
From Trunk-Based to Merge Requests:

A Field Study at Adyen

Master’s Thesis

Toon de Boer

From Trunk-Based to Merge Requests:

A Field Study at Adyen

THESIS

submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

Toon de Boer

born in Velserbroek, the Netherlands

Software Engineering Research Group

Department of Software Technology

Faculty EEMCS, Delft University of Technology

Delft, the Netherlands

www.ewi.tudelft.nl

Adyen

Simon Carmiggeltstraat 6-50

Amsterdam, the Netherlands

www.adyen.com

www.ewi.tudelft.nl
www.adyen.com

©2021 Toon de Boer. All rights reserved.

From Trunk-Based to Merge Requests:

A Field Study at Adyen

Author: Toon de Boer

Student id: 4575091

Abstract

Many development models exist, but finding which one is the right for a specific project

or software company is difficult. Every project has its requirements and might need

its own development model. The most popular development models are trunk-based

development and merge requests. There are no clear science-based guidelines on when

to adopt one model or the other and challenges that teams face when migrating from

one to another. We perform a field study as this master thesis aims to provide more

understanding on the impact of migrating from one development model to another

at a large company. More specifically, a migration from trunk-based development to

merge request-based development at a large software engineering company. During

this research, we interview 19 developers, eleven before the migration and eight after

the migration, survey 46 developers to triangulate our findings of the interview before

the migration, and analyzed the differences in the code reviews made by developers

before and after the migration. We show what benefits and challenges developers

experience using the trunk-based model and what they expect from the merge request-

based model before the migration. Also, we show the change of motivation for code

reviews after the migration. Moreover, quantitative data shows that code reviews are

completed faster and with more code comments in the merge request-based model.

Finally, we provide the perceptions of developers after the migration.

Thesis Committee:

Chair: Prof. Dr. A.E. Zaidman, Faculty EEMCS, TU Delft

University supervisor: Dr. M. Aniche, Faculty EEMCS, TU Delft

Company supervisor: Y. Radomskyi, Adyen

Committee Member: Dr. C.B. Poulsen, Faculty EEMCS, TU Delft

t.deboer-9@student.tudelft.nl

Preface

This thesis is a result of nine months of research on a graduation project for the degree of

Master of Science in Computer Science at the Delft University of Technology. Although

this thesis does not conclude my study as I will finalize my study program in Madrid next

semester, this will be the end of my time as a computer science student in the Netherlands.

This thesis would not have been possible without the support of many people, whom I would

like to thank.

First of all, professor, supervisor, and colleague Maurı́cio Aniche, thank you for ev-

erything you have done for me. When I introduced myself in my first email more than a

year ago, you immediately replied with possible research topics and you always stayed very

responsive and helpful. Your enthusiasm, insights, and feedback guided me throughout this

project more than anything else.

Furthermore, I would like to thank Andy Zaidman and Casper Poulsen for being part of

my thesis committee.

Moreover, I would like to thank all the professors I have had over the last five years

studying in Delft for teaching me. And thanks to all my fellow students with whom I have

had interesting conversations, did projects, and became friends. Without each other, the last

years would have been very hard.

I would like to thank Adyen for allowing me to conduct research at their company

during the COVID-19 pandemic and this project would not have been possible without the

help of many colleagues at Adyen. I would like to thank Yuri Radomskyi for being my

supervisor at Adyen and the Development and Testing Tools team for making me feel part

of the team and helping me during my research. I would also like to thank all the developers

at Adyen who freed their calendars to participate in the interviews and the survey. Without

their responsiveness and willingness to help, this thesis would not have been possible.

Last but not least, I would like to thank my family and friends for supporting me during

my thesis and study over the years.

Toon de Boer

Delft, the Netherlands

November 1, 2021

iii

Contents

Preface iii

Contents v

List of Figures vii

List of Tables vii

1 Introduction 1

2 Background and Related Work 3

2.1 Adyen . 3

2.2 Related Work . 6

3 The Developers’ Expectations on the Migration Towards Merge Requests 13

3.1 Methodology . 14

3.2 Code Reviews . 16

3.3 Development Speed . 22

3.4 Merge Conflicts . 25

3.5 Security & Safety . 27

3.6 Feature Branches . 29

3.7 Development Models . 32

4 Differences in How Developers Review Code in Trunk-Based and in MRs 37

4.1 Methodology . 37

4.2 Qualitative Analysis on Code Comments 39

4.3 Quantitative Analysis: Review Times . 40

4.4 Quantitative Analysis: Number of Code comments 45

5 The Developers’ Perceptions on the New Merge Request Model 49

5.1 Methodology . 49

v

CONTENTS

5.2 Perceptions on Code Reviews . 51

5.3 Development Speed . 53

5.4 Merge Conflicts . 55

5.5 GitLab . 56

5.6 Merge Requests . 57

5.7 Migration . 58

6 Discussion 61

6.1 Implications . 61

6.2 Recommendations . 63

6.3 How to expand to the community . 63

6.4 Threats to Validity . 64

7 Conclusion 67

Bibliography 71

A Interview Before the Migration 75

B Survey 77

C Interview After the Migration 85

vi

List of Figures

2.1 Trunk-Based Flow. 4

2.2 Merge Request-Based Flow. 5

3.1 Methodology. 14

4.1 Proportion of comments by category. 39

4.2 Days to complete. 41

4.3 Days to complete. 41

4.4 Days to complete. 42

4.5 Days to complete within one month. 42

4.6 Hours to complete within one week. 43

4.7 Hours to complete within one day. 43

4.8 Minutes to complete within one hour. 44

4.9 Days to complete. 44

4.10 Days to complete. 45

4.11 Comments per review. 46

4.12 Comments per review. 46

4.13 Comments per review. 47

4.14 Comments per review. 47

4.15 Comments per review. 48

4.16 Comments per review. 48

5.1 Methodology. 50

vii

LIST OF TABLES

List of Tables

3.1 Interview participants. 15

3.2 Responses to the survey (part 1). 17

3.3 Responses to the survey (part 2). 20

3.4 Responses to the survey (part 3). 23

3.5 Responses to the survey (part 4). 25

3.6 Responses to the survey (part 5). 27

3.7 Responses to the survey (part 6). 30

3.8 Responses to the survey (part 7). 33

4.1 Code Comment Categories. 38

4.2 Times between the creation of the review and the closing of the review. 40

4.3 Comments per review. 45

5.1 Interview participants after migration. 51

viii

Chapter 1

Introduction

Every software development company has to pick a development model with the two most

popular ones being the trunk-based model and the merge requests. Each model has their

own advantages and disadvantages. The trunk-based model is designed for working with

all developers on one branch, which is ideal to launch fast and iterate. However, in the

trunk-based model, code reviews are not mandatory which means that every developer can

commit bad quality code to the repository. The merge request-based model encourages

feature branches and requires code reviews before changes are committed to the master

branch, which adds an extra level of security to the product. But in the merge request model,

the development speed decreases because merge requests are waiting for their approvals to

be merged to master.

There has not been a field study on such migration of development model at a large com-

pany done before to the best of our knowledge. However, some studies explored the merge

request-based model specifically or the importance of code reviews. In our related work

section, we will explore researches done in the field of merge requests and code reviews.

Reviews before and after commits are compared [25] but not one technique is considered

superior. And the main motivations for code reviews are to improve the code and under-

stand what the code is about [4]. Moreover, research shows the merging time in open source

projects, where 60% of merge requests are merged within one day [14].

Deciding which development model to use, in particular, the one that will bring most

value for a specific company in its specific context, is a challenging decision. Adyen, our

case study, decided to move to a merge-request model due to code quality reasons. Code

being reviewed after the merge was not desired as too many errors occurred in the master

branch that needed to be fixed before the code went in production. Developers expected

that code reviews would increase code quality and reduce the number of errors.

In this thesis, we study the impact that such a migration had at Adyen. More specifically,

we collect the developers’ perceptions and expectations before and after the migration, com-

pare the code reviews that developers performed in both models as well as the time it took

developers to do their reviews. To that aim, we propose the following research questions:

RQ1 What are the expectation of migrating from a trunk-based development model to a

merge request-based development model at Adyen?

1

1. INTRODUCTION

RQ2 What has changed in code reviews after migration from trunk-based to merge request-

based at Adyen?

RQ3 How did the developers perceive the migration from trunk-based development to

merge request-based development at Adyen?

To answer these research questions we used qualitative and quantitative research meth-

ods. First, we conduct eleven semi-structured interviews with developers to get an under-

standing of the problem. After that, we survey developers to generalize our findings. We

will analyze the code reviews from the trunk-based models and merge requests to get an

understanding of what the migration has for impact on the code reviews. Finally, we will

interview eight developers that have used the merge request-based model at Adyen to get

their perceptions on the migration.

The results show that developers faced challenges in reviewing code in the trunk-based

model, which resulted in errors on the master branch that were caught only during testing.

These errors had to be fixed immediately to prevent them from going to production, while

they could have been prevented when the responsible code was reviewed before the merge.

Also, commits get mixed up in the master branch instead of sorted on the feature. The

benefit of trunk-based development is the fast development speed that it provides. Results

of the quantitative analysis show that the code reviews are completed faster and more com-

ments are placed in the merge request-based model. Finally, developers who experienced

the merge request-based model prefer working with merge requests as they perceive an in-

crease in code quality. They also feel that better discussions emerge from mandatory code

reviews, and more knowledge is shared among developers.

This research makes the following contributions:

• An understanding of the benefits and challenges of the trunk-based model and the

expectations of developers before the migration of a trunk-based model to a merge

request-based model.

• A qualitative and quantitative analysis of the code reviews in a trunk-based model

compared to the merge request-based model.

• The perception by developers of migrating development model at a large company

and the benefits and challenges of the merge request-development model.

The structure for the remainder of the thesis is as follows. First, we will provide back-

ground information on the project and discuss the related work in chapter 2. Then we will

discuss the work done in three chapters. First, we will discuss the trunk-based model and

the expectations of the migration in chapter 3. Secondly, we will discuss the qualitative

and quantitative analysis done on code reviews in the trunk-based model compared to the

merge request-based model in chapter 4. Thirdly, the perceptions of this migration will be

discussed in chapter 5. After that, a discussion with recommendations and threats to validity

will be provided in chapter 6. Finally, we will conclude the thesis in chapter 7 and propose

future work.

2

Chapter 2

Background and Related Work

Merge requests and code reviews are not a new practice used in the software engineering

domain. In this chapter, we will provide background information to this research and discuss

previous research done on merge requests, code reviews, and empirical research within

computer science.

2.1 Adyen

First of all, to understand this research we will explain the trunk-based development model

and the merge request-based development model as they are implemented by Adyen. After

that, we give an overview of the different tools that are being used, which are relevant to

this research.

2.1.1 About Adyen

Adyen1 is a payments company offering payment services to retail merchants and is respon-

sible for transferring money from a shopper’s bank account to a merchant’s bank account.

This can be done either online (eCommerce) or in-store (point of sale) and Adyen provides

one single solution which includes both. Examples of eCommerce transactions are pay-

ments made in webshops, in-app, or subscriptions, which can be done with a credit card,

iDeal, WeChat Pay, and much more. Point of sale (POS) transactions are physical payments

made on payment terminals with for example card or phone. All sales channels connect to

the same online platform, which gives merchants with both an online webshop and physical

stores better insights.

2.1.2 Trunk-Based Development Model

The trunk-based development model is a model where there is a single master ’trunk’ branch

on which every developer contributes code. There are no separate branches, so when a

developer pushes a commit, this code is immediately on the master branch.

1adyen.com

3

2. BACKGROUND AND RELATED WORK

Figure 2.1: Trunk-Based Flow.

For Adyen, it works slightly differently, which is illustrated in Figure 2.1. The flow

starts with a developer pulling the git repository to its local machine, this version is illus-

trated with #1. Next, the developer makes changes to the code and ends up with version

#1’, while in the meantime other code contributions have been made to the master (#2, #3,

#4). When the developer is done with their code changes, they do a git submit command,

which will rebase and pull the current master, which is on version #4 and runs the pipeline

with all the tests on the Jenkins server. During this time, new contributions may be merged

into master (#5, #6, #7). When the pipeline is complete and all the tests succeeded, a new

rebase and pull from the master is executed automatically with the newest version #7 and

immediately pushed to master. This contribution is now the newest version #8. After the

merge, the code review is opened and a random reviewer gets assigned to review the code.

2.1.3 Merge Request-Based Development Model

The merge request-based development model is a model where feature branches are encour-

aged and to get one’s code into the master branch, one needs to create a merge request. This

merge request can contain any number of commits. When the merge request is approved by

the reviewer, the code will be merged into the master branch.

An example workflow is shown in Figure 2.2. Again, the flow starts with pulling the

repository to your local machine, noted with version #1. Locally the developer can make

multiple commits, shown in the locol swimlane with version #2’. When the developer does a

git push, they need to specify the branch name with the format mr/master/<user>/<branch-

name> otherwise the merge request will not be merged to master. The merge request needs

to be created on the GitLab site and will be put in Draft, which means that no reviewers will

4

2.1. Adyen

Figure 2.2: Merge Request-Based Flow.

get auto-assigned and the merge request cannot be merged. With every push, the pipeline

is run for each new commit as shown in the MR-1 swimlane. When the merge request is

marked Ready, a code reviewer gets automatically assigned to the merge request. When

the reviewer approves the merge request, the merge pipeline is started, which will rebase

the master branch, run all the checks and tests, merge the merge request, close the merge

request, and remove the merge request branch. During this time, new contributions could

have been made to the master (#2, #3, #4, #5). The new version of this example is noted as

#2” in the master branch.

To simplify this approach, Adyen provides an alternate flow which replaces git push

with the custom git mr submit command, similar to the git submit command from the trunk-

based model. The git mr submit command automatically creates a local merge request

branch with the right format, moves commits from maser to this branch, pushes commits

to the remote branch, creates the merge request in Ready state (reviewers get automatically

assigned and the merge request automatically merge on approval), and the repository is

switched back to master, so the developer can continue on the next merge request. This

alternative flow saves the developer extra work and time.

2.1.4 Tools

At Adyen, different tools were used for the trunk-based model and the merge request-based

model. With the trunk-based model Gitea2 was used as the remote GIT repository, while

in the merge request-based model GitLab3 is used. The continuous integration pipeline

2gitea.io
3gitlab.com

5

2. BACKGROUND AND RELATED WORK

runs in Jenkins4 for both models. In the trunk-based approach, code reviews are created in

Upsource5. For the merge request-based approach the reviews are done in GitLab itself.

2.2 Related Work

Merge requests are widely used in the software engineering industry. This section is ded-

icated to a selection of research done in these areas related to merge requests and code

reviews as an important part that comes along with merge requests is the code review. On

a short note, this empirical research is based on the methods described by the lectures on

Empirical Software Engineering by Ferrari [12] and papers that conduct empirical research

[1, 2, 18, 29, 35, 37].

2.2.1 Merge Requests

There is much research done on the merge request-based model. In this subsection, we

discuss relevant papers to this thesis on merge requests.

Exploring Merge Requests

Gousios et al. have researched merge requests on open source software [14]. This paper

explores how pull-based software development works on the GHTorrent corpus [13] and

selected GitHub projects. The paper shows that a relatively small number of factors affect

the decision to merge a pull request and the time to process it.

Distributed Version Control Systems (DVCS) enables a potential contributor to submit

a set of changes to a software project. There are two strategies, shared repository and pull

requests. A shared repository (trunk-based) allows contributors to push their changes back

to the central branch. With pull requests (merge requests), when a set of changes is ready

to be submitted to the main repository a merge request is created, which specifies a local

branch to be merged with the master branch. Merge requests can be used as a requirement

and design discussion tool or as a progress tracking tool towards the fulfillment of project

releases.

There are three ways to merge [10]. Automatically when there are no conflicts to the

base repository. Branch merging, merge fork into the base repository, or cherry-picking by

merging only a few selected commits. And a merger can create a textual difference between

the upstream and the merge request branch, which they then apply to the upstream branch.

In the last case, both history and authorship information is lost.

Merge request usage is increasing in absolute numbers, even though the proportion of

repositories using merge requests has decreased slightly. This might be due to a lot of

individual projects as large projects count the same as small projects. An interesting finding

is that interviewed developers state that the presence of tests in merge requests is a major

factor for their acceptance, but this does not seem to affect the merge decision nor the merge

time. On the other hand, quantitative analysis shows that code reviews affect the time to

4jenkins.io
5upsource.jetbrains.com

6

2.2. Related Work

merge a merge request and the decision to merge a merge request is mainly influenced by

whether the merge request modifies recently modified code. The time to merge is influenced

by the developer’s previous track record, the size of the project and its test coverage, and the

project’s openness to external contributions. Moreover, 53% of merge requests are rejected

for reasons having to do with the distributed nature of merge request-based development.

Only 13% of the merge requests are rejected due to technical reasons. Findings show that

80% of merge requests are merged within four days, 60% in less than a day, and 30% within

one hour (independent of project size). In this thesis, we will also look at the completion

times of merge requests in section 4.3. The advice given by Gousios et al. is to keep merge

requests as short as possible and to invest in a comprehensive test suite.

Work Practices and Challenges of Merge Requests

Another research on challenges in merge request-based development focuses on the role of

the integrator [15]. In this paper, Gousios et al. conduct an exploratory qualitative study

involving a large-scale survey of 749 integrators, to which quantitative data is added from

the integrator’s project.

For the study, data is gathered from GitHub using the GHTorrent database [13]. The

researchers conducted a two-round (pilot and main) survey with 21 and 749 participants re-

spectively. The two key factors integrators are concerned with are quality and prioritization.

In the pilot round, the researchers analyzed the results and identified the themes of

quality and prioritization, which were addressed by including related questions in the sec-

ond round. Both surveys were split into three sections and were intermixed throughout

the survey: demographic information, multiple-choice or Liker-scale questions, and open-

ended questions. Some multiple-choice questions also had the ‘other’ option. The survey

took approximately 15 minutes. For the analysis of the open questions, manual coding was

applied. At least one and up to three codes were applied to each answer.

The results show that at least half of the integrators use merge requests to discuss new

features. This is the GitHub-promoted way of working with merge requests, where a merge

request is opened as early as possible to invite discussion on the developed feature (The

merge request will be marked as WIP, Work In Progress). Another reason to use merge

requests is that there is a policy in place that, for example, each merge request requires at

least 2 reviews before it is merged. Moreover, results show that 75% of the integrators use

inline code comments, and the most important signals used by integrators when deciding

on whether to merge a merge request are code quality, code style, project fit, technical fit,

and testing.

Integrators decide to accept a contribution based on its quality and its degree of fit to

the project’s roadmap and technical design. If the merge request fixes a serious bug with

minimal changes, it is more likely to be accepted. Also, conformance to the project style and

architecture, test coverage, and small merge requests with good documentation is preferred.

One-fifth of the integrators prioritize merge requests based on their criticality (bug fixes),

their urgency (new features), and their size. Also, contributors known to the integrators tend

to get higher priority.

7

2. BACKGROUND AND RELATED WORK

There are multiple technical and social challenges of a merge request-based develop-

ment model. Technical challenges are that reviewers are not always available or merge

requests contain multiple features and affect multiple areas of the project. Also, there could

be a lack of knowledge on merge conflicts among the contributors. A social challenge is

that multiple communication channels are used, integrators find it difficult to synchronize

between multiple sources.

Gousios et al. also researched work practices and challenges of merge requests focused

on the contributor’s perspective [16]. The research shows that contributors have a strong

interest in maintaining awareness of project status to get inspiration and avoid duplicating

work. Moreover, they often use communication channels external to merge requests and the

biggest contributor report is the poor responsiveness from integrators.

Feature Branches

Bird et al. focuses on git and its features to create branches and have a decentralized source

code management [8]. Continuing on this research, Bird and Zimmermann did an empirical

research feature branches at Microsoft [7] to assess the cost and benefit of branches to aid

in several branch-related scenarios.

Barr et al. find that feature branches allow developers to collaborate on tasks in different

branches while enjoying reduced interference from developers working on other tasks, even

if those tasks are strongly coupled to theirs [6].

Development Speed

Jiang et al. [19] performed a study on the Linux kernel project, which is using the merge

request-based model, and found that patches developed by more experienced developers

are more easily accepted and faster reviewed and integrated. Moreover, through time, the

contributions became more frequent and code reviews took less time.

2.2.2 Code Review

Code reviews are an important part of merge requests as the reviewer often decides whether

the code will be merged to the master branch. In this section, we will discuss previous work

related to code reviews.

Testing in Code Reviews

For production code, many open source and industrial software projects employ code re-

view, but the question remains whether and how code review is also used for ensuring the

quality of test code. Research has been done by Spadini et al. [30] where the researchers

conducted quantitative analysis on more than 300,000 code reviews and qualitative analysis

by interviewing twelve developers.

There are four main research contributions in this paper. First of all, results show that

there is no association between the type of code (production or test) and future defects.

Secondly, test files are not discussed as much as production files during code reviews.

8

2.2. Related Work

Thirdly, developers face a variety of challenges when reviewing test files, including dealing

with a lack of testing context, poor navigation support within the review, unrealistic time

constraints imposed by management, and poor knowledge of good reviewing and testing

practices by novice developers. Finally, a tool called GerritMiner was created to help the

researchers collect a dataset of 654,570 code reviews from open source, industry-supported

software systems.

Related work showed that both test code and production code suffer from quality issues

[3, 23, 38] and more than half of the projects studied had bugs in the test code [36]. Also,

current bug detection tools are not tailored to detect test bugs, thus making the role of

effective test code review even more critical. The researchers hypothesize that there are

substantial differences in how test code and production code are reviewed.

This paper specifies three review scenarios where files are modified: both production

and test files, only production files, or only test files. For the semi-structured interview,

each interview started with general questions about code reviews.

The results show that test files are almost 2 times less likely to be discussed during code

review when reviewed together with production files. Another finding is that some reviewers

prefer to inspect test code before production code and vice versa. The main concern of

reviewers is understanding whether the test covers all the paths of the production code and

ensuring tests’ maintainability and readability. A big challenge for reviewers is that there

is a lack of test-specific information within code review tools, which forces reviewers to

inspect the code in their local IDE to navigate through the dependencies. Also, reviewing

test files requires developers to have context about the production code. In addition, test

files are often much longer with new additions instead of modifications which makes the

review harder. Finally, an overall problem is that test files are considered less important and

novice developers and managers are not aware of the impact of poor testing and reviewing

in software quality.

Modern Code Review

Another paper describes an exploratory investigation of modern code review at Google by

Sadowski et al. [28]. There are three research methods used: semi-structured interviews, a

survey, and quantitative analysis of log data.

Participants for the interviews were selected using snowball sampling, starting with

developers known to the paper authors. From this pool, participants were selected to ensure

a spread of teams, technical areas, job roles, length of time within the company, and role

in the code review process. In total, twelve interviews were conducted with each interview

taking approximately one hour. To analyze the data, first open coding was used, and later

also closed coding was performed by another author. For the quantitative data about the

code review process, logs produced by the review tool were used. The final dataset includes

nine million changes created by more than 25,000 authors and reviewers, and 13 million

comments were collected from all changes between September 2014 and July 2016. An

online questionnaire was sent to 98 engineers, which resulted in 44 valid responses (45%

response rate). The survey asked respondents about how they perceived the code review for

their specific recent change. This strategy allowed to mitigate recall bias.

9

2. BACKGROUND AND RELATED WORK

The main reason behind the introduction of code review was to force developers to write

code that other developers could understand. However, three additional benefits became

clear: checking the consistency of style and design, ensuring adequate tests, and improving

security by making sure no single developer can commit arbitrary code without oversight.

Moreover, four key themes for what Google developers expect from code reviews were

identified when coding the interviews: education, maintaining norms, gatekeeping, and

accident prevention.

The code review at Google is linked to two concepts: ownership and readability. Any

developer can propose a change to any part of the codebase, but an owner of the directory

must review and approve the change before it is committed. Developers can gain readability

certificates per language to be able to review a code review on readability.

Results show that the median time for a developer to wait on initial feedback is under

an hour, 90% of the changes to review modify fewer than ten files, one reviewer is often

deemed sufficient, and developers spend around three hours per week on code review. Small

changes are always preferred because review quality is higher and review latency decreases.

Also, reviewers with knowledge of the code under review give more useful comments. De-

velopers who started within the past year typically have more than twice as many comments.

Moreover, then the number of files reviewed increases much more than the number of files

edited over time. The majority of changes are small, have one reviewer and no comments

other than the authorization to commit. During the week, 70% of changes are committed

less than 24 hours after they are mailed out for an initial review. We will compare this result

with the review duration at Adyen in section 4.3.

Another paper by Bacchelli and Bird [4] describes an empirical study on modern code

reviews across different teams at Microsoft. The study reveals that finding defects remains

the main motivation for reviews, but reviews also provide additional benefits such as knowl-

edge transfer, increased team awareness, and the creation of alternative solutions to prob-

lems.

The research method consists of six steps, analysis of previous studies, observations

and interviews with 17 developers, card sort on interview data, card sort on code review

comments, the creation of an affinity diagram, and survey to managers and programmers.

The interviews took 40-60 minutes each, with the respondents’ time at the company rang-

ing from 18 months to ten years and the card sort was done with open coding. The final

surveys were first sent to the managers and the second survey was sent to randomly selected

developers.

From the qualitative analysis, the results show that finding defects is the most important

reason for code reviews, while the quantitative analysis pointed out that code improvement

and understanding are the most occurring categories. Also, code reviews are of higher qual-

ity and done faster when the reviewer is familiar with the code under change. In section 4.2,

we will compare code comments categories of Bacchelli and Bird with the code comments

at Adyen before and after the migration. The limitation of this research is that managers

and developers indicated that knowledge transfer is important in code reviews, however, this

could not be validated through quantitative analysis, since it is difficult to assess this from

the discussions in reviews.

10

2.2. Related Work

Code Review Factors

Porter et al. examined several empirical studies in 1995 on software inspections and as-

sessed their costs and benefits [24]. Moreover, they reported the effects of factors such as

team size, type of review, and the number of sessions on code inspections.

Reviewer Recommendation

Rigby and Storey researched broadcast-based peer reviews on open source projects [27],

where code reviews are not assigned to specific individuals but hundreds of potential re-

viewers. They find that this works well in practice as developers find code changes they are

competent to review.

Thongtanunam et al. find that code quality can be improved when the right reviewer is

assigned [32], but this is a challenge in modern code reviews. They proposed a recommen-

dation tool that suggests reviewers for code reviews based on their past experience in the

project. They also found that this speeds up the code review process.

Balachandran uses static analysis tools in the review process to automatically assign re-

viewers to reviews [5]. Moreover, this tool places comments in code reviews that developers

should fix, which increases the overall code quality.

Code Review Acceptance

Tsay et al. researched the likelihood of contribution acceptance in open source projects [34]

and found that both social and technical factors play a role. Merge requests with many

comments were less likely to be approved and project managers look at the developer’s

prior contributions to the project when evaluating merge requests.

Thongtanunam et al. [33] study review participation on modern code reviews in multiple

open source projects. They find that the description length of a patch shares a relationship

with the likelihood of receiving poor reviewer participation or discussion and the introduc-

tion of new features can increase the likelihood of receiving slow initial feedback compared

to bug fixes or documentation issues.

Hirao et al. investigate why reviewers do not agree with each other in open source

projects and provide suggestions for handling this problem [17]. They find that more ex-

perienced reviewers are more likely to agree and reviewers with a lower level of agreement

take more time to complete their reviews.

Knowledge Sharing

Rigby and Bird research peer reviews in software projects [26]. They find that peer reviews

increase the number of distinct files a developer knows about by 66% to 150% depending

on the project. Moreover, they concluded that reviewers prefer discussions and fixing code

over reporting defects.

Sutherland and Venolia studied code review practices of software product teams at Mi-

crosoft [31]. They found that during the review there is an exchange of knowledge between

11

2. BACKGROUND AND RELATED WORK

the code author and the reviewer, but that retention and recovery of this information is not

well supported

Code Quality

McIntosh et al. studied the relationship between code quality and: (1) code review coverage,

and (2) code review participation [22]. They did this through a case study and found that

both code review coverage and code review participation share a significant link with the

code quality as poorly reviewed code harms software quality in large systems using modern

code review tools.

Kollanus and Koskinen presents a literature survey on code inspection [20]. There are

153 articles included and the main result includes a description of the research trends dur-

ing 1980-2008. The researchers found that inspections (code reviews) generally benefit

software development and quality assurance.

Kononenko et al. studied code review processes of a large open-source project and in-

vestigated how developers perceive code review quality [21]. Data was collected through

a survey on 88 developers and they found that review quality is associated with the thor-

oughness of the feedback, the reviewer’s familiarity with the code, and the perceived quality

of the code itself. Moreover, reviewers often find it difficult to keep their technical skills

up-to-date, manage personal priorities, and mitigate context switching.

Bosu et al. identify what factors contribute to useful code reviews with an empirical

study at Microsoft [9]. They also found that code review quality increases dramatically in

the first year at the company, after which it stabilizes. Moreover, the quality of code review

comments decrease when more files have been changed,

Security

The security perspective on code review is studied by di Biase et al. in a case study [11].

They found that only 1% of the code review comments address security issues. They also

point out that reviews conducted by more than two developers are more successful at finding

security issues.

Review-then-Commit vs Commit-then-Review

Rigby et al. compare two peer review techniques, review-then-commit (RTC) and commit-

then-review (CTR), in open source development [25]. This can be compared with code

reviews in the merge request-based model and trunk-based model respectively where the

order of reviewing and committing differ. The results show that the main reason to adopt

CTR is that there is no review interval and CTR is 2.2 times faster than RTC. They do not

find a statistically significant difference in the number of defects found in both techniques

and mention that for industrial purposes the CTR could be applied. The researchers con-

clude that it is unlikely that one technique will be clearly superior in all environments and

further experimentation is needed, such as analyzing different variables.

12

Chapter 3

The Developers’ Expectations on the
Migration Towards Merge Requests

The goal of this chapter is to understand the benefits and challenges of working with the

trunk-based model at Adyen. Also, we explore the expectations developers have on the

merge-based development model.

At the start of the research at Adyen, the merge request model was still being developed

and therefore not in use yet. This was ideal for us to conduct interviews before the migration

to the merge request-based model to capture the experiences of the trunk-based model as

well as the expectations of the merge request-based development model. In this chapter we

will answer the first research question:

RQ1 What are the expectation of migrating from a trunk-based development model to a

merge request-based development model at Adyen?

To answer this research question we define the following subquestions:

RQ1.1 What benefits do developers see with working with the trunk-based model?

RQ1.2 What challenges do developers face while working with the trunk-based model?

RQ1.3 What do developers expect to change when migrating from the trunk-based model to

the merge request-based model?

RQ1.4 How do developers do their code reviews in the trunk-based model?

RQ1.5 What do developers expect to change in code reviews when switching to the merge

request-based model?

We will first provide the methodology, after which will we talk about the results. First

we will talk about the code reviews in the trunk-based development model and the expec-

tations of code reviews of the merge request-based development model. After that, we will

talk about the development speed, followed by merge conflicts. We will then provide the

results regarding security and safety of the codebase. Finally, we will talk about feature

branches and conclude with an overall comparison of both development models.

13

3. THE DEVELOPERS’ EXPECTATIONS ON THE MIGRATION TOWARDS MERGE

REQUESTS

3.1 Methodology

In this section, the methodology will be explained. First, we create and conduct interviews

to explore the perceptions and expectations of the developers. After that, we survey de-

velopers to generalize our findings. A summary of the methodology is shown in Figure

3.1.

Figure 3.1: Methodology.

3.1.1 Interview Design

The interview was designed as semi-structured and consisted of five main parts, the intro-

duction, participant information, trunk-based experience, merge request expectations, and

concluding questions. The full script used for this interview can be found in appendix A.

In the introduction, the interviewer explained the purpose of the study, asked for per-

mission to record the interview, and mentioned the interviewee would remain anonymous

during the analysis and publications of the results.

The second part focused on the background of the interviewee. The main goal of this

part is to get an overview of the experience in software development, time at the company,

and the nature of the development work of the participant. Moreover, we would ask whether

the interviewee had previous experience with the merge request-based model.

The next part is about the experience of the trunk-based model at Adyen. We would ask

the interviewee about the challenges and benefits of this model and the code reviews that

are being done.

If the participant had previous knowledge of the merge request-based model, we would

ask what they see as benefits and challenges of that model compared to the trunk-based

model. We would ask every developer to express their expectations of the merge request-

based model since most developers were aware of the migration.

Finally, we would ask the interviewee which development model they would prefer

at Adyen with the knowledge of both models before the migration. And to wrap up the

interview, we would provide a summary of the points made by the participant and validate

whether it is a fair summary and ask if the interviewee has something additional to add to

the interview that was not discussed before.

3.1.2 Participant Selection

Participants for the interviews were randomly selected from a sample of around 515 people

including all teams. There is a Mattermost1 channel at Adyen that is called ’Development’.

1mattermost.com

14

3.1. Methodology

This channel includes all developers, team leads, and other employees that are interested

in development-related topics. We started with one pilot interview, which we did not dis-

card since the participant provided valuable information. In the first round of participant

selection, we invited ten developers for an interview of which six were available and four

did not reply. In the second round, we invited fourteen more developers, from which four

developers were available and one was out of office, one was not available, and eight did

not reply. Therefore, the response rate was 44%. Those eleven interviews were considered

enough since the information provided gave theoretical saturation, which means that new

information is not likely to emerge from further interviews.

The full list of the participants interviewed before the migration to the merge request-

based development model is shown in Table 3.1.

ID

Software

Engineering

Experience

Time at

Adyen Team Role

Experience

in MR

P1 7y 3y A Statistic Analyst no

P2 20y 7m B Java Back-end Engineer yes

P3 4y 1y 6m C Java Software Engineer yes

P4 12y 4m D Front-end Engineer yes

P5 9y 1y E Java Developer no

P6 1y 6m 1y 6m F Data Scientist no

P7 12y 1y 5m D Java Developer yes

P8 13y 1y 3m G Software Engineer yes

P9 5y 1y 3m H Data Scientist no

P10 8y 1y 6m I Security Specialist yes

P11 14y 8m D Back-end Developer no

Table 3.1: Interview participants.

3.1.3 Data Analysis

All interviews were conducted online over Zoom2 since the study was done during the

COVID-19 pandemic and everyone was working from home. This made it easy to record

the interviews with Zoom. The recordings of the interviews were automatically transcribed

with Otter.ai3 and corrected and analyzed with the ATLAS.ti4 software. Open coding was

used to analyze the interviews. The transcript was broken up into related sentences and

codes were applied to each informative group of sentences.

3.1.4 Survey Design

The survey is designed based on the results of the qualitative analysis. From the interviews,

seven topics emerged that will be questioned in the survey. The goal is to generalize the

2zoom.us
3otter.ai
4atlas.ti

15

3. THE DEVELOPERS’ EXPECTATIONS ON THE MIGRATION TOWARDS MERGE

REQUESTS

findings of the interviews.

The survey has been created with LimeSurvey5, which is an online survey tool. The

questionnaire has been divided into nine sections; Background Information, Code Reviews,

Development Speed, Merge Conflicts, Code Quality and Safety, Feature Branches, Mi-

croservices, Development Models, and Ending Questions. Each section, except for the

Background Information and Ending Questions, contains Likert scale questions where we

ask the participant how much they agree with the statements.

First, a pilot has been done with one team. The feedback from this pilot has been used

to improve the survey. Some questions had to be rephrased to become more understandable

and some questions have been removed since the survey took longer than expected.

The survey has been distributed through the official mailing list of all developers within

the company. There are approximately 500 developers on this list of which 32 completed

the survey. A week later a reminder was sent in the Development channel of the online

communication tool used within Adyen which contains around 530 people, from which

most of them are developers. The survey was completed by 14 more developers, which

sums up to 46 responses in total. This gives a response rate of 8.3%. The survey also got

three partial responses, which are not completed for more than 50% but were not finished.

These responses will not be used in the results.

There were developers from 35 teams who completed the survey. The number of years

experience in software engineering ranged from zero to 21, with an average of nine years

and a median of nine years. The time at Adyen ranged from half a month till ten years with

an average of two years and three months and a median of one year. In total, 35 developers

had previous experience with merge request-based development and eleven developers have

only used the trunk-based development model.

The complete survey with all the questions can be found in appendix B. Whenever pre-

senting evidence from the survey data, we show the percentage of participants that selected

one of the items in the Likert scale as well as a miniature bar plot representing the entire

distribution of answers. Bar plots contain six bars, in the following order: strongly disagree,

disagree, neutral, agree, strongly agree, does not apply.

3.2 Code Reviews

In this section, we will first talk about the results of the interviews and survey on code

reviews in the trunk-based model. After that, we will discuss the expectations of code

reviews in the merge requests. In Table 3.2, we show the survey responses to questions

regarding code reviews in the trunk-based model.

3.2.1 Code Reviews in the Trunk-Based Development Model

First of all, we asked the interview participants what they look for when doing code re-

views. Developers try to find big mistakes in the code (P4, P5) and check the code style

and readability (P3). Moreover, reviewers look at the code complexity to see if the code is

5limesurvey.org

16

3.2. Code Reviews

Statement Result

The reviewer has to convince the author to improve their

code.

There is enough time to complete code reviews before

the release.

It is a problem that developers sometimes have to wait

too long for a review.

It is useful to get reviews assigned from other teams.

It is important for beginner developers to conduct code

reviews as they will learn the best practices.

Less experienced developers will learn more when

reviews are mandatory for code to be merged to the

master branch.

Table 3.2: Responses to the survey (part 1).

as efficient as possible (P7). Developers also look at the context around the code changes

(P4, P5, P10), for example, they look at which other features does the code change impact

and the higher-level functionalities. The interviewees mention putting comments in the re-

view on typos (P5) and looking at variable names to see whether they make sense (P4).

Developers are testing the new feature locally and playing with it to see if it works (P3) and

checking for null pointers (P3). One developer does not look at check-style (P5), since this

is already done by the automatic tools. P4 explains in detail how they do their code reviews

in three steps: “For me, I do sweeps. I check the files first for big mistakes, big code smells,

something I go by, like, what is going on here? Why is this? Then in the second sweep, I

go a bit deeper. And check the context on what is this file? What is actually the entire file

doing? Does this make sense this change in this context? ... And then the third sweep is just

pickiness.”

Moreover, a general remark on code reviews is that the main goal of code reviews is to

produce good quality code (P7). This participant also stresses the importance of doing code

reviews when working remotely to share each other’s opinions.

Benefits of Reviewing Code in the Trunk-Based Model

In the trunk-based development model, the code reviews are done after the merge to the

master branch. The reviewer has to convince the author to improve their code if the reviewer

disagrees with the changes being made. This is seen as a benefit of the trunk-based model

because the reviews will provide more valuable information (P5). This participant explains

17

3. THE DEVELOPERS’ EXPECTATIONS ON THE MIGRATION TOWARDS MERGE

REQUESTS

this by the asymmetry in power between author and reviewer when doing reviews. With

the merge-request model, the reviewer has all the power on deciding whether a commit

will go into master or not and the commit is being gate-kept by the reviewer. Some people

with strong opinions might take advantage of this power by placing insignificant comments,

which results in changes not being committed for a long time. While in the trunk-based

model, the commit is already live and the reviewer has to make a ticket to fix the commit

and make effort to convince the author to change it. P6 mentions the comments that they

place are not getting addressed by the author of the code. In the survey the participants were

asked if the reviewer has to convince the author to improve their code. 56% agrees on this

statement, whereas 15% is neutral and 13% disagrees ().

Long Waiting Times for Code Reviews

A big challenge in the trunk-based model is that reviews are not done within the time limit

(P1, P2, P3, P4, P5, P6, P8, P11). Developers contact their reviewers directly to ask for

a review (P1, P6, P8, P10). As a reviewer, they contact the author for critical problems to

understand what they are doing (P6). Developers say to have replaced the assigned reviewer

when they do not respond in time (P1, P8). P1 said: “It is rare to get both reviewers finished

in less than let’s say three days, it’s rare.”

It is hard to always review on time (P2), especially when the reviewer has a day off or

when they are busy. Getting a quick review is also a challenge (P8), for example, when

this participant makes a bug fix, it is desired to get a quick review, but sometimes it takes

days to get this review. P1 mentions that there is a lack of discipline among the developers

to review each other’s code changes quickly (P1). Developers mention they immediately

do their reviews once they have free time (P2, P3, P4, P8, P9), and some always review

within one day (P1, P8, P9). The long time waiting for a review is a big challenge (P1, P8,

P10). 50% of the survey respondents disagree with the statement that there is enough time

to complete the code reviews before the release, whereas 15% agree (). Also, 50%

of agree with the statement that it is a problem that developers sometimes have to wait too

long for a review. 22% strongly agrees and only 7% disagree ().

Team Reviews

Each contribution should be reviewed by 2 developers which can be from any other team,

but some participants prefer to only review their team members. The number of reviews

required depends on each specific code change and developers with expertise in the parts

that are changed should be assigned as reviewers (P10). Also, getting assigned to reviews

from different teams is not worth it as the reviewer has to take the time to understand the

other team’s domain (P6). In their words: “If I have to, for example, review somebody’s

ML code, understanding why they added this parameter and remove that parameter. It’s

just not scalable. It’s just too much time I have to spend trying to understand the domain.

It’s not worth it.” 28% of the survey participants agree, 28% filled in neutral, 20% strongly

agree and 20% disagree with the statement that it is useful to get reviews assigned from

other teams ().

18

3.2. Code Reviews

Beginner Developers

The interviewees say that the trunk-based development model proposes some challenges for

developers that just joined the company. The trunk-based model is not ideal for beginners

when their contributions do not get reviewed (P2), because they will not learn from their

beginner mistakes. Also, reality does not reflect the code review guidelines (P5) because,

for example, the guidelines state that a reviewer should not place a comment without pro-

viding an alternative, but in reality, this does happen. One developer (P7) mentions giving

constructive comments in code reviews since this participant already knows what the code

is about. They also mention expecting good code reviews in return when this participant

does good code reviews on others, especially beginners. The same interviewee mentions

beginner developers need to conduct code reviews as they will learn the best practices. This

participant also mentions that for more experienced developers to be reviewed becomes less

relevant and it is better for them to conduct code reviews than to be reviewed. More specif-

ically, P7 said: “I really enjoy, you know, going to the real depths of what is happening

and go to the most efficient things in mathematical terms, you know, big O notation. I love

that part of algorithms and I’m always seeking those things. And my team, they’re really

thankful, especially new people, that I do those remarks, that I take time to really review.

And I expect the same in return and when I get these, it is really fruitful to have them. And

I think at Adyen it works really well.” 46% of the survey participants strongly agree and

41% agree with the statement that it is important for beginner developers to conduct code

reviews as they will learn the best practices (). When asked whether less experienced

developers will learn more when reviews are mandatory for code to be merged to the master

branch, 39% agree, 24% strongly agree and 15% disagree. ().

Findings

F1 Reviewers have to convince the author to improve their code.

F2 Code is not reviewed fast enough.

F3 Code reviews are considered very important for beginner developers.

3.2.2 Code Reviews Expectations of the Merge Request-Based Model

Since most developers have had previous experience or knowledge on merge requests, they

expressed their expectations of this development model for Adyen. In this subsection, we

will discuss the expectations of the merge requests on code quality, expected challenges,

and expected benefits. In Table 3.3, we show the survey responses.

Code Quality

The largest expected benefit from the merge request-based model is that the code quality

will improve and that reviews in general prevent mistakes (P6, P11). The review quality

19

3. THE DEVELOPERS’ EXPECTATIONS ON THE MIGRATION TOWARDS MERGE

REQUESTS

Statement Result

Review quality and therefore code quality will improve.

Merge Requests makes the reviewer see a bigger picture

of the review.

Reviewers will often block the merge by placing

insignificant comments.

It would be useful if automatic reminders are sent to the

reviewers.

Reviewers should face some sort of consequences (no

heavy punishment) when they do not review in time.

Table 3.3: Responses to the survey (part 2).

and therefore the code quality is expected to improve because the reviews will contain all

relevant commits to the new feature (P11). Another interviewee (P3) expects that the code

quality will depend on the reviewer instead of the author and reviewers should take the

responsibility to improve the code quality. This participant also thinks the quality of the

review depends on how familiar the reviewer is with the code.

The code quality is expected to improve in the long term (P6), as more experienced

developers will review the less experienced developers and share their knowledge on best

practices and teach them how to write better code. In their words: “I hope I am using all

the good software engineering practices, but there are quite some more senior people, more

experienced people that can foresee certain side effects that your code can have. So in that

aspect, I think I do can learn a lot. So I think in terms of quality, long term speaking, it

will, for sure, would increase the quality.” One developer (P7) says to enjoy doing reviews

and sees benefits because developers can teach each other and learn from each other when

doing reviews.

Some interviewees expect no difference in the quality of the reviews (P2, P10). P2 said:

“So the quality of the reviews, I do not see a difference. I think everyone that is doing

reviews is going to go the same way right now. ... And well, code quality. And I think

that is the same scenario, I think it is going to be the same because people are doing the

review right now.” One other developer (P6) says the quality of a review will depend on the

quality of the commit and the mindset of the reviewer, which also holds for the reviews in

the trunk-based model.

However, some participants were less optimistic about the proposed merge request-

based model. They dislike the requirements set for doing reviews and that forcing someone

to do a review in the merge request model is a bad idea since they can just click on merge

(P5).

20

3.2. Code Reviews

A trade-off is expected to be made between maintaining the development speed and

giving good reviews that will prevent bad code (P8). An alternative is suggested to ensure

code reviews, which is to get volunteers to spend a few hours reviewing all the unreviewed

code before the release (P1), and having five volunteers would be enough to review every-

thing each week according to this developer. 37% of the survey respondents agree with the

statement that the review quality and therefore the code quality will improve in the merge

request-based model. Even 22% strongly agree and 15% disagree ().

Responsibility

Another reason for the migration was to stimulate developers to review faster (P2, P3, P4,

P8), which is seen as a benefit because the model forces developers to review (P3, P8).

Code reviews are a shared responsibility between the author and the reviewers (P1, P3) and

the shared responsibility of the author and reviewer is a benefit of the merge request model

(P3). In their words: “It feels like the reviewers will also have the responsibility to make

sure that code quality is good enough. Because after they approve, the code is merged to

master and then released. So, it is kind of sharing the responsibility as well.” One developer

(P4) mentions that reviewers should take the time to talk to the authors when doing code

reviews.

Better Overview

Developers mention that a merge request helps when reviewing because you see a bigger

picture of the feature instead of reviewing every commit as in the trunk-based model (P5,

P11). The interviewees expect developers to get more familiar with the code as they will

participate more in code reviews (P3, P5), which will benefit the developers to collaborate

easier. However, one interviewee (P11) mentions that in the trunk-based model you can tag

your commit with the previous review ID to get a better picture of the new feature. When

asked in the survey if merge requests would makes the reviewer see a bigger picture of the

review, 28% responded neutral, 26% agreed and 22% disagreed ().

Gate-keeping

An expected challenge of the merge request model is the gate-keeping of the reviews (P2,

P5, P8) because the reviewer has the power to prevent code from going live. One developer

(P5) mentions that this will become a big challenge when reviewers block the merge when

there are, for example, only small typos in the commit. In their words: “But in a review,

this is gate kept, right? So in principle, you cannot merge it on the master until some-

body approves it and this creates a power asymmetry that a certain type of person takes

advantage of. And the type of person that takes advantage of that is somebody with strong

opinions. And typically, people have strong opinions about insignificant things.” This opin-

ion is very divided in the survey as 30% of the survey respondents disagree and 30% agree

with the statement that reviewers will often block the merge request by placing insignificant

comments ().

21

3. THE DEVELOPERS’ EXPECTATIONS ON THE MIGRATION TOWARDS MERGE

REQUESTS

Review Reminders

The interviewees foresee a challenge in the merge request-based approach that reviews will

not be done on time and proposed solutions for this, such as specific time frames for devel-

opers when they have to do code reviews (P6, P8, P10). This way, developers are forced

to review in a structured manner, and will be done in time. Another solution is sending

automatic reminders to reviewers when a commit is waiting for a review (P8). When some-

one accidentally forgets to do a review, they will get a notification and the merge request

will not be open for too long. This participant says that the use of tooling will also build

discipline. 41% of the survey respondents agree and 35% strongly agree with the statement

that it would be useful if automatic reminders are sent to the reviewers. 17% filled in neutral

and only 7% disagrees ().

Consequences for slow reviews

Since code reviews will become more important in the new development flow, some devel-

opers want to see consequences for reviewers that do not review in time. A benefit of the

merge-request model is that developers are relieved of the responsibility to review on time

(P1). In the trunk-based model you have to review before the release, which happens every

week, whereas, in the merge request model, the reviewer can take the time they need.

However, developers (P1, P7) want reviewers to face consequences when they are not

reviewing to stimulate faster reviews, for example, a Hall of Shame for people who lack the

discipline to review (P7). 33% of the survey respondents agree with some sort of conse-

quence (no heavy punishment) when the reviewer does not review in time. 26% is neutral

and 15% disagrees ().

Findings

F4 Developers expect that mandatory code reviews will help beginner develop-

ers to learn best practices.

F5 Review quality and therefore code quality are expected to improve.

F6 Developers would like to have automatic reminders sent to the reviewers.

3.3 Development Speed

This section is dedicated to the results regarding the development speed. We will discuss

the overall velocity, development time, and release cycle. In Table 3.4, we show the survey

responses.

22

3.3. Development Speed

Statement Result

With the merge request-based model, the velocity of

producing new code will decrease.

With the merge request-based model, developing time

gets wasted by waiting on merge request approvals.

The current release cycle is too short.

With the merge request-based model, a feedback cycle

of one week will be too short.

It would be better to extend the release cycle or postpone

the release until everything has been reviewed.

Table 3.4: Responses to the survey (part 3).

3.3.1 Overall Velocity

First of all, a benefit of the trunk-based model is that iterations go fast (P7, P9), which

can be especially helpful for emergency patching (P3, P9) because fixes can be pushed

immediately to the master branch without waiting for another person to review them. One

developer (P1) says that they like the ability to test their contributions quickly in the master

branch to see whether all the jobs and integration tests pass. The expectation of the merge

request approach is that the velocity of producing new code will decrease (P1, P4, P5, P6,

P7, P8, P10). One interviewee (P4) expects that most of the delay will be a result of the lack

of reviewers, while another (P1) mentions that it requires more actions for a contribution

to be merged to the master branch because the author has to create a merge request, then a

reviewer gets assigned and needs to approve the merge request.

At Adyen, it is expected of developers that they expose their code early and to launch

fast and iterate, but developers (P1, P8, P11) expect that maintaining this philosophy is

going to be a challenge with the new model as code is only merged when a feature is

complete and reviewed. P8 said: “That will be the challenge for us to maintain our speed

by not blocking other people committing code, and giving good reviews that prevent us from

committing bad code that will break others dependencies. And the challenge will be to

maintain the speed that we have right now.” On the other hand, some developers (P2, P11)

do not expect the speed to decrease significantly when migrating to the merge request-based

model. In the survey the participants were asked whether with the merge request-based

model, the velocity of producing new code will decrease: 34% agree and 31% disagree

().

23

3. THE DEVELOPERS’ EXPECTATIONS ON THE MIGRATION TOWARDS MERGE

REQUESTS

3.3.2 Development Time

Developers perceive that the time between the creation of the review and the review being

done depends on the size of the code changes (P2, P4, P5, P11), where smaller changes are

reviewed faster.

Developers expect a decrease in development speed for the merge request-based model

because more communication is necessary (P3), developers will be waiting on the merge

request to be approved (P7), and reviewers will not mark themselves as ’out of office’ when

they are on leave (P2). So, when they get assigned to a review they will not be able to

review until they are back and this will delay someone else’s work. 28% of the survey re-

spondents disagree with the statement that with the merge request-based model, developing

time gets wasted by waiting on merge request approvals. 24% strongly disagree and 20%

agree ()

3.3.3 Release Cycle

At Adyen, there is a release cycle of one week, which means that every piece of code should

be reviewed within a week. Some developers (P2, P6) perceive that one week is too short

to properly test everything that is in the master branch before the release branch goes to

production. In addition, developers (P1, P7) expect challenges with the feedback cycle

for the merge requests, as one week will be too short to produce code, give feedback and

test everything properly. 43% of the survey participants disagree with the statement that

the current release cycle is too short. 24% strongly disagree and only 4% agree ().

Similar results hold for the expectations for the merge request-based model, although it is

expected that the merge request-based model will require a slightly longer feedback cycle.

37% disagree with the statement that with the merge request-based model, a feedback cycle

of one week will be too short. 15% strongly disagree and 15% agree ().

Trunk-based development allows developers to commit quickly but does not ensure all

code to be reviewed. The merge request-based model guarantees 100% review coverage but

generally has longer release cycles. Therefore a trade-off has to be made between speed

versus review coverage as mentioned by one developer (P6) and a proposed solution is to

extend the release cycle (P1, P2), as they would rather extend the release cycle or postpone a

release until all the code has been reviewed than to have each commit waiting to be merged

to the master. This means that they prefer the trunk-based model and only plan a release

when every contribution has been reviewed instead of using merge requests. 39% of the

survey respondents disagree with the statement that it would be better to extend the release

cycle or postpone the release until everything has been reviewed. 24% strongly disagree

and 17% agree ().

24

3.4. Merge Conflicts

Findings

F7 Developers do not expect that time will get wasted by waiting on code re-

views.

F8 The release cycle is not considered too short and is also not expected to be

too short when using merge requests.

F9 Developers do not want to postpone the release until everything is reviewed.

3.4 Merge Conflicts

In this section, we will discuss the perceptions of merge conflicts in the trunk-based model

and the expectations of merge conflicts in the merge request-based model. In Table 3.5, we

show the survey responses.

Statement Result

In the trunk-based model, merge conflicts happen often.

Resolving merge conflicts is a time consuming task.

Merge conflicts are easy to fix.

There will be more merge conflicts in the merge

request-based model.

Merge conflicts are meaningful and help the code to get

better.

Table 3.5: Responses to the survey (part 4).

3.4.1 Perceptions of the Trunk-Based Model

In the Adyen repository, code can get mingled which causes merge conflicts (P4). However,

the benefit of the trunk-based model is that merge conflicts do not happen that often (P3,

P4, P5, P10), which one developer (P4) explains as a result of the configured Git commands

by Adyen. The survey participants were asked whether in the trunk-based model, merge

conflicts happen often. 48% disagree, 24% strongly disagree and 7% agree ().

Merge conflicts are not considered a large problem in the trunk-based model, but it is

only a bit annoying because developers need to pull and push again and communicate with

25

3. THE DEVELOPERS’ EXPECTATIONS ON THE MIGRATION TOWARDS MERGE

REQUESTS

other developers to discuss which changes should persist (P3, P10). The survey participants

were asked whether resolving merge conflicts is a time consuming task. The expectations

are divided as 33% disagree and 33% agree ().

Also, merge conflicts are considered easy to solve (P2, P3), especially when the merge

conflicts are within the same team (P3) because it will be easy to reach out and fix them

quickly. But when other teams are involved, this becomes annoying. In their words: “I

think it depends on the code itself if it is a code that is used or shared among all the teams

that can be annoying like different people will change the code. But if it is code just about

one team, then it is easy to reach out and communicate. It is easy.” 43% of the survey

respondents agree with the statement that merge conflicts are easy to fix. 33% is neutral and

15% disagree ().

3.4.2 Expectations in the Merge Requests

One developer (P4) mentions that at a previous company, working with the merge request

model they experienced fewer merge conflicts in 2 years than in one month working with the

trunk-based model. Nevertheless, more merge conflicts are expected in the merge request-

based approach (P1, P2, P3, P6, P10, P11) and one developer (P1) is especially afraid of

merge conflict loops. Since there are hundreds of developers working in the same repository,

someone else has likely merged their code before your changes have been reviewed. This

will also slow down the development process as the pipeline should be run again every time

which can take around half an hour per cycle. In their words: “Because the code that we

push, will be only merged after some time after it is reviewed. And at times it happens that

other parts of code that you were using, could have changed, for example. And then, you

need to push again. It is like chasing the turtle if you know what I mean. I am a bit afraid

of that.” The same developer suggests implementing an automated merge when the review

is approved to avoid longer waiting times and reduce the risk of merge conflicts. Another

developer (P10) says that to reduce the number of merge conflicts within the merge request-

based model, Adyen needs to implement faster reviews and faster development. 41% of the

survey respondents expect there will be more merge conflicts in the merge request-based

model. 20 % disagree with this statement ().

One possible expected benefit of the merge request model is that the merge conflicts

that occur will be meaningful and help the code to get better (P4). However, this could not

be confirmed with the survey as 26% disagree, 22% agree and 20% strongly disagree with

the statement that merge conflicts are meaningful and help the code to get better ().

26

3.5. Security & Safety

Findings

F10 Merge conflicts do not happen very often.

F11 Developers expect more merge conflicts to occur in the merge request-based

development model.

F12 Merge conflicts are considered easy to fix.

3.5 Security & Safety

One of the goals of code reviews is to catch potential bugs and errors. In the trunk-based

model, those errors are already in the master branch at the time of the review and should

be fixed before the release date. For merge requests, they can be prevented from going to

the master branch as the review is done before the merge. In this section, we will discuss

the perceptions of the interviewees and survey participants on the security and safety of the

codebase at Adyen. In Table 3.6, we show the survey responses.

Statement Result

Bugs in production could have been prevented when the

responsible code was reviewed.

The cost of fixing the bug is higher than preventing by

doing a proper code reviews.

I have felt scared to break the system when committing

code to master .

Testing code is more reliable than code reviews.

A benefit of the merge request-based model is that there

are less bugs and errors in the production code.

Table 3.6: Responses to the survey (part 5).

On a small note, a security specialist (P10) compliments the developers for being aware

of security issues. This person is surprised by how cooperative developers are as this par-

ticipant experienced a lot of friction between other teams and security before. The same

interviewee also mentions that Adyen does background checks on new hires to reduce the

risk of malicious comments.

27

3. THE DEVELOPERS’ EXPECTATIONS ON THE MIGRATION TOWARDS MERGE

REQUESTS

3.5.1 Error Prevention

Developers perceive multiple benefits of the trunk-based model regarding error prevention

because one developer (P7) mentions that it is easier to spot bugs and errors when they are

on the master branch. As a consequence, bugs are detected earlier and also fixed sooner

with the trunk-based model. Moreover, the trunk-based model works well for small teams

because generally with smaller teams you are more exposed to errors and you can fix them

quite fast (P2).

On the other hand developers (P1, P11) mention cases in which errors could have been

prevented if the code was reviewed before the merge to master, as merge requests will

give reviewers the time to properly review and test the code changes (P2). 43% of the

survey respondents agree with the statement that bugs could have been prevented when the

responsible code was reviewed. 24% strongly agree and 24% disagree ().

Developers (P2, P6, P7, P8, P10) mention that the effort and costs of fixing a bug, error,

or vulnerability in the master branch exceed the costs of preventing it in the first place by

doing a proper code review, which will also result in fewer bugs and errors in the merge

request based model. 35% of the survey respondents agree with the statement that the cost

of fixing the bug is higher than preventing it by doing a proper code review. 24% strongly

agree and 17% disagree ().

Participants were also concerned about the security of the codebase and maintaining a

secure repository is a challenge. Developers (P3, P10) felt scared committing code to the

master branch when they started at Adyen because it might break the system and influence

every developer within Adyen. Moreover, another developer (P8) mentions how easy it

is for one developer to affect all users without meaning to. 48% of the survey respondents

agree to have felt scared to break the system when committing code to master. 15% strongly

agree, 17% filled in neutral and 15% disagree ().

3.5.2 Reviews Versus Tests

Another debate occurred during the interviews between the benefits of code reviews and

tests. Although most errors get caught before the release through testing and doing a beta

release first (P9, P10), not all code is covered during testing (P3), so reviews are necessary.

Developers (P4, P10) say that a benefit of the merge request model is that humans will check

the code rather than only running integration tests. They say that humans are still the best

control for code reviews since the tests can be fooled and humans understand the business

scenarios, especially for the front-end reviews (P4) since tests cannot cover all front-end

code. P10 said: “A lot of benefits from a security perspective. First of all, you have a

good code review from a human being and that is, I think, very valuable. Imagine a senior

person reviewing code will criticize it not only from a code quality perspective but also from

fundamental flaws, logical issues, and vulnerabilities being introduced. I think that is the

biggest value, we get out of a merge request model that another set of human eyes and brain

looking at the code you wrote.” On the contrary, one developer (P9) believes that testing

the code is more reliable than someone doing a code review. 33% strongly agree with the

statement that testing code is more reliable than code reviews. 28% agree and 13% disagree

28

3.6. Feature Branches

with this statement ().

Multiple developers (P6, P7, P8) see a benefit in running all the tests before the review

and the merge. This way you will be certain that all tests passed when you start the review

and when you merge the code to the master branch. Moreover, having release managers

increases the security of the codebase (P9, P10). One feature developers (P1, P9) still

miss is the ability to test everything locally as this will ensure that the tests pass before

committing your code.

3.5.3 Expectations of the Merge Requests

Merge requests are expected to decrease the number of occurring bugs and errors. The

interviewees (P2, P4, P8, P10) expect the merge request-model to increase the safety within

the codebase, as it will mitigate the possibility of one person bringing down the whole

platform (P10) and the system is expected to be more reliable as it is expected that the code

will be better tested (P6). In addition, merge requests are especially useful for code changes

that include critical parts of the system or for new independent features as it allows the

developer to experiment in its own branch (P7). 39% of the survey respondents agree with

the statement that a benefit of the merge request-based model is that there are fewer bugs

and errors in the production code. 20% strongly agree and 15% filled in neutral ().

Findings

F13 Bugs could have been prevented if the responsible code was reviewed before

merging.

F14 The cost and effort of fixing a bug are higher than preventing it.

F15 Developers feel scared to break the code when pushing directly to master.

F16 There are fewer bugs expected in the merge request-based development

model.

F17 Tests are considered more reliable than code reviews.

3.6 Feature Branches

In this section, we will discuss the perceptions of the feature branches in the trunk-based

model and the expectations of branching in the merge request-based model. In Table 3.7,

we show the survey responses.

3.6.1 Lifetime of the Feature Branch

If a developer at Adyen was building a new feature and it was not finished, the feature should

be disabled with a feature flag. Developers were not able to maintain a feature branch for

29

3. THE DEVELOPERS’ EXPECTATIONS ON THE MIGRATION TOWARDS MERGE

REQUESTS

Statement Result

Feature branches can only be maintained for one week is

a disadvantage of the trunk-based model.

The commit history will improve in the MR model as

commits to the same feature will be grouped.

The trunk-based model simplifies the process of fixing

bugs as it is easy to pinpoint where the error is

introduced and revert that commit.

Saving code remotely on a feature branch without

influencing other developers is a benefit of the MR

model.

Developers will abuse the feature branches in the merge

request-based model by developing for too long in one

branch.

When the merge-request is too large, the review quality

will decrease as it is harder to do a proper review.

With the merge request-based model, the system should

give warnings when feature branches are too long lived.

Table 3.7: Responses to the survey (part 6).

longer than one week. This means that your changes have to be committed and pushed to

master and they have to be live within one week. This is something that developers (P2, P3,

P5) disliked about the trunk-based model. P2 explains how they can still maintain a branch

with some extra work: “You can just check out a new branch from your old branch that you

cannot push to anymore. But it is still like you are kind of doing a trick just to have your

code saved in a branch.” When asked to the survey participants whether it is a disadvantage

of the trunk-based model that feature branches can only be maintained for one week, 35%

agree, 22% filled in neutral and 20% disagree ().

3.6.2 Commit History

There are hundreds of developers at Adyen working in the same branch at the same time.

This proposes a big challenge in itself and can lead to a cumbersome repository. Developers

(P4, P11) perceive commits easily getting mixed as the order of commits to the master

branch is not sorted by feature, therefore it is expected that the commit history will be better

in the merge request-based model as commits to the same feature will be on one branch

and merged together to the master branch. Therefore related commits will show up together

in the master branch. However, one developer (P5) foresees a coordination issue on which

30

3.6. Feature Branches

branch to merge first with the merge request model. This participant expects a lot of merge

requests to come in at the same time and is wondering who is going to decide which branch

will be merged to the master first. 46% of the survey respondents agree with the statement

that the commit history will improve in the merge request-based model as commits to the

same feature will be grouped. 22% filled in neutral and 15% strongly agree ().

3.6.3 Versions

One developer (P7) mentions that a result of the trunk-based model is that you have fewer

versions in comparison with the merge request-based model, where everyone can work

on a separate branch. They mention that fewer versions are a benefit of the trunk-based

model as it simplifies the process of fixing bugs because it is easy to pinpoint where the

error is introduced and revert that commit. 33% of the survey respondents agree with the

statement that the trunk-based model simplifies the process of fixing bugs as it is easy to

pinpoint where the error is introduced and revert that commit. 30% filled in neutral and

22% disagree ().

3.6.4 Expected Benefits

Feature branches introduce some expected benefits to the merge request-based development

model. Most developers (P3, P4, P5, P7, P8, P11) mention that the ability to use a feature

branch is a benefit of the merge request-based model because they are able to test their code

in their local branch (P5, P8), code can always be saved remotely on a branch without influ-

encing others (P5), and it allows developers to work at their own pace without influencing

others because everyone can work on an independent branch (P4, P7). P5 said: “I expect

people would prefer the merge request model, not because of the actual merge request, but

simply because it is on another branch. And that means that you can just push dangerous

code into the remote, without regard if it’s right, and then test there. And I think that can

make us a little bit more agile because you are not paralyzed by this fear, you can just submit

it.” 43% of the survey respondents agree with the statement that saving code remotely on a

feature branch without influencing other developers is a benefit of the merge request-based

model. 24% filled in neutral and 17% strongly agree ().

3.6.5 Expected Challenges

An expected challenge is that feature branches might be too long-lived (P7, P11). One

developer (P7) explains that the trunk-based model requires a lot of planning because every

week there is a beta release on Monday and you need to ship your code on Friday and live

release on Thursday and your fixes need to be committed on Wednesday, whereas the merge

request-based model allows feature branches and you can just commit your changes on your

feature branch without worrying about the release. Also, this developer expects that with the

feature branches in the merge request model, feature switches as implemented in the trunk-

based model will not be abused so much anymore, meaning that unfinished code will not

be pushed to the master branch. However, developers (P7, P11) fear that developers might

abuse the feature branches in the merge request-based model by developing for too long in

31

3. THE DEVELOPERS’ EXPECTATIONS ON THE MIGRATION TOWARDS MERGE

REQUESTS

one branch without merging to master. P7 said: “I would say that the biggest challenge, like

always, is not about the machines, it is about people. I think, if people start abusing feature

branches that are long-lived, that might be a problem.” 37% of the survey respondents

disagree and 24% agree with the statement that developers will abuse the feature branches

in the merge request-based model by developing for too long in one branch ().

As a result, too long-lived feature branches can result in larger merge requests, which

can be a challenge for the review quality (P11) because when the feature is larger or there

are more code changes it becomes more difficult and painful to review. 59% of the survey

respondents strongly agree and 24% agree with the statement that when the merge request

is too large, the review quality will decrease as it is harder to do a proper review ().

One interviewee (P7) provides a solution to those abused feature branches and would

like the system to give warnings when feature branches are too long-lived. 41% strongly

agree and 37% agree with the statement that with the merge request-based model, the system

should give warnings when feature branches are too long-lived ().

Findings

F18 The commit history is expected to improve.

F19 Review quality is expected to decrease if the merge request is too large.

F20 Saving code remotely is expected to be a benefit of the merge request-based

model.

F21 Developers would like the system to give warnings when feature branches

are too long-lived.

3.7 Development Models

The development model preferences of developers will be discussed in this section. In Table

3.8, we show the survey responses.

3.7.1 Trunk-Based versus Merge Requests at Adyen

For Adyen specifically, challenges are expected when switching context or migrating mod-

els (P1, P3, P7, P8) and convincing the developers who are in favor of the trunk-based

model (P4). Developers (P1, P2) expect that switching development model, is bad for pro-

ductivity, however, they expect the migration to be a learning curve and after some time

when everyone gets used to the new model, there will not be much delay anymore. P1 said:

“In my opinion, context switching is never good. Like, you can get used to it to some degree,

but in my opinion, it will always be the case that the more context switching you are doing,

the less productive you are. You can only mitigate it with getting used to it.” One developer

(P6) assumes that everyone has a shared sentiment whether to move to merge request or

32

3.7. Development Models

Statement Result

For Adyen, using the MR model has more benefits than

the trunk-based model.

Every team should decide for themselves whether to use

to trunk based model or the MR model.

A hybrid model such as the MR model allowing direct

commits would be preferred over using the MR model.

Senior developers should have the ability to merge

directly without a review.

The trunk-based model is preferred over the MR model

for startups and fast developing codebases.

The MR model should be used for mature codebases and

high impact projects.

Table 3.8: Responses to the survey (part 7).

remain the trunk-based model, while others mention to have been unaware of the reason for

the migration (P9) and are skeptical about the reviews and mentions being uncertain about

what Adyen is trying to accomplish with reviews (P5).

The interviewees (P2, P3, P4, P6, P8, P9, P10, P11) expect that the merge request

development model would be better than the trunk-based model for Adyen at this time.

Developers are expected to enjoy and benefit from the merge request-based model (P6, P7)

and it is very useful for onboarding new developers to implement the industry standards of

software development (P4), which is merge requests. 39% of the survey respondents agree

with the statement that for Adyen, using the merge request-based model has more benefits

than the trunk-based model. 35% is neutral and 17% strongly agree ().

3.7.2 Optional Merge Requests

Not all interviewees are convinced to use the merge request-based model. Developers (P1,

P6, P10) suggest making the merge request optional since sometimes a developer wants

to quickly fix some small thing and it would not make sense to create a merge request.

One developer expects these merge requests to become a sort of spam (P6), therefore it is

best to let every team decide for themselves what way of development works best for them

(P1). 28% of the survey respondents disagree, 26% strongly disagree and 24% agree with

the statement that every team should decide for themselves whether to use the trunk-based

model or the merger request-based model ().

33

3. THE DEVELOPERS’ EXPECTATIONS ON THE MIGRATION TOWARDS MERGE

REQUESTS

3.7.3 The Hybrid Model

A third option, the hybrid model is proposed by some participants. One developer (P5)

would rather see a hybrid model that would look like the trunk-based model with feature

branches and merge requests only as a discussion tool, but without requiring a review to

merge the code changes. This can also be described as the merge request model with direct

commits. 32% of the survey participants filled in neutral with the statement that a hybrid

model such as the merge request-based model allowing direct commits would be preferred

over using the merger request-based model. 30% agree and 15% disagree ().

Another solution to the hybrid model is to allow only senior reviewers to merge directly.

One interviewee (P10) mentions having already switched to the merge request model be-

cause this developer is working in the security team, which also has a separate repository. In

this team, they use a hybrid model as certain team members are allowed to commit directly

to the master branch. This person would rather have only senior folks have the ability to

merge directly, however, this proposes an extra risk to security and it would be hard to de-

termine with hundreds of developers which developers would get access to direct commits.

For the main repository, this person thinks it is too sensitive to have, but for other reposito-

ries, it could benefit the development process. In their words: “Go with like a hybrid, where

you have certain senior folks in your team who can commit directly to the master branch

in your merge request model and then have merge request model for other members of the

team who are relatively junior.” This opinion is not shared with the survey respondents

as 37% strongly disagree and also 37% disagree with the statement that senior developers

should have the ability to merge directly without a review ().

3.7.4 Why Trunk-Based or Merge Requests?

The best choice between the trunk-based model and merge request-based model depends

on the maturity of the project according to the interviewed developers (P6, P7). The trunk-

based model is a good fit for startups and fast-developing codebases and therefore was

perfect for Adyen so far. However, as Adyen is reaching some stage of maturity, they believe

that the merge request is a better option for the company to make the platform as reliable

as possible. 28% of the survey participants disagree and 24% agree with the statement that

the trunk-based model is preferred over the merge request-based model for startups and fast

developing codebases ().

Also, participants (P6, P9, P10) claim that the merge request-based model is preferred

for more mature and higher impact projects, where breaking the code has high consequences

and costs. P6 said: “There is no silver bullet to it, I would say there is not always merge

request or always trunk-based, I think it should be weight, with considering the different

things like the maturity, the type of impact that you can make, the team members, the size

of the team, and the speed of development.” 35% of the survey participants agree with the

statement that the merge request-based model should be used for mature codebases and

high-impact projects. 22% disagree and 15% strongly agree ().

34

3.7. Development Models

Findings

F22 Developers do not want senior developers to have the ability to merge di-

rectly without a review.

F23 The trunk-based development model is not considered to always be the best

option for startups and fast-developing codebases.

F24 The merge request-based development model is considered to be preferable

for mature codebases and high-impact projects.

35

Chapter 4

Differences in How Developers
Review Code in Trunk-Based and in

Merge Requests

The goal of this chapter is to explain with qualitative data about code reviews in the trunk-

based development model and merge request-based development what changes when mi-

grating models. Moreover, we will do a quantitative analysis of code reviews of both models

where we categorize code comments and compare the categories with a similar study done

by Bacchelli and Bird [4] at Microsoft. In this chapter we will answer the second research

question:

RQ2 What has changed in code reviews after migration from trunk-based to merge request-

based at Adyen?

To answer this research question we define the following subquestions and for each

subquestion compare the trunk-development model with the merge request-based model:

RQ2.1 What are the motivations for code review at Adyen?

RQ2.2 What changes in the time for a review to be closed when migration from the trunk-

based development model to the merge request-based development model?

RQ2.3 What changes in the number of comments in the reviews?

4.1 Methodology

This chapter consists of two main parts, the qualitative analysis of the code review com-

ments and the quantitative analysis of code reviews.

37

4. DIFFERENCES IN HOW DEVELOPERS REVIEW CODE IN TRUNK-BASED AND IN

MRS

4.1.1 Qualitative Analysis on Code Comments

For the qualitative analysis, we manually categorized code comments into the nine cate-

gories described by Bacchelli and Bird [4]. The categories are listed and explained in Table

4.1

Category Description

Code Improvement

Comments about code in terms of readability,

commenting, consistency, dead code removal, etc.

Understanding

Comments where more explanation on the changes

is requested.

Social Communication

Social talk between the author and reviewer that has

nothing to do with the code changes.

Defects Comments to find defects.

External Impact

Comments on the code that will impact other

systems or other parts of the code.

Testing

Comments about test code or more tests are

requested.

Review Tool

Comments regarding Upsource or GitLab, such as

links to other reviews and merge requests.

Knowledge Transfer

Comments from a learning perspective for both the

author and the reviewer on APIs usage, system

design, best practices, etc.

Misc.

Any other comment that could not be categorized in

the ones above.

Table 4.1: Code Comment Categories.

First of all, we selected discussions from the review tool that was used in the trunk-based

model from the period of 24 January 2018 till 27 July 2021. There were a total of 96,402

discussions at the moment of data collection, from which 94,161 discussions consists of at

least two comments. These discussions are included in 43,249 reviews from which 38,589

reviews have at least two comments. The total number of comments is 152,678. For our

data analysis, we randomly selected 200 discussions with at least two comments, which

resulted in a total of 518 code comments. This means that the confidence level is over 95%

with a confidence interval of five.

38

4.2. Qualitative Analysis on Code Comments

In the merge request-based model we found 1658 merge requests between 9 March 2021

and 1 October 2021. There were a total of 423 reviews from which 368 reviews contained at

least two comments. There are a total of 2662 code comments. We sampled code comments

from 75 reviews which resulted in 477 code comments. This also gives a confidence level

higher than 95% with a confidence interval of five.

4.1.2 Quantitative Analysis

To understand what the actual impact of the migration is on code reviews, we did a quantita-

tive analysis of the code reviews before and after the migration. We gathered data using the

APIs from Upsource and GitLab to request information about the code reviews and merge

requests that have been created at Adyen. We then compare the review times and number

of code comments per review in both models to see if a significant change occurred during

the migration.

4.2 Qualitative Analysis on Code Comments

In this section, we will present the results of the qualitative analysis of code review com-

ments. Figure 4.1 shows the proportions of comments by category of reviews in the trunk-

based development model at Adyen, the merge request-based development model at Adyen,

and reviews done at Microsoft studied by Bacchelli and Bird [4].

0 5 10 15 20 25 30
Percentage of Comments

Misc

Knowledge Transfer

Review Tool

Testing

External Impact

Defects

Social Communication

Understanding

Code Improvement

Comments in each Category

Trunk-Based
Merge Request-Based
Bacchelli

Figure 4.1: Proportion of comments by category.

From the results, we can see that for all models, the largest category of code com-

ments is about code improvements, followed closely by the category of understanding.

39

4. DIFFERENCES IN HOW DEVELOPERS REVIEW CODE IN TRUNK-BASED AND IN

MRS

There is a significant decrease in comments for social communication after the migration

from the trunk-based development model to the merge request-based development model.

Bacchelli and Bird report a lot more comments on defects, while at Adyen, both models

do not contain as much. Compared to Bacchelli and Bird there are much more comments

on knowledge transfer, especially in the merge request-based model. Also, in the merge

requests, there are more comments placed regarding the review tool compared to both the

trunk-based model and Bacchelli and Bird Most of those comments were related to the mi-

gration itself, since a new review tool is used to review the code. The number of comments

regarding the external impact and testing is similar across all three models.

Findings

F25 The most comments in reviews are about code improvement and understand-

ing.

F26 Social communication has decreased during the migration.

F27 More comments to transfer knowledge are placed in merge requests.

4.3 Quantitative Analysis: Review Times

First of all, we compared the time it takes for a review to be closed in both models. Table

4.2 shows some statistics on both models. Surprisingly, there was one review in the old

model that has been closed after 1034 days. We assume that this is an incident and therefore

the more meaningful statistic to look at is the median time it takes to close a review, which

is significantly less in the merge request-based model. We filtered out all the reviews and

merge requests closed within 10 minutes as it is very unlikely that someone did a proper

review here. The results are visualized with a violin plot in Figure 4.2.

Trunk-Based Merge Requests

max 1034 days 100 days

mean 19 days 18 hours 2 days 17 hours

median 5 days 1 hour 16 hours

standard deviation 52 days 1 hour 6 days 13 hours

Table 4.2: Times between the creation of the review and the closing of the review.

Since there are many outliers in both models, we show the same violin plot in Figure

4.3. This violin plot is a zoomed-in version up to 33 days and shows that there are more

reviews in the trunk-based model that take longer to complete.

To visualize these findings better and show the percentages of reviews closed within a

certain timeframe, we created histograms that compare both models. Figure 4.4 shows the

40

4.3. Quantitative Analysis: Review Times

0 200 400 600 800 1000

Merge Requests

Trunk-Based

Days to complete

Figure 4.2: Days to complete.

0 5 10 15 20 25 30

Merge Requests

Trunk-Based

Days to complete

Figure 4.3: Days to complete.

distribution of the completion times of all reviews of both models in percentage. Clear to

see is that almost all reviews in the merge request-based model are done within the first bin

of the histogram, while there are reviews in the trunk-based model still closed after a few

months.

Since there are outliers mainly in the trunk-based model we visualize in Figure 4.5 the

completion times of all reviews that have been closed within a month. In the merge request-

based model, 62% of the comments are closed on the first day, where this is only 19% for

the trunk-based model. For merge requests, similar results were found by Gousios et al.

[14], who found that 60% of merge requests on GitHub are merged or closed in less than

a day. Sadowski et al. [28] found at Google, 70% of changes are committed less than 24

hours after they are mailed out for an initial review. Moreover, in the trunk-based model,

more reviews are closed later in the month, while for the merge request-based model almost

all reviews are closed within seven days.

If we look only at the reviews that are closed in the first week, we show the distribution

41

4. DIFFERENCES IN HOW DEVELOPERS REVIEW CODE IN TRUNK-BASED AND IN

MRS

0 200 400 600 800 1000
0%

20%

40%

60%

80%

100%
Days to complete

Trunk-Based
Merge Requests

Figure 4.4: Days to complete.

0 5 10 15 20 25 30
0%

10%

20%

30%

40%

50%

60%

Days to complete within 1 month
Trunk-Based
Merge Requests

Figure 4.5: Days to complete within one month.

in Figure 4.6. Here we can still see that most reviews of the merge request-based model

are closed within the first day, while that time is more spread for the trunk-based model.

Interesting here is that we can see a wave pattern, which can be explained by the fact that

there are fewer developers active at night.

Figure 4.7 shows the time distribution of all reviews that are closed within one day. This

is nicely spread for the trunk-based model, considering the day and night. For the merge

request-based model, the reviews are done sooner, with 23% of the reviews done in the first

hour, where this is only 3% in the trunk-based model.

If we scope into the time distribution for all reviews that are closed within one hour, we

42

4.3. Quantitative Analysis: Review Times

0 25 50 75 100 125 150 175
0.0%

10.0%

20.0%

30.0%

40.0%

Hours to complete within 1 week
Trunk-Based
Merge Requests

Figure 4.6: Hours to complete within one week.

0 5 10 15 20 25
0.0%

5.0%

10.0%

15.0%

20.0%

Hours to complete within 1 day
Trunk-Based
Merge Requests

Figure 4.7: Hours to complete within one day.

can look at Figure 4.8. There are many more merge requests closed in the first hour than

reviews in the trunk-based model.

We also checked for statistical significance. For this, we used the Mann-Whitney U test,

also known as the Mann–Whitney–Wilcoxon or Wilcoxon rank-sum test. This method was

used because we have two independent data samples. To perform this test we need to define

the null hypothesis, which is H0. When the distributions are similar, H0 holds. The other

hypothesis H1 holds when the distributions are not similar.

When performing this test, we got a p-value of 0.0, which means that the null hypothesis

is false. This implies that the distributions are not similar. Also, we got an effect size of 0.58,

which implies that there is a large difference between the two datasets. From this, we can

43

4. DIFFERENCES IN HOW DEVELOPERS REVIEW CODE IN TRUNK-BASED AND IN

MRS

10 20 30 40 50 60
0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

1.40%

Minutes to complete within 1 hour
Trunk-Based
Merge Requests

Figure 4.8: Minutes to complete within one hour.

conclude that there is a statistically significant difference in the completion times between

the trunk-based development model and the merge request-based development model.

The time distributions for reviews to be completed in form of a boxplot are shown in

Figure 4.9. Here we can see the reviews in the merge request-based model are completed

faster and the trunk-based model has further outliers. This final finding can be explained by

the fact that merge requests are not active for such a long time.

0 200 400 600 800 1000

Merge Requests

Trunk-Based

Days to complete

Figure 4.9: Days to complete.

A zoomed-in version of the boxplot is shown in Figure 4.10 up to 33 days. This boxplot

clearly shows that the review time for merge requests is faster than the review times in the

trunk-based model.

44

4.4. Quantitative Analysis: Number of Code comments

0 5 10 15 20 25 30

Merge Requests

Trunk-Based

Days to complete

Figure 4.10: Days to complete.

Findings

F28 The time for completing reviews has significantly decreased when migrating

from trunk-based development to merge requests.

F29 More than 60% of the merge requests are closed within one day, while this

is not even 20% for reviews in the trunk-based model.

4.4 Quantitative Analysis: Number of Code comments

Secondly, we compared the number of comments per review in both models, to see whether

there are more or fewer discussions in merge requests. Table 4.3 shows general statistics on

the number of comments in reviews of the trunk-based model and the merge request-based

model. Although the trunk-based model has the review with the most comments, the mean

and median of the merge request-based model lie higher. This means that on average there

are more comments in the merge requests. The results are visualized with a violin plot in

Figure 4.11.

Trunk-Based Merge Requests

min 1 1

max 190 123

mean 3.53 7.55

median 2 4

standard deviation 5.63 10.81

Table 4.3: Comments per review.

45

4. DIFFERENCES IN HOW DEVELOPERS REVIEW CODE IN TRUNK-BASED AND IN

MRS

0 25 50 75 100 125 150 175

Merge Requests

Trunk-Based

Comments per review

Figure 4.11: Comments per review.

Since there are also many outliers in the number of comments per review, we show a

zoomed-in version of the violin plot in Figure 4.12 with a maximum of 20 comments per

review. This plot shows that the proportion of merge requests with more comments per

review is much higher for merge requests than for reviews in the trunk-based model.

0 5 10 15 20

Merge Requests

Trunk-Based

Comments per review

Figure 4.12: Comments per review.

Figure 4.13 shows the distribution of the comments as a percentage of the total amount

of comments for the trunk-based and merge request-based development models. Since there

are outliers with a lot of comments in one review in the trunk-based model, the bar chart is

hard to read.

When we only look at reviews with at most 25 comments, we can see a more readable

bar chart in Figure 4.14. We can see that 43% of the reviews in the trunk-based development

model have only one comment, while this is 9% for the merge request-based model. When

the number of comments increases, both models seem to follow the same trend.

We also checked for statistical significance. For this, we used the Mann-Whitney U

46

4.4. Quantitative Analysis: Number of Code comments

0 25 50 75 100 125 150 175
0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

Comments per review
Trunk-Based
Merge Requests

Figure 4.13: Comments per review.

0 5 10 15 20 25
0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

30.0%

35.0%

40.0%

Comments per review
Trunk-Based
Merge Requests

Figure 4.14: Comments per review.

test again because we have two independent data samples. To perform this test we need to

define the null hypothesis, which is H0. When the distributions are similar, H0 holds. The

other hypothesis H1 holds when the distributions are not similar.

When performing this test, we got a p-value of 3.35e−66, which means that the null

hypothesis is false. This implies that the distributions are not similar. Also, we got an effect

size of 0.43, which implies that there is a medium-size difference between the two datasets.

From this, we can conclude that there is a statistically significant difference in the number of

code comments between the trunk-based development model and the merge request-based

development model.

The boxplots of the distributions are shown in Figure 4.15. We can see that the merge

requests on average have more comments in the review.

The zoomed-in version of the boxplot is shown in Figure 4.16 up to 20 comments per

47

4. DIFFERENCES IN HOW DEVELOPERS REVIEW CODE IN TRUNK-BASED AND IN

MRS

0 25 50 75 100 125 150 175

Merge Requests

Trunk-Based

Comments per review

Figure 4.15: Comments per review.

review. It is even better visible that the merge requests contain more comments per review

than reviews in the trunk-based development model.

0 5 10 15 20

Merge Requests

Trunk-Based

Comments per review

Figure 4.16: Comments per review.

Findings

F30 Significantly more code comments are placed in merge requests.

F31 Merge requests get an average of 7.55 comments per review, whereas this is

3.53 for reviews in the trunk-based model.

48

Chapter 5

The Developers’ Perceptions on the
New Merge Request Model

The goal of this chapter is to understand the perceptions of software developers on the

migration from trunk-based development to merge request-based development at a large

software engineering company. Also, we will compare the perceptions on the benefits and

challenges with the expected benefits and challenges described in chapter 3. Unfortunately,

not all developers were using the merge request-based model during the period of this study,

so only the perception of a subset of the developers’ group could be captured and we aim

to get the best possible perception of those developers. In this chapter we will answer the

third research question:

RQ3 How did the developers perceive the migration from trunk-based development to

merge request-based development at Adyen?

To answer this question we define the following subquestions:

RQ3.1 What benefits do developers see with working with the merge request-based model?

RQ3.2 What challenges do developers face while working with the merge request-based

model?

RQ3.3 What changes did developers experience when migrating from the trunk-based model

to the merge request-based model?

RQ3.4 How do developers do their code reviews in the merge request-based model?

RQ3.5 What changes did developers experience in code reviews when switching to the merge

request-based model?

5.1 Methodology

In this section, the methodology will be explained for the data collection of the perception of

developers on the migration from the trunk-based to the merge request-based development

49

5. THE DEVELOPERS’ PERCEPTIONS ON THE NEW MERGE REQUEST MODEL

model. We conducted eight interviews with developers from multiple teams with experience

in the merge request-based model at Adyen. A summary of the methodology is shown in

Figure 5.1.

Figure 5.1: Methodology.

5.1.1 Interview Design

Similar to the interview before the migration, this was a semi-structured interview. The

interview consisted of eight small parts, the introduction, participant information, general

questions, migration, merge conflicts, code review, development speed, and ending ques-

tions. The full script used for this interview can be found in appendix C.

In the introduction, the purpose of the study was explained, followed by questions on

information about the participant.

The next part was general questions on the perception of this migration. The interviewee

was asked about the benefits and challenges of the merge request-based model compared to

the trunk-based model.

More specific questions on changes from trunk-based to merge request-based were

asked, regarding the migration process, merge conflicts, code review, and development

speed. These topics are based on the results of the interviews on the expectations of the

migration as discussed in chapter 3.

The interview was concluded with the question about which development model they

prefer working with. Again, a summary of the interview was provided by the interviewer to

validate the answers of the participant. Finally, the interviewee was asked whether they had

additional input on the topic.

5.1.2 Participant Selection

Since Adyen was migrating during this study, not all developers had experienced the merge

request-based development model at this company. Therefore, we selected the participants

for the interviews based on the activity of developers in merge requests. For this, we used the

GitLab API1. We collected information on the number of times a developer created merge

requests, the number of times a developer was assigned as a reviewer to merge requests, the

number of times a developer took action in merge requests, and the number of comments a

developer placed in merge requests. We invited ten developers through a personal message

1docs.gitlab.com/ee/api/

50

5.2. Perceptions on Code Reviews

on Mattermost2 from which eight responded and were available, this gives a response rate

of 80%.

The full list of participants interviewed after the migration is shown in Table 5.1.

Participant Information on Merge Requests

ID

Software

Engineering

Experience

Time at

Adyen Team Author Reviewer Actions Comments

P12 6m 6m J 6 27 67 33

P13 15y 8m J 22 14 229 52

P14 1y 1y K 23 15 139 43

P15 7y 3y 6m K 5 1 49 21

P16 9y 2y A 68 74 518 99

P17 6y 1y J 11 20 121 57

P18 1y 9m A 136 59 353 72

P19 5y 11m K 36 21 255 70

Table 5.1: Interview participants after migration. Information is based on the date of each

interview. The final four columns show the data of each participant, which are the number of

times the participant was the author of a merge request, the number of times the participant

was the reviewer of a merge request, the number of actions the participant took in merge

requests and the number of comments the participant placed in merge requests.

5.1.3 Data Analysis

The data analysis is similar to the first round of interviews. All interviews were conducted

online over Zoom3. Six interviews were conducted in English and transcribed with Otter.ai4

and two interviews were conducted in Dutch and automatically transcribed with Trint5.

These transcriptions were corrected and analyzed in ATLAS.ti6. Open coding was applied

to the relative parts of the interviews.

5.2 Perceptions on Code Reviews

In this section, we will present the results regarding the code reviews of the interviews

conducted on developers who have experienced the merge request-based model at Adyen.

2mattermost.com
3zoom.us
4otter.ai
5trint.com
6atlas.ti

51

5. THE DEVELOPERS’ PERCEPTIONS ON THE NEW MERGE REQUEST MODEL

5.2.1 Perceived Advantages

Code reviews have changed a lot during the migration in many ways, for example, they

only review team members in the new model whereas they had to review developers from

other teams before (P15). This participant also mentions that they feel more comfortable

reviewing their team members as they know them personally and see this as a benefit of the

new model. In their words: “With Upsource, I was assigned one other person like outside

the team, and that person will be like maybe rude or does not know anything about to project

and give like a wrong comment. But with this merge request, I feel like home, you know,

like, whoever makes a comment is just for good.”

The participant shared how they tackle code reviews in the merge request-based model.

One developer (P16) mentions that it is best to wait with handling the review comments

until the reviewer is completely done with the review. This will also save some time as most

of the time only one or two iterations are necessary. An advantage of doing code reviews in

GitLab is that it is possible to place comments on multiple lines of code instead of one line

in Upsource (P12). This makes it clearer to the author what piece of code the comment is

about. Nevertheless, some developers (P13, P14, and P15) say they do not approach code

reviews differently in the new model.

5.2.2 Knowledge Sharing

A great benefit of the merge request-based model is that more knowledge is shared among

the developers because more discussions are happening in the new model (P12, P13) and

developers have a better understanding of what others are doing since merge requests are

mandatory (P17). In their words: “I think it also helps in, you know, building your knowl-

edge about the codebase, because you are exposed to more stuff, and you can start learning

more what other people are doing.” One developer (P12) mentions within their team they

assign everyone as a reviewer for each merge request to keep everyone up to date. More-

over, developers perceive that the merge requests have resulted in more detailed feedback in

the code reviews (P16, P17) and it is easier to get feedback earlier in the new model (P12,

P17). One developer (P19) mentions that code reviews are there to learn and teach. In their

words: “I see the code reviews as an opportunity to learn or to teach.”

5.2.3 Code Quality

Arguably the most important benefit of the merge request-based model perceived by the

interviewees (P12, P13, P14, P15, P16, P17, P18, P19) is the increase of code quality

and they expect the quality to continue to increase when using the merge request-based

development model. Developers mention different reasons for the increase of quality, such

as merge requests often bring good discussions (P12, P19), code reviews are much more

useful in the merge request as the author has to act upon the comments for their code to be

pushed to master (P12, P16, P19), and errors have been caught during merge request reviews

that would otherwise have been pushed to master when using the trunk-based model (P13,

P16, and P18). P16 said: “Especially clarity in smaller improvements, renaming a function

52

5.3. Development Speed

or variables, or even redoing some of the logic. And this kind of thing, in my point of view,

improves the quality of the code.”

Moreover, developers feel more stimulated to do a proper code review because they feel

more responsible as a reviewer and they know that the author has to act upon the comments

they make (P12, P13, P14, P18, P19) and feel more stimulated to look better at code review

comments they received (P12, P19) because if they do not improve their code properly, the

reviewer will not approve the merge request.

5.2.4 Review Size

The interviewees say that they experience larger reviews. Developers mention that the

merge requests have become bigger in the new model because merge requests contain mul-

tiple commits instead of one review for each commit (P12, P17, P18). However, one devel-

oper (P18) mentions that the Upsource reviews could grow larger if developers reopened old

reviews by adding new commits with the same ticket prefix. We have also seen an increase

in comments for the merge requests in the quantitative analysis done in section 4.4.

5.2.5 Web Interface for Code Reviews

Developers have mixed opinions on the interface in which the merge request are being done.

One developer (P16) mentions preferring the Upsource interface for code reviews because

it dedicates more space to the code review. On the other hand, another developer (P12)

mentions that the GitLab interface is very useful for code reviews as the web page only

shows the changes that you have not seen yet and marks the others as seen. However, the

same participant mentions to be missing the integration with IntelliJ for code reviews and

would like this plugin to be available for Adyen developers.

Findings

F32 Developers perceive that more knowledge is shared among the developers.

F33 Developers perceive that the review quality and code quality increase.

F34 Developers perceive that better and more discussions occur in the merge

request-based model.

5.3 Development Speed

A big concern before the migration was that the development speed might decrease signif-

icantly and the interviewees (P12, P13, P14, P15, P16, P18, P19) mention that indeed the

development speed has slowed down, except for one interviewee (P17), who mentions that

the development speed has not changed when switching models. Nevertheless, one devel-

oper (P18) says that the time between creating code and it being in master increases, but the

53

5. THE DEVELOPERS’ PERCEPTIONS ON THE NEW MERGE REQUEST MODEL

overall development speed does not necessarily decrease since you can continue on another

task when waiting for a review.

5.3.1 Slower Speed

Developers give multiple reasons why the speed has decreased, such as merge conflicts

(P15), the continuous integration pipeline takes too long as the development time depends

on how many times one has to run the CI pipeline (P12), and IntelliJ is very slow in switch-

ing branches because indexing everything takes a lot of time (P15).

Developers suggest solutions to minimize the speed loss, such as reviewing their own

changes to make sure that they are delivered faster (P14) and shorter release cycles (P13),

which are possible in the merge request-based model as everything in the master has been

reviewed and tested by the reviewer. Overall, developers (P14, P15, P16, P19) feel that there

is a trade-off between speed and code quality and that it is worth having a slower develop-

ment speed when the code quality increases. According to P19: “I think the advantage of

the code being a lot better is a lot more important than the speed because usually the speed

you get, you just introduce bugs because you are doing everything in one branch.”

5.3.2 Error Detection and Feedback

Another benefit of the merge request approach is that errors are noticed earlier and can be

fixed sooner (P15 and P18) and this is faster when you compare it with the fixes that need

to be made in the trunk-based model (P16).

This also holds for receiving feedback since the development speed is faster because

developers get feedback earlier in the new model (P16, P17). P16 said: “Even if you are

not done, you might create the merge request and ask for a review. You are aware that it is

not done, but at least you get feedback on whatever is done. You keep it as a draft merge

request, and you can get a review on it. So that might even speed up development.” The

same developer mentions that there is less context switching in the merge request-based

model which results in faster development and the time between submitting and receiving

feedback is not that high.

5.3.3 Team

The interviewees also mention that the success of the merge request-based model is depen-

dent on your team and other developers (P12, P13, P15). If your team reviews fast you can

have your changes into master very rapidly. More specifically one developer (P13) men-

tions that the development speed depends on the number of team members who can review

your merge request. If the number is too low, those people might be too busy reviewing

merge requests, which slows down development speed. Developers mention they already

had to chase people for code reviews which result in communication overhead (P12, P13,

P18), so the trunk-based approach was faster because they did not have to wait for others to

get approval (P13).

54

5.4. Merge Conflicts

Findings

F35 The overall development speed has decreased.

F36 Errors are caught earlier and fixed sooner.

F37 When considering fixing the errors and acting on the feedback, the merge

request-based model is faster.

F38 The development speed is mostly dependent on the team members who will

review the code.

5.4 Merge Conflicts

Before the migration, more merge conflicts were expected, however, some developers have

not experienced conflicts yet (P14, P16, P17) or experienced fewer conflicts (P13, P19). On

the other hand, one developer (P15) says that there are now more merge conflicts because

they are waiting on the approval of the reviewer for the code to be merged which can also

cause a merge conflict loop and another developer (P17) mentions that the possibility of

conflicts is still very high because Adyen is still a mono repository.

5.4.1 Reasons for Merge Conflicts

The interviewees provided multiple reasons for how the merge conflicts occur, such as work-

ing in the same files a lot (P12, P14, P15, P17, P19), especially for front-enders (P14). On

the contrary, one developer (P18) says that conflicts are not occurring that often because

they are not working on the same files within their team.

Moreover, merge conflicts might still occur due to the long waiting times on the pipeline

to finish (P13, P18) and some developers mention that the only merge conflicts they had

so far were caused by themselves starting on the next feature while the first was still in

review (P16, P18). Two developers (P12, P19) mention that the merge conflicts in the

merge request-based model look similar to those in the trunk-based model.

5.4.2 Fixing Merge Conflicts

There are some benefits in the merge request-based model concerning the merge conflicts,

such as that the merge requests are easy to solve (P15, P17, P19). Moreover, developers

(P12, P13) mention that merge conflicts are earlier noticed than in the trunk-based model

because merge requests can be opened at the first commit before the merge, while in the

trunk-based model developers tend to wait with their commit until the feature is finished.

P12 said: “I got the idea that now you notice merge conflicts sooner, maybe because it is

more clear because everyone is working in merge requests. In the merge request branches

you can very quickly see, this is going to cause a merge conflict, whereas in the trunk-based

approach you would only notice it when you are going to submit.”

55

5. THE DEVELOPERS’ PERCEPTIONS ON THE NEW MERGE REQUEST MODEL

However, there are still some challenges according to the interviewees because fixing a

merge conflict can be confusing for the reviewer since it is sometimes not clear what has

been changed (P12). Another developer (P18) emphasizes that merge conflicts must be

solved carefully because it happened that someone kept the wrong version when solving the

merge conflict.

Findings

F39 The number of merge conflicts did not raise as expected.

F40 Merge conflicts are earlier noticed and can therefore be solved sooner.

F41 Solving merge conflicts can be confusing and should be looked at carefully.

5.5 GitLab

One big change during the migration was the switch of the online repository from Gitea

to GitLab and the switch from code reviews in Upsource to GitLab. For that reason, the

interviewees had some remarks on the online repositories, such as that GitLab is preferred

over Gitea since GitLab provides more features and their support is much better (P16), and

the standard GitLab features are preferred over the custom Adyen-specific tools (P13).

Merge requests contribute to a better-structured repository and make it easier to see the

full picture of a change in the code reviews (P12, P17). However, maintaining a clean Git

history might propose a challenge and it requires strict agreements with the team (P12).

5.5.1 Lacking Features

The way GitLab is used at Adyen is not incorporating the complete GitLab flow (P16, P17,

P19) as many features are not used yet, but this is planned for the future. Some buttons

in the GitLab interface are not working (P12, P16), which is confusing. For example, one

developer (P16) tried to cancel a build because the feature was not ready yet, but this was

impossible because the cancel button was not working yet. Moreover, it is considered an-

noying completed merge requests are shown in GitLab as ‘closed’ instead of ‘merged’ (P16,

P19) and the integration of GitLab with the tool for maintaining tickets is missing (P19),

which can be useful to switch from the feature description directly to the code.

5.5.2 Custom Scripts

To simplify the merge request flow, a special git command was created, named git mr sub-

mit, which pushes all your changes to a separate feature branch, automatically creates a

merge request, and assigns reviewers. This custom script is not straightforward (P13, P16)

as it does help with automation, but rather when things go wrong you are lost (P16). One

56

5.6. Merge Requests

developer (P18) mentions they manually open merge requests for big changes instead of

using this script.

The standard GitLab features are preferred over the custom Adyen-specific tools (P13,

P16) and the team responsible for those scripts underrated the developers’ knowledge of

git (P16). They received a lot of feedback that developers prefer to stick to normal Git

commands instead of the custom scripts. Moreover, Adyen is planning on using the GitLab

CI to check for merges and eventually for everything.

5.5.3 Overall Challenges

Moreover, there are some other challenges faced by the developers. One developer (P13)

mentions that the name requirement on branches is annoying. Feature branches have to be

named with a specific format that includes the name of the author and the ticket number

from the issue tracking system. This participant also mentions that it is not easy to switch

branches anytime. Also, when the pipeline is not passed, you need to manually retrigger the

pipeline by placing a comment, which can be annoying (P17).

Findings

F42 GitLab is the preferred tool to use because of its many features and the fact

that it is widely used in the industry.

F43 At Adyen, a lot of features from GitLab are lacking and there is still room

for improvement.

F44 Developers prefer the industry-standard features instead of custom scripts.

5.6 Merge Requests

To get a better understanding of the merge requests, we asked the participants about their

experience of the merge requests so far. Some developers (P12, P18) open a merge request

as soon as a minimum requirement is met, but not when the feature is completely finished.

This way the reviewer can already look at the commits that have been made and possible

merge conflicts will already show. Another developer (P14) mentions that in their team they

keep their merge request small to not make the code reviews too hard.

5.6.1 Amending Commits vs New Commits

One feature of the merge requests is that the author can amend commits or add new commits

to the merge request. Amending commits can be confusing for the reviewer (P13, P16) as

this rewriting of the history can get messy in the overall commit history. On the other hand,

creating new commits to fix an issue is better understandable for the reviewer as they might

have already reviewed some commits (P13). The same developer misses the functionality to

57

5. THE DEVELOPERS’ PERCEPTIONS ON THE NEW MERGE REQUEST MODEL

squash commits when the merge request is approved because that would keep the git history

cleaner.

5.6.2 Communication

One major benefit from the merge requests is that there are more discussions taking place as

there is better communication in the new model (P14, P15) and the threshold for discussions

and making changes has decreased since in the new model the code is not in master when

it is being reviewed and therefore is more open for changes (P12, P15). Moreover, merge

requests help to build knowledge about the codebase as developers teach and learn from

each other (P17, P19) and the author and reviewer are aligned on the version of the code

that goes to master (P16, P19), which is beneficial for the codebase.

Findings

F45 Merge requests are opened as soon as there is code to share with the reviewer

without it being completely ready.

F46 Amending commits can be confusing for the reviewer while adding new

commits results in a messy commit history.

F47 Merge requests provide better discussions and help to build knowledge.

5.7 Migration

In this section, we will discuss the perceptions of developers on the whole migration process

at Adyen.

5.7.1 Overal Experience

Developers experienced the migration as easy and not painful at all (P17, P18) because they

were already familiar with the merge request-based model (P12, P17, P18, P19). Moreover,

some interviewees mention that everyone in their team had previous merge request experi-

ence (P12, P17), which had helped to migrate. P17 said: “Overall, it is what I said, I like

the approach. And I think we are doing a very nice migration. I mean, it was not painful.

And I think we managed to run both of them in parallel, which is also super nice. So yeah,

so far, I am happy with the merge request. I am looking forward to the next step.”

Nevertheless, one developer (P15) mentions having asked their team for help on how to

use the merge request-based approach since this person had no previous knowledge of the

merge request-based model. This participant also mentioned that it took some time to get

used to the new flow. Even when following the instructions they faced problems pushing

code to their branch. Eventually, they understand how to properly use the merge request-

based approach.

58

5.7. Migration

The instructions for creating merge requests on the company’s internal website have

helped with getting up to speed with the new model (P12). This website provides docu-

mentation on the merge request flow and explains the custom git mr submit script. One

developer (P18) mentions that the migration was made easy due to the automated scripts

that were provided by Adyen, while others (P12, P17) mention that they needed to get used

to the custom automation scripts.

5.7.2 Benefits of the Merge Request-Based Model

There are multiple benefits of the migration that the interviewees mentioned, such as re-

viewers are not doing the minimal required effort anymore when doing code reviews (P12,

P16, P18, P19). They said that reviewers used to approve reviews too quickly without suffi-

ciently looking at the code changes because the code did not break the integration tests and

was working and running on the master. Also, developers’ happiness has increased when

using the merge request-based model as perceived by one developer (P16) and another de-

veloper (P12) is happy that their user branch does not expire anymore.

5.7.3 Challenges of the Migration

However, the migration also proposed some challenges because the large size of the com-

pany and given that Adyen is a mono repository makes it very difficult to migrate all devel-

oping teams to the merge request-based model (P16). According to the same participant, it

was especially a struggle for the people working on the migration.

Moreover, small changes or urgent fixes cannot be pushed directly when using the merge

request-based model. Some participants see this as a downside of the new model, as urgent

fixes get blocked from merging to master because they need to be approved by a reviewer

first (P15, P17). Moreover, as an author, it can be annoying to get comments on their code

for small changes with low impact (P16) and one developer (P14) even mentions to have

used the trunk-based approach for small changes to avoid having to wait for a review.

5.7.4 Trunk-Based or Merge Requests

To conclude the interview we asked the participants which development model they pre-

ferred and why. Most developers (P12, P13, P15, P16, P17, P18, P19) prefer the merge

request-based model over the trunk-based model as it is always better to review code be-

fore merging (P13) and in addition to the code review, you can also review the commit title

and text (P16, P19). Adyen is using prefixes and ticket tags in their titles, which should

be properly used. P16 said: “Not considering GitLab, the application itself because I think

GitLab brings lots of improvements over Gitea as well. But I do like merge requests and one

thing that merge requests enable that trunk-based development will never enable is review-

ing even the commits, the titles, and the texts. That is not something that we do currently.

But merge requests enable this.” Moreover, a benefit of the merge request-based model is

that it is the current industry standard of software development (P15, P17).

Others argue that the best development model depends on the situation because they

prefer what they are familiar with (P12, P13), which is the merge request-based model for

59

5. THE DEVELOPERS’ PERCEPTIONS ON THE NEW MERGE REQUEST MODEL

both of them. One developer (P18) mentions that the trunk-based approach is preferable in

some situations, such as for start-ups and small development teams.

As also suggested in the interviews before the migration, a hybrid model might be a

good solution as well. Only one developer (P14) mentions preferring the hybrid model

where most contributions are merged after a code review, but where there is a possibility to

merge directly for small non-functional changes. In their words: “I like the old way, it has

a flexible way. Also, I think the quality is also important. So I think in the future, like for

the small changes, no functional changes, I would prefer the old way, but for like, really like

big changes, the functional changes, I prefer merge requests.”

Findings

F48 The migration process went smooth for developers with the help of docu-

mentation and team members.

F49 Developers are overall happier with the merge request-based model.

F50 The large size of the company makes it difficult for the responsible develop-

ers to migrate all development teams.

F51 Not being able to push small changes or urgent fixes to the master branch is

seen as a challenge.

F52 The merge request-based model is preferred by the majority of developers

in the situation of Adyen.

60

Chapter 6

Discussion

In this chapter, we will discuss the implications of this research and provide recommenda-

tions to Adyen and other companies in the software engineering industry. Also, we will

discuss the threats of validity that this research might include.

6.1 Implications

In this section we will summarize all the findings in this thesis, which are stated in chapters

3, 4, and 5. The (Fx) in parenthesis point to the findings presented in those chapters.

6.1.1 Development Speed

First of all, before the migration, code reviews in the trunk-based model were perceived as

slow (F2). However, quantitative analysis showed that the time for completing reviews has

significantly decreased when migrating from trunk-based development to merge requests

(F28). More than 60% of the merge requests are closed within one day, while this is not

even 20% for reviews in the trunk-based model (F29).

In the trunk-based model, the release cycle was not considered too short and was also

not expected to be too short when using merge requests (F8). Developers did not expect that

time will get wasted by waiting on code reviews (F7). After migrating, developers perceive

that the overall development speed has decreased (F35) as errors are caught earlier and fixed

sooner (F36). Moreover, developers feel that when considering fixing the errors and acting

on the feedback, the merge request-based model is faster (F37). Nevertheless, they mention

that development speed is mostly dependent on the team members who will review the code

(F38).

6.1.2 Code Quality

In the trunk-based model, developers felt that they had to convince the author to improve

the code (F1) while bugs could have been prevented if the responsible code was reviewed

before merging (F13). Also, tests were considered more reliable than code reviews (F17),

and code reviews were considered very important for beginner developers (F3). Developers

61

6. DISCUSSION

do not want senior developers to have the ability to merge directly without a review in the

merge request-based model (F22). Moreover, developers felt scared to break the code when

pushing directly to master (F15) and mention that the cost and effort of fixing a bug are

higher than preventing it (F14). However, developers did not want to postpone the release

until everything was reviewed (F9).

Before the migration, developers expected that mandatory code reviews would help be-

ginner developers to learn best practices (F4), increase review quality and therefore code

quality (F5), and fewer bugs would occur (F16). Moreover, the commit history was ex-

pected to improve (F18) and saving code remotely was expected to be a benefit of the

merge request-based model (F20). However, review quality was expected to decrease if the

merge request are too large (F19).

After the migration, developers perceive that more knowledge is shared among the de-

velopers (F32), the review quality and code quality increased (F33), and better and more

discussions occur in the merge request-based model (F34, F47). In the quantitative analysis,

we found that indeed significantly more discussions occur in merge requests (F30) as they

get an average of 7.55 comments per review, whereas this is 3.53 for reviews in the trunk-

based model (F31). Quantitative analysis of the code reviews show that most comments in

reviews are about code improvement and understanding (F25), social communication has

decreased during the migration (F26), and more comments to transfer knowledge are placed

in merge requests (F27).

6.1.3 Merge Conflicts

In the trunk-based model, merge conflicts did not happen very often (F10) and were con-

sidered easy to fix (F12). Developers expected more merge conflicts to occur in the merge

request-based development model (F11), however, the number of merge conflicts did not

raise as expected (F39). On the contrary, merge conflicts are earlier noticed and can there-

fore be solved sooner in merge requests (F40) as merge requests are opened as soon as there

is code to share with the reviewer without it being completely ready (F45). Nevertheless,

solving merge conflicts can be confusing and should be looked at carefully (F41).

6.1.4 Development Models

Before migrating, the trunk-based development model was not considered to always be the

best option for startups and fast-developing codebases (F23), and the merge request-based

development model was considered to be preferable for mature codebases and high-impact

projects (F24). However, having experienced the merge requests, developers are overall

happier with the merge request-based model (F49) and the merge request-based model is

preferred by the majority of developers in the situation of Adyen (F52). The only challenge

is that developers are not able to push small changes or urgent fixes to the master branch

(F51).

In addition, the migration process at Adyen was perceived as a smooth process for de-

velopers with the help of documentation and team members (F48). However, the large size

62

6.2. Recommendations

of the company makes it difficult for the responsible developers to migrate all development

teams (F50).

6.2 Recommendations

Developers also had some complaints or remarks on the migration, which they expressed

during the interviews and survey.

First of all, the custom scripts that were created to simplify the merge request flow

was sometimes confusing since it was not clear what they were doing. Developers would

like to use the industry standards (F42) as most of the developers are already familiar with

merge requests. Moreover, a lot of features from GitLab are lacking and there is still room

for improvement (F43). Also, recent joiners of Adyen said that the onboarding can be

very complicated with all those extra tools. So, we recommend maintaining the regular git

commands as much as possible and keeping up with the standards in the industry, and mak-

ing the process of onboarding of new developers smoother (F44). In addition, Amending

commits can be confusing for the reviewer while adding new commits results in a messy

commit history (F46), so we recommend creating new commits and squashing them during

the merge if necessary.

Also, the pipeline that runs all the checks takes a very long time. Currently, the pipeline

runs in Jenkins, which is an external continuous integration tool. Developers would like to

have a lightweight CI version that can quickly check for each commit if it is likely to fail

tests. And only when merging to master, the complete CI should be performed. I would

recommend this flow. Moreover, to maintain the fast development speed, we recommend

having automatic reminders sent to the reviewers for merge requests (F6) and having the

system give warnings when feature branches are too long-lived (F21).

6.3 How to expand to the community

From the results shown in the previous chapters, a few observations became clear. One big

observation from the interviews and the survey is that the merge request-based approach is

preferred over the trunk-based approach for the codebase of Adyen. The main reason for

this is the increasing code quality, as more discussions take place in code reviews. Also,

the guarantee of code always being reviewed before being merged to master is considered a

major benefit of the merge request-based model.

Although developers mentioned before the migration that they prefer the fast develop-

ment speed of the trunk-based model, from the interviews after the migration this was not

considered a large problem as reviews were done very quickly. This is also shown in the

quantitative analysis of the code reviews, where we have shown that code reviews are sig-

nificantly completed faster. Therefore, migration seems to have been a good choice for the

development at Adyen.

To the software engineering community that is considering developing in either the

trunk-based or merge request-based approach, I would suggest looking at the following

aspects of the project:

63

6. DISCUSSION

1. The size of the development team: For smaller teams it might make more sense

to develop with the trunk-based approach as it might take a lot of time to wait for a

reviewer to be available.

2. The impact when live breaks: When the costs of breaking live are high, it might

be better to use the merge request-based approach as this introduces an extra security

check.

3. The maturity of the project: For startups it can be more beneficial to develop trunk-

based as you are building an application that has not been released or you need to

launch and iterate very rapidly. In contrary to mature projects, where the develop-

ment speed decreases and code quality becomes relatively more important than fast

development.

6.4 Threats to Validity

In this section, we will discuss internal and external threats to validity.

6.4.1 Internal validity

We believe that this research proposes several internal threats to validity. We can categorize

two types of internal threats to validity: credibility and confirmability.

Credibility

First of all, the response rate of the interview participants for the first round was only 44%.

This means that only a selection of developers had input in the interviews. We found that

especially people who recently joined the company had time for interviews while senior

developers were busier. This could propose a bias to the results. The same holds for the

responses to the survey. With a response rate of 8.3%, only a portion of the opinions is

captured.

The interviews were only conducted by one interviewer and analyzed by the same per-

son. Although approached objectively, this could still propose a researcher bias. During the

qualitative analysis of code reviews, codes were assigned to comments on the opinion of

one researcher. Also, the results were compared to the findings of Bacchelli and Bird [4],

which were known before the codes were assigned. This could propose a regression bias

towards the distribution of Bacchelli and Bird.

Also, the quantitative analysis of the code reviews is not done on all code reviews, which

might not perfectly reflect the development models. For example, code reviews that were

completed within ten minutes were discarded, since this did not seem a realistic time frame

to properly complete a code review. But a proper limit to determine whether code has been

reviewed or whether it was forced into master is discussable.

One of the largest threats to validity is the interview participant selection after the migra-

tion. Since not the whole company was migrated to the merge request-based development

64

6.4. Threats to Validity

model, only developers from a few teams were qualified to interview. Although the response

rate was 80%, the interviewees do not give a complete representation of the entire company.

Confirmability

This research also has one high threat to validity concerning confirmability. Since this re-

search was started when the whole company was using the trunk-based development model

and ended when the company was partly migrated to the merge request-based development

model, it is almost impossible to replicate the study without bias at this company. Espe-

cially the developers that have experienced the migration will have a biased opinion on

the new model and are therefore unsuitable to interview on their expectations of the merge

request-based model.

6.4.2 External validity

There are also two types of external threats to validity: generalizability across populations

and generalizability across situations.

Population

For this study, only a small subgroup of the developers was interviewed. Although se-

lected randomly, only 19 of more than 500 developers participated in the interviews, which

proposes a threat to the external validity as it is hard to say whether this subgroup is gener-

alizable to the whole developers’ group.

The same holds for the subgroup of developers that responded to the survey, but here

the participants were not selected randomly as everyone was invited. However, the response

rate was also much lower, which could mean that the subgroup that filled in the survey is

not a good average of the whole development group.

Situation

It is possible to replicate this study at other companies when they are going to switch from

the trunk-based development model to the merge request-based development model, how-

ever, there are some threats to external validity when trying to replicate this study. The

migration is dependent on a lot of variables that might be different at other companies.

First of all, the environment in which developers are doing their code review is tailored

to Adyen specifically. Before the merge, code was pushed to the repository on Gitea, and

code reviews were performed in Upsource. After the merge code was pushed to GitLab

and reviews were done in GitLab as well. This could propose bias towards one or the other

model because of preference of the tool instead of preference of the development model.

Also, the tools used can be different for other companies.

Moreover, Adyen is a unique company in the sense that it is a relatively young company

considering the large size and the high number of employees, especially important for this

research is the high number of developers. There are not many companies in the software

engineering field that match these criteria. Either a company is more mature and more

65

6. DISCUSSION

likely already using the merge request-based model for a very long time. Or the company

is young and counts only a few developers, in which case it might not make sense to use

the merge request-based approach as there is very low impact or it would slow down the

development speed significantly. Either way, the situation differs from Adyen and these

threats to generalizability should be considered.

66

Chapter 7

Conclusion

In this chapter we will repeat the research questions posed in the introductions and the

subquestions posed in chapter 3, 4, and 5. We will answer these questions by summarizing

our results. Finally, we will provide some food for thought for any future work.

RQ1 What are the expectation of migrating from a trunk-based development model to a

merge request-based development model at Adyen?

RQ1.1 What benefits do developers see with working with the trunk-based model?

RQ1.2 What challenges do developers face while working with the trunk-based model?

RQ1.3 What do developers expect to change when migrating from the trunk-based

model to the merge request-based model?

RQ1.4 How do developers do their code reviews in the trunk-based model?

RQ1.5 What do developers expect to change in code reviews when switching to the

merge request-based model?

To answer the main research question, the expectations of migrating from trunk-based

development to merge request-based development varied a lot. Whereas some devel-

opers expected an increase in code quality and decrease of errors, others expected a

lot of merge conflicts and slower development speed. This answers RQ1.1, as the

main benefit of the trunk-based model is the development speed because code is in-

stantly in the master when pushed. Answering RQ1.2, the main challenge is the

unreviewed code in the master which proposes danger to the codebase. To answer

RQ1.3, we see that developers expect many different processes to change, such as

a decrease of development speed, increase of merge conflicts, and increase of code

quality. Answering RQ1.4, the way developers did their code reviews in the trunk-

based model is by reviewing the code after the merge. While most reviewers do the

code reviews properly, it occurs that some developers approve code reviews when the

code has been in the master for some time and did not break anything. To answer the

final subquestion RQ.1.5, when switching to the merge request-based model, devel-

opers expect code reviews to play a more important role because they are mandatory

67

7. CONCLUSION

for your code to be merged. Reviewers will be more responsible to ensure the good

quality of the code.

RQ2 What has changed in code reviews after migration from trunk-based to merge request-

based at Adyen?

RQ2.1 What are the motivations for code review at Adyen?

RQ2.2 What changes in the time for a review to be closed when migration from the

trunk-based development model to the merge request-based development model?

RQ2.3 What changes in the number of comments in the reviews?

For the second main research question, we used the data from Upsource and GitLab

to visualize the differences between the trunk-based model and the merge request-

based model. We have shown that there are differences in motivations for code re-

views, the time for reviews to be completed, and the number of comments in code

reviews. To answer RQ2.1, the main motivations for code reviews for both models

are code improvement and understanding. The motivations for code reviews have

shifted from social communication to review tool and knowledge transfer. Compared

to Bacchelli and Bird [4], the main difference is that there are much more code re-

views on knowledge transfer for both models at Adyen. Answering RQ2.2, the time

for a review to be closed has significantly decreased when migrating from trunk-

based to merge request-based. To answer RQ2.3, the amount of code comments per

review has on average increased after the migration. So to summarize, while the code

reviews contain more comments, they are closed faster in the merge request-based

model compared to the trunk-based model.

RQ3 How did the developers perceive the migration from trunk-based development to

merge request-based development at Adyen?

RQ3.1 What benefits do developers see with working with the merge request-based

model?

RQ3.2 What challenges do developers face while working with the merge request-

based model?

RQ3.3 What changes did developers experience when migrating from the trunk-based

model to the merge request-based model?

RQ3.4 How do developers do their code reviews in the merge request-based model?

RQ3.5 What changes did developers experience in code reviews when switching to the

merge request-based model?

The third main research question on how developers perceived the migration will be

answered by information retrieved through interviews. To answer RQ3.1, the main

benefit of the merge request-based model is the increase of code quality. There are

more and better discussions in merge requests and the commit history in the merge

request-based model is cleaner. Answering RQ3.2, the only challenge in the new

68

model is that the development slightly decreases when considering the time between

the commit and code being in master. Although considering the time it takes to fix

errors that are introduced in the trunk-based model that could have been prevented

using a merge request, some developers argue that the merge request-based model is

faster. Nevertheless, code quality versus speed is the most important trade-off that can

be made between the two models. To answer RQ3.3, the main change that developers

experienced from the migration is that code reviews play a more important role in

the development flow. Developers spent more time doing code reviews and acting

upon comments they receive. Also, developers have a better understanding of what

team members are doing and can therefore also provide better feedback. Regarding

RQ3.4, developers approach the code reviews in a similar way as in the trunk-based

model, only they block more time to do their code reviews. To answer the final

subquestion RQ3.5, instead of reviewing random commits done by anyone in the

company, reviewers get only assigned to merge requests within their team. Most

developers prefer this way of reviewing.

The goal of this thesis was to observe the migration from trunk-based development to

merge request-based development. We gathered a lot of data, mostly through the opinions

of developers. The reason for the migration reduce the number of errors on the master

branch and increase code quality. Since not the whole company migrated to the new model,

it is not yet possible to show whether this goal has been achieved. Future work could show

the number of errors before and after the migration at Adyen to see if the desired outcome

will be reached.

Also, more metrics could be used to quantitatively analyze the code reviews. In this

work, we used the time to review and the number of code comments, but more information

on code reviews could be analyzed to compare the models and interdependencies can be

explored.

69

Bibliography

[1] Maurı́cio Aniche, Christoph Treude, and Andy Zaidman. How developers engineer

test cases: An observational study. arXiv preprint arXiv:2103.01783, 2021.

[2] Maurı́cio Aniche, Christoph Treude, Igor Steinmacher, Igor Wiese, Gustavo Hen-

rique Lima Pinto, Margaret-Anne Storey, and Marco Aurélio Gerosa. How modern

news aggregators help development communities shape and share knowledge. In Pro-

ceedings of 40th International Conference on Software Engineering (ICSE), 2018. doi:

10.1145/3180155.3180180.

[3] Dimitrios Athanasiou, Ariadi Nugroho, Joost Visser, and Andy Zaidman. Test code

quality and its relation to issue handling performance. IEEE Transactions on Software

Engineering, 40(11):1100–1125, 2014.

[4] Alberto Bacchelli and Christian Bird. Expectations, outcomes, and challenges of mod-

ern code review. In 2013 35th International Conference on Software Engineering

(ICSE), pages 712–721. IEEE, 2013.

[5] Vipin Balachandran. Reducing human effort and improving quality in peer code re-

views using automatic static analysis and reviewer recommendation. In 2013 35th In-

ternational Conference on Software Engineering (ICSE), pages 931–940. IEEE, 2013.

[6] Earl T Barr, Christian Bird, Peter C Rigby, Abram Hindle, Daniel M German, and

Premkumar Devanbu. Cohesive and isolated development with branches. In Interna-

tional Conference on Fundamental Approaches to Software Engineering, pages 316–

331. Springer, 2012.

[7] Christian Bird and Thomas Zimmermann. Assessing the value of branches with what-

if analysis. In Proceedings of the ACM SIGSOFT 20th International Symposium on

the Foundations of Software Engineering, pages 1–11, 2012.

[8] Christian Bird, Peter C Rigby, Earl T Barr, David J Hamilton, Daniel M German, and

Prem Devanbu. The promises and perils of mining git. In 2009 6th IEEE International

Working Conference on Mining Software Repositories, pages 1–10. IEEE, 2009.

71

BIBLIOGRAPHY

[9] Amiangshu Bosu, Michaela Greiler, and Christian Bird. Characteristics of useful code

reviews: An empirical study at microsoft. In 2015 IEEE/ACM 12th Working Confer-

ence on Mining Software Repositories, pages 146–156. IEEE, 2015.

[10] Scott Chacon and Ben Straub. Pro git. Springer Nature, 2014.

[11] Marco di Biase, Magiel Bruntink, and Alberto Bacchelli. A security perspective

on code review: The case of chromium. In 2016 IEEE 16th International Working

Conference on Source Code Analysis and Manipulation (SCAM), pages 21–30. IEEE,

2016.

[12] Alessio Ferrari. Empirical methods in software engineering, 2020. URL

https://www.youtube.com/playlist?list=PLSKM4VZcJjV-P3fFJYMu2OhlTjEr9Bjl0.

[13] Georgios Gousios. The ghtorent dataset and tool suite. In 2013 10th Working Confer-

ence on Mining Software Repositories (MSR), pages 233–236. IEEE, 2013.

[14] Georgios Gousios, Martin Pinzger, and Arie van Deursen. An exploratory study of

the pull-based software development model. In Proceedings of the 36th International

Conference on Software Engineering, pages 345–355, 2014.

[15] Georgios Gousios, Andy Zaidman, Margaret-Anne Storey, and Arie Van Deursen.

Work practices and challenges in pull-based development: The integrator’s perspec-

tive. In 2015 IEEE/ACM 37th IEEE International Conference on Software Engineer-

ing, volume 1, pages 358–368. IEEE, 2015.

[16] Georgios Gousios, Margaret-Anne Storey, and Alberto Bacchelli. Work practices

and challenges in pull-based development: the contributor’s perspective. In 2016

IEEE/ACM 38th International Conference on Software Engineering (ICSE), pages

285–296. IEEE, 2016.

[17] Toshiki Hirao, Akinori Ihara, Yuki Ueda, Passakorn Phannachitta, and Ken-ichi Mat-

sumoto. The impact of a low level of agreement among reviewers in a code review

process. In IFIP International Conference on Open Source Systems, pages 97–110.

Springer, 2016.

[18] Rashina Hoda and James Noble. Becoming agile: a grounded theory of agile tran-

sitions in practice. In 2017 IEEE/ACM 39th International Conference on Software

Engineering (ICSE), pages 141–151. IEEE, 2017.

[19] Yujuan Jiang, Bram Adams, and Daniel M German. Will my patch make it? and how

fast? case study on the linux kernel. In 2013 10th Working Conference on Mining

Software Repositories (MSR), pages 101–110. IEEE, 2013.

[20] Sami Kollanus and Jussi Koskinen. Survey of software inspection research. The Open

Software Engineering Journal, 3(1), 2009.

72

https://www.youtube.com/playlist?list=PLSKM4VZcJjV-P3fFJYMu2OhlTjEr9Bjl0

Bibliography

[21] Oleksii Kononenko, Olga Baysal, and Michael W Godfrey. Code review quality: How

developers see it. In Proceedings of the 38th international conference on software

engineering, pages 1028–1038, 2016.

[22] Shane McIntosh, Yasutaka Kamei, Bram Adams, and Ahmed E Hassan. The impact

of code review coverage and code review participation on software quality: A case

study of the qt, vtk, and itk projects. In Proceedings of the 11th Working Conference

on Mining Software Repositories, pages 192–201, 2014.

[23] Helmut Neukirchen and Martin Bisanz. Utilising code smells to detect quality prob-

lems in ttcn-3 test suites. In Testing of Software and Communicating Systems, pages

228–243. Springer, 2007.

[24] Adam Porter, Harvey Siy, and Lawrence Votta. A review of software inspections.

Advances in Computers, 42:39–76, 1996.

[25] Peter Rigby, Daniel German, and Margaret-Anne Storey. Open source software peer

review practices. In 2008 ACM/IEEE 30th International Conference on Software En-

gineering, pages 541–550. IEEE, 2008.

[26] Peter C Rigby and Christian Bird. Convergent contemporary software peer review

practices. In Proceedings of the 2013 9th Joint Meeting on Foundations of Software

Engineering, pages 202–212, 2013.

[27] Peter C Rigby and Margaret-Anne Storey. Understanding broadcast based peer review

on open source software projects. In 2011 33rd International Conference on Software

Engineering (ICSE), pages 541–550. IEEE, 2011.

[28] Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bac-

chelli. Modern code review: a case study at google. In Proceedings of the 40th In-

ternational Conference on Software Engineering: Software Engineering in Practice,

pages 181–190, 2018.

[29] Todd Sedano, Paul Ralph, and Cécile Péraire. Software development waste. In 2017

IEEE/ACM 39th International Conference on Software Engineering (ICSE), pages

130–140. IEEE, 2017.

[30] Davide Spadini, Maurı́cio Aniche, Margaret-Anne Storey, Magiel Bruntink, and Al-

berto Bacchelli. When testing meets code review: Why and how developers review

tests. In 2018 IEEE/ACM 40th International Conference on Software Engineering

(ICSE), pages 677–687. IEEE, 2018.

[31] Andrew Sutherland and Gina Venolia. Can peer code reviews be exploited for later

information needs? In 2009 31st International Conference on Software Engineering-

Companion Volume, pages 259–262. IEEE, 2009.

73

BIBLIOGRAPHY

[32] Patanamon Thongtanunam, Chakkrit Tantithamthavorn, Raula Gaikovina Kula, Nori-

hiro Yoshida, Hajimu Iida, and Ken-ichi Matsumoto. Who should review my code? a

file location-based code-reviewer recommendation approach for modern code review.

In 2015 IEEE 22nd International Conference on Software Analysis, Evolution, and

Reengineering (SANER), pages 141–150. IEEE, 2015.

[33] Patanamon Thongtanunam, Shane McIntosh, Ahmed E Hassan, and Hajimu Iida. Re-

view participation in modern code review. Empirical Software Engineering, 22(2):

768–817, 2017.

[34] Jason Tsay, Laura Dabbish, and James Herbsleb. Influence of social and technical

factors for evaluating contribution in github. In Proceedings of the 36th international

conference on Software engineering, pages 356–366, 2014.

[35] Kristı́n Fjóla Tómasdóttir, Maurı́cio Aniche, and Arie van Deursen. The adoption

of javascript linters in practice: A case study on eslint. Transactions on Software

Engineering (TSE), 2018. doi: 10.1109/TSE.2018.2871058.

[36] Arash Vahabzadeh, Amin Milani Fard, and Ali Mesbah. An empirical study of bugs

in test code. In 2015 IEEE international conference on software maintenance and

evolution (ICSME), pages 101–110. IEEE, 2015.

[37] Enrique Larios Vargas, Maurı́cio Aniche, Christoph Treude, Magiel Bruntink, and

Georgios Gousios. Selecting third-party libraries: The practitioners’ perspective.

In Proceedings of the ACM Joint European Software Engineering Conference and

Symposium on the Foundations of Software Engineering (ESEC/FSE), 2020. doi:

10.1145/3368089.3409711.

[38] Andy Zaidman, Bart Van Rompaey, Serge Demeyer, and Arie Van Deursen. Mining

software repositories to study co-evolution of production & test code. In 2008 1st

international conference on software testing, verification, and validation, pages 220–

229. IEEE, 2008.

74

Appendix A

Interview Before the Migration

This appendix contains the interview script used for the interviews before the migration.

Interview Questions (Before Migration) [25 min]

• Introduction [2 min]

– Explain the purpose of this study

– Mention that the interviewee will remain anonymous

– Ask for permission to record the interview

• Participant Information [5 min]

– What is your professional working experience in software development?

– How long have you been working for Adyen?

– In which teams within Adyen have you worked so far?

– How long have you been working in your current team?

– What is the nature of your development work in your current team?

• Trunk-Based [10 min]

– Can you tell me something about the current project you are working on?

– What are the challenges you face working with the trunk-based model in your

current project?

– Are your contributions being reviewed? How?

– What challenges do you face with the way code is reviewed in the current

model?

– Do you review other developers’ contributions? How?

– How long does it take for you to review someone else’s changes? Why?

– How long does it take for someone else to review your changes? Why?

75

A. INTERVIEW BEFORE THE MIGRATION

• MR knowledge [5 min]

– Do you have experience working with a merge request-based development model?

(Have you participated in the pilot for merge requests?)

– If the answer is yes:

* What are the benefits of using the merge request-based model over the

trunk-based model? Why?

* What are the challenges of using the merge request-based model?

* You (probably) have heard that Adyen is about to move towards a merge

request-based model. What are your expectations?

• Ending questions [3 min]

– What do you expect to be the most preferable way of developing and why?

– (Summarize interview) Is this a fair summary of your point?

– Anything else you would like to add?

76

Appendix B

Survey

This appendix contains the survey questions as provided to the participants. Only the par-

ticipants filled out the survey online.

77

B. SURVEY

Dear participant,

Thank you for taking this survey.

This questionnaire is a part of my master thesis project where I am analyzing the

benefits and challenges of the migration from the trunk-based development model to

the merge request-based development model at Adyen. By collecting enough answers,

the published results will include advice for Adyen and other companies in the

software engineering industry on what development model to choose and how to

benefit most from those models.

This survey is aimed at all developers at Adyen, both with and without prior

experience in the merge request-based development model as the goal of this survey is

to generalize the expectations of moving to the new model.

This survey takes around 5-10 minutes to complete and the answers will solely be

used in aggregated and anonymized form.

Thank you,

Toon de Boer

Delft University of Technology

Section A: Background Information

A1. How many years of professional experience do you have in software

engineering?

A2. In which team are you currently working?

78

A3. Do you have any previous professional experience working with the

merge request-based model?

Yes

No

A4. How many years have you been working for Adyen?
Please use decimals if necessary (e.g. 1 year 6 months is 1.5 years).

Section B:Code Reviews

B1. Regarding the trunk-based model, how much do you agree with the

sentences below?

Does not

apply
Strongly

Disagree Disagree Neutral Agree
Strongly

Agree

The reviewer has to convince the author to improve their

code.

There is enough time to complete code reviews before

the release.

It is a problem that developers sometimes have to wait

too long for a review.

The senior reviews add value to the code reviews.

It would be better to have 2 team reviews instead of 1

team review and 1 senior review.

It is important for beginner developers to conduct code

reviews as they will learn the best practices.

It is useful to get reviews assigned from other teams.

B2. Regarding your expectations about the merge request-based model,

how much do you agree with the sentences below?

Does not

apply
Strongly

Disagree Disagree Neutral Agree
Strongly

Agree

Reviewers will often block the merge by placing

insignificant comments.

Merge Requests makes the reviewer see a bigger picture

of the review.

Review quality and therefore code quality will improve.

Less experienced developers will learn more when

reviews are mandatory for code to be merged to the

master branch.

It would be useful if automatic reminders are sent to the

reviewers.

Reviewers should face some sort of consequences (no

heavy punishment) when they do not review in time.

79

B. SURVEY

Section C:Development Speed

C1. How much do you agree with the sentences below considering the

development speed?

Does not

apply
Strongly

Disagree Disagree Neutral Agree
Strongly

Agree

The current release cycle is too short.

The build time of the pipeline takes too long.

It would be better to extend the release cycle or postpone

the release until everything has been reviewed.

With the merge request-based model, the velocity of

producing new code will decrease.

With the merge request-based model, a feedback cycle of

one week will be too short.

With the merge request-based model, developing time

gets wasted by waiting on merge request approvals.

With the merge request-based model, some checks will

have to be skipped in feature branches and only run in

the master branch to increase development speed.

Section D:Merge Conflicts

D1. How much do you agree with the sentences below considering merge

conflicts?

Does not

apply
Strongly

Disagree Disagree Neutral Agree
Strongly

Agree

In the trunk-based model, merge conflicts happen often.

There will be more merge conflicts in the merge request-

based model.

Resolving merge conflicts is a time consuming task.

Merge conflicts are meaningful and help the code to get

better.

Merge conflicts are easy to fix.

Section E:Code Quality and Safety

E1. How much do you agree with the sentences below considering code

quality and safety?

Does not

apply
Strongly

Disagree Disagree Neutral Agree
Strongly

Agree

That fact that not all code in production has been

reviewed is a problem.

80

Does not

apply
Strongly

Disagree Disagree Neutral Agree
Strongly

Agree

Bugs in production could have been prevented when the

responsible code was reviewed.

The cost of fixing the bug is higher than preventing by

doing a proper code reviews.

I have felt scared to break the system when committing

code to master .

It is a problem that code goes live even if the reviewer

disagrees with the changes being made.

A benefit of the merge request-based model is that there

are less bugs and errors in the production code.

Testing code is more reliable than code reviews.

Section :Feature Branches

�1. How much do you agree with the sentences below considering feature

branches?

Does not

apply
Strongly

Disagree Disagree Neutral Agree
Strongly

Agree

Feature branches can only be maintained for one week is

a disadvantage of the trunk-based model.

The trunk-based model simplifies the process of fixing

bugs as it is easy to pinpoint where the error is introduced

and revert that commit.

Developers will abuse the feature branches in the merge

request-based model by developing for too long in one

branch.

When the merge-request is too large, the review quality

will decrease as it is harder to do a proper review.

Saving code remotely on a feature branch without

influencing other developers is a benefit of the MR

model.

The commit history will improve in the MR model as

commits to the same feature will be grouped.

With the merge request-based model, the system should

give warnings when feature branches are too long lived.

Section Microservices

G�. How much do you agree with the sentences below considering

microser�ices?

Does not

apply
Strongly

Disagree Disagree Neutral Agree
Strongly

Agree

Microservices will help the codebase to scale.

Microservices will make the life of developers better.

81

B. SURVEY

Does not

apply
Strongly

Disagree Disagree Neutral Agree
Strongly

Agree

Microservices add a lot of complexity since multiple

services that are dependent on each other need to work

together.

Deploying different applications independently would

benefit the entire platform.

The release cycle of microservices is faster than that of a

mono repository.

Working with smaller repositories would make it easier

for beginners during the onboarding.

There is more value in a mono repository as there are

currently a lot of interdependencies.

Adyen should break up the codebase and use

containerisation and microservices.

Section H:Development Models

H1. How much do you agree with the sentences below considering the

development models?

Does not

apply
Strongly

Disagree Disagree Neutral Agree
Strongly

Agree

Every team should decide for themselves whether to use

to trunk based model or the MR model.

Senior developers should have the ability to merge

directly without a review.

The trunk-based model is preferred over the MR model

for startups and fast developing codebases.

The MR model should be used for mature codebases and

high impact projects.

For Adyen, using the MR model has more benefits than

the trunk-based model.

A hybrid model such as the MR model allowing direct

commits would be preferred over using the MR model.

Section I :End

I1. If you have any suggestions on how to improve the merge request

model for Adyen, please add them here.

82

I2. If you have any comments on the survey or on the topic, please add

them here.

Thank you for participating in this survey!

83

Appendix C

Interview After the Migration

This appendix contains the interview script used for the interviews after the migration.

Interview Questions (After Migration) [25 min]

• Introduction [2 min]

– Explain the purpose of this study

– Mention that the interviewee will remain anonymous

– Ask for permission to record the interview

• Participant Information [5 min]

– What is your professional working experience in software development? (years)

– How long have you been working for Adyen?

– In which teams within Adyen have you worked so far?

– How long have you been working in your current team?

– What is the nature of your development work in your current team?

– Did you have experience with merge requests before you started at Adyen?

• General Questions [4 min]

– What are the benefits you experience from using MR?

– What are the challenges you experience from using MR?

• Migration [2 min]

– How did you experience the migration from trunk based to merge request based?

• Merge Conflicts [2 min]

– Do you experience more merge conflicts and how do they compare to the con-

flicts in trunk-based development?

85

C. INTERVIEW AFTER THE MIGRATION

• Code Review [5 min]

– What has changed in code reviews when comparing the merge requests with the

code reviews in Upsource? (quality, content, size, speed)

– Could you give an example of how the code review has changed?

• Development Speed [2 min]

– How does the new model compare to the old model in terms of development

speed?

• Ending questions [3 min]

– Having experienced both models at Adyen, what do you think is the most prefer-

able way of developing and why?

– (Summarize interview) Is this a fair summary of your point?

– Anything else you would like to add?

86

	Preface
	Contents
	List of Figures
	List of Tables
	Introduction
	Background and Related Work
	Adyen
	Related Work

	The Developers' Expectations on the Migration Towards Merge Requests
	Methodology
	Code Reviews
	Development Speed
	Merge Conflicts
	Security & Safety
	Feature Branches
	Development Models

	Differences in How Developers Review Code in Trunk-Based and in MRs
	Methodology
	Qualitative Analysis on Code Comments
	Quantitative Analysis: Review Times
	Quantitative Analysis: Number of Code comments

	The Developers' Perceptions on the New Merge Request Model
	Methodology
	Perceptions on Code Reviews
	Development Speed
	Merge Conflicts
	GitLab
	Merge Requests
	Migration

	Discussion
	Implications
	Recommendations
	How to expand to the community
	Threats to Validity

	Conclusion
	Bibliography
	Interview Before the Migration
	Survey
	Interview After the Migration

