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Abstract

Uncertainty in the radiative forcing from anthropogenic activities since the Industrial Revolution is

dominated by how clouds respond to aerosol. Climate projections are limited by this uncertainty. The

cloud response to aerosol is influenced by the meteorological conditions of the atmosphere wherein the

cloud is suspended. Understanding the covariation between meteorological state and cloud response to

aerosol is a path forward to improve our understanding of aerosol effects on the climate. In this thesis

we study aerosol-cloud interactions while controlling for meteorology using clustering techniques. This

allows us to study the interactions per meteorological regime and gain deeper understanding of the

effect of meteorology on aerosol-cloud interactions. Cloud-controlling factors are clustered using

k-means clustering. Six meteorological clusters are found and satellite observations over ocean between

-60
◦

and 60
◦

latitude are used to study cloud response to changes in aerosol concentrations per cluster.

The choice of clustering does not create significant variability in the sensitivity and the radiative forcing

of the cloud albedo effect, but the sensitivity of cloud liquid water path and cloud fraction adjustments

do show variability between clusters. This indicates that controlling for meteorology is specifically

important for the adjustments to the cloud albedo effect. Our results show that the effective radiative

forcing from aerosol-cloud interactions (𝐸𝑅𝐹𝑎𝑐𝑖) over our study domain since 1850 is −1.0 W m
−2

with a

90% confidence interval of [−1.6,−0.48] W m
−2

. There are variations in the forcing estimates

depending on the number of clusters, but this signal is small compared to other sources of uncertainty.

Our findings corroborate recent findings and present a novel method to control for meteorological

covariation using cluster analysis.
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1
Introduction

At any moment, approximately 68% to 73% of the Earth’s surface is covered by clouds (Stubenrauch

et al. 2013). Clouds affect the climate system by reflecting sunlight and trapping heat, altering the

energy budget of the Earth. Despite decades of research dedicated to their study, the diverse and

complex nature of clouds has left many uncertainties and open questions to be answered. One of those

uncertainties stems from their interactions with atmospheric aerosols: small solid particles suspended

in the atmosphere.

1.1. Earth’s energy budget
The Earth’s energy budget is the balance between incoming and outgoing radiation (Figure 1.1). The

incoming solar radiation (shortwave flux, yellow arrows) is well known as the solar irradiation is close

to constant. A part of the shortwave flux is reflected, primarily by clouds, but also by atmospheric

particles and bright surface areas like snow and ice. The remainder of the flux is absorbed by the surface

and atmosphere. The Earth’s surface emits energy in the form of infrared radiation (longwave flux,

purple arrows), and by heating the atmosphere through sensible and latent heat. Sensible heat is the

conductive heat flux from the Earth’s surface to the atmosphere, while latent heat is the energy transfer

due to evaporation or transpiration of water (Farmer et al. 2013).

When the incoming and outgoing fluxes balance each other, the system will be in equilibrium and

the global mean temperature will be constant. When the balance between incoming solar radiation

and outgoing heat radiation is altered, either by human activities like the release of carbon dioxide or

natural events like volcanic eruptions, a radiative forcing is introduced. The perturbed system will adjust

to form a new equilibrium, which can result in long-term changes in temperature and climate patterns

(Bellouin et al. 2020).

1.2. Aerosols
Aerosols are fine solid and/or liquid particles suspended within a gas. Formally, an aerosol includes

both the solid/liquid particles and the gas within which these are suspended. The atmospheric aerosol

(referred to as aerosol hereafter) is the suspension of fine solid particles in Earth’s atmosphere (Prospero

et al. 1983). Typical sizes range between a few nanometers and hundreds of microns. The distribution of

aerosols shows many peaks which have been classified as modes. Aerosols can either be directly emitted

into the atmosphere or they can form from precursor compounds through nucleation (Prospero et al.

1983). The distribution of aerosol is heterogeneous in both space and time, because of the heterogeneity

of sources and aerosol removal. Aerosols are removed from the atmosphere on a timescale of weeks by

deposition on the Earth’s surface and by being washed out after mixing with water droplets (J. Williams

et al. 2002; Raes et al. 2000).

Aerosols exert influence on the climate system through their ability to both absorb and scatter

incoming shortwave radiation, changing the planetary albedo, which is known as aerosol radiation inter-
action (ARI; Zelinka et al. 2014). Different types of aerosols interact differently with their surroundings.

For example, black carbon, a type of aerosol emitted by burning biomass and fossil fuels, heats the

1



1.3. Aerosol-Cloud Interactions 2

Figure 1.1: The energy balance of Earth. Yellow lines indicate shortwave radiation and purple lines indicate longwave radiation.

Aerosols directly modify the clear-sky reflection and the shortwave/longwave cloud effect. (Figure is modified from Stephens

et al. 2012)

atmosphere by absorbing radiation and by deposition on snow and ice which reduces the planetary

albedo (Ramanathan et al. 2008). Sulphate aerosols cool the atmosphere by reflecting radiation (Charlson

et al. 1991).

Additionally, aerosols can act as cloud condensation nuclei (CCN) and as ice nucleating particles (INP). A

cloud is composed of liquid droplets and/or ice crystals. To form cloud droplets, there must be a surface

for water vapour to condense upon, which are aerosols. Size and composition determine if an aerosol

can act as CCN, though Dusek et al. (2006) show that it is primarily the size distribution that determines

the CCN fraction. There are multiple pathways for ice crystals to form. Homogeneous freezing (freezing

without INP) can occur when temperatures reach -38
◦

C. Between 0 and -38
◦

C super-cooled droplets

can freeze through heterogeneous ice nucleation which is catalysed by INP. The study of INP, ice crystal

formation, and the radiative effect of changes in concentrations are fascinating, but beyond the scope of

this thesis, primarily because liquid clouds have the largest contribution to the energy budget (L’Ecuyer

et al. 2019; Wood et al. 2012). See Burrows et al. (2022) for a review on the current state of knowledge on

INP.

As clouds are dependent on aerosols, changing aerosol concentrations will affect clouds and in

turn affect the Earth’s energy budget. The focus for the remainder of this document will be on the

aerosol-cloud interactions (ACI) in warm liquid clouds. We will not study ARI of aerosols, as ACI

contributes more to the anthropogenic forcing on the climate (Forster et al. 2021).

1.3. Aerosol-Cloud Interactions
By acting as CCN, aerosols change the radiative, microphysical, and macrophysical properties of

clouds. Anthropogenic emissions since the Industrial Revolution have led to an increase in aerosol

concentrations (Forster et al. 2021). Increased CCN concentrations entering a cloud cause an increase in

cloud droplet number concentrations (CDNC or 𝑁𝑑; Seinfeld et al. 2016). The mean radius of the droplets

in the polluted cloud will be smaller if the liquid water content stays constant. This causes the cloud

albedo to increase due to a higher reflective surface area which creates a negative radiative forcing (i.e.

a cooling effect; Twomey 1977). This effect is known as the cloud albedo effect, or Twomey effect. Direct

observations of the Twomey effect are ship tracks. As a freighter ship sails under a cloud field, the

aerosol emitted by the ships’ exhaust act as CCN which increases CDNC and brightens the clouds, as

seen in Figure 1.2. These were first observed in 1966 (Conover 1966) and were the starting point for the
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study of aerosol-cloud interactions.

As 𝑁𝑑 increases and 𝑟𝑒 decreases, the cloud adjusts to the new conditions, resulting in possible

changes in the liquid water path (LWP) and the cloud fraction (CF). The LWP is the vertically integrated

liquid water content from base to the top of the cloud. These changes in LWP and CF may induce a

significant radiative forcing. The decrease in 𝑟𝑒 may cause precipitation to be suppressed, but also

increases cloud top entrainment and evaporation (Albrecht 1989). By suppressing precipitation, cloud

lifetime increases. These effects are known as adjustments to the cloud albedo effect.

Figure 1.2: A MODIS satellite image showing

multiple ship tracks. These bright clouds are a

direct observation of the cloud albedo effect first

observed by Twomey 1977. (Figure fom

NASA/Goddard Space Flight Center Scientific

Visualisation Studio)

The adjustments to the cloud albedo effect are poorly

constrained in global climate models (GCM) and most of

the uncertainty in estimates of the radiative forcing induced

by anthropogenic activities stems from aerosol-cloud in-

teractions. This uncertainty hampers quantification of the

sensitivity of the climate system to increased greenhouse

gas emission. Improving the constraints on aerosol-cloud

interactions is important to improve climate projections. The

current expert consensus is that aerosol-cloud interactions

have induced a negative radiative forcing (i.e. a cooling ef-

fect) over the industrial period (1750, 1830 or 1850 to present

day), but the magnitude is highly uncertain (Bellouin et al.

2020).

Two definitions of radiative forcings are used by the

IPCC: the instantaneous radiative forcing (IRFaci ) and the

effective radiative forcing (ERFaci ), where we use subscripts

to distinguish between ACI and ARI (Forster et al. 2021).

The IRFaci is the forcing at the top of the atmosphere

(TOA) caused by the cloud albedo effect. The ERFaci is the

IRFaci combined with the TOA radiative forcing from rapid

adjustments. In essence, ERFaci offers a more comprehensive

view of the long-term consequences of a given driver by considering how the climate system adapts and

responds to the initial perturbation, but quantifying the radiative effect of adjustments is non-trivial.

One key issue is the dependence of both clouds and aerosols on meteorology (e.g. humidity or

atmospheric stability). Meteorology is the key driver in cloud formation, so changes in meteorology will

affect clouds and aerosol-cloud interactions. This means that correlations between aerosol and cloud

parameters will be mediated by meteorological covariation (Stevens et al. 2009), which makes it difficult

to determine the causal relationship between aerosol and cloud. Accounting for these correlations can

be done by techniques like sampling data, using reanalysis data, or statistical methods (Gryspeerdt et al.

2016; Koren et al. 2010; Wall et al. 2022; M. W. Christensen et al. 2017). These methods aim to define

specific cloud regimes based on meteorological data and sub-sampling data into these regimes. Another

potential path forward is improving our knowledge of the correlations between cloud, aerosol, and

meteorology. Feingold et al. (2016) show that the co-variability of meteorology and aerosol affects ERFaci

using numerical simulations. If we improve our understanding of the meteorological condition where

the aerosol has the largest impact, we could start quantifying the rate of occurrence of those conditions

instead of directly constraining the effect (Stevens et al. 2009; Mülmenstädt et al. 2018). This method

would focus more on constraining the different relationships, instead of sub-sampling observations.

Recently, M. W. Christensen et al. (2022) summarised most work on opportunistic experiments,

i.e. using emission events like volcanoes, ship tracks, industry, natural fires, and temporal trends to

constrain aerosol-cloud interactions. Using these experiments help our process understanding, but

implications for the global scale are difficult to make. Glassmeier et al. (2021) showed that ship track

studies overestimate cooling by LWP adjustments due to the temporal evolution of the ship track which

points to the fundamental ’scale problem’ in ACI research: different temporal and spatial scales for both

processes and observations make quantification and comparisons difficult (Mülmenstädt et al. 2018).

Cloud processes operate at the micro- and meso-scale while aerosol-cloud interactions affect global

circulation that feedback to cloud processes. GCMs and satellite data can not resolve cloud-process

scales (∼10 m), and comparing models and observations without considering the scales can lead to

significant bias (Schutgens et al. 2016).
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1.4. Satellite and model based studies
The study of aerosol-cloud interactions has yielded a wealth of research findings, spanning a wide

range of methodologies. These include in-situ measurements (McComiskey et al. 2009; Shupe et al.

2016; Jia et al. 2019; D’Alessandro et al. 2023), modelling efforts spanning from micro (Y. C. Chen et al.

2011; Yamaguchi et al. 2019) to global scales (Gryspeerdt et al. 2020), laboratory experiments (Stratmann

et al. 2004; Wagner et al. 2009), and satellite-based investigations (X. Ma et al. 2014; Hasekamp et al.

2019; Wall et al. 2023).

Satellite studies go back two decades when Nakajima et al. (2001) showed a correlation between

satellite derived cloud optical thickness (COT) and aerosol concentrations. Since then, technology has

improved significantly, but inferring ERFaci is still difficult due to the issues mentioned above. Satellite

studies historically estimated lower forcings from the cloud albedo effect compared to global climate

models. This has been partly overcome by using more comprehensive proxies for CCN concentrations

(Hasekamp et al. 2019), and using different methodologies to constrain the effect (I. L. McCoy et al. 2020;

Wall et al. 2023). Estimates for the radiative forcing from satellite studies range from −0.4 to −1.4 W m
−2

for 𝐼𝑅𝐹𝑎𝑐𝑖 (Quaas et al. 2008; Lebsock et al. 2008; Bellouin et al. 2013; X. Ma et al. 2014; Gryspeerdt et al.

2017; I. L. McCoy et al. 2020; Wall et al. 2023). The IPCC reports a range of −0.7 ± 0.5 W m
−2

for satellite

based estimates with medium confidence (Forster et al. 2021). Climate model studies produce values

in the range of −1 to −1.8 W m
−2

(Bellouin et al. 2020). In AR6, the IPCC does not report an IRFaci

range from model based studies. ERFaci from model-based studies has a range of −1 ± 0.8W m
−2

with

medium confidence, but many important micro- and mesoscale processes are not captured by GCMs

(Forster et al. 2021).

Whereas most studies rely upon observations of aerosol optical depth, Hasekamp et al. (2019)

introduced polarimetric retrievals of CCN concentrations which leads to a IRF𝑎𝑐𝑖 estimate more in line

with modelling studies: -1.14 W m
−2

with a 90% confidence interval of −0.84 to −1.72 W m
−2

, which is

in line with the result from Bellouin et al. (2020), though only if ERFari and the adjustments are small.

The cloud albedo effect is considered for different geographical regions, as was first introduced by

Quaas et al. (2008).

Recently, Wall et al. (2022) estimated ERF by adjusting for meteorology with cloud controlling factor

analysis, introduced by Scott et al. (2020). Their estimate of ERFaci is −1.16±0.48 W m
−2

, which is in line

with the result of Bellouin et al. (2020). Y. Chen et al. (2022) argued that the CF adjustments dominate

the ERFaci , whereas previous studies found that the cloud albedo effect was the largest contributor.

To retrieve CDNC using satellite measurements, the adiabatic assumption is used. In thermodynam-

ics, an adiabatic process is a process in which there is no exchange of heat or mass with the environment.

In the atmosphere, when an air parcel rises adiabatically it will expand due to the decreasing pressure.

This expansion will lead to adiabatic cooling. Satellites retrieve cloud parameters at cloud top and

then the cloud base parameters are estimated assuming adiabatic (or subadiabatic) ascend (Grosvenor

et al. 2018). The main assumptions are: CDNC is vertically constant in the cloud and the liquid water

contents of clouds are a constant fraction of the expected value assuming adiabatic uplift. There are

common sources of bias and uncertainty with satellite based studies, some of which due to the adiabatic

assumption. We touch upon a few of these uncertainty sources.

• All studies rely on a proxy of aerosol concentration. Past studies often used aerrosol optical depth

(AOD) which often leads to underestimation of the radiative forcing. This can partly be explained

by the aerosols that can not act as CCN affect AOD, and by the humidity dependence of AOD

(Stier 2016). Using aerosol index (AI) or CCN proxies based on polarimetric measurements, partly

overcomes this issue, but both create large uncertainties at low aerosol concentrations (Hasekamp

et al. 2019; Gryspeerdt et al. 2017; Stier 2016)

• To correlate aerosol and cloud quantities, retrievals are needed in the same atmospheric column,

as one is interested in aerosol properties at cloud base. However, aerosol properties can not be

retrieved in a cloudy pixel. The common method is to retrieve aerosol information next to clouds

and use those retrievals as estimate of the aerosols below the clouds. It is unclear, however, if the

aerosol information next to clouds is representative of the aerosols at cloud base (Gryspeerdt et al.

2015).

• Clouds can cast shadows and can scatter sunlight which contaminates neighbouring pixels. This

leads to an error in the retrieval of CDNC (Grosvenor et al. 2018). These effects are generally

referred to as ’3D effects’.
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• Cloud properties are retrieved at cloud top height. Then the adiabatic assumption is used

to determine CDNC from cloud optical depth and cloud effective radius at cloud top. These

assumptions can lead to significant biases, which can be partially overcome by careful filtering

(Grosvenor et al. 2018)

The estimation of ERFaci is in reference to a pre-industrial (PI) atmosphere. Human activities have

changed the aerosol load, and this has induced an ERFaci . However, the lack of knowledge on PI

aerosol concentrations and distributions creates large uncertainties in our best estimates (Carslaw et al.

2017). Satellite based studies generally rely on GCMs to estimate the change in CCN concentrations,

but inferring PI aerosol emissions and sinks from present-day (PD) conditions is difficult. Most of the

uncertainty come from the natural aerosol emissions since 1750 (Carslaw et al. 2013; D. T. McCoy et al.

2015). Understanding the atmosphere in pristine conditions is therefore an important step forward.

In the literature there are different definitions of ’pristine conditions’, based either on number

concentrations, prevalence of carbon monoxide or black carbon, the location on the globe, or combinations

of multiple parameters. Recent studies attempt to help constrain this by observing the conditions in the

Southern Ocean (SO). Hamilton et al. (2014) used models to find regions where finding pristine near-PI

conditions is most likely. There are also field campaigns (e.g. Schmale et al. 2019) aimed at improving

our understanding of the conditions in the SO and the aerosol-cloud interactions there. One potential

problem is that remote oceans are not necessarily a good proxy for the PI aerosol concentrations over the

entire globe, as remote oceans are less affected by events like volcanic eruptions or wildfires. Therefore

model-based studies also investigate process differences between PI and PD atmospheres (e.g. Hamilton

et al. 2014; Nishant et al. 2017).

1.5. The Afternoon Constellation
One unique group of satellites is the Afternoon Constellation (or A-Train). This is a formation of Earth

observation satellites following each other closely on the same orbit. This allows all the satellites to

observe similar features on the Earths surface as the time difference between satellites is in the order of

100 seconds. They have an equator crossing time of around 13:30 local time. As of today, the A-Train

consists of 3 satellites: OCO-2, GCOM-W2, and Aura. Satellites that used to fly in the formation are:

PARASOL, CloudSat, Aqua, and CALIPSO. All satellites have their own scientific goals, but the synergy

between them allows for more comprehensive studies.

One such synergies is Aqua and PARASOL. The Moderate Resolution Imaging Spectroradiometer

(MODIS) instrument on Aqua can provide cloud information, like 𝑁𝑑, while the POLarization and

Directionality of the Earth’s Reflectances (POLDER) instrument which flew on PARASOL, can provide

proxies for CCN concentrations using polarimetric retrievals (Hasekamp et al. 2011; Stap et al. 2015).

Since the end of the PARASOL mission, there has been a gap of polarimetric measurements from

space. The APS instrument on the Glory satellite was supposed to the next aerosol polarimeter, but it

was destroyed due to a launch failure (Mishchenko et al. 2007). PACE, which is planned to launch on

the 30th of January 2024, carries two spectral polarimeters (SPEXone and HARP2) which will greatly

improve our capabilities to retrieve aerosol information, including CCN concentrations, as well as cloud

properties (Gorman et al. 2019).

1.6. Research question
From this introduction we pose three research questions that we aim to answer in this thesis.

• How do clusters of cloud-controlling factors correlate with cloud parameters?

• Can we reduce uncertainty in the RFaci estimate from Hasekamp et al. 2019 when controlling for

meteorology using clustering techniques?

• How do the aerosol-cloud interactions and cloud adjustments differ per cluster?



2
Data

In this chapter the data and data processing steps are presented. All datasets are openly accessible.

Multiple datasets for the year 2006 are used and combined for this study. All data are gridded to a 1
◦

latitude by 1
◦

longitude grid. At the end of the chapter there is a flowchart to give an overview of the

different datasets and processing steps (Figure 2.3).

2.1. Satellite data
Data from three satellite instruments are used: MODIS and CERES, both flying on Aqua (EOS PM-1),

and POLDER which flew on the PARASOL satellite from 2004 to 2013.

The MODIS Collection-6 data is used to analyse cloud parameters, specifically the level 3 daily 1

degree gridded data (MOD08_D3; Platnick et al. 2017a; Platnick et al. 2017b). The cloud effective radius

(𝑟𝑒 ) and cloud optical thickness (𝜏𝑐) are used to retrieve cloud droplet number concentrations (CDNC or

𝑁𝑑). This is done using the adiabatic approximation (Quaas et al. 2006):

𝑁𝑑 = 𝛾 𝑓 (𝑇)𝜏
1

2

𝑐 𝑟
− 5

2

𝑒 , (2.1)

where 𝛾 = 1.37 · 10
−5𝑚− 1

2 , 𝜏𝑐 is unitless, and 𝑟𝑒 is in micron. CDNC depends on the condensation

rate, which in turn depends on temperature and pressure for a parcel ascending under moist-adiabatic

conditions. We use a temperature dependent condensation rate 𝑓 (𝑇) = 0.0192𝑇 − 4.293, as the

condensation rate depends more strongly on the temperature than the pressure (Grosvenor et al. 2018).

In the formula, the temperature (T) at cloud base is estimated by the maximum cloud top temperature in

a MODIS grid box (Gryspeerdt et al. 2016). To retrieve meaningful values of 𝑟𝑒 and 𝜏𝑐 , we limit the data

to points with 𝑟𝑒 > 4 𝜇m, 𝜏𝑐 > 4, solar zenith angle < 65
◦
, and sensor zenith angle < 41

◦
(see section 6

of Grosvenor et al. 2018).

The CERES SSF1deg daily product (Doelling et al. 2013) is used to analyse the radiative effect. This

data provides shortwave radiation and albedo estimates, aggregated to daily averages on a 1
◦

by 1
◦

grid.

CERES also provides cloud parameters based on MODIS measurements, but as the processing differs

from the processing of the MODIS team, we do not use the cloud products from the CERES team.

We use POLDER-3 aerosol retrievals from the SRON RemoTAP aerosol retrieval algorithm (Hasekamp

et al. 2011; Stap et al. 2015). The RemoTAP algorithm retrieves the aerosol loading 𝑁𝑎 , effective radius

𝑟𝑒 𝑓 𝑓 , and effective variance 𝑣𝑒 𝑓 𝑓 for the fine and coarse mode, assuming log-normal bi-modal size

distribution. In addition, complex refractive indices and the fraction of spherical particles is inferred.

𝑁𝑐𝑐𝑛 is computed from the fine and coarse mode for particles with 𝑟𝑒 𝑓 𝑓 > 0.15 𝜇m, because size primarily

determines if a particle can act as CCN (Hasekamp et al. 2019; Dusek et al. 2006). Only scenes where

the spherical aerosol amount is higher than 90% are considered. This is done to remove scenes where

there are higher concentrations of hydrophobic mineral dust. The spherical fraction is also a proxy for

particle hygroscopicity, as hygroscopic particles will absorb water and form haze particles which are

more spherical than non-hygroscopic particles. Hasekamp et al. (2019) performed many validation steps

and provide an error estimate of 0.20 · 𝑁𝑐𝑐𝑛 + 4 · 10
6

cm
−2

. Typical values for 𝑁𝑐𝑐𝑛 are 10
6 − 10

8
cm

−2
.

Retrievals are done using pixels of 18 × 18 km
2

and gridded to a 1
◦

to 1
◦

grid. Figure 2.1 shows the

6



2.2. MERRA-2 reanalysis data 7

Figure 2.1: Global map showing the amount of retrievals of both 𝑁𝑐𝑐𝑛 and 𝑁𝑑 per grid box. The grey colour represents grid boxes

where there are no data points.

Figure 2.2: Yearly means of the MERRA-2 cloud-controlling factors.

number of retrievals per grid box on a global map. The distribution is spread over the entire domain,

but there are certain areas where there are little to no retrievals. This could be caused by high amounts

of cloud cover, high amounts of ice clouds, or low amounts of cloud cover. 𝑁𝑐𝑐𝑛 is only retrieved

for cloud-free pixels, but as this dataset is made to relate 𝑁𝑐𝑐𝑛 to 𝑁𝑑, grid boxes with no clouds are

discarded, even though we would be able to retrieve 𝑁𝑐𝑐𝑛 in these grid boxes.

2.2. MERRA-2 reanalysis data
To analyse meteorological conditions, data from the Modern-Era Retrospective analysis for Research

and Applications, Version 2 (MERRA-2; Gelaro et al. 2017) is used. Reanalysis data is model data which

is heavily constrained by observations and it provides the most comprehensive picture of meteorology.

The data has a spatial resolution of 0.5 by 0.625 degrees latitude and longitude, on 42 different pressure

levels. The temporal resolution is 3 hourly.

A subset of parameters are chosen that affect warm clouds, known as cloud-controlling factors (Klein

et al. 2018). These parameters are estimated inversion strength (EIS), vertical pressure velocity at 700

hPa (Ω700), relative humidity at 500 en 700 hPa (𝑅𝐻700 and 𝑅𝐻500), surface temperature, and surface

wind-speed. The yearly mean values per grid box of these parameters are shown in Figure 2.2. EIS is

a measure of stability based on potential temperature, as defined by Wood et al. (2006). The formal

definition of EIS is:

𝐸𝐼𝑆 = 𝐿𝑇𝑆 − Γ850

𝑚 (𝑧700 − 𝐿𝐶𝐿), (2.2)
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where LTS is the lower tropospheric stability, Γ𝑚(𝑇, 𝑝) is the moist-adiabatic potential temperature

gradient, 𝑧700 is the height at 700 hPa. LTS is defined as the potential temperature difference between

700 hPa and the surface (Klein et al. 1993):

𝐿𝑇𝑆 = 𝜃700 − 𝜃0. (2.3)

The LCL is computed using the exact expression derived by (Romps 2017) assuming constant heat

capacities. The equations and constants, together with the calculation of the moist-adiabatic potential

temperature gradient, can be found in Appendix A.

2.2.1. Interpolation
The MERRA-2 data is interpolated along 4 dimensions: latitude (𝜆), longitude (𝜙), pressure level, and

time. The latitude longitude grid of the MERRA-2 data is linearly interpolated to 1
◦

by 1
◦
, so it coincides

with the satellite data.

As mentioned above, the equator crossing time of the satellites of the A-Train is around 13:30 local

time. MERRA-2 is outputted 3-hourly starting at 0:00 UTC. To retrieve the meteorology at the time of

satellite retrieval, a time interpolation is done. As we do not have orbit information, we apply a simple

interpolation scheme and quantify the resulting error. To convert a local time at a longitude 𝜙 to UTC,

we use the following equation:

𝑡𝑈𝑇𝐶(𝜙) = 𝑡𝑙𝑜𝑐𝑎𝑙 −
𝜙

15

= 13.5 −
𝜙

15

, (2.4)

where 𝑡𝑈𝑇𝐶 and 𝑡𝑙𝑜𝑐𝑎𝑙 are the time in UTC and the corresponding local time at longitude 𝜙 respectively,

in hours.

Between -60
◦

and 60
◦

latitude on a Equirectangular map projection, the orbital track of the satellites

is assumed to be linear. The slope of this line is computed by fitting a line to satellite retrievals along

multiple flight tracks. We are interested in the equator crossing, because we know that the time at

equator crossing is 13:30 local time. The coordinates of a grid box and the equator crossing along the

flight path are linearly related:

𝜙0 = 𝜙𝑟𝑒𝑡𝑟 + tan(𝛼)𝜆𝑟𝑒𝑡𝑟 ,
where (𝜆𝑟𝑒𝑡𝑟 ,𝜙𝑟𝑒𝑡𝑟) are the coordinates of a grid box, 𝜙0 is the longitude of the equator crossing point

along the flight track, and 𝛼 is the fitting parameter.

As the satellites take approximately 34 minutes to travel from -60
◦

and 60
◦

latitude, we can calculate

the retrieval time of every grid box by computing the intercept of the line with the equator, computing

the time in UTC for the longitude at the equator crossing, and adding a latitude offset factor. Translating

this to equation form gives:

𝑡𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 = 𝑡𝑈𝑇𝐶(𝜙0) +
𝜆𝑟𝑒𝑡𝑟
60

17

60

= 13.5 −
𝜙0

15

+ 17𝜆𝑟𝑒𝑡𝑟
3600

, (2.5)

where the factor 17/60 represents the offset due to the latitude of the retrieval (𝜆𝑟𝑒𝑡𝑟). If a grid box

has zero latitude (i.e. 𝜆𝑟𝑒𝑡𝑟 = 0
◦
), the retrieval time will be equal to the local time in UTC as the term

with latitude vanishes: 𝑡𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑎𝑙 = 𝑡𝑈𝑇𝐶(𝜙0) = 𝑡𝑈𝑇𝐶(𝜙𝑟𝑒𝑡𝑟). In the case of 𝜆𝑟𝑒𝑡𝑟 = −60
◦
, the latitude factor

becomes
𝜆𝑟𝑒𝑡𝑟
60

17

60
= − 17

60
hr, i.e. a time offset of 17 minutes.

The time interpolation introduces an error, because points retrieved on the same orbital pass are

given different retrieval times. The instrument makes measurements along a swath. Points that are

located in the nadir direction relative to the satellite’s position will have the correct local time, while

estimated times for points on the edge of the swath will either be late or early. To quantify this error we

calculate the maximum longitude difference this creates, and we compute the bootstrap error in the

interpolated MERRA-2 parameters.

The MODIS swath width is 2.33 · 10
3

km. We round this to 2.5 · 10
3

km to compensate for the angle

of the orbit relative to a meridian. We can express the swath width in degrees of longitude by using:

𝜙 =

(
2𝜋𝑅𝐸
360

cos(𝜆)
)−1

· 𝑑 = (1.1132 · 10
5

cos(𝜆))−1 · 𝑑 (2.6)
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where d is the swath width in meters, 𝜆 is the latitude, and the prefactor
2𝜋𝑅𝐸
360

is the circumference of the

Earth divided by 360. This formula is approximate because it does not consider Earth’s polar flattening,

but between -60
◦

and 60
◦

latitude this effect will be small. From Equation 2.6 we can compute the swath

width in degrees longitude. On the equator (i.e. 𝜆 = 0) we find: 𝜙 = 21
◦
. Half a swath width of offset

implies
21/2

15
= 0.7 ℎ𝑟 of maximum time error.

To estimate the error we compute random ’true’ samples from the MERRA-2 parameters, linearly

interpolating in time and picking points around 13:30 local time. We then create ’wrong’ samples by

randomly adding an offset between -0.7 to 0.7 hr. We then compute the normalised root-mean-squared

error (NRMSE):

NRMSRE =

√
1

𝑛

∑
𝑖(𝑥𝑖 − �̂�𝑖)2

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
∗ 100% (2.7)

The NRMSE is low (<1%) for all parameters except Ω700 where the NRMSE is 1.5%. This can be explained

by the variation of Ω being high between two time steps.

The MERRA-2 data is outputted on 42 different pressure levels. For the highest pressure levels, the

step size is 25 hPa. So the highest two levels are 1000 hPa and 975 hPa (the highest value in pressure

units is equivalent to the lowest value in height units as the two are inversely correlated). If the surface

pressure is between these values, 983 hPa for example, the 1000 hPa level will have a no-data value. This

is because this point is ’below the ground’. To compute the surface pressure and the surface wind-speed,

the pressure levels need to be extrapolated to the surface pressure. This is done by linearly extrapolating

the two pressure levels above the ground pressure.

To quantify the error of the pressure interpolation we randomly remove pressure points and

extrapolate the two pressure points below to the removed pressure level and again compute the NRMSE.

We do this for 𝑈𝑉 , 𝑇 and 𝐸𝐼𝑆. We find low NRMSE for the parameters, with the highest NRMSE of

1.4% for 𝑇.

2.3. Climate model data
Climate model data is used to estimate the relative change in CCN concentrations from pre-industrial

to present-day: Δ ln𝑁𝑐𝑐𝑛 and to estimate the ratio between the radiative forcing above ocean and

above land. For estimating Δ ln𝑁𝑐𝑐𝑛 , five global aerosol climate models (CAM5.3, CAM5.3-CLUBB,

CAM5.3-CLUBB-MG2, HadGEM3 and SPRINTARS) are used. The PI and PD model outputs are

computed from a pair of nudged simulations that are the same except for the aerosol emission. The PI

reference year is 1850. Compared to the work of Hasekamp et al. (2019), we do not use ECHAM6-HAM

because the CCN output of this model was not available, but we use HadGEM3 which was not used in

the Hasekamp et al. (2019) study.

All these models are part of the AEROCOM intercomparison project, which aims to understand

differences in aerosol climate models using multiple lines of evidence (Ghan et al. 2016). The column

CCN at 0.3% supersaturation are used as an CCN estimate and the difference between PI and PD is

computed according to Gryspeerdt et al. (2017) and Hasekamp et al. (2019). The grid size (𝜆 × 𝜙) of the

models are either 1.125
◦×1.125

◦
, 1.875

◦×2.5
◦
, or 1.25

◦×1.875
◦
. All models are linearly interpolated to the

native 1
◦

by 1
◦

grid used in this study. The models have a temporal resolution of 3 hours. To compute

one Δ ln𝑁𝑐𝑐𝑛 estimate per grid box, we average every PD grid box over 2006 and every PI gridbox over

1850. The PI model runs are limited by our limited knowledge of the PI aerosol state of the atmosphere.
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3
Clustering and cloud data

3.1. Clustering
Cluster analysis is the division of data into groups, also called clusters, such that elements of the same

group are more alike than elements in another group. What is meant by ’more alike’ depends on the

criteria used to define the groups. Many quantitative similarity metrics have been defined to measure

similarity (Saxena et al. 2017). The study of clustering within atmospheric science has recently attracted

attention. In air quality studies, different clustering techniques have been used extensively (see Govender

et al. 2020 for a review). Gryspeerdt et al. (2012) used k-means clustering on cloud properties, based

on work by K. D. Williams et al. (2009), to analyse aerosol-cloud interactions. They found significant

differences in ACI strength between regimes. Clustering on meteorological data (humidity, temperature,

etc.) has not been done often. Evans et al. (2012) used clustering on meteorological data around Darwin,

Australia to define weather states. More recently, Abraham et al. (2022) used k-means clustering on

relative humidity (RH) profiles to study the relationships between RH, the sea-surface temperature and

the outgoing LW radiation.

3.1.1. Clustering metrics and cluster occurrence patterns
Here, the MERRA-2 reanalysis data is clustered using the k-means clustering algorithm, to create global

meteorological regimes. The only parameter that needs to be defined is the number of clusters k. The

algorithm initialises k centroids and then optimises the inertia (see list below) until some threshold is

reached to find the best clustering. To find the optimum number clusters the algorithm is run multiple

times for many different values of k and different initialisations. The algorithm could converge to a

local minimum, so doing multiple runs for different initialisations prevents this. For every run a host of

metrics are calculated. As there is no ground truth, evaluation can only be done using the model itself.

The metrics used are:

• Inertia: is the within-cluster sum-of-squares. In other words, it is the sum of the absolute value of

the difference between the points and the centre of a cluster. In the limit of 𝑘 → 𝑁 , where N is the

amount of data points, the inertia will go to 0. In a plot of inertia and k, one looks for the ’elbow

point’ or point where the slope significantly tapers of to find the optimum value of k.

• Calinski-Harabasz Index: or the Variance Ratio Criterio, is the ratio of the sum of between-clusters

dispersion and within-cluster dispersion for all clusters. Dispersion is the sum of distances squared.

Higher values indicate better defined clusters, though the index prefers normally distributed

clusters.

• Silhouette score: is calculated from the mean distance of a point from all other points in its cluster,

and the mean distance of the point and all the points in the next closest cluster. Higher values

indicate better separated clusters.

• Davies-Bouldin score: compares the within-cluster distance to the between-cluster distance.

Values closer to zero indicate better separated clusters.

• SSE Ratio: is the ratio of the inertia for clustering k and k-1, so it measures how the decrease in

inertia slows down.

11
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Figure 3.1: Cluster metrics for different values of k.

The metrics are computed for 10 000 runs and then

averaged. The standard deviations of the metrics

are small.

These metrics are calculated for 𝑘 = [2, 3, ..., 14]. Every

run is done 10 000 times for different random initialisations

and the metrics are averaged. Figure 3.1 shows the mean of

metrics as a function of clusters. The standard deviation of

the metrics are small, as the different clustering runs should

converge to the optimal clustering. We see local maximums

in the silhouette score at k=6 and k=12. There are local

minima in the DB score at k=3, k=6, and k=12. The SSE

ratio goes above 90% at k=5 and above 95% at k=8, and

from the shape we can see that the decrease in inertia slows

down after k=8. The CH index has a maximum at k=3 and

no significant other features. The choice of k is somewhat

arbitrary, but we will continue with k=6, and compare every

computation to different values of k to get a measure of how

the analysis is affected by the choice of k.

Figure 3.2 shows the relative frequency of occurrence

(RFO) for the clustering with k=6. The RFO is computed

by summing the occurrences per cluster per grid box, and

dividing by the total number per grid box (which is 365 as

we have daily data for 1 year). There are white pixels over

the ocean caused by islands (e.g. Hawaii or the Azores)

in that specific grid box. The clusters show substantial

spatial variation. C0 and C1 are near the equator, while

C2 is primarily on the equator. C3 and C4 are mid-latitude

clusters, while C5 is spread out over the globe, but the cluster

is sparse.

Figure 3.2: Relative frequency of occurrence of the clusters for k=6.
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Figure 3.3: Here the meteorological parameters are shown per cluster. The boxes represent the 25% (Q1) and 75% (Q3) quantiles.

The green represents the 50% quantile and the red dot the mean. The whiskers show the range of the data, excluding points that

lie more than 1.5 · (𝑄3 −𝑄1) from the edges of the box.

The regions where C0 has high RFO coincide with regions where stratocumulus clouds are prevalent

driven by SST increase (Wood 2012). These stratocumulus clouds move over the open ocean following

the trade winds and form trade wind cumulus clouds, which could be partly captured by C1. C2

has high concentration near the equator, specifically around the Indonesian islands, where cirro- and

alto-class clouds are prevalent. In the mid-latitude clusters (C3 and C4) we can expect high wind-speeds

and both stratiform and alto-class cloud formation (Kuma et al. 2023).

In Figure 3.3, a boxplot is shown of the cluster parameters. Note that for Ω700 , cluster 5 is plotted on

a separate y-axis to make it more readable as this cluster has very negative values of Ω700 . The y-axis of

𝑅𝐻500 is plotted on the righ-hand side. Cluster 0 has high EIS with a mean of around 8 Kelvin. Ω700 is

mostly positive with Q2 being close to zero, indicating subsidence, but the magnitude is small. RH

is low for the 700 hPa level but somewhat higher for the 500 hPa level. This could indicate moist free

tropospheric conditions which could dampen entrainment drying. The surface temperature is centered

around 285 Kelvin but the spread is large as this cluster covers both the near-equatorial region and the

mid-latitudes. The surface wind speed is low.

Cluster 1 has lower EIS compared to cluster 0, indicating lower stability and therefore lower cloud

cover, which also indicates a stratocumulus-to-cumulus transition between C0 and C1. Ω700 is small, but

most of the data has positive values. RH at both levels is low, but at 500 hPa the RH is lower, indicating

a dry free troposphere. The temperature is high as the cluster is centered around the equator. The wind

speed is low.

Cluster 2 has the lowest EIS values. Ω700 is on average negative, but the mean is close to 0. RH is

high at both pressure levels, but the mean of 𝑅𝐻700 lies higher compared to the 500 hPa level. The

surface temperature is high, as this cluster is primarily in the tropics. The wind speed is also low.

Cluster 3 has high values of EIS, with a mean comparable to C0, but the spread in EIS is larger in

both directions. Ω700 is negative, with the 75% quantile lying almost on 0. RH is high at both pressure

levels. Surface temperature is low as this is a mid-latitude cluster. the wind speed is high with a mean

of around 12 m/s.

Cluster 4 is almost an opposite to C3. The EIS is lower, while still close to the mean of the total

dataset. Ω700 is positive, with the 25% quantile lying on the 0 line. RH is low at both pressure levels. T

and UV are similar, but UV is slightly larger compared to C3, and there is less spread. The wind speed

is high. Cluster 5 is a sparse cluster, primarily characterised by negative Ω700 values and very high RH

(especially at 700 hPa). EIS, T and UV cover the entire range of possible values.
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There is difference between the clusters in the cluster parameters, but there is also significant overlap.

As the meteorological parameters are spread out continuously, overlap between the clusters is large.

The spatial distribution of the clusters (Figure 3.2) shows patterns which coincide with regimes found in

literature (Abraham et al. 2022; Tselioudis et al. 2013). Clustering cloud-controlling factors thus seems

feasible. When we choose different values for k, the clustering changes, but general patterns remain. In

Appendix B, the RFO maps and boxplot for k=3 and k=12 are shown.

3.2. Cloud data

Figure 3.4: Cloud classification using a joint

histogram of cloud optical thickness and cloud top

pressure. (Figure adopted from Rossow et al. 1991)

To see what clouds are present in the clusters, we analyse

MODIS L3 cloud data. Cloud optical thickness (COT, 𝜏𝑐),
cloud top pressure (CTP), liquid water path for both the

liquid and ice phase, and cloud retrieval fraction for both the

liquid and ice phase are retrieved, as well as joint histograms

of cloud phase versus temperature, and CTP versus COT.

Note that for analysing aerosol-cloud interactions, we

work with 𝑁𝑐𝑐𝑛 and 𝑁𝑑 retrievals that can only be done for

liquid clouds. We will still consider ice clouds in this section,

but later we limit the data to grid boxes without ice clouds.

The MODIS data has 2 cloud fraction products: the cloud

mask CF, and the CF retrieved from optical properties. The

latter has the advantage of providing a CF for the liquid,

ice, and undetermined cloud phase. This is done by an

advanced phase retrieval algorithm based on the shortwave

radiation measured by MODIS (Marchant et al. 2016). This

allows one to have a CF for both liquid and ice in one grid

box.

CTP and COT can be used to classify cloud types. CTP

tells you about the height (low, alto, or cirrus), while COT

gives a sense of vertical development (stratus or cumulus). This dates back to work done in 1991 by the

International Satellite Cloud Climatology Project (ISCCP) (Rossow et al. 1991). Figure 3.4 shows the

joint histogram of CTP and COT, together with the limits for the different cloud classifications. COT

gives a sense of vertical development, as it depends on cloud depth, but it also depends on LWP and

CDNC. Two clouds with the same cloud depth can have different values of COT. For this analysis, we are

only interested in the global classification introduced by the ISCCP, so we will not consider this further.

The clouds optical phase versus temperature joint histogram utilises the cloud phase label to show

the cloud top temperature for each phase bin. Figure 3.5 shows the joint histogram per cluster. Each

joint histogram is normalised so all the bins sum to one. This makes it difficult to compare absolute

values between clusters, but we are more interested in the absolute distribution of cloud types per

cluster. The ’mixed+und.’ bin are clouds classified as clouds containing both liquid and ice or clouds

that could not be classified.

C0 and C1 both primarily have liquid clouds. C0 has colder liquid clouds which can be explained

by the cluster covering both the low and mid-latitudes, while C1 lies only in the low-latitudes. C0

has more mixed/undetermined clouds, which could be because the mid-latitude clouds will have

more ice content. This goes in line with the high concentration of mixed/undetermined clouds in the

mid-latitude clusters (C3 and C4). C2 has a combination of low and high ice clouds, but also warm

liquid clouds. C3 has a mix of liquid, ice, and mixed clouds. C4 has mostly liquid clouds, while C5 has

mostly ice clouds. From this we can predict that C3 and C5 will have few 𝑁𝑑 retrievals as these can only

be done for warm liquid clouds. In both C1 and C2 there are some very cold (200 Kelvin) liquid clouds

which is either a retrieval error or an issue caused by averaging retrievals over the 1
◦ ×1

◦
degree grid

boxes, as liquid water droplets can not exist at these temperatures.

In Figure 3.6 the CTP versus COT joint histogram per cluster is shown. All the histograms are

normalised so the bins sum to 1. Stratocumulus and cirrostratus are prevalent in all clusters. C1 has

more cumulus and cirrus clouds compared to C0, which is dominated by stratocumulus and cirrostratus.

C2 mainly has cirrus and cirrostratus, with some deep convective clouds. C3 and C4 both have some

nimbostratus and altostratus clouds (with 𝜏𝑐 > 60). C3 primarily has cirrostratus, while C4 has more
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Figure 3.5: Joint histograms of the cloud phase and cloud top temperature for each cluster. The cloud phase is retrieved using

optical properties. The cloud top temperature is also a measure of cloud top height as temperature decreases with height in the

atmosphere.

stratocumulus. C5 is characterised by cirrostratus and deep convective clouds. It is interesting to note

that deep convective clouds are only visible in C2, C3, and C5 (with only a very small signal in C4).

These are also the clusters that have primarily negative Ω700 , indicating updraft conditions.

Figure 3.7 shows kernel density estimates of the cloud top temperature (CTT), cloud fraction of both

liquid and ice clouds (𝐶𝑅𝐹𝑙𝑖𝑞 and 𝐶𝑅𝐹𝑖𝑐𝑒), and liquid water path of liquid. The shows kernel density

estimates are made by smoothing the histogram and normalising the area under the curve to unity. We

see that there are two clusters (C1 and C2) that show an almost identical pattern with primarily high

cloud top temperatures but they also have peak at very low CTT values. C0 and C4 also show an almost

identical pattern with primarily CTT values around 270 Kelvin. C3 shows a similar pattern to C0/C4,

but has higher density at colder values of CTT. This is also visible in the joint histograms: C3 has more

ice clouds than C0/C4. C5 is spread out over most values with both warm and cold cloud tops. The

values of CTT are influenced by the temperature variations across the globe.

The cloud fraction of liquid clouds shows peaks at both 0 and 1. The separation we saw for CTT

is similar here. C1 and C2 have the lowest liquid cloud fraction. C3 and C4 have the most, and these

clusters are also the mid-latitude clusters where there are clouds often. Note that these plots do not take

the sizes of the clusters in account. C1 could still have more grid boxes with liquid clouds compared to

C3 because the cluster simply has more points. The ice cloud fraction shows the highest values for C1

and C2, but the differences are small. The liquid water path shows a peak for all clusters which drops

off. C1 and C2 drop off the fastest while the other clusters, especially C0 and C3, reach higher values of

LWP, indicating more liquid water content for the clouds in those clusters.

From this we can conclude that clustering cloud-controlling factors translates to a reasonable

separation of MODIS cloud parameters. Stratocumulus and cirrostratus are captured in all clusters,

but each cluster has specific characteristics not captured by other clsuters. From the meteorological

and cloud features of the clusters, we define novel names for the clusters to refer to them. Up until this

point we already referred to low-latitude (C0, C1, and C2) and mid-latitude clusters (C3 and C4), but

the names will allow us to more easily recognise what the characteristics of the clusters are.



3.2. Cloud data 16

Figure 3.6: Joint histograms of the cloud optical thickness and cloud top pressure for each cluster.

Figure 3.7: Kernel density estimates of MODIS cloud parameters per cluster.

Cluster Name Characteristics

0 Dry and stable High EIS, low RH, positive Ω700

1 Dry and low stability Low RH, low EIS, positive Ω700

2 Equatorial low stability High RH, negative Ω700 , low EIS

3 Moist mid-latitude High RH, negative Ω700 , high wind-speed

4 Dry mid-latitude Low RH, positive Ω700 , high wind-speed

5 Omega outliers Very negative Ω700 , very high RH

Table 3.1: Names and characteristics per cluster



4
Radiative Forcing of the cloud albedo

effect

4.1. Susceptibility of CDNC to CCN perturbation
The susceptibility of the cloud droplet number concentration to CCN concentration is the linear relation

between CDNC and 𝑁𝑐𝑐𝑛 in log-log space. It is a measure of how strong 𝑁𝑑 is influenced by a change in

𝑁𝑐𝑐𝑛 . It is defined as:

𝛽ln𝑁𝑑−ln𝑁𝑐𝑐𝑛
=

𝜕 ln𝑁𝑑

𝜕 ln𝑁𝑐𝑐𝑛
. (4.1)

Other aerosol measures than 𝑁𝑐𝑐𝑛 can be used (AOD or AI as mentioned in Chapter 1), but 𝑁𝑐𝑐𝑛 will

most accurately capture the actual variation in CCN concentrations. The clusters defined in Chapter 3

are matched to the satellite retrievals from the dataset by Hasekamp et al. (2019). Only grid boxes where

both a CDNC and 𝑁𝑐𝑐𝑛 estimate are retrieved are used. The data is split into equal sized 𝑁𝑐𝑐𝑛 bins and

the susceptibility is computed using a linear least squares regression on the median values of the bins.

This is done for points with 𝑁𝑐𝑐𝑛 > 10
7

cm
−2

, because of absolute retrieval errors dominating at lower

concentrations.

Figure 4.1: Joint histogram of CDNC and 𝑁𝑐𝑐𝑛 . The black dots

represent the median value per CCN bin. The linear fit through

the points represents 𝛽
ln𝑁𝑑−ln𝑁𝑐𝑐𝑛 . The solid line is the linear fit

only considering points with 𝑁𝑐𝑐𝑛 > 10
7
.

Figure 4.1 shows the susceptibility 𝛽ln𝑁𝑑−ln𝑁𝑐𝑐𝑛

for the entire dataset. The colours show the nor-

malised histogram of 𝑁𝑑 for each 𝑁𝑐𝑐𝑛 bin. The

bins have different widths because every bin con-

tains the same amount of data points. The solid

line shows the regression through the median

points for points with 𝑁𝑐𝑐𝑛 > 10
7

cm
−2

(Sopt). To

compute this fit, the binning is done again with

the subset of the data. The dashed line shows the

regression through the median values of the bins

with all data (Sfull). Sfull is lower compared to Sfull,

due to the taper effect at low concentrations.

It is thought that the taper effect at low 𝑁𝑐𝑐𝑛

values, which is partly visible in Figure 4.1 is

caused by retrieval errors. P. L. Ma et al. (2018)

showed that areas with low aerosol loading are

not well characterised by satellites, while this

regime is important for aerosol-cloud interactions

in cloud models. This is caused by the absolute

error of the retrieval, as the absolute error most

significantly impacts low values of 𝑁𝑐𝑐𝑛 .

Hasekamp et al. (2019) computed the susceptibility for different geographical ocean regions defined

by Quaas et al. (2008). This is done to create regimes where there is similar meteorology. We reproduce

the susceptibility and implied radiative forcing using these geographical regions, and compare them to

17
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Acronym Full Name

NPO North Pacific Ocean

NAO North Atlantic Ocean

TPO Tropical Pacific Ocean

TAO Tropical Atlantic Ocean

TIO Tropical Indian Ocean

SPO South Pacific Ocean

SAO South Atlantic Ocean

SIO South Indian Ocean

Table 4.1: Ocean regimes from Quaas et al. (2009)

Figure 4.2: The susceptibilities of CDNC to 𝑁𝑐𝑐𝑛 for the different clusters. The solid line shows the linear least squares fit to the

bin median values for 𝑁𝑐𝑐𝑛 > 10
7
, as values below this threshold cause an underestimation of the slope.

the susceptibilities and implied forcing from the meteorological regimes. Table 4.1 show the acronyms

for these geographical regions.

Figure 4.2 shows the susceptibility per cluster. The title shows the number of grid boxes where there

are both a 𝑁𝑐𝑐𝑛 and 𝑁𝑑 retrieval. The computed susceptibilities differ slightly. C0 and C1 have the same

susceptibility, which is slightly lower than the global value (0.65). C2 has a higher susceptibility, but the

errors of the susceptibilities overlap. The biggest meteorological difference between C2 and C0/C1, is

higher RH at both levels, and more negative Ω700 . The higher RH could help prevent evaporation at

cloud top, as the air above the cloud is moist. The more negative Ω700 implies more grid boxes with

updrafts, which enables more CCN to be activated, as higher supersaturations can be reached.

The mid-latitude clusters (C3 and C4) have lower values for the susceptibility, but the error is large

because of the low number of retrievals. Computing a susceptibility for C5 is not possible due to the

low number of data points.

4.1.1. Hemispheric difference
Figure 4.3 shows the susceptibility 𝛽ln𝑁𝑑−ln𝑁𝑐𝑐𝑛

for both the meteorological clusters and the geographical

regimes for different values of the lower CCN limit used to compute the susceptibility (𝑁𝑐𝑐𝑛,𝑙𝑖𝑚). The

blue bars correspond to the values computed using 𝑁𝑐𝑐𝑛,𝑙𝑖𝑚 defined by Hasekamp et al. (2019). The
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Figure 4.3: The susceptibilities for the direct aerosol effect are shown for a) the meteorological clusters and b) the geographical

regimes defined in Table 4.1. The numbers above show the value of the susceptibility and the errorbars indicate the least-squares

fit error.

Figure 4.4: The susceptibilities for the Northern (positive) and Southern (negative) hemispheric components of the meteorological

clusters are shown. The susceptibilities for the northern components of each cluster are more positive compared to the southern

components.

values that we compute for the geographical regimes (blue bars in panel (b) of Figure 4.3) are identical

to the values reported by Hasekamp et al. (2019), except that the value for the SAO regime is higher in

our findings. This is not expected to influence the radiative forcing estimate.

It is interesting to note that in Figure 4.3 the meteorological regimes show less variation compared

to the geographical regimes. In the geographical regimes we see larger variation, especially between

the southern regimes (SIO, SPO) and the northern regimes (NAO, NPO). This is unexpected from a

process based view. The Northern Hemisphere (NH) has much higher aerosol loading compared to the

Southern Hemisphere (SH), as there is much more anthropogenic activity in the NH. This means that

clouds in the NH are on average more likely to be aerosol saturated: adding more aerosols will not

affect 𝑁𝑑. This means that an aerosol perturbation has more effect on clouds in the SH, as these clouds

are less likely to be aerosol saturated (Carslaw et al. 2013).

To assess the hemispheric difference, we split our clusters, presented in Chapter 3, into the NH

component and the SH component and compute the susceptibility. This is shown in Figure 4.4 for

different values of 𝑁𝑐𝑐𝑛,𝑙𝑖𝑚 . The bars on the left represent the SH clusters, and the bars on the right

represent the NH clusters. When looking at the blue bars, we see that the NH clusters have higher

susceptibilities compared to the southern clusters. When taking the error bars into account, the northern

component are higher for some of the clusters (C1, C2, and C4), and lower for C0. This goes against our

expectation, but it is in line with the geographical regimes in Figure 4.3.

Looking back at the computation of the susceptibilities, a choice was made by Hasekamp et al. (2019)
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Figure 4.5: This figure shows A) the global and B) Southern Hemispheric susceptibility as a function of the lower data limit for

CCN: 𝑁𝑐𝑐𝑛,𝑙𝑖𝑚 . The error bars indicate the least-squares fit error. The dotted line indicates where the suceptibility is highest.

to compute S using only data with 𝑁𝑐𝑐𝑛 > 10
7

cm
−2

. This is done because absolute errors dominate at

low CCN values. It is possible that for the southern retrievals this limit is too low. Because there are less

high values of CCN, the taper effect at low CCN dominates and the susceptibility is underestimated.

To assess this, we compute the susceptibility for a range of limits for both the global dataset and only

SH data. This is shown in Figure 4.5. The x-axis shows the limit on 𝑁𝑐𝑐𝑛 , and the y-axis shows the

computed value of S with the linear least-squares fit error. The dashed line indicates the point where S

is highest. The plot above shows the result for the entire dataset (𝑆𝑎𝑙𝑙) and the plot above for only the SH

points (𝑆𝑆𝑂). We see that S increases as we increase the limit, and at some point starts to decrease. The

differences are small compared to the error bars. It is therefore difficult to make any definite statements.

It does show that the taper effect at low 𝑁𝑐𝑐𝑛 value due to retrieval error causes an underestimation of

the susceptibility. This effect could affect SH points more. The magnitude of the error bars increase as

𝑁𝑐𝑐𝑛,𝑙𝑖𝑚 increases, because more data gets discarded.

The orange bars in Figure 4.3 shows the susceptibilities seen before if we recompute them with

𝑁𝑐𝑐𝑛 > 1.2 · 10
7

cm
−2

and the green bars for 𝑁𝑐𝑐𝑛 > 1.55 · 10
7
. For cluster 5 there are no other estimates

as this cluster has almost no data points to compute a fit with. We see regimes where S increases, and

regimes where S decreases. There are some where (e.g. cluster 3) where there is first a decrease and

then an increase. The increase is strongest in NAO, as the susceptibility for the NAO goes as high as 0.91.

Interestingly, 2 of the southern regimes (SIO and SPO), have lower values for S if 𝑁𝑐𝑐𝑛 > 1.55 · 10
7

cm
−2

.

The SAO does increase with the new limits. 1.2 · 10
7

cm
−2

was the only limit where S for SIO increases.

This increase in the meteorological clusters is smaller, because the clusters have a combination of SH

and NH points. The slight increase does indicate that some of the noise due to retrieval error can be lost

if we choose a higher limit on 𝑁𝑐𝑐𝑛 . Choosing a higher limit does reduce the amount of data to compute

a fit with. The error bars are large, so to test if the differences are significant, we apply a two-sample

t-test for equal means (Snedecor et al. 1989). This tests the null hypothesis that two sample means are

the same. Assuming equal variances, the test statistics is given by:

𝑡 =
𝜇1 − 𝜇2

𝑠𝑝
√

1/𝑛1 + 1/𝑛2

, (4.2)

where the pooled variance is defined as:

𝑠2

𝑝 =
(𝑛1 − 1)𝑠2

1
+ (𝑛2 − 1)𝑠2

2

𝑛1 + 𝑛2 − 2

. (4.3)

The parameter n is the sample size, 𝜇 is the sample mean, and 𝑠2
is the sample variance (or standard

deviation squared). The full definition of the two-sample t-test for equal means for both equal and

unequal variances can be found in Appendix A. The critical that we test against is 1.686 following from a

t-distribution with 38 degrees of freedom at a critical level of 0.05. The sample size is 20, as a fit is made

of 20 data points computed from 20 bins with equal amount of data per bin. If the sample size is smaller,

the uncertainty in the bins will be higher. It is not clear how this should translate to the two-sided t-test.

The uncertainty will affect the variances, so lower sample size will result in lower test statistics.
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We apply the test to the bars in Figure 4.3a, comparing the values of the different 𝑁𝑐𝑐𝑛,𝑙𝑖𝑚 slopes (test

orange against blue, green against orange, and green against blue). Cluster 1 is the only cluster for which

all three tests show that the slopes are different, with p-values of 2.99, 3.86, and 6.55. For cluster 3 and

cluster 4, we find a that the estimate for 𝑁𝑐𝑐𝑛,𝑙𝑖𝑚 = 1.2𝑒7 𝑐𝑚−2
is significantly different from the other 2.

For the hemispheric difference (Figure 4.4), we find that for the SH component of cluster 0 and 1, and

the NH component of cluster 1, all show a significant increase. For the NH component of cluster 0, the

green bar is significantly lower compared to the other two. For the other clusters, the susceptibilities are

not statistically different. For Figure 4.5, we find that the slope at maximum mean is different compared

to the value at 𝑁𝑐𝑐𝑛,𝑙𝑖𝑚 = 1𝑒7 cm
−2

. The results did not change when we assume unequal variances.

This shows that, globally, the susceptibilities are underestimated due to retrieval errors, but per

cluster, only a few clusters show this effect. The cluster that does show an increase (C1) is also the largest

cluster, meaning that the fit is best resolved. Hasekamp et al. (2019) also found this when modelling the

effect of retrieval error. This effect is taken into account when computing the forcing estimate. The fact

that satellite retrievals can not accurately capture the effects at low 𝑁𝑐𝑐𝑛 values is problematic as this is

where the cloud albedo effect has the biggest impact (Carslaw et al. 2013). Reducing retrieval error with

better algorithms and measuring devices could help alleviate this.

4.2. Estimating the radiative forcing
To compute the radiative forcing of the cloud albedo effect (𝑅𝐹𝑎𝑐𝑖), we use the same methodology

as Hasekamp et al. (2019), based on work by Gryspeerdt et al. (2017). As mentioned above we use

five different aerosol global climate models (GCM) to estimate Δ ln𝑁𝑐𝑐𝑛 = (ln𝑁𝑃𝐷
𝑐𝑐𝑛 − ln𝑁𝑃𝐼

𝑐𝑐𝑛): the log

difference between present-day (PD) and pre-industrial (PI) CCN concentrations. The different models

give us a range of possible forcings. The radiative forcing can be calculated using the following equation:

𝐼𝑅𝐹𝑎𝑐𝑖 = −1

3

𝐹↓ 𝑓𝑙𝑖𝑞𝛼𝑐𝑙𝑑(1 − 𝛼𝑐𝑙𝑑)
Δ𝑁𝑑

𝑁𝑑
, (4.4)

following Gryspeerdt et al. (2017) and Hasekamp et al. (2019). We adopt the terminology from the

IPCC where 𝐼𝑅𝐹𝑎𝑐𝑖 stands for the instantaneous radiative forcing of aerosol-cloud interaction, i.e. the

forcing of the cloud albedo effect. Here 𝐹↓ is the daily mean incoming solar radiation flux taken from

CERES, 𝑓𝑙𝑖𝑞 is the yearly average liquid cloud cover per grid box taken from MODIS, 𝛼𝑐𝑙𝑑 is the cloud

albedo taken from CERES, and
Δ𝑁𝑑

𝑁𝑑
is the change in cloud droplet concentrations. We relate Δ𝑁𝑑/𝑁𝑑 to

Δ ln𝑁𝑐𝑐𝑛 using our susceptibilities. For this we use the following two relations:

Δ ln 𝑥 ≈ 𝑑 ln 𝑥

𝑑𝑥
Δ𝑥 =

1

𝑥
Δ𝑥, (4.5)

Δ ln𝑁𝑑 = 𝛽ln𝑁𝑑−ln𝑁𝑐𝑐𝑛
Δ ln𝑁𝑐𝑐𝑛 . (4.6)

This approximation holds for small values of Δ𝑥. Inserting into Equation 4.4 gives us the following

equation:

𝐼𝑅𝐹𝑎𝑐𝑖 = −1

3

𝐹↓ 𝑓𝑙𝑖𝑞𝛼𝑐𝑙𝑑(1 − 𝛼𝑐𝑙𝑑)𝛽ln𝑁𝑑−ln𝑁𝑐𝑐𝑛
Δ ln𝑁𝑐𝑐𝑛 . (4.7)

𝐼𝑅𝐹𝑎𝑐𝑖 is computed daily for every grid box, using the specific value of 𝛽ln𝑁𝑑−ln𝑁𝑐𝑐𝑛
for that day at that

grid box. To create a map of the radiative forcing, the mean of every grid box is calculated. To compute

the global average, every grid box needs to be weighted by its surface area, as grid boxes near the

equator are significantly larger than grid boxes near the poles. As our domain is between -60
◦

and 60
◦

latitude over ocean, we can only compute a domain average forcing based on the satellite data.

𝐼𝑅𝐹𝑑𝑜𝑚𝑎𝑖𝑛𝑎𝑐𝑖 =
∑
𝑖

𝐼𝑅𝐹 𝑖
𝑎𝑐𝑖

· 𝐴(𝜙𝑖)
𝐴𝑡𝑜𝑡𝑎𝑙

. (4.8)

𝐼𝑅𝐹 𝑖
𝑎𝑐𝑖

is the mean radiative forcing per gridbox i, 𝐴(𝜙𝑖) is the area for gridbox i in m
2
, and 𝐴𝑡𝑜𝑡𝑎𝑙 is the

total area of the gridboxes in m
2
. The area per gridbox only depends on latitude, as gridboxes with the

same longitude have the same area.

Figure 4.6 shows maps of the radiative forcing estimate for A) the geographical regimes and B) the

meteorological regimes. C) shows the difference between the two. We see a strong signal in the northern
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Figure 4.6: Maps showing the radiative forcing of the cloud albedo effect for A) the geographical regimes and B) the

meteorological regimes. C) shows the difference between the two maps.

pacific due to the high concentration of anthropogenic emissions. The difference map shows a box like

pattern because these correspond to the geographical regions where the scusceptibility is computed. A

specific geographical regions has 1 value for 𝛽ln𝑁𝑑−ln𝑁𝑐𝑐𝑛
Δ ln𝑁𝑐𝑐𝑛 , while that value can change for the

meteorological clusters. This creates a more smooth forcing estimate for the meteorological regimes

because when we average over the year, 𝛽ln𝑁𝑑−ln𝑁𝑐𝑐𝑛
Δ ln𝑁𝑐𝑐𝑛 varies between different values. The global

average forcing is almost identical between the two methodologies: -0.80W m
−2

for the geographical

regimes and -0.81W m
−2

for the meteorological regimes.

The difference map shows that using the geographical regimes leads to higher forcings in the

northern hemisphere, and a lower forcing in the southern hemisphere. This is expected from Figure 4.3,

as the susceptibilities in the northern and southern hemisphere are higher and lower respectively

compared to the meteorological regimes.

To translate the forcing over our domain to a global estimate, scaling factors from 13 different

climate models are used. These give a range of values between 1.12 and 2.24 with a mean of 1.5. The

uncertainty in the 𝑁𝑐𝑐𝑛 retrievals leads to an underestimation of 𝛽ln𝑁𝑑−ln𝑁𝑐𝑐𝑛
. This follows from the

simulator results of Hasekamp et al. (2019) and from our analysis above. This underestimation leads

to an uncertainty in the RF, which is modelled as a normal distribution with mean 1.05 and standard

deviation 0.05. Combining the different model output, the scaling factors, and the susceptibility error, a

range of possible forcings are retrieved. The histograms are shown in Figure 4.7. The left figure shows

the forcing when using meteorological clusters and the right with the geographical regimes. We take

the median value as the best estimate of 𝐼𝑅𝐹aci and the 5-95% quantiles give a range of uncertainty :

-1.21 W m
−2

between -0.87 and -1.84W m
−2

for the meteorological clusters. The estimates of the clusters

and the geographical regimes are near identical. This is caused by the large uncertainty in the domain

scaling factor. To alleviate this we also estimate the forcing over the domain.

Figure 4.8 shows the forcing estimates without the scaling factor. The range of values are thus made

up from the uncertainty in Δ𝑁𝑐𝑐𝑛 and the uncertainty in the susceptibility due to retrieval error. The

higher susceptibilities of the geographical regimes mean that the forcing is higher with a median of
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Figure 4.7: Histograms of the estimate of 𝐼𝑅𝐹aci . The histograms are made using the different domain to global ratios, the

retrieval error, and the different model estimates of Δ𝑁𝑐𝑐𝑛 . Left is for the meteorological clusters and right is for the geographical

regimes.

Figure 4.8: Histograms of the estimate of 𝐼𝑅𝐹aci . The histograms are made using the the retrieval error, and the different model

estimates of Δ𝑁𝑐𝑐𝑛 . Left is for the meteorological clusters and right is for the geographical regimes.

-0.87 compared to -0.84 for the clusters. The confidence interval is very similar for both.

To see how sensitive 𝐼𝑅𝐹aci is to the choice of clusters, we recompute the global average for different

values of k. Figure 4.9 shows the estimates of 𝐼𝑅𝐹aci per cluster. The dots represent the global means of

the different model estimates of Δ𝑁𝑐𝑐𝑛 , and the red dots are the mean. The spread of the black dots

appears to be constant, but it does change slightly depending on where the model computes the highest

values of Δ𝑁𝑐𝑐𝑛 .

The variations in the mean are small. The forcing seems to increase with increasing k, but the

uncertainty in RF is dominated by the different model estimates. The lowest forcing is at 𝑘 = 3, and the

second lowest is at 𝑘 = 6. These were also the ’best’ clusters based on the clustering metrics. This could

be a coincidence. For 𝑘 = 12 we also had a local minimum or maximum in the clustering metrics, but as

the number of clusters increases, the uncertainty in the susceptibility also increases.

The forcing estimates for the different models has a maximum spread of 0.23W m
−2

while the

variations in the mean due to changing k is 0.054W m
−2

. From this we can conclude that the computation

of 𝐼𝑅𝐹aci is not very sensitive to the number of clusters. This is primarily due to the large spread in the

Δ𝑁𝑐𝑐𝑛 estimates. If the quality of the retrievals improves and the amount of data increases, we might

see stronger variability.

From this analysis, studying the radiative forcing from the cloud albedo effect using meteorological

clusters instead of geographical regimes does not have significant advantages. There are differences in

the computed susceptibilities which leads to large regional differences in the computed forcing, but for
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Figure 4.9: The 𝐼𝑅𝐹aci as function of cluster number k. The black dots are the estimates for different Δ𝑁𝑐𝑐𝑛 estimates, and the red

dots are the mean value. The line connects the means.

the global average this has no effect. Improving our understanding of what this relationship means and

to bring microscale and satellite scales closer together, meteorological clustering could help. Specifically

by continuing to study which meteorological parameters affect the susceptibility the most.

In Appendix B, the susceptibilities for 𝑘 = 3, 𝑘 = 8, and 𝑘 = 12 are plotted. The values of the

susceptibilities do not change significantly. For 𝑘 = 12 there are clusters with high (0.77) and low (0.41)

susceptibilities that are comparable to the geographical regimes. However, the uncertainty is large as

the data is split up in small chunks.



5
Cloud Adjustments to the cloud albedo

effect and the implied forcing

For the cloud adjustments we analyse the relation of the CF and LWP with 𝑁𝑑. We can then relate the

total framework by linking relationships: 𝑁𝑐𝑐𝑛 affects 𝑁𝑑, which in turn affects LWP and CF. We can use

the relations to estimate the effective radiative forcing of aerosol-cloud interactions 𝐸𝑅𝐹𝑎𝑐𝑖 . The reason

that we are not directly relating 𝑁𝑐𝑐𝑛 to LWP and CF is the limitation in the sampling of 𝑁𝑐𝑐𝑛 mentioned

in Chapter 2.

To assess the adjustments to the cloud albedo effect, 𝑁𝑑 is retrieved using the joint histogram of 𝜏𝑐
(cloud optical thickness) and 𝑟𝑒 (cloud drop effective radius) (Gryspeerdt et al. 2016). This allows us to

filter based on the level 2 information. The joint histogram gives the amount of L2 pixels with a specific

𝜏𝑐 and 𝑟𝑒 . We then filter out low values (𝜏𝑐 > 4 and 𝑟𝑒 > 4 𝜇m), and compute the new mean 𝜏𝑐 and 𝑟𝑒
for that grid box by computing the mean. We also filter out grid boxes with high solar zenith angle

and high sensor zenith angle, as these lead to overestimation of 𝑟𝑒 . As we do not have L2 data or joint

histograms of the angles, we limit the mean plus the standard deviation of the grid box, in other words:

𝑆𝑜𝑙𝑍𝐴𝑚𝑒𝑎𝑛 + 𝑆𝑜𝑙𝑍𝐴𝑠𝑡𝑑 < 65
◦

and 𝑆𝑒𝑛𝑍𝐴𝑚𝑒𝑎𝑛 + 𝑆𝑒𝑛𝑍𝐴𝑠𝑡𝑑 < 41
◦
, where SolZA is the solar zenith angle

and SenZA is the sensor zenith angle. Then we recompute 𝑁𝑑 for the filtered data, as described in

Chapter 2.

5.1. Liquid water path adjustments
An important measure to assess the adjustment to liquid water path is the susceptibility of LWP to 𝑁𝑑.

Similarly to the cloud albedo effect, this susceptibility is defined as:

𝛽lnℒ−ln𝑁𝑑
=

𝜕 ln 𝐿𝑊𝑃

𝜕 ln𝑁𝑑
. (5.1)

Typical ranges are -0.36 to -0.011 (Bellouin et al. 2020; Toll et al. 2017; Gryspeerdt et al. 2019). The strength

of the relationship depends on the relative magnitude of two processes: precipitation suppression

and entrainment enhancement. A decrease in droplet size (i.e. increase in 𝑁𝑑) due to an aerosol

perturbation reduces precipitation rates, which leads to an increase in LWP. Entrainment is enhanced by

increased cloud top turbulence and cloud top cooling due to evaporation which leads to a decrease in

LWP. Meteorology affects the strength of these processes and thus affects the relationship strength of

LWP and aerosol. This necessitates a measure of meteorological variation, which in our study is the

meteorological clustering approach.

For the LWP adjustments, an additional filtering step for 𝑁𝑑 is done based on cloud retrieval fraction.

In broken cloud formations, cloud inhomogeneity can lead to a bias in the retrieved 𝑟𝑒 . This could lead

to an underestimation in 𝑁𝑑, but some studies have found an increase of 𝑁𝑑 with cloud inhomogeneity

(Grosvenor and Wood, 2014). To limit bias in CDNC, we only use 𝑁𝑑 retrievals where the cloud retrieval

fraction if above 65%.

Figure 5.1 shows the joint histogram of LWP and CDNC. The 𝑁𝑑 bins are normalised to unity so that

they represent conditional probabilities. The dots represent the median LWP in a 𝑁𝑑 bin. The solid lines

25
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represent to the linear regressions of binned data left and right of the maximum. The value of the slopes

are called 𝑆𝑙 and 𝑆𝑟 respectively, standing for left and right. The left slope represents the precipitation

regime and the right slope represents the entrainment regime. The white dotted line represents the

linear fit through all points. Similar to other studies (Michibata et al., 2016; Gryspeerdt et al., 2019), the

global susceptibility is negative.

Figure 5.1: Joint histogram of LWP and CDNC. The black dots

represent the median value per 𝑁𝑑 bin. The dotted white line

represents through the points represents the susceptibility

𝛽
lnℒ−ln𝑁𝑑

.

Figure 5.2 shows the joint histograms per clus-

ter. Note that the x-axis ranges from 10 to 400

cm
−3

. The overall shape of the plots are similar,

but there are some differences between clusters.

Looking at C0, we see a slope of 0.24 in the precip-

itation regime and a strong slope of -0.39 in the

entrainment regime. C0 is characterised by low

free tropospheric humidity, which could enhance

cloud top entrainment evaporation. Comparing

to C1 we see a slightly higher precipitation regime

slope (0.29) and a similar entrainment regime

slope (-0.37). The main difference between the

two clusters is lower EIS values for C0, indicating

less stability and less stratiform cloud formations.

The clusters have similar values for RH. It appears

that C1 is more peaked around the maximum,

while C0 is more spread out. C1 could suffer

more from retrieval bias in 𝑁𝑑 due to cloud in-

homogeneity which could affect the precipitation

regime slope.

For C2 we see a very strong precipitation regime slope of 0.51, indicating strong precipitation

suppression, but the fit is uncertain due to the low number of data points there. The entrainment slope

is lower (0.26) compared to C0 and C1. C2 has quite high free tropospheric humidity, which could

dampen cloud top entrainment evaporation. At very high 𝑁𝑑 we see an increase in LWP, which is

possibly a retrieval bias in 𝑟𝑒 or 𝜏𝑐 . We see this same effect for C3 and C4. This effect might cause an

underestimation of the susceptibility.

For C3 and C4, we see weaker responses with 𝑆𝑙 = 0.20 and 𝑆𝑟 = −0.21 for C3 and 𝑆𝑙 = 0.29 and

𝑆𝑟 = −0.17 for C4. C3 has high free tropospheric humidity, and C4 has moderate free tropospheric

humidity with a mean 𝑅𝐻700 of 0.40. What sets these clusters apart is higher surface wind-speed.

Gerber et al. (2013) have shown that cloud top evaporation decreases with increasing wind shear for

stratocumulus clouds. We do control for surface wind speed, but not for wind shear at cloud top. The

joint histogram of C5 is not well resolved due to the small size of the cluster.

From this we can conclude that free tropospheric humidity appears to be important for the

entrainment regime, where clusters with low humidity have a steeper slope at high 𝑁𝑑 values. This

holds well for C0, C1, C2, and C3, but C4 does not have this steep slope, even though the RH is somewhat

low. There could be other processes that control the LWP. EIS does not seem to control the slope much,

as C0 and C1 are very similar, but the EIS for these two clusters is different. The highest value of 𝑆𝑙 is

the value of C2. C1 and C4 also have high slopes (0.29), but these lie close to the value of C0 (0.24). C2 is

also the cluster with the lowest values for EIS. C1 and C4 also have lower values for EIS. It appears that

precipitation suppression is more dominant in low EIS clusters, where there could be more cumulus

formation, as EIS is correlated with stratiform cloud cover. The signal, however, is not very strong.

The other parameters (Ω700 , surface temperature) do not appear to affect this relationship much. For

example. C3 and C4 have very different values for Ω700 , but the slopes are very similar between the two.

5.2. Cloud fraction adjustments
Aerosols can affect cloud fraction by reducing the radius of cloud droplets. By suppressing precipitation,

cloud lifetime could increase or the transition from closed- to open-celled stratocumulus could be

changed. Many studies have found correlations between CF and aerosol proxies, but meteorological
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Figure 5.2: Joint histograms of LWP and CDNC per cluster.

covariation and retrieval errors affect the relationships. The susceptibility of CF to 𝑁𝑑 is defined as:

𝛽𝒞−ln𝑁𝑑
=

𝜕𝒞
𝜕 ln𝑁𝑑

. (5.2)

Note that this susceptibility is not in log-log space, but in linear-log space. The distribution of CF is

more logical in linear space as it varies between 0 and 1 with high concentration close to 0 and 1. Typical

values for 𝛽𝒞−ln𝑁𝑑
are 0.0 to 0.15 based on LES and GCM simulations (Ghan et al., 2016; Zelinka et al.,

2014; Seifert et al., 2015; Xue & Feingold, 2006). This relationship is also subject to covariation with

meteorology, as meteorological variations can affect both CF and 𝑁𝑑. Our meteorological clusters could

help overcome this covariation.

Figure 5.3: Joint histogram of CDNC and CF. The black dots

represent the mean value per 𝑁𝑑 bin. The linear fit through the

points represents 𝛽𝒞−ln𝑁𝑑
.

For the CF adjustments we can not apply a

filtering on CF to reduce 𝑁𝑑 retrieval bias due to

cloud inhomogeneity, as we want to sample the

entire distribution of CF. As mentioned above, the

retrieval error can create a bias in 𝑁𝑑 and either

lead to an over or underestimation of 𝛽𝒞−ln𝑁𝑑
.

We will have to take this bias into account when

computing the radiative forcing. In Figure 5.3

the joint histogram of CF and 𝑁𝑑. These are

made similarly to the LWP-𝑁𝑑 histograms. Here,

CF is the total optical cloud retrieval fraction for

grid boxes with zero ice clouds. The 𝑁𝑑 bins

are normalised to one, the black dots are the

means of the bin, and the line is the linear least-

squares fit through the data points. We see high

concentrations near CF = 0 and CF = 1. The mean

values of the bin show a linear relationship that

tapers of at high 𝑁𝑑.

Figure 5.4 shows the joint histograms per clus-
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Figure 5.4: Joint histograms of cloud fraction and CDNC per cluster. The dots represent the mean in each CDNC bin. The bins are

normalised to unity so that each CDNC bin gives a probability density of observing a specific CF. The histogram shows the

normalised distribution of the retrieved CDNC.

ter. Each cluster shows a the two areas of high concentration, but there are significant differences. Here

we have added a linear regression through all data points (white, dotted line) and through the 2 regimes

shown in the LWP adjustments: precipitation and entrainment (solid, black lines). For C0 we see a

strong increase in CF for low 𝑁𝑑 concentrations with a slope of 0.48, after which the increases tapers

off and at the end even decreases. We also see this decrease in CF for high 𝑁𝑑 for C2, C3, and C4. As

we have limited retrievals at high 𝑁𝑑 concentrations (shown in the histograms), this reduction in CF

could be a sampling issue, but it could also be a physical effect related to entrainment evaporation.

The reduction in CF at high 𝑁𝑑 concentrations could help explain the increase in LWP seen at high 𝑁𝑑

concentrations in Figure 5.2. As CF decreases, cloud inhomogeneity increases which could lead to an

overestimation of 𝑟𝑒 . As LWP is linearly correlated with LWP, this would lead to an overestimation of

LWP.

For C1 we see high concentrations of low CF for almost the entire 𝑁𝑑 range and an area of high

CF for 𝑁𝑑 > 100 cm
−3

. This indicates more broken cloud cumulus formations, while C0 would have

many scenes with stratocumulus clouds, which is inline with previous chapters. There is a region

for low 𝑁𝑑 where C1 appears to follow the steep slope of C0, but the mean values of the bins are

dominated by the high concentration at low CF. C2 looks very similar to C1 with almost identical slopes.

The main similarity between these clusters (C1 and C2) is low EIS and high surface temperature. All

other parameters are different. This could indicate that EIS and temperature are the most important

meteorological confounders for CF adjustments.

Cluster 3 shows a similar pattern as C0, with even less points with low CF. The slopes are also very

similar. Both C0 and C3 have high values for EIS. The joint histogram is less resolved due to low sample

size and the CDNC distribution shows a peak for higher 𝑁𝑑 values.

For C4 we see a combination of the two different patterns. The high concentration at low CF is more

spread out compared to C0/C3, but not as extended as C1/C2. The high CF area is more spread out

compared to C1/C2 but not as much as C0/C3. The reduction in CF for high 𝑁𝑑 is most pronounced

here. The joint histogram of C5 is poorly resolved, but shows a similar pattern to C0/C3.

For the C0 and C3, the low values of 𝑆𝑟 indicate that these regimes are not very sensitive for changes
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in 𝑁𝑑 for 𝑁𝑑 > 50 cm
−3

, while they are very sensitive at lower values of 𝑁𝑑. Cluster 3 does suffer from

poor data coverage, so increases the amount of data could affect the relationship.

5.3. Effective Radiative Forcing
To compute the effective radiative forcing we use the framework presented by Bellouin et al. (2020). The

radiative forcing of LWP adjustments is computed using:

𝑅𝐹ℒ = −5

6

𝐹↓ 𝑓𝑙𝑖𝑞𝛼𝑐𝑙𝑑(1 − 𝛼𝑐𝑙𝑑)𝛽lnℒ−ln𝑁𝑑
𝛽ln𝑁𝑑−ln𝑁𝑐𝑐𝑛

Δ ln𝑁𝑐𝑐𝑛 . (5.3)

The formula is similar to the formula of the RF of the cloud albedo effect (Equation 4.4), except that

there is a double sensitivity (𝑁𝑐𝑐𝑛 → 𝑁𝑑 → 𝐿𝑊𝑃), and a factor 5/6 instead of 1/3, which comes from

how LWP affects cloud albedo (Bellouin et al. 2020). The susceptibility 𝛽lnℒ−ln𝑁𝑑
is the linear regression

of the entire dataset (white dotted line in Figure 5.2). As we only have information about relative

differences of 𝑁𝑐𝑐𝑛 , we can not take the two different slopes into account.

The radiative effect of the CF adjustments is less straightforward than the LWP and cloud albedo

forcing. The LWP and cloud albedo effect alter the cloud properties, while the CF adjustments affect

the cloud fraction. This means that the CF adjustments can operate on any area where there are no

overlying ice clouds. This means that instead of a liquid cloud fraction ( 𝑓𝑙𝑖𝑞), we need (1 − 𝑓𝑖𝑐𝑒) as an

initial cloud fraction (Gryspeerdt et al. 2016; Bellouin et al. 2020). This leads to the following equation:

𝑅𝐹𝒞 = (1 − 𝑓𝑖𝑐𝑒) · 𝑓𝑙𝑖𝑞 · (𝛼𝑐𝑙𝑑 − 𝛼𝑐𝑠)𝛽𝒞−ln𝑁𝑑
𝛽ln𝑁𝑑−ln𝑁𝑐𝑐𝑛

Δ ln𝑁𝑐𝑐𝑛 . (5.4)

We again have a double sensitivity, but now with CF (𝑁𝑐𝑐𝑛 → 𝑁𝑑 → 𝐶𝐹). The term (𝛼𝑐𝑙𝑑 − 𝛼𝑐𝑠)
represents the difference between the overcast (𝛼𝑐𝑙𝑑) and clear-sky (𝛼𝑐𝑠) top of the atmosphere albedo

from CERES for grid boxes with no ice clouds. The susceptibility 𝛽𝒞−ln𝑁𝑑
is the linear regression of the

entire dataset (white dotted line in Figure 5.4). The effective radiative forcing can be calculated using:

𝐸𝑅𝐹𝑎𝑐𝑖 = 𝐼𝑅𝐹𝑎𝑐𝑖 + 𝑅𝐹𝒞 + 𝑅𝐹ℒ , (5.5)

according to Bellouin et al. (2020). To compute a domain estimate, we again compute the area weighted

average using Equation 4.8, but instead of 𝐼𝑅𝐹𝑎𝑐𝑖 , we use 𝑅𝐹𝒞 and 𝑅𝐹ℒ .

In Figure 5.5, the forcing estimates for the LWP and CF adjustments are plotted as a function of

cluster amount k. The LWP adjustment does not show large variations. The mean of 𝑅𝐹ℒ varies between

0.39 and 0.46 W m
−2

. The forcing shows a decrease between 𝑘 = 5 en 𝑘 = 7. The values of 𝑅𝐹𝒞 shows

variations in the mean between -0.64 and -0.54 W m
−2

. The mean of the 𝑅𝐹𝒞 shows a monotonic increase

after 𝑘 = 3, but the range of estimates overlap for all k. These figures show that the uncertainty of Δ𝑁𝑐𝑐𝑛

dominates over variations due to choice of k. Optimising the methodology and studying the response

of clouds to aerosol perturbations remains important as we aim to constrain 𝐸𝑅𝐹𝑎𝑐𝑖 using multiple lines

of evidence. Understanding how cloud parameters respond to aerosol perturbations is one of the key

problems.

Figure 5.6 shows maps of 𝐸𝑅𝐹𝑎𝑐𝑖 and its different components. Figure 5.6A is the same as the map

shown in Chapter 4, but the colourbar is different. The global average forcing from the LWP adjustments

are positive, with different model estimates varying between 0.36 and 0.47 W m
−2

. The global average

forcing from the different Δ𝑁𝑐𝑐𝑛 estimates for the CF adjustments are negative and vary between -0.50

and -0.67 W m
−2

.

The spatial patterns are similar, as this is primarily influenced by the Δ𝑁𝑐𝑐𝑛 distribution from the

models. The LWP adjustments (Figure 5.6B) show positive forcings. The effect is strongest for the

stratocumulus decks on the west coast of Africa and the Americas. The CF adjustments (Figure 5.6C)

is more defined in the Northern Pacific, specifically near China, and around the equator. This is also

visible in the sum of the two adjustment terms (Figure 5.6D), where the forcing near the west coast of

Africa and the Americas are positive. This indicates that the LWP adjustments are specifically important

in these regions.

To asses the effect of retrieval error, we use a simulator to model the effect of errors on the derived

susceptibilities. For 𝑅𝐹𝒞 we assume a relationship of 𝒞 = 𝑆 · 𝑛𝑝.𝑙𝑜𝑔(𝑁𝑑) − 𝑏, where S=0.19 and b=-0.4.

This assumes a perfect relationship and allows us to test the effect of errors. When we apply a 50% error

on 𝑁𝑑, and recompute the susceptibility, we find a lower value of 0.13, indicating a underestimation
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Figure 5.5: Figures of a) 𝑅𝐹ℒ and b) 𝑅𝐹𝒞 as a function of clusters. The black dots indicate the different model estimates, the red

dot shows the mean of the estimates, and the solid line connects the means.

of 30% due to the error in 𝑁𝑑. If we apply a 50% error on 𝒞, we find S equal to 0.19, indicating that

random errors on CF do not affect the susceptibility, even though a bias could still affect the relationship.

The bias due to cloud inhomogeneity can lead to a dependence of 𝑁𝑑 on CF, which we model using the

following equation:

𝑁𝑑 = 𝑁𝑑 · (1 + 𝐹(1 − 𝒞)) (5.6)

where 𝒞 is the cloud fraction and 𝐹 is the strength of the bias. This formula offsets the underestimation

of 𝑁𝑑 for low values of CF. When we apply this bias with 𝐹 = [0.3, 0.5, 1.0, 2.0] and compute the

susceptibility, we find higher susceptibilities between 0.20 and 0.23, indicating a underestimation of

5%-20%. However, when we first apply a 50% error on 𝑁𝑑 and then apply the bias for the different

values of F, we find lower susceptibilities showing an overestimation of the slope between 7% and 47%.

This is caused by points with low values 𝒞 reducing the means of the high 𝑁𝑑 bins, as they are shifted to

higher 𝑁𝑑 values. Adding the 50% error in 𝒞, together with the other two error sources, does not affect

the susceptibility significantly. The non-linearity of the relationship is not taken into account. When

we apply the same tests to the actual measured 𝒞 (instead of our ideal relationship) we find similar

deviations. It is not clear which relationship is more physically plausible. To make a conservative

estimate, we assume that the susceptibility is either underestimated or overestimated by 50%.

For the susceptibility of ℒ to 𝑁𝑑, we assume a perfect relationship of ℒ = 𝑐𝑁𝑆
𝑑
, with 𝑆 = −0.23 and

𝑐 = 300, and then study the effect of errors. When we apply a 50% random error on ℒ, we do not find

a significant variation in the computed slope. If we apply a 50% random error on 𝑁𝑑 we find a slope

of -0.13 indicating an underestimation of the slope of 43%. This does not take the non-linearity of the

relationship into account. When we apply the same 50% error on 𝑁𝑑 for the measured values of ℒ, we

compute a slope of -0.18, indicating an underestimation of 21%. As we applied additional filtering when

computing the susceptibilities of the LWP adjustments, the effect of 𝑁𝑑 bias due to cloud inhomogeneity

should play a smaller role. However, we still test the effect by applying Equation 5.6 where we use

the retrieved values of 𝒞 per data point. Computing the slope for 𝐹 = [0.3, 0.5, 1.0, 2.0] shows small

deviations from the ’true’ value. For 𝐹 = 2, we find a a slope of -0.19, indicating an overestimation of the

slope by 17%

Additionally, as the distribution of 𝑁𝑑 peaks between 30 and 80 cm
−3

, the relationships could be

affected by the low sampling at high and low 𝑁𝑑 concentrations. For the LWP adjustments, resolving

the low 𝑁𝑑 concentrations could reduce the global susceptibility if the precipitation regime is stronger

than implied by these findings. The effect of LWP increase at high 𝑁𝑑 concentrations could be due to

retrieval errors which would imply an underestimation of the LWP adjustment strength. From this we
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Figure 5.6: Maps showing A) the RF of the cloud albedo effect, B) the RF of the LWP adjustments, C) the RF of the CF

adjustments, D) the RF of the adjustments: CF+LWP, and E) the effective radiative forcing ERF.
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Figure 5.8: Histogram of possible estimates of 𝐸𝑅𝐹𝑎𝑐𝑖 .

estimate a possible underestimation of 50% and a possible overestimation of 25% for the susceptibility

of the LWP adjustments.

The uncertainty in the susceptibility of the CF adjustments and the LWP adjustments are translated

to forcing by assuming a linear dependence between susceptibility and forcing. For the CF adjustment

we model the uncertainty as a normal distribution with mean 0 and standard deviation 0.5. For the LWP

adjustments we model the uncertainty as a normal distribution with mean 1.125 and standard deviation

0.375. Combining these uncertainties with the uncertainty for 𝛽ln𝑁𝑐𝑐𝑛−ln𝑁𝑑
presented in Chapter 4, and

with the different model estimates of Δ𝑁𝑐𝑐𝑛 gives us a range of values shown in Figure 5.7. The median

is taken as our best estimate and the 5 and 95 percentiles give the 90% confidence interval. This gives us

the following estimates: 𝑅𝐹ℒ = 0.49, 90% 𝐶𝐼 [0.24, 0.78], 𝑅𝐹𝒞 = −0.61, 90% 𝐶𝐼 [−0.14, − 1.22].
By randomly sampling the distributions of 𝐼𝑅𝐹𝑎𝑐𝑖 , 𝑅𝐹𝒞 , and 𝑅𝐹ℒ we create a histogram of possible

𝐸𝑅𝐹𝑎𝑐𝑖 estimates. Figure 5.8 shows the histogram and gives us a best estimate of -1.0 W m
−2

with a 90%

confidence interval of [−1.6,−0.48].
Figure 5.9 shows our domain estimates of 𝐸𝑅𝐹𝑎𝑐𝑖 and its components together with the result from

Wall et al. (2023) and Bellouin et al. (2020) (hereafter W23 and B20). W23 use a shortwave radiative

flux anomaly framework together with cloud-controlling factor analysis to estimate 𝐸𝑅𝐹𝑎𝑐𝑖 and its

components. They computed two estimates, one with partly-cloudy MODIS pixels included. In

Figure 5.9, we only include the cloudy-pixel estimate from W23. B20 combined all research up to that

point in a ’most-likely’ range for all the components, which is why the error bars are so large. The

squares represent the best estimates and the error bars represent the confidence intervals. For the 𝐼𝑅𝐹𝑎𝑐𝑖
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Figure 5.9: 𝐸𝑅𝐹𝑎𝑐𝑖 and its components estimated by this work, Wall et al. (2023), and Bellouin et al. (2020).

the estimates between our study and W23 are comparable, while our estimate is a little more negative

and has smaller error bars. The ’best estimate’ from B20 is more positive. For 𝑅𝐹ℒ , our estimate is more

positive and our error bars are larger. For 𝑅𝐹𝒞 , W23 estimate a much more negative value compared

to us. The error bars do overlap. The estimates of 𝐸𝑅𝐹𝑎𝑐𝑖 from our study and from W23 differ by

0.85W m
−2

. Both our work and W23 indicate that the best estimate from B20 is too positive. Our value

for 𝑅𝐹𝒞 is more negative compared to work by Gryspeerdt et al. (2016).

Y. Chen et al. (2022) found that the 𝐸𝑅𝐹𝑎𝑐𝑖 could be dominated by the CF effect, by studying the

increase in cloud cover after a volcanic eruption. This is inline with the findings from W23 as they

also estimate a very negative value for 𝑅𝐹𝒞 . If these estimates are accurate, than our methodology of

estimating 𝑅𝐹𝒞 does not capture the magnitude of the effect, as our estimate is not as negative. It would

also have important consequences for the climate sensitivity, as a very negative 𝐸𝑅𝐹𝑎𝑐𝑖 implies a strong

climate sensitivity.



6
Conclusions, Limitations and

Recommendations

6.1. Conclusions
In this thesis, the radiative forcing of aerosol-cloud interactions is investigated based on satellite data

and meteorological clusters using cloud-controlling factors. Chapter 3 presented a description of the

clustering and resulting cluster characteristics. Chapter 4 and Chapter 5 showed the sensitivities of

cloud parameters to CCN perturbations per cluster and the implied global forcing. We have computed

an effective radiative forcing from aerosol-cloud interactions 𝐸𝑅𝐹𝑎𝑐𝑖 over our domain of -1.0 W m
−2

90%

CI [−1.6,−0.48] since 1850. Our primary aim was to answer three research questions.

How do clusters of cloud-controlling factors correlate with cloud parameters?

By clustering cloud-controlling factors we defined unique regimes in which we studied clouds.

The separation in cloud parameters per cluster is reasonable, but not very profound. The clustering

separates regime where stratocumulus is dominant, regimes where trade wind cumulus are prevelant,

and a regime where cirrostratus and deep convective clouds are present. There are characteristics in the

distributions of cloud top temperature and cloud retrieval fraction per cluster. Specifically, there are two

different regimes, corresponding to the stratocumulus and trade wind cumulus regimes.

Can we reduce uncertainty in the RFaci estimate from Hasekamp et al. 2019 when controlling for
meteorology using clustering techniques?

The uncertainty in the RFaci estimate using meteorological clustering or geographical regimes is the

same. The uncertainty is dominated by our lack of knowledge about the pre-industrial atmospheric

aerosol state, and by retrieval errors. Variation in susceptibilities do not affect the forcing estimates

much. The susceptibilities computed using clustering could be ’more true’ compared to using the

geographical regimes, but that is not possible to prove based on this work.

How do the aerosol-cloud interactions and cloud adjustments differ per cluster?

The susceptibilities of 𝑁𝑑 to 𝑁𝑐𝑐𝑛 per cluster are very similar. We found that the strength of

relationship depends on the sampling across the globe, with differences between the southern and

northern hemispheres. We found that retrieval errors at low CCN concentrations lead to underestimation

of the susceptibility and that this could be specifically important for the southern hemisphere retrievals.

The liquid water path adjustments show differences between clusters. The strongest effect of

entrainment evaporation is found in the clusters with low relative humidity at 700 hPa, which is in line

with findings by Gryspeerdt et al. (2019). Wind speed also appears to be an important factor in the

entrainment evaporation effect. Interpretation of the differences in precipitation suppression effect is

hampered by the low data density at low CDNC values.

For the cloud fraction adjustments, the clusters seem to fall into two categories: primarily high

values for CF , or primarily low values for CF. This leads to higher and lower susceptibilities respectively.

34
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The dry mid-latitude cluster appears to be a transitional state between the two states. The relationship

is most heavily influenced by EIS, because EIS is highly correlated with CF. Variations in RH between

clusters does not seem to impact the relationship.

6.2. Limitations
The CDNC retrieval is influenced by bias in the satellite-retrieve effective radius for inhomogeneous

clouds. Broken cloud formations can lead to an overestimation of the effective radius retrieved using

2.1-micron reflectances. As 𝑁𝑑 is inversely proportional to 𝑟
5/2

𝑒 , this could lead to an underestimation of

𝑁𝑑. However, Grosvenor et al. (2014) found that 𝑁𝑑 increases for broken clouds compared to closed cell

clouds. The effect of this bias was tested using a simple simulator, but more investigation can be done

on the effect of this error.

Another limitation is that the analysis of the adjustments is done with a different dataset than the

analysis of the cloud albedo effect. This is unavoidable as the cloud albedo effect requires us to use

both 𝑁𝑐𝑐𝑛 and 𝑁𝑑 retrievals in the same grid box. This limits the sample to grid boxes where the cloud

fraction is around 0.2-0.6. Gryspeerdt et al. (2016) overcome this issue by interpolating AOD values

neighbouring grid boxes with high CF. This could be an interesting route for future studies with 𝑁𝑐𝑐𝑛

concentrations. Wall et al. (2023) used reanalysis data to estimate the CCN concentrations, which allows

estimation of CCN levels in high CF grid boxes.

One of the cornerstones of this analysis is that we control for meteorological covariaton using

clustering of reanalysis data. However, the confounding effect of meteorology could still affect the

relationships within a cluster because of variations within a cluster, imperfections in the clustered data,

or an imperfect clustering approach. This means that there could be spurious correlations that create

biases in the susceptibilities we computed. It is unknown how much these possible correlations affect

the result of this work, but they increase the uncertainty in the computed forcings.

The two adjustment relationships (LWP to 𝑁𝑑 and CF to 𝑁𝑑) are both highly non-linear. Using a

linear regression allows us to use susceptibilities to estimate the forcing since pre-industrial times, using

a difference of CCN concentrations: Δ ln𝑁𝑐𝑐𝑛 . However, due to the non-linearity of the relationships,

this approach could lead to inaccuracies. Using more elaborate relationships could prove to better

capture the relationships, but we should consider what relationships we would expect from aggregated

satellite data based on process scale understanding.

The clustering of cloud-controlling factors leads to a distinct separation of the meteorological data.

Limitations of the method are that some of the parameters are not distributed as a Gaussian, while the

k-means clustering algorithm assumes Gaussian distributed parameters. This could cause clusters to

contain data points that would fit better in a different clusters.

6.3. Recommendations
• Possible future work can be done to improve the meteorological clustering by using the DBSCAN

or OPTICS algorithms, as these do not assume normality (Saxena et al. 2017).

• Another factor that could possibly improve the clustering is how to use the vertical pressure

velocity parameter from the reanalysis data: Ω. Differences in updraft conditions should strongly

affect aerosol-cloud interactions. The Ω parameter in the reanalysis data only measures large-scale

vertical motion over a grid box and shows large variations between adjacent time steps and between

adjacent grid boxes. It is uncertain if this reanalysis parameter actually helps the clustering. For a

future study, this could be investigated.

• It would be useful to analyse which cloud-controlling factor affects the separation in cloud

parameters the most and whether other important factors are missing. For example, in our

analysis, we did not include temperature advection across the ocean surface, which could be an

additional important cloud controlling factor (Klein et al. 2018). Adding this parameter could

potentially improve the clustering for the purpose of studying aerosol-cloud interactions.

• It would be beneficial to include more data in a future analysis. The 𝑁𝑐𝑐𝑛 retrievals are limited by

the fact that POLDER-3 moved away from the A-Train in December 2009, but including data up to

that point would help improve the analysis.

• Redoing this analysis on a different reanalysis dataset could help test the robustness of this

methodology. It would be interesting to see potential differences in the clustering.



References

Abraham, C. and C. Goldblatt (2022). “A satellite climatology of relative humidity profiles and outgoing

thermal radiation over Earth’s oceans”. In: Journal of the Atmospheric Sciences 79 (6), pp. 2243–2265.

issn: 15200469. doi: 10.1175/JAS-D-21-0270.1.
Albrecht, B. A. (1989). “Aerosols, Cloud Microphysics, and Fractional Cloudiness”. In: Science 245.4923,

pp. 1227–1230. doi: 10.1126/science.245.4923.1227. eprint: https://www.science.org/doi/
pdf/10.1126/science.245.4923.1227. url: https://www.science.org/doi/abs/10.1126/
science.245.4923.1227.

Bellouin, N. et al. (2013). “Estimates of aerosol radiative forcing from the MACC re-analysis”. In:

Atmospheric Chemistry and Physics 13 (4), pp. 2045–2062. issn: 16807316. doi: 10.5194/acp-13-2045-
2013.

Bellouin, N. et al. (Mar. 2020). “Bounding Global Aerosol Radiative Forcing of Climate Change”. In:

Reviews of Geophysics 58 (1). issn: 19449208. doi: 10.1029/2019RG000660.
Burrows, S. M. et al. (June 2022). Ice-Nucleating Particles That Impact Clouds and Climate: Observational and

Modeling Research Needs. doi: 10.1029/2021RG000745.
Carslaw, K. S. et al. (2013). “Large contribution of natural aerosols to uncertainty in indirect forcing”. In:

Nature 503.7474, pp. 67–71. issn: 1476-4687. doi: 10.1038/nature12674. url: https://doi.org/10.
1038/nature12674.

Carslaw, K. S. et al. (2017). “Aerosols in the Pre-industrial Atmosphere”. In: Current Climate Change
Reports 3.1, pp. 1–15. issn: 2198-6061. doi: 10.1007/s40641-017-0061-2. url: https://doi.org/10.
1007/s40641-017-0061-2.

Charlson, R. et al. (1991). “Perturbation of the northern hemisphere radiative balance by backscattering

from anthropogenic sulfate aerosols”. In: Tellus A: Dynamic Meteorology and Oceanography 43.4. doi:

10.3402/tellusa.v43i4.11944. url: https://doi.org/10.3402/tellusa.v43i4.11944.
Chen, Y. C. et al. (2011). “A comprehensive numerical study of aerosol-cloud-precipitation interactions in

marine stratocumulus”. In: Atmospheric Chemistry and Physics 11.18, pp. 9749–9769. doi: 10.5194/acp-
11-9749-2011. url: https://acp.copernicus.org/articles/11/9749/2011/.

Chen, Y. et al. (Aug. 2022). “Machine learning reveals climate forcing from aerosols is dominated by

increased cloud cover”. In: Nature Geoscience 15 (8), pp. 609–614. issn: 17520908. doi: 10.1038/s41561-
022-00991-6.

Christensen, M. W. et al. (2017). “Unveiling aerosol-cloud interactions - Part 1: Cloud contamination

in satellite products enhances the aerosol indirect forcing estimate”. In: Atmospheric Chemistry and
Physics 17.21. doi: 10.5194/acp-17-13151-2017. url: https://acp.copernicus.org/articles/
17/13151/2017/.

Christensen, M. W. et al. (2022). “Opportunistic experiments to constrain aerosol effective radiative

forcing”. In: Atmospheric Chemistry and Physics 22 (1), pp. 641–674. issn: 16807324. doi: 10.5194/acp-
22-641-2022.

Conover, J. H. (1966). “Anomalous Cloud Lines”. In: Journal of Atmospheric Sciences 23.6, pp. 778–785. doi:

https://doi.org/10.1175/1520-0469(1966)023<0778:ACL>2.0.CO;2. url: https://journals.
ametsoc.org/view/journals/atsc/23/6/1520-0469_1966_023_0778_acl_2_0_co_2.xml.

D’Alessandro, J. J. et al. (2023). “An Evaluation of Phase, Aerosol-Cloud Interactions and Microphysical

Properties of Single- and Multi-Layer Clouds Over the Southern Ocean Using in Situ Observa-

tions From SOCRATES”. In: Journal of Geophysical Research: Atmospheres 128.15. e2023JD038610

2023JD038610, e2023JD038610. doi: https://doi.org/10.1029/2023JD038610. eprint: https:
//agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2023JD038610. url: https://agupubs.
onlinelibrary.wiley.com/doi/abs/10.1029/2023JD038610.

Doelling, D. R. et al. (2013). “Geostationary Enhanced Temporal Interpolation for CERES Flux Products”.

In: Journal of Atmospheric and Oceanic Technology 30.6, pp. 1072–1090. doi: https://doi.org/10.1175/
JTECH-D-12-00136.1. url: https://journals.ametsoc.org/view/journals/atot/30/6/jtech-
d-12-00136_1.xml.

36

https://doi.org/10.1175/JAS-D-21-0270.1
https://doi.org/10.1126/science.245.4923.1227
https://www.science.org/doi/pdf/10.1126/science.245.4923.1227
https://www.science.org/doi/pdf/10.1126/science.245.4923.1227
https://www.science.org/doi/abs/10.1126/science.245.4923.1227
https://www.science.org/doi/abs/10.1126/science.245.4923.1227
https://doi.org/10.5194/acp-13-2045-2013
https://doi.org/10.5194/acp-13-2045-2013
https://doi.org/10.1029/2019RG000660
https://doi.org/10.1029/2021RG000745
https://doi.org/10.1038/nature12674
https://doi.org/10.1038/nature12674
https://doi.org/10.1038/nature12674
https://doi.org/10.1007/s40641-017-0061-2
https://doi.org/10.1007/s40641-017-0061-2
https://doi.org/10.1007/s40641-017-0061-2
https://doi.org/10.3402/tellusa.v43i4.11944
https://doi.org/10.3402/tellusa.v43i4.11944
https://doi.org/10.5194/acp-11-9749-2011
https://doi.org/10.5194/acp-11-9749-2011
https://acp.copernicus.org/articles/11/9749/2011/
https://doi.org/10.1038/s41561-022-00991-6
https://doi.org/10.1038/s41561-022-00991-6
https://doi.org/10.5194/acp-17-13151-2017
https://acp.copernicus.org/articles/17/13151/2017/
https://acp.copernicus.org/articles/17/13151/2017/
https://doi.org/10.5194/acp-22-641-2022
https://doi.org/10.5194/acp-22-641-2022
https://doi.org/https://doi.org/10.1175/1520-0469(1966)023<0778:ACL>2.0.CO;2
https://journals.ametsoc.org/view/journals/atsc/23/6/1520-0469_1966_023_0778_acl_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/atsc/23/6/1520-0469_1966_023_0778_acl_2_0_co_2.xml
https://doi.org/https://doi.org/10.1029/2023JD038610
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2023JD038610
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2023JD038610
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2023JD038610
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2023JD038610
https://doi.org/https://doi.org/10.1175/JTECH-D-12-00136.1
https://doi.org/https://doi.org/10.1175/JTECH-D-12-00136.1
https://journals.ametsoc.org/view/journals/atot/30/6/jtech-d-12-00136_1.xml
https://journals.ametsoc.org/view/journals/atot/30/6/jtech-d-12-00136_1.xml


References 37

Dusek, U. et al. (2006). “Size Matters More Than Chemistry for Cloud-Nucleating Ability of Aerosol

Particles”. In: Science 312.5778, pp. 1375–1378. doi: 10.1126/science.1125261. eprint: https:
//www.science.org/doi/pdf/10.1126/science.1125261. url: https://www.science.org/doi/
abs/10.1126/science.1125261.

Evans, S. M. et al. (2012). “Identification and analysis of atmospheric states and associated cloud

properties for Darwin, Australia”. In: Journal of Geophysical Research Atmospheres 117 (6), pp. 1–12.

issn: 01480227. doi: 10.1029/2011JD017010.
Farmer, G. T. and J. Cook (2013). “Earth’s Energy Budget”. In: Climate Change Science: A Modern Synthesis:

Volume 1 - The Physical Climate. Dordrecht: Springer Netherlands, pp. 81–95. isbn: 978-94-007-5757-8.

doi: 10.1007/978-94-007-5757-8_4. url: https://doi.org/10.1007/978-94-007-5757-8_4.
Feingold, G. et al. (2016). “New approaches to quantifying aerosol influence on the cloud radiative effect”.

In: Proceedings of the National Academy of Sciences of the United States of America 113 (21), pp. 5812–5819.

issn: 10916490. doi: 10.1073/pnas.1514035112.
Forster, P. et al. (2021). “The Earth’s Energy Budget, Climate Feedbacks, and Climate Sensitivity”. In:

ed. by V. Masson-Delmotte et al. Cambridge University Press. url: https://www.ipcc.ch/report/
ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter_07.pdf.

Gelaro, R. et al. (2017). “The Modern-Era Retrospective Analysis for Research and Applications, Version

2 (MERRA-2)”. In: Journal of Climate 30.14, pp. 5419–5454. doi: https://doi.org/10.1175/JCLI-
D-16-0758.1. url: https://journals.ametsoc.org/view/journals/clim/30/14/jcli-d-16-
0758.1.xml.

Gerber, H. et al. (2013). “Entrainment rates and microphysics in POST stratocumulus”. In: Journal of
Geophysical Research: Atmospheres 118.21, pp. 12, 094–12, 109. doi: https://doi.org/10.1002/jgrd.
50878. eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/jgrd.50878. url:

https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/jgrd.50878.
Ghan, S. et al. (2016). “Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing

using present-day spatiotemporal variability”. In: Proceedings of the National Academy of Sciences
113.21, pp. 5804–5811. doi: 10.1073/pnas.1514036113. eprint: https://www.pnas.org/doi/pdf/
10.1073/pnas.1514036113. url: https://www.pnas.org/doi/abs/10.1073/pnas.1514036113.

Glassmeier, F. et al. (2021). “Aerosol-cloud-climate cooling overestimated by ship-track data”. In: Science
371, p. 2023. url: https://www.science.org.

Gorman, E. T. et al. (2019). “The NASA Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission: an

emerging era of global, hyperspectral Earth system remote sensing”. In: Sensors, Systems, and Next-
Generation Satellites XXIII. Ed. by S. P. Neeck, P. Martimort, and T. Kimura. Vol. 11151. International

Society for Optics and Photonics. SPIE, 111510G. doi: 10.1117/12.2537146. url: https://doi.org/
10.1117/12.2537146.

Govender, P. and V. Sivakumar (2020). “Application of k-means and hierarchical clustering techniques

for analysis of air pollution: A review (1980–2019)”. In: Atmospheric Pollution Research 11 (1),

pp. 40–56. issn: 1309-1042. doi: https://doi.org/10.1016/j.apr.2019.09.009. url: https:
//www.sciencedirect.com/science/article/pii/S1309104219304556.

Grosvenor, D. P. and R. Wood (2014). “The effect of solar zenith angle on MODIS cloud optical and

microphysical retrievals within marine liquid water clouds”. In: Atmospheric Chemistry and Physics
14.14, pp. 7291–7321. doi: 10.5194/acp-14-7291-2014. url: https://acp.copernicus.org/
articles/14/7291/2014/.

Grosvenor, D. P. et al. (2018). “Remote sensing of droplet number concentration in warm clouds: A

review of the current state of knowledge and perspectives”. In: Reviews of Geophysics 56.2, pp. 409–453.

Gryspeerdt, E., J. Quaas, and N. Bellouin (2016). “Constraining the aerosol influence on cloud fraction”.

In: Journal of Geophysical Research 121 (7), pp. 3566–3583. issn: 21562202. doi: 10.1002/2015JD023744.
Gryspeerdt, E. et al. (July 2015). “Wet scavenging limits the detection of aerosol effects on precipitation”.

In: Atmospheric Chemistry and Physics 15 (13), pp. 7557–7570. issn: 16807324. doi: 10.5194/acp-15-
7557-2015.

Gryspeerdt, E. and P. Stier (2012). “Regime-based analysis of aerosol-cloud interactions”. In: Geophysical
Research Letters 39 (21), pp. 1–5. issn: 00948276. doi: 10.1029/2012GL053221.

Gryspeerdt, E. et al. (2017). “Constraining the instantan eous aerosol influence on cloud albedo”. In:

Proceedings of the National Academy of Sciences of the United States of America 114 (19), pp. 4899–4904.

issn: 10916490. doi: 10.1073/pnas.1617765114.

https://doi.org/10.1126/science.1125261
https://www.science.org/doi/pdf/10.1126/science.1125261
https://www.science.org/doi/pdf/10.1126/science.1125261
https://www.science.org/doi/abs/10.1126/science.1125261
https://www.science.org/doi/abs/10.1126/science.1125261
https://doi.org/10.1029/2011JD017010
https://doi.org/10.1007/978-94-007-5757-8_4
https://doi.org/10.1007/978-94-007-5757-8_4
https://doi.org/10.1073/pnas.1514035112
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter_07.pdf
https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Chapter_07.pdf
https://doi.org/https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/https://doi.org/10.1175/JCLI-D-16-0758.1
https://journals.ametsoc.org/view/journals/clim/30/14/jcli-d-16-0758.1.xml
https://journals.ametsoc.org/view/journals/clim/30/14/jcli-d-16-0758.1.xml
https://doi.org/https://doi.org/10.1002/jgrd.50878
https://doi.org/https://doi.org/10.1002/jgrd.50878
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/jgrd.50878
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/jgrd.50878
https://doi.org/10.1073/pnas.1514036113
https://www.pnas.org/doi/pdf/10.1073/pnas.1514036113
https://www.pnas.org/doi/pdf/10.1073/pnas.1514036113
https://www.pnas.org/doi/abs/10.1073/pnas.1514036113
https://www.science.org
https://doi.org/10.1117/12.2537146
https://doi.org/10.1117/12.2537146
https://doi.org/10.1117/12.2537146
https://doi.org/https://doi.org/10.1016/j.apr.2019.09.009
https://www.sciencedirect.com/science/article/pii/S1309104219304556
https://www.sciencedirect.com/science/article/pii/S1309104219304556
https://doi.org/10.5194/acp-14-7291-2014
https://acp.copernicus.org/articles/14/7291/2014/
https://acp.copernicus.org/articles/14/7291/2014/
https://doi.org/10.1002/2015JD023744
https://doi.org/10.5194/acp-15-7557-2015
https://doi.org/10.5194/acp-15-7557-2015
https://doi.org/10.1029/2012GL053221
https://doi.org/10.1073/pnas.1617765114


References 38

Gryspeerdt, E. et al. (Apr. 2019). “Constraining the aerosol influence on cloud liquid water path”. In:

Atmospheric Chemistry and Physics 19 (8), pp. 5331–5347. issn: 16807324. doi: 10.5194/acp-19-5331-
2019.

Gryspeerdt, E. et al. (Jan. 2020). “Surprising similarities in model and observational aerosol radiative

forcing estimates”. In: Atmospheric Chemistry and Physics 20 (1), pp. 613–623. issn: 16807324. doi:

10.5194/acp-20-613-2020.
Hamilton, D. S. et al. (2014). “Occurrence of pristine aerosol environments on a polluted planet”. In:

Proceedings of the National Academy of Sciences 111.52, pp. 18466–18471. doi: 10.1073/pnas.1415440111.
eprint: https://www.pnas.org/doi/pdf/10.1073/pnas.1415440111. url: https://www.pnas.
org/doi/abs/10.1073/pnas.1415440111.

Hasekamp, O. P., E. Gryspeerdt, and J. Quaas (2019). “Analysis of polarimetric satellite measurements

suggests stronger cooling due to aerosol-cloud interactions”. In: Nature Communications 10 (1), pp. 1–7.

doi: 10.1038/s41467-019-13372-2. url: http://dx.doi.org/10.1038/s41467-019-13372-2.
Hasekamp, O. P., P. Litvinov, and A. Butz (2011). “Aerosol properties over the ocean from PARASOL

multiangle photopolarimetric measurements”. In: Journal of Geophysical Research Atmospheres 116 (14),

pp. 1–13. issn: 01480227. doi: 10.1029/2010JD015469.
Jia, H., X. Ma, and Y. Liu (2019). “Exploring aerosol–cloud interaction using VOCALS-REx aircraft

measurements”. In: Atmospheric Chemistry and Physics 19.12, pp. 7955–7971. doi: 10.5194/acp-19-
7955-2019. url: https://acp.copernicus.org/articles/19/7955/2019/.

Klein, S. A. and D. L. Hartmann (1993). “The Seasonal Cycle of Low Stratiform Clouds”. In: Journal
of Climate 6.8, pp. 1587–1606. doi: https://doi.org/10.1175/1520- 0442(1993)006<1587:
TSCOLS>2.0.CO;2. url: https://journals.ametsoc.org/view/journals/clim/6/8/1520-
0442_1993_006_1587_tscols_2_0_co_2.xml.

Klein, S. A. et al. (2018). “Low-Cloud Feedbacks from Cloud-Controlling Factors: A Review”. In:

Shallow Clouds, Water Vapor, Circulation, and Climate Sensitivity. Ed. by R. Pincus et al. Cham:

Springer International Publishing, pp. 135–157. doi: 10.1007/978- 3- 319- 77273- 8_7. url:

https://doi.org/10.1007/978-3-319-77273-8_7.
Koren, I., G. Feingold, and L. A. Remer (2010). “The invigoration of deep convective clouds over the

Atlantic: aerosol effect, meteorology or retrieval artifact?” In: Atmospheric Chemistry and Physics 10.18.

doi: 10.5194/acp-10-8855-2010. url: https://acp.copernicus.org/articles/10/8855/2010/.
Kuma, P. et al. (2023). “Machine learning of cloud types in satellite observations and climate models”.

In: Atmospheric Chemistry and Physics 23.1, pp. 523–549. doi: 10.5194/acp-23-523-2023. url:

https://acp.copernicus.org/articles/23/523/2023/.
L’Ecuyer, T. S. et al. (2019). “Reassessing the Effect of Cloud Type on Earth’s Energy Balance in

the Age of Active Spaceborne Observations. Part I: Top of Atmosphere and Surface”. In: Journal
of Climate 32.19, pp. 6197–6217. doi: https://doi.org/10.1175/JCLI- D- 18- 0753.1. url:

https://journals.ametsoc.org/view/journals/clim/32/19/jcli-d-18-0753.1.xml.
Lebsock, M. D., G. L. Stephens, and C. Kummerow (2008). “Multisensor satellite observations of

aerosol effects on warm clouds”. In: Journal of Geophysical Research: Atmospheres 113.D15. doi:

https://doi.org/10.1029/2008JD009876. eprint: https://agupubs.onlinelibrary.wiley.com/
doi/pdf/10.1029/2008JD009876. url: https://agupubs.onlinelibrary.wiley.com/doi/abs/
10.1029/2008JD009876.

Ma, P. L. et al. (2018). “Observational constraint on cloud susceptibility weakened by aerosol retrieval

limitations”. In: Nature Communications 9.1, p. 2640. doi: 10.1038/s41467-018-05028-4. url:

https://doi.org/10.1038/s41467-018-05028-4.
Ma, X., F. Yu, and J. Quaas (Sept. 2014). “Reassessment of satellite-based estimate of aerosol climate

forcing”. In: Journal of Geophysical Research 119 (17), pp. 10, 394–10, 409. issn: 21562202. doi: 10.1002/
2014JD021670.

Marchant, B. et al. (2016). “MODIS Collection 6 shortwave-derived cloud phase classification algorithm

and comparisons with CALIOP”. In: Atmospheric Measurement Techniques 9.4, pp. 1587–1599. doi:

10.5194/amt-9-1587-2016. url: https://amt.copernicus.org/articles/9/1587/2016/.
McComiskey, A. et al. (2009). “An assessment of aerosol-cloud interactions in marine stratus clouds

based on surface remote sensing”. In: Journal of Geophysical Research: Atmospheres 114.D9. doi:

https://doi.org/10.1029/2008JD011006. eprint: https://agupubs.onlinelibrary.wiley.com/
doi/pdf/10.1029/2008JD011006. url: https://agupubs.onlinelibrary.wiley.com/doi/abs/
10.1029/2008JD011006.

https://doi.org/10.5194/acp-19-5331-2019
https://doi.org/10.5194/acp-19-5331-2019
https://doi.org/10.5194/acp-20-613-2020
https://doi.org/10.1073/pnas.1415440111
https://www.pnas.org/doi/pdf/10.1073/pnas.1415440111
https://www.pnas.org/doi/abs/10.1073/pnas.1415440111
https://www.pnas.org/doi/abs/10.1073/pnas.1415440111
https://doi.org/10.1038/s41467-019-13372-2
http://dx.doi.org/10.1038/s41467-019-13372-2
https://doi.org/10.1029/2010JD015469
https://doi.org/10.5194/acp-19-7955-2019
https://doi.org/10.5194/acp-19-7955-2019
https://acp.copernicus.org/articles/19/7955/2019/
https://doi.org/https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2
https://doi.org/https://doi.org/10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2
https://journals.ametsoc.org/view/journals/clim/6/8/1520-0442_1993_006_1587_tscols_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/clim/6/8/1520-0442_1993_006_1587_tscols_2_0_co_2.xml
https://doi.org/10.1007/978-3-319-77273-8_7
https://doi.org/10.1007/978-3-319-77273-8_7
https://doi.org/10.5194/acp-10-8855-2010
https://acp.copernicus.org/articles/10/8855/2010/
https://doi.org/10.5194/acp-23-523-2023
https://acp.copernicus.org/articles/23/523/2023/
https://doi.org/https://doi.org/10.1175/JCLI-D-18-0753.1
https://journals.ametsoc.org/view/journals/clim/32/19/jcli-d-18-0753.1.xml
https://doi.org/https://doi.org/10.1029/2008JD009876
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2008JD009876
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2008JD009876
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008JD009876
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008JD009876
https://doi.org/10.1038/s41467-018-05028-4
https://doi.org/10.1038/s41467-018-05028-4
https://doi.org/10.1002/2014JD021670
https://doi.org/10.1002/2014JD021670
https://doi.org/10.5194/amt-9-1587-2016
https://amt.copernicus.org/articles/9/1587/2016/
https://doi.org/https://doi.org/10.1029/2008JD011006
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2008JD011006
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2008JD011006
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008JD011006
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2008JD011006


References 39

McCoy, D. T. et al. (2015). “Natural aerosols explain seasonal and spatial patterns of Southern Ocean

cloud albedo”. In: Science Advances 1.6, e1500157. doi: 10.1126/sciadv.1500157. eprint: https:
//www.science.org/doi/pdf/10.1126/sciadv.1500157. url: https://www.science.org/doi/
abs/10.1126/sciadv.1500157.

McCoy, I. L. et al. (2020). “The hemispheric contrast in cloud microphysical properties constrains

aerosol forcing”. In: Proceedings of the National Academy of Sciences 117.32, pp. 18998–19006. doi:

10.1073/pnas.1922502117. eprint: https://www.pnas.org/doi/pdf/10.1073/pnas.1922502117.
url: https://www.pnas.org/doi/abs/10.1073/pnas.1922502117.

Mishchenko, M. I. et al. (2007). “Accurate Monitoring of Terrestrial Aerosols and Total Solar Irradiance:

Introducing the Glory Mission”. In: Bulletin of the American Meteorological Society 88.5, pp. 677–692.

doi: https://doi.org/10.1175/BAMS-88-5-677. url: https://journals.ametsoc.org/view/
journals/bams/88/5/bams-88-5-677.xml.

Mülmenstädt, J. and G. Feingold (Mar. 2018). “The Radiative Forcing of Aerosol–Cloud Interactions

in Liquid Clouds: Wrestling and Embracing Uncertainty”. In: Current Climate Change Reports 4 (1),

pp. 23–40. issn: 21986061. doi: 10.1007/s40641-018-0089-y.
Nakajima, T. et al. (2001). “A possible correlation between satellite-derived cloud and aerosol mi-

crophysical parameters”. In: Geophysical Research Letters 28.7, pp. 1171–1174. doi: https://doi.
org/10.1029/2000GL012186. eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/
10.1029/2000GL012186. url: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/
2000GL012186.

Nishant, N. and S. C. Sherwood (2017). “A cloud-resolving model study of aerosol-cloud correlation

in a pristine maritime environment”. In: Geophysical Research Letters 44.11, pp. 5774–5781. doi:

https://doi.org/10.1002/2017GL073267. eprint: https://agupubs.onlinelibrary.wiley.com/
doi/pdf/10.1002/2017GL073267. url: https://agupubs.onlinelibrary.wiley.com/doi/abs/
10.1002/2017GL073267.

Platnick, S., M. King, and P. Hubanks (2017a). MODIS Atmosphere L3 Daily Product. NASA MODIS
Adaptive Processing System, Goddard Space Flight Center. doi: 10.5067/MODIS/MOD08_D3.061.

Platnick, S. et al. (2017b). “The MODIS Cloud Optical and Microphysical Products: Collection 6 Updates

and Examples From Terra and Aqua”. In: IEEE Transactions on Geoscience and Remote Sensing 55.1,

pp. 502–525. doi: 10.1109/TGRS.2016.2610522.
Prospero, J. M. et al. (1983). “The atmospheric aerosol system: An overview”. In: Reviews of Geophysics

21.7, pp. 1607–1629. doi: https://doi.org/10.1029/RG021i007p01607. eprint: https://agupubs.
onlinelibrary.wiley.com/doi/pdf/10.1029/RG021i007p01607. url: https://agupubs.online
library.wiley.com/doi/abs/10.1029/RG021i007p01607.

Quaas, J., O. Boucher, and U. Lohmann (2006). “Constraining the total aerosol indirect effect in the LMDZ

and ECHAM4 GCMs using MODIS satellite data”. In: Atmospheric Chemistry and Physics 6.4, pp. 947–

955. doi: 10.5194/acp-6-947-2006. url: https://acp.copernicus.org/articles/6/947/2006/.
Quaas, J. et al. (2009). “Aerosol indirect effects - general circulation model intercomparison and evaluation

with satellite data”. In: Atmospheric Chemistry and Physics 9 (22), pp. 8697–8717. issn: 16807324. doi:

10.5194/acp-9-8697-2009.
Quaas, J. et al. (2008). “Satellite-based estimate of the direct and indirect aerosol climate forcing”. In:

Journal of Geophysical Research: Atmospheres 113.D5.

Raes, F. et al. (2000). “Formation and cycling of aerosols in the global troposphere”. In: Atmospheric
Environment 34.25, pp. 4215–4240. issn: 1352-2310. doi: https://doi.org/10.1016/S1352-2310(00)
00239-9. url: https://www.sciencedirect.com/science/article/pii/S1352231000002399.

Ramanathan, V. and G. Carmichael (2008). “Global and regional climate changes due to black carbon”.

In: Nature Geoscience 1.4, pp. 221–227. issn: 1752-0908. doi: 10.1038/ngeo156. url: https://doi.
org/10.1038/ngeo156.

Romps, D. M. (2017). “Exact expression for the lifting condensation level”. In: Journal of the Atmospheric
Sciences 74 (12), pp. 3891–3900. issn: 15200469. doi: 10.1175/JAS-D-17-0102.1.

Rossow, W. B. and R. A. Schiffer (1991). “ISCCP Cloud Data Products”. In: Bulletin of the American
Meteorological Society 72.1, pp. 2–20. doi: https://doi.org/10.1175/1520-0477(1991)072<0002:
ICDP> 2.0.CO;2. url: https://journals.ametsoc.org/view/journals/bams/72/1/1520-
0477_1991_072_0002_icdp_2_0_co_2.xml.

https://doi.org/10.1126/sciadv.1500157
https://www.science.org/doi/pdf/10.1126/sciadv.1500157
https://www.science.org/doi/pdf/10.1126/sciadv.1500157
https://www.science.org/doi/abs/10.1126/sciadv.1500157
https://www.science.org/doi/abs/10.1126/sciadv.1500157
https://doi.org/10.1073/pnas.1922502117
https://www.pnas.org/doi/pdf/10.1073/pnas.1922502117
https://www.pnas.org/doi/abs/10.1073/pnas.1922502117
https://doi.org/https://doi.org/10.1175/BAMS-88-5-677
https://journals.ametsoc.org/view/journals/bams/88/5/bams-88-5-677.xml
https://journals.ametsoc.org/view/journals/bams/88/5/bams-88-5-677.xml
https://doi.org/10.1007/s40641-018-0089-y
https://doi.org/https://doi.org/10.1029/2000GL012186
https://doi.org/https://doi.org/10.1029/2000GL012186
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2000GL012186
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2000GL012186
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2000GL012186
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2000GL012186
https://doi.org/https://doi.org/10.1002/2017GL073267
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017GL073267
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2017GL073267
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073267
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2017GL073267
https://doi.org/10.5067/MODIS/MOD08_D3.061
https://doi.org/10.1109/TGRS.2016.2610522
https://doi.org/https://doi.org/10.1029/RG021i007p01607
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/RG021i007p01607
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/RG021i007p01607
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/RG021i007p01607
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/RG021i007p01607
https://doi.org/10.5194/acp-6-947-2006
https://acp.copernicus.org/articles/6/947/2006/
https://doi.org/10.5194/acp-9-8697-2009
https://doi.org/https://doi.org/10.1016/S1352-2310(00)00239-9
https://doi.org/https://doi.org/10.1016/S1352-2310(00)00239-9
https://www.sciencedirect.com/science/article/pii/S1352231000002399
https://doi.org/10.1038/ngeo156
https://doi.org/10.1038/ngeo156
https://doi.org/10.1038/ngeo156
https://doi.org/10.1175/JAS-D-17-0102.1
https://doi.org/https://doi.org/10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2
https://doi.org/https://doi.org/10.1175/1520-0477(1991)072<0002:ICDP>2.0.CO;2
https://journals.ametsoc.org/view/journals/bams/72/1/1520-0477_1991_072_0002_icdp_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/bams/72/1/1520-0477_1991_072_0002_icdp_2_0_co_2.xml


References 40

Saxena, A. et al. (2017). “A review of clustering techniques and developments”. In: Neurocomputing
267, pp. 664–681. issn: 0925-2312. doi: https://doi.org/10.1016/j.neucom.2017.06.053. url:

https://www.sciencedirect.com/science/article/pii/S0925231217311815.
Schmale, J. et al. (2019). “Overview of the Antarctic Circumnavigation Expedition: Study of Preindustrial-

like Aerosols and Their Climate Effects (ACE-SPACE)”. In: Bulletin of the American Meteorological
Society 100.11, pp. 2260–2283. doi: https://doi.org/10.1175/BAMS-D-18-0187.1. url: https:
//journals.ametsoc.org/view/journals/bams/100/11/bams-d-18-0187.1.xml.

Schutgens, N. A. J., D. G. Partridge, and P. Stier (2016). “The importance of temporal collocation for

the evaluation of aerosol models with observations”. In: Atmospheric Chemistry and Physics 16.2,

pp. 1065–1079. doi: 10.5194/acp-16-1065-2016. url: https://acp.copernicus.org/articles/
16/1065/2016/.

Scott, R. C. et al. (2020). “Observed sensitivity of low-cloud radiative effects to meteorological pertur-

bations over the global oceans”. In: Journal of Climate 33 (18), pp. 7717–7734. issn: 08948755. doi:

10.1175/JCLI-D-19-1028.1.
Seinfeld, J. H. et al. (2016). “Improving our fundamental understanding of the role of aerosol- cloud

interactions in the climate system”. In: Proceedings of the National Academy of Sciences 113.21, pp. 5781–

5790.

Shupe, M. D. et al. (2016). “Cloud Property Retrievals in the ARM Program”. In: Meteorological Monographs
57, pp. 19.1–19.20. doi: https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0030.1. url: https:
//journals.ametsoc.org/view/journals/amsm/57/1/amsmonographs-d-15-0030.1.xml.

Snedecor, G. W. and W. G. Cochran (1989). “Statistical Methods, eight edition”. In: Iowa state University
press, Ames, Iowa 1191.2.

Stap, F. A., O. P. Hasekamp, and T. Röckmann (2015). “Sensitivity of PARASOL multi-angle photopo-

larimetric aerosol retrievals to cloud contamination”. In: Atmospheric Measurement Techniques 8.3,

pp. 1287–1301. doi: 10.5194/amt-8-1287-2015. url: https://amt.copernicus.org/articles/8/
1287/2015/.

Stephens, G. L. et al. (2012). “An update on Earth’s energy balance in light of the latest global

observations”. In: Nature Geoscience 5 (10), pp. 691–696. issn: 17520894. doi: 10.1038/ngeo1580.
Stevens, B. and G. Feingold (2009). “Untangling aerosol effects on clouds and precipitation in a buffered

system”. In: Nature 461 (7264), pp. 607–613. issn: 00280836. doi: 10.1038/nature08281.
Stier, P. (2016). “Limitations of passive remote sensing to constrain global cloud condensation nuclei”.

In: Atmospheric Chemistry and Physics 16.10, pp. 6595–6607. doi: 10.5194/acp-16-6595-2016. url:

https://acp.copernicus.org/articles/16/6595/2016/.
Stratmann, F. et al. (2004). “Laboratory Studies and Numerical Simulations of Cloud Droplet Formation

under Realistic Supersaturation Conditions”. In: Journal of Atmospheric and Oceanic Technology 21.6.

doi: https://doi.org/10.1175/1520- 0426(2004)021%3C0876:LSANSO%3E2.0.CO;2. url:

https://journals.ametsoc.org/view/journals/atot/21/6/1520-0426_2004_021_0876_
lsanso_2_0_co_2.xml.

Stubenrauch, C. J. et al. (July 2013). “Assessment of global cloud datasets from satellites: Project and

database initiated by the GEWEX radiation panel”. In: Bulletin of the American Meteorological Society
94 (7), pp. 1031–1049. issn: 00030007. doi: 10.1175/BAMS-D-12-00117.1.

Tselioudis, G. et al. (2013). “Global weather states and their properties from passive and active satellite

cloud retrievals”. In: Journal of Climate 26 (19), pp. 7734–7746. issn: 08948755. doi: 10.1175/JCLI-D-
13-00024.1.

Twomey, S. (1977). “The Influence of Pollution on the Shortwave Albedo of Clouds”. In: Journal of
Atmospheric Sciences 34 (7), pp. 1149–1152. doi: 10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.
CO;2. url: https://journals.ametsoc.org/view/journals/atsc/34/7/1520-0469_1977_034_
1149_tiopot_2_0_co_2.xml.

Wagner, R. et al. (2009). “A review of optical measurements at the aerosol and cloud chamber AIDA”.

In: Journal of Quantitative Spectroscopy and Radiative Transfer 110.11. Light Scattering: Mie and More

Commemorating 100 years of Mie’s 1908 publication, pp. 930–949. issn: 0022-4073. doi: https:
//doi.org/10.1016/j.jqsrt.2009.01.026. url: https://www.sciencedirect.com/science/
article/pii/S0022407309000326.

Wall, C. J., T. Storelvmo, and A. Possner (2023). “Global observations of aerosol indirect effects

from marine liquid clouds”. In: Atmospheric Chemistry and Physics 23.20, pp. 13125–13141. doi:

10.5194/acp-23-13125-2023. url: https://acp.copernicus.org/articles/23/13125/2023/.

https://doi.org/https://doi.org/10.1016/j.neucom.2017.06.053
https://www.sciencedirect.com/science/article/pii/S0925231217311815
https://doi.org/https://doi.org/10.1175/BAMS-D-18-0187.1
https://journals.ametsoc.org/view/journals/bams/100/11/bams-d-18-0187.1.xml
https://journals.ametsoc.org/view/journals/bams/100/11/bams-d-18-0187.1.xml
https://doi.org/10.5194/acp-16-1065-2016
https://acp.copernicus.org/articles/16/1065/2016/
https://acp.copernicus.org/articles/16/1065/2016/
https://doi.org/10.1175/JCLI-D-19-1028.1
https://doi.org/https://doi.org/10.1175/AMSMONOGRAPHS-D-15-0030.1
https://journals.ametsoc.org/view/journals/amsm/57/1/amsmonographs-d-15-0030.1.xml
https://journals.ametsoc.org/view/journals/amsm/57/1/amsmonographs-d-15-0030.1.xml
https://doi.org/10.5194/amt-8-1287-2015
https://amt.copernicus.org/articles/8/1287/2015/
https://amt.copernicus.org/articles/8/1287/2015/
https://doi.org/10.1038/ngeo1580
https://doi.org/10.1038/nature08281
https://doi.org/10.5194/acp-16-6595-2016
https://acp.copernicus.org/articles/16/6595/2016/
https://doi.org/https://doi.org/10.1175/1520-0426(2004)021%3C0876:LSANSO%3E2.0.CO;2
https://journals.ametsoc.org/view/journals/atot/21/6/1520-0426_2004_021_0876_lsanso_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/atot/21/6/1520-0426_2004_021_0876_lsanso_2_0_co_2.xml
https://doi.org/10.1175/BAMS-D-12-00117.1
https://doi.org/10.1175/JCLI-D-13-00024.1
https://doi.org/10.1175/JCLI-D-13-00024.1
https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2
https://journals.ametsoc.org/view/journals/atsc/34/7/1520-0469_1977_034_1149_tiopot_2_0_co_2.xml
https://journals.ametsoc.org/view/journals/atsc/34/7/1520-0469_1977_034_1149_tiopot_2_0_co_2.xml
https://doi.org/https://doi.org/10.1016/j.jqsrt.2009.01.026
https://doi.org/https://doi.org/10.1016/j.jqsrt.2009.01.026
https://www.sciencedirect.com/science/article/pii/S0022407309000326
https://www.sciencedirect.com/science/article/pii/S0022407309000326
https://doi.org/10.5194/acp-23-13125-2023
https://acp.copernicus.org/articles/23/13125/2023/


References 41

Wall, C. J. et al. (2022). “Assessing effective radiative forcing from aerosol-cloud interactions over the

global ocean”. In: Proceedings of the National Academy of Sciences of the United States of America 119 (46).

issn: 10916490. doi: 10.1073/pnas.2210481119.
Williams, J. et al. (2002). “Application of the variability-size relationship to atmospheric aerosol studies:

estimating aerosol lifetimes and ages”. In: Atmospheric Chemistry and Physics 2.2, pp. 133–145. doi:

10.5194/acp-2-133-2002. url: https://acp.copernicus.org/articles/2/133/2002/.
Williams, K. D. and M. J. Webb (2009). “A quantitative performance assessment of cloud regimes in

climate models”. In: Climate Dynamics 33.1, pp. 141–157. issn: 1432-0894. doi: 10.1007/s00382-008-
0443-1. url: https://doi.org/10.1007/s00382-008-0443-1.

Wood, R. (2012). “Stratocumulus Clouds”. In: Monthly Weather Review 140.8, pp. 2373–2423. doi:

https://doi.org/10.1175/MWR-D-11-00121.1. url: https://journals.ametsoc.org/view/
journals/mwre/140/8/mwr-d-11-00121.1.xml.

Wood, R. and C. S. Bretherton (2006). “On the relationship between stratiform low cloud cover and

lower-tropospheric stability”. In: Journal of Climate 19 (24), pp. 6425–6432. issn: 08948755. doi:

10.1175/JCLI3988.1.
Wood, R. et al. (2012). “Precipitation driving of droplet concentration variability in marine low clouds”.

In: Journal of Geophysical Research: Atmospheres 117. doi: https://doi.org/10.1029/2012JD018305.
url: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012JD018305.

Yamaguchi, T., G. Feingold, and J. Kazil (2019). “Aerosol-Cloud Interactions in Trade Wind Cumulus

Clouds and the Role of Vertical Wind Shear”. In: Journal of Geophysical Research: Atmospheres
124.22, pp. 12244–12261. doi: https://doi.org/10.1029/2019JD031073. eprint: https://
agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019JD031073. url: https://agupubs.
onlinelibrary.wiley.com/doi/abs/10.1029/2019JD031073.

Zelinka, M. D. et al. (2014). “Quantifying components of aerosol-cloud-radiation interactions in

climate models”. In: Journal of Geophysical Research: Atmospheres 119.12, pp. 7599–7615. doi: https:
//doi.org/10.1002/2014JD021710. eprint: https://agupubs.onlinelibrary.wiley.com/doi/
pdf/10.1002/2014JD021710. url: https://agupubs.onlinelibrary.wiley.com/doi/abs/10.
1002/2014JD021710.

https://doi.org/10.1073/pnas.2210481119
https://doi.org/10.5194/acp-2-133-2002
https://acp.copernicus.org/articles/2/133/2002/
https://doi.org/10.1007/s00382-008-0443-1
https://doi.org/10.1007/s00382-008-0443-1
https://doi.org/10.1007/s00382-008-0443-1
https://doi.org/https://doi.org/10.1175/MWR-D-11-00121.1
https://journals.ametsoc.org/view/journals/mwre/140/8/mwr-d-11-00121.1.xml
https://journals.ametsoc.org/view/journals/mwre/140/8/mwr-d-11-00121.1.xml
https://doi.org/10.1175/JCLI3988.1
https://doi.org/https://doi.org/10.1029/2012JD018305
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012JD018305
https://doi.org/https://doi.org/10.1029/2019JD031073
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019JD031073
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2019JD031073
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019JD031073
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2019JD031073
https://doi.org/https://doi.org/10.1002/2014JD021710
https://doi.org/https://doi.org/10.1002/2014JD021710
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2014JD021710
https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1002/2014JD021710
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014JD021710
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2014JD021710


A
Formulas and constants

A.1. Constants

Name

Gravitational acceleration 𝑔 = 9.81 m/s
2

Earth’s radius 𝑅𝐸 = 6.378 · 10
6

m

Gas constant of air 𝑅𝑎 = 287.04 J/kg/K

Gas constant for water vapour 𝑅𝑣 = 461.5 J/kg/K

Specific heat capacity of air 𝑐𝑝 = 1003.6𝐽/𝑘𝑔/𝐾
Specific heat capacity of dry air 𝑐𝑣𝑎 = 719 J/kg/K

Specific heat capacity of water vapour 𝑐𝑣𝑣 = 1418 J/kg/K

Specific heat capacity of liquid water 𝑐𝑣𝑙 = 4119 J/kg/K

Specific heat capacity of solid water 𝑐𝑣𝑠 = 1861 J/kg/K

Temperature at triple point of water 𝑇𝑡𝑟𝑖𝑝 = 273.16 K

Pressure at triple point of water 𝑝𝑡𝑟𝑖𝑝 = 611.65 Pa

Internal energy diff. between liquid and solid at the triple point 𝐸0𝑣 = 2.3740 · 10
6

J/kg

Internal energy diff. between vapour and liquid at the triple point 𝐸0𝑠 = 0.3337 · 10
6

J/kg

Latent heat of vaporisation 𝐿𝑣 = 2.50 · 10
6

J/kg/K

A.2. Formulas
Here formulas used in this thesis that are note defined in the text are defined. Mostly these formulas

concern the computation of the Estimated Inversion Strength (EIS; Wood et al. 2006). Potential
temperature

𝜃 = 𝑇

(
𝑝0

𝑝

)𝑅𝑎/𝑐𝑝
, (A.1)

Height at 700 hPa, assuming an exponential decrease in pressure with height with a single scale height

𝑧700 =
𝑅𝑎𝑇

𝑔
log

( 𝑝0

700 hPa

)
(A.2)

Moist-adiabatic potential temperature gradient

Γ𝑚(𝑇, 𝑝) =
𝑔

𝑐𝑝

[
1 − 1 + 𝐿𝜈𝑞𝑠(𝑇, 𝑝)/𝑅𝑎𝑇

1 + 𝐿2

𝜈𝑞𝑠(𝑇, 𝑝)/𝑐𝑝𝑅𝑎𝑇2

]
, (A.3)

Saturated vapour pressure
𝑒𝑠(𝑇) = 6.11 · 10

7.5·𝑇/(237.7+𝑇) , (A.4)
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Saturation mixing ratio

𝑞𝑠(𝑇, 𝑝) = 621.97 · 𝑒𝑠(𝑇)
𝑝 + 𝑒𝑠(𝑇)

, (A.5)

Lifted condensation level. Romps (2017) derived an exact expression of the lifted condensation level

assuming constant heat capacities.

𝑇𝐿𝐶𝐿 = 𝑐
[
𝑊−1(RH

1/𝑎
𝑙
𝑐𝑒 𝑐)

]−1

𝑇, (A.6a)

𝑝𝐿𝐶𝐿 = 𝑝

(
𝑇𝐿𝐶𝐿

𝑇

) 𝑐𝑝𝑚/𝑅𝑚
, (A.6b)

𝑧𝐿𝐶𝐿 = 𝑧 +
𝑐𝑝𝑚

𝑔
(𝑇 − 𝑇𝐿𝐶𝐿), (A.6c)

𝑎 =
𝑐𝑝𝑚

𝑅𝑚
+
𝑐𝑣𝑙 − 𝑐𝑝𝑣
𝑅𝑣

, (A.6d)

𝑏 = −
𝐸0𝑣 − (𝑐𝑣𝑣 − 𝑐𝑣𝑙)𝑇𝑡𝑟𝑖𝑝

𝑅𝑣𝑇
, (A.6e)

𝑐 =
𝑏

𝑎
, (A.6f)

Two-sample t-test for equal means assuming unequal variances. 𝑡
1−𝑎/2,𝑣 is the critical value of the t

distribution with 𝑣 degrees of freedom at significance level a.

𝐻0 : 𝜇1 = 𝜇2 , (A.7a)

𝐻𝑎 : 𝜇1 ≠ 𝜇2 , (A.7b)

𝑡 =
𝜇1 − 𝜇2√

𝑠2

1
/𝑛1 + 𝑠2

2
/𝑛2

, (A.7c)

𝑣 =
(𝑠2

1
/𝑛1 + 𝑠2

2
/𝑛2)2

(𝑠2

1
/𝑛1)2(𝑛1 − 1) + (𝑠2

2
/𝑛2)2(𝑛2 − 1)

, (A.7d)

where the null hypothesis is rejected if :

|𝑇 | > 𝑡
1−𝑎/2,𝑣 . (A.7e)

If equal variances are assumed, the formulas of t and v change to:

𝑡 =
𝜇1 − 𝜇2

𝑠𝑝
√

1/𝑛1 + 1/𝑛2

, (A.8a)

𝑠2

𝑝 =
(𝑛1 − 1)𝑠2

1
+ (𝑛2 − 1)𝑠2

2

𝑛1 + 𝑛2 − 2

, (A.8b)

𝑣 = 𝑛1 + 𝑛2 − 2, (A.8c)

Liquid water path. Formal definition:

ℒ =

∫ ℎ

𝑧=0

𝑞𝐿𝑑𝑧 =
1

2

𝑓𝑎𝑑Γ𝑎𝑑ℎ
2

(A.9)

Liquid water path estimated using satellite retrievals

ℒ =
5

9

𝑓𝑎𝑑𝑟𝑒𝜏𝑐 (A.10)



B
Different clustering

Here we show figures for different number of clusters. Specifically for 𝑘 = 3 and 𝑘 = 12. We also show

the susceptibility plot for 𝑘 = 8.
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Figure B.1: Relative frequency of occurrence for k=3.

Figure B.2: Boxplot of the cloud-controlling factors for k=3.
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Figure B.3: Susceptibility of 𝑁𝑑 to 𝑁𝑐𝑐𝑛 for k=3.

Figure B.4: Susceptibility of 𝑁𝑑 to 𝑁𝑐𝑐𝑛 for k=8.



47

Figure B.5: Relative frequency of occurrence for k=12.
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Figure B.6: Boxplot of the cloud-controlling factors for k=12.

Figure B.7: Susceptibility of 𝑁𝑑 to 𝑁𝑐𝑐𝑛 for k=12.
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