives is small, it is also possible to evaluate 

all of them without MOO.  

It both of the paths, the criteria for the MOOs (or MOO and evaluation) should be the same and can be 

related to various aspects according to design requirements. Specifically, for this paper, the viewing 

quality of spectators, acoustics, and structural performance are emphasized, to support the integrated 

design of the multi-functional space and long-span structure in sports arenas.  

2.1 A versatile and flexible parametric model for sports arenas 

A versatile and flexible parametric model for sports arenas, which combines the multi-functional space 

and long-span roof structure, has been proposed by the authors and is used as the foundation of this 

proposed process. This model is composed of three main elements: pitch, seating bowl, and roof 

structure. The pitch is defined as a box space and its planar outline is used as the inner boundary of the 

seating bowl, while the outer outline of the seating bowl is a variable curve defined by six parameters. 

Based on the boundary of the seating bowl, a roof structure with one of the three frequently-used 

structure types (grid-shell, space-frame, truss-beam) is defined by other six parameters.  Based on these 

parameters, various types of sports arenas can be generated which include most of the possible 

geometries, but geometries with special design concept (e.g. discreet roof, hybrid structure) are not 

included. 

2.2 Pre-process of data for SOM 

2.2.1 Standardization 

To eliminate the influence of different scales of variables, standardization is widely used for hierarchical 

clustering, k-means clustering, etc. in the calculation of the distance between objects in data space. 

However, for SOM, the clustering of objects is not directly related to the distances between them but 

related to the distance between neuro nodes and the objects. Hence, the original distribution of the 

objects in the data space will influence the results. Therefore, the standardization here is used to 
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redistribute the objects in data space, to eliminate the impacts of different scales. For the ith parameters 

vi of an object (design alternative), the upper boundary and the lower boundary of the range are vi-max 

and vi-min, respectively, and the standardized parameters vi’ equals to: 

𝑣𝑖
′ =

𝑣𝑖 − 𝑣𝑖−𝑚𝑖𝑛

𝑣𝑖−𝑚𝑎𝑥 − 𝑣𝑖−𝑚𝑖𝑛
 (1) 

2.2.2 Defining weights of variables  

To adjust the magnitude of the parameters according to their impacts on the geometries, different weights 

(wi) are set for the standardized parameters (vi’), and the weighted parameters (vi’’) equals to: 

 𝑣𝑖
′′ = 𝑤𝑖 ∙ 𝑣𝑖

′ (2) 

However, it is difficult to define the precise impacts of parameters on geometries. One of the possible 

ways is inviting the parametric model designer (PM designer) who formulated the parametric model to 

define the weights, since he/she is considered being more familiar with such impacts. Nevertheless, for 

complex parametric models, this way cannot guarantee accurate weights for parameters. 

To overcome this problem, in this paper, a trial-and-error method based on SOM is used to support the 

PM designer to define the weights. First, the parameters of all the objects (design alternatives) are 

standardized according to equation (1) and then set as the input for SOM clustering.  

To support the designers to define the weights, the results of the clustering are presented in an efficient 

way (see Fig.2). First, the presentation supports designers to exam the similarity of design alternatives 

within the clusters. For each cluster on the map, the nearest and the furthest objects (design alternatives) 

to the node are presented, respectively (see the blue boxes at the bottom of Fig.2). Based on these objects 

(as references), designers can predict other design alternatives within the cluster (as other alternatives 

are something between the referenced ones). Additionally, the parallel coordinate charts of all the objects 

(design alternatives) are also presented to illustrate the similarity within clusters (see the right part of 

Fig.2).  

Furthermore, the presentation of the clustering results also supports designers to exam the similarity for 

nearby clusters (see the three maps in Fig.2). On the map, the nearest object to each node is placed on 

the node, since this object is considered as the most representative one of the cluster. The colors of the 

connections between the nodes indicate the related distances (darker color indicates longer distance). 

Then designers can exam whether similar clusters are close and different ones are far away. 

If there are errors for the similarities (of the design alternatives within clusters and between nearby 

clusters), the PM designer can adjust the weights of related parameters according to their judgments, 

and then clustering the weighted objects again to see whether there is any improvement. This trial-and-

error step is repeated until the PM designer and architect are satisfied, then the weights of parameters 

are defined.  

2.3 Exploration and selection based on geometric types 

Based on the defined weights, the parameters of all the design alternatives of the original design space 

can be pre-processed according to equations (1) and (2). Then, these pre-processed parameters are used 

as the input for SOM to cluster all the design alternatives. Based on the investigation for every cluster, 

architects can explore different geometries and select the preferred clusters. Then the related design 

alternatives of the preferred clusters are automatically selected to formulate a ‘Selected Design Space’ 

(see the bottom part of Fig.2).  

If the number of the selected alternatives is too much larger than the total number of alternatives called 

by optimization, then MOO is used to search well-performing solutions among the preferred alternatives. 

During the MOO, some clusters of alternatives may totally be eliminated, because of their bad 

performance. If the number of the selected alternatives are smaller or not too much larger than the total 

number of alternatives called by optimization, all the alternatives can be evaluated according to the same 

criteria of the MOO. In this case, all the selected types of geometry can be retained for the final 

comparison.    
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Figure 2: The pre-process of the parameters and the formulation of the selected design space 
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3 Case study 

To demonstrate the proposed process, a design of a hypothetical sports arena is used as a case. The arena 

is required to able to sever the competitions of ice-hockey, gymnastics, basketball, etc. and stage 

performance with a side stage and the pitch are set in 40m×70m. The amount of the fixed seats should 

be around 10,000 (9,500 to 10,500), and 60% - 75% of them should be used for performance stage 

(should not be behind the stage). Eight parameters related to the overall geometry are selected as the 

input for SOM and as the variables for MOOs (see table 1). To simplify, only space-frame is selected as 

the structural type, and its topology is fixed in rectangle grid with the size of 4m × 4m. According to the 

emphasized aspects mentioned in Section 2, the minimizations of average viewing distance of spectators 

(Obj.1), reverberation times (Obj.2), and structural self-weight (Obj.3) are set as the objectives of 

quantitative performance for the MOOs, and the requirements on elemental stress and vertical deflection 

are set as constraint according to EU codes. NSGAII is selected as the searching algorithm for MOO. 

Table 1: Parameters as the input for the SOM clustering and as the variables for the MOOs 

 Description Range Diagram 
V1 Length of the building 80m - 120m, step 1m 

 

V2 Width of the building 15m - 20m, step 1m 

V3 Corner position of the building outline 0, 1, 2, 3 

V4 Corner position of the building outline 0, 1, 2, 3 

V5 Degree of the building outline 1: polyline 

2: curve 

V6 Ratio of Asymmetry 0, 0.2, 0.4, 0.6, 0.8, 1 

V7 Height of the roof 

V7=V7a +V7b 

V7a: Clear height for the pitch 

V7b: Structure depth in the roof center 

18m – 40 m, step 2m 

2m – 6 m, step 0.5m 

V8 Structure depth on the roof Boundary  0.8m- 2m, step 0.2m 

 

The pre-process step for original data is illustrated in Fig 2. In the clustering results of the original design 

space, it can be found that the clustering is mainly impacted by V1, V2, and V7, since their large scales, 

which reduces the similarities of objects within clusters. After the standardization of parameters, such 

similarities are improved but are still not accepted by the PM designer (acted by the first author in this 

case) and the architect (acted by a colleague of the first author). The similarities between the nearby 

clusters are not accepted either. Based on the clustering results and the judgment of the PM designer, 

the weights of V3, V4 and V5 are increased. After a series of trials and errors, the weights of V3, V4, and 

V5 are set in 2, 1.5, 1.2, respectively, the related clustering results are present in the third row in Fig.2. 

Although there are still some errors for the similarities, the results are accepted by the architects. Based 

on the exploration of the clusters of design alternatives, the clusters of 49, 50, 51, 58 and 59 are selected 

by the architect to formulate the selected design space. Fig 3. illustrates the Pareto solutions and related 

performance data of the MOOs based on both the original design space and the selected design space, 

which support the architect to do the final selection.  

 
Figure 3: Results of the MOOs for the original design space and the selected design space  

(the cluster index of each solution is labeled beside it) 
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4 Discussion and conclusions 

This paper proposed and illustrated a design exploration process based on both design optimization and 

SOM-clustering, to provide the architects both well-performing solutions and preferred solutions. The 

pre-process of the original data is emphasized to increase the accuracy of the clustering. Based on the 

results illustrated in Fig.2, it can be found that the similarity within the clusters and between the nearby 

clusters are improved by the pre-process. In Fig.3 it can be found all the geometries appreciated by the 

architect (cluster 49, 50, 51, 58, and 59) are not selected as the well-performing solutions by the MOO 

based on the original design space, which demonstrates the necessity of this proposed process.  

However, for the step of weight defining for parameters, the trial-and-error method is time-consuming 

and can not guarantee the accuracy of the weights. A smart and automatic method should is necessary, 

which is one of the future works of our research. 
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