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Abstract
Autonomous, flexible bin handling systems are state of the art. Designing such systems therefore is
often done with few examples or knowledge of performance alteration design strategies. In the system
development cycle, most of the costs are committed in the conceptual design phase. Having knowl-
edge to base design choices on is therefore crucial. This thesis aims to give insight in different design
choices of bin handling systems.

During this thesis, a case study is done at Prodrive Technologies. Prodrive Technologies is heavily
invested in building the factory of the future, which has been called: the light out factory. As the name
suggests, it is a factory in which the light can be turned off since there are no more humans required. In
order to achieve this goal, an autonomous bin handling system had been developed. This system han-
dles all movement of goods within the production environment. It consist of easily employable units, so
no conveyor belts designed for one specific line or product. This means the system can be employed
in different environments without the need for modification of its units.

In this thesis, performance is defined in terms of system costs, system footprint and demand scal-
ability. To evaluate the performance, a quantitative model is constructed and solved using Gurobi
Optimization software. The model determines the least possible amount of storage space required
in the system. Hereafter, it selects the units which are most cost, or floorspace effective to use and
assigns a location to those units. This quantitative model also generates a design for the layout of the
system, fitted in the production environment.

A method for system footprint determination is proposed in this research. Placement of units in the
environment introduces areas where no other activities can take place. The method proposed not only
counts the footprint of individual units, but also the areas restricted from other use due to the placement
of the units.

Designs are proposed by identifying the different functions of bin handling systems. Next these
functions are combined in different units in order to see how performance changes. This is done rela-
tive to the case study system. Since bin handling systems have a storage stage, storage strategies of
warehouses are reviewed in this research. Their effectiveness on the storage stages are evaluated.

Nine designs have been evaluated in this thesis. These designs are tested for total cost, bill of
material cost and floorspace optimal solutions. All optimal solutions are then generated again for higher
production demands in order to gain insight in the validity of designs for higher production speeds. It
is found that the following design choices have the following impact:

• Shared storage strategies have a negligible effect on both costs and floorspace

• The storage stage only effects a small amount of the costs and floorspace

• Transporting bins instead of stacks is a viable strategy, but will increase system footprint

• Combining the transportation and positioning function promises the largest decrease in total costs,
while not increasing footprint

• Small local buffers in addition to central storage reduce costs and footprint

• Larger local buffers will increase total systems costs.
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1
Introduction

This chapter provides a general introduction to this thesis on the design strategies of bin handling
systems. First some background information on industrial automation and logistics automation is given.
Next in section 1.2 the concept of a bin handling system is explained. In section 1.3 the research
motivation is discussed. In section 1.4 the research questions are discussed. The research scope is
defined in section 1.5 and lastly in section 1.6 the outline of the report is presented.

1.1. Background
Automation of manufacturing processes started with the steam engine and the famous conveyor belt
systems. Since then automation of manufacturing process started to focus more on the manufacturing
steps of the process. Robots carrying out tasks autonomously, reducing the need for human operators
more and more. In the current day and age robotisation in production lines is nearing its limit. The
focus now lies on optimization and communication properties of robots. When looking at the whole
production chain however, there are still gaps where robots are not present. The most obvious one is
the intralogistics field.

Intralogistics is a field of logistics which includes all goods and material flows happening on the com-
pany premises. Company premises are a highly dynamic environment, meaning there are variables
that are hard to control and are constantly changing. Think of employees walking around, products
moving from A to B or obstacles in pathways. Navigating such an environment is mostly done by hu-
mans since they are capable of assessing different situations and react accordingly.

The next step in fully automating manufacturing processes is the one of intralogistics. The main task
here is transporting sub assemblies to an assembly line and retrieving and storing finished products.
Now done by human operators, large pallets of sub assemblies are taken from the warehouse and
transported to the assembly line. There pallets are unpacked and the individual raw materials or sub
assemblies are loaded into the respective production cell. This leaves room for error from the opera-
tor by supplying the cell too late, or with the wrong component. Automating this process reduces the
chance or errors and increases the autonomy of the process. It is not by accident that intralogistics are
not yet widely automated. Automating the movement of goods is challenging. As stated above, com-
pany premises are highly dynamic environments and are therefore hard to control. This means robots
that are capable of moving goods must also be able to navigate this dynamic environment. Advance-
ments in sensing, communication and control technologies enable robots to carry out such advanced
tasks with a high level of autonomy. Such robots are formally known as automated guided vehicles
(AGV).

While one could consider the autonomous guided vehicle as the base of logistical automation, it still
needs other machines to interact with. An autonomous logistics system must be able to perform more
tasks than just driving a product from A to B. Tasks such as feeding, picking, (de)stacking and more
should also be considered when eliminating all operators from the process. Communication between

1



2 1. Introduction

different robots is key here. By communicating with each other or a central command center, the robots
can create a planning themself resulting in a truly autonomous system.

When operating at the highest level of autonomy, no humans should be required to run a production
line. Realising such an environment is the long term goal of Prodrive Technologies in Eindhoven. Pro-
drive technologies is a high-tech company in the Netherlands that develops and produces mechatronic
and electronic systems and products. To improve capabilities of their production processes, a so called
’light-out factory’ is pursued. This lights-out factory has such a degree of autonomy it can be left alone
for a shift, hence the name. This research is conducted in cooperation with Prodrive Technologies
in order to improve the implementation and further development of their autonomous bin processing
system.

1.2. System definition

To enable transport of various products, one might opt for a generalized transport container. This helps
in the development of product handling systems since only one type op container needs to be handled.
Such generalized transport containers are called bins. Any number and types of machines and robots
can be used to transport these bins from A to B. Most intralogistic movements are between warehouses
and production lines. These movements can be divided into two different processes: heavy lifting and
single supply. Heavy lifting is the movement of large amount of products, pallets or stacks of smaller
bins, over longer distances. Often this is to supply the whole production environment with enough
goods. Single supply is the servicing of a single production cell. This thesis focuses on autonomous
bin handling systems supplying the production cells. Since flow of goods is not constant, such systems
often also include storage buffers.

1.2.1. Use case at Prodrive Technologies

For this research a case study is done at Prodrive Technologies. At Prodrive Technologies an au-
tonomous bin handling system has been developed and is operating in a real world production envi-
ronment. This system consists of four distinctly different units, which are illustrated in figure 1.1. First is
the single payload exchange platform (1). This unit handles the introduction and extraction of products
in and out of the system environment. Next is the multi bin cabinet (2). This is a multi layer storage
unit capable of being expanded backwards. Here the majority of storage takes place. The (de)stacker
cabinets (3) are used the stack and destack bins filled with products and are commonly placed next
to production cell to supply them with single bins. Lastly there are the automated guided vehicles (4).
These are the transporters of products within the environment. They are capable of docking to other
units and exchanging products. This system will be used as a case study to evaluate the costs of
implementing this system as is, and how these costs can be decreased.
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Figure 1.1: The bin handling system of Prodrive Technologies

1. Single payload exchange platform

2. Multi bin cabinet

3. (de)Stacker cabinet

4. Automated guided vehicles

1.3. Research motivation
Fully autonomous bin handling systems are only bound by imagination. One could make one robot ca-
pable of carrying out all tasks required by the system, or one robot for each individual task. Since such
systems are state of the art there are not many examples of existing systems. This is undesirable since
75 % of the costs are committed during the design phase as can be seen in figure 1.2 by Baral, 2021.
While the costs may come later, choices in the design phase will determine if, and in what degree they
come. Being well informed on performance expectations, and having a way to quantify them, early in
this process can save money, time and effort later on. Not only system costs but also floorspace and
performance of such a system should be considered. Developing a system not capable of supporting
growing demand means more costs later on due to adjustment costs of excessive floorspace require-
ments. This thesis aims to provide quantitative insight in the effects of different design solutions
for autonomous bin handling systems, so better informed decisions can be made in the design
phase.
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Figure 1.2: Product costs in the product development cycle, Baral, 2021

1.4. Research questions
This thesis aims to evaluate the performance of various autonomous bin handling systems. More
specifically, optimizing the usage of autonomous buffer systems. The research question this thesis
aims to answer is:

What are the effects of different design strategies of an autonomous bin handling system on
costs, floorspace and throughput capabilities?

To be able to answer this research question, the following sub questions are formulated:

1. What is the definition of buffering and how does this relate to warehousing?

2. What are the design strategies present in existing bin handling systems?

3. How can a cost optimal solution be found using quantitative modeling?

4. How is a bin handling system defined and how do the costs relate to the system?

5. How does a quantitative cost optimal solution of a bin handling system relate to an analytical
solution?

6. What is the impact of different design strategy?

1.5. Research scope
This research focuses on both the cost and floorspace effects of design choices bin handling systems,
as well as how the design choices cope with an increasing demand. Since bin handling systems
can vary in shape and size, the variables considered by this research should be clearly defined. The
bin handling system consist of three main aspects: the hardware, the operational software and the
placement in the production environment (layout). There are more components to consider but they
are defined as external factors. External factors are considered to be inputs and unchangeable. These
factors include the production line layout and the logistical execution system (LES).This is depicted in
figure 1.3.
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Figure 1.3: Aspects of the autonomous buffer system

Every autonomous system is operated by operational software. This software dictates how robots
move and interact with each other. This does not include operational planning since this is handled by
LES. Improvements in operational software could improve overall performance. This however is more
software related and not in the field of this thesis. Therefore, operational software is excluded from this
scope. Since operational planning software is excluded, route optimization is also excluded from the
scope.

Placement, or layout, of the bin handling system units is relevant in a few ways. First of which is the
route planning of the AGVs. More efficient route planning can decrease the travel time of AGVs, in turn
leading to fewer AGVs or a higher potential throughput. Due to relatively long (un)docking operations
and high travel speeds of the AGV, a decrease of travel distance is not significant in total job time. To
put this into perspective, a 20 % decrease in travel distance due to layout optimization will result in a 1
% total total job time reduction. This is based on the case study system described in section 1.2.1. The
second way placement of units is relevant is the floorspace the systems requires. Since floorspace is
one of the key performance indicators of this thesis, placement with respect to floorspace optimization
is within the scope.

The last part of an autonomous bin handling system is the hardware. This also includes the prod-
ucts and bin shape the systems should handle. Since the scope would be too wide if these factors are
considered, these factors are seen as a constant. Products cannot be altered to fit bins better, and
bins cannot be altered to improve capabilities of the robots.

The focus of this thesis is to quantify the effects of different design choices of robots present in a
bin handling system. A bin handling system is required to be capable of different tasks. The number
of different robots required for those tasks is up to the designer of the system. Less robots might save
costs but could hurt the throughput of the production line. The main scope of this thesis is the influence
of hardware, both the type and quantity of the robots, on the costs, floorspace and throughput of the
system.

1.6. Report outline
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2
Optimization and design strategies

This thesis aims to provide a method to generate an optimal solution for bin handling system implemen-
tations in a production environment. In this section methods for optimizing storage hardware usage are
researched. Since bin handling systems are state of the art, a broad search has been done. Methods
for warehouse management are also included since they optimize storage capacity. This can be seen
in section 2.1. Next logistical optimization methods are researched. Focus here lies on the amount of
”hubs” since storage equipment can be seen as hubs. this can be read in section 2.2. The difference
between buffering and warehousing should be clear. This is explained in section 2.3. Lastly a search
for literature on existing bin handling systems is done.

2.1. Warehouse or buffer optimization methods

While bin handling systems are more than just storage, storage components are required in order to
ensure production is not halted. These storage components can be seen buffers or small warehouses.
All problems related to warehousing and buffering should therefore be explored. Order picking is the
most costly operation in a warehouse Marchet et al., 2015. Traditionally it includes employees navi-
gating the warehouse and picking items according to customer demands. Since this is costly, many
studies have been done into optimizing this process. Van Gils et al., 2018 identifies twomain categories
of problems in order picking: tactical and operational. This is depicted in figure 2.1. Designing an op-
timal order picking system has to weigh each of the depicted aspects. Optimizations can be done to
fit different requirements such as warehouse space, travel distance, storage space and picking speed.
Depending on the optimization goal, order picking optimization can be used for more situations than
picking multiple different items and delivering them to customers.

9
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Figure 2.1: Aspects of order picking, Van Gils et al., 2018

2.1.1. Storage assignment problem
The storage assignment problem is part of order picking optimization. R. De Koster et al., 2007 de-
scribes storage assignment as decisions on how and where a set of items is stored in order to optimize
the logistic system. Even though there are numerous methods to assign products to a storage location,
there are five most frequently used methods: random storage, closest open location storage, dedicated
storage, full turnover storage and class based storage. Random storage methods randomly select a
storage location for an item. This results in high travel times. Due to the constantly changing locations
of items these methods only work in computer controlled environments as stated by Quintanilla et al.,
2015. Closest open location methods find the closest empty storage location and use it for the storage
of the held item. This results in a concentration of products near the handling area, meaning lower trav-
eling time. Closest to empty and random methods can also be used in combination with each other.
This is done through using a non-uniform distribution when selecting a random location as stated by
Park, 1987.

Dedicated storage methods designate one specific storage location to one specific item. For larger
warehouses, where not all items are always on stock, this means not all storage space is needed at
one time thus requiring a larger warehouse. However, by having a designated location for each item
the planability for the logistic system increases. This is especially true when assuming no item is out
of stock. Then the larger storage locations can be reserved for items moved in larger quantities, thus
reducing the overall number of storage locations needed. M. De Koster and Neuteboom, 2001 states
designated storage locations reduce work and mistakes in human operated stores since each item is
always in the same place, thus reducing search times. While computer directed systems could have
the ability to directly communicate new item locations, this is not always a given. For less advanced
computer systems without the capabilities of real-time communication dedicated storage also makes
them less likely to make a mistake. Decisions on where the dedicated storage for an item will be as-
signed can be based on multiple different aspects such as part number, barcode number or duration
of stay

Full turnover methods focus on the placement of items according to demand. Placing items with
a higher turnover at more easily accessible storage locations. This method is especially usefull when
optimizing average item retrieval speed, Yang et al., 2017. Full turn over is an expansion on dedicated
storage. Yu and De Koster, 2013 states that full turnover suffers the same disadvantage as dedicated
storage of needing storage spaces able to accommodate the full inventory of a single item. To evaluate
the demand of an item the cube-per-order index (COI) is commonly used. Proposed by Heskett, 1963,
the COI is defined as the ratio of maximum allotted space to the number of storage/retrieval operations
per unit time, Bahrami et al., 2019.
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Class based storage divides all stock items into classes and stores them in the same area. Storage
locations are then randomly assigned within an area. As mentioned by Bahrami et al., 2019, classes
can be defined as seen fit. High turnover classes can be located near handling areas, while low turnover
classes can be located further away. This results in lower traveling times. The random storage assign-
ment in an area reduces the need for large storage areas and makes warehouses more flexible when
demand changes.

2.1.2. Comparison of discussed methods
In this section we looked for an answer to our subquestion: how can the storage locations be assigned?
In table 2.1 the discussed methods are summarized and in figure 2.2 a graphical representation is
shown on how the different methods are related. We see for different applications different methods
are more usefull. A big factor in selecting the right methods in certain situations, are the capabilities
of the system. Random storage methods are only applicable if the system can register and keep
track of where items are placed. Even though human operated systems are capable of registering
item placement changes, it often leads to longer order picking times and confusion. Random item
placement increases the flexibility of the warehouse. Fluctuations in stock amount or item types can be
accommodated. A big flaw in dedicated storage types is the amount of storage space needed. When
assuring there is always a large enough storage location available for an item, some locations will be
empty when the stock for that item is low. This is exceptionally bad in warehouses where items change
often or stock is not always guaranteed. However, for warehouses where stock is always required to
be at maximum capacity dedicated storage uses the available storage space optimal.

Flexibility Chaotic Use of storage space Planability Traveling time
Random location High Very Optimal Low High
Closest open location High Somewhat Optimal Low Low
Dedicated location Low No Low 1 High High
Full-turnover Low No Low 1 High Low
Class based storage Moderate Somewhat Moderate Moderate Low

Table 2.1: Comparison of discussed storage assignment methods

Figure 2.2: Overview of the different storage location assignment methods

2.2. Operations research
Operations research (OR) is a scientific method of providing executive departments with a quantitative
basis for decisions regarding the operations under their control, Morse et al., 2003. Rather than intuitive
or experience based decisions, OR has a scientific base. This means methods are comprised for
analysing different situations in different fields. These fields include management, government, military,
logistics and more. For our applications we are interested in the logistics aspect of operations research.
1Optimal if assuming always full stock for all items
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Within the logistics OR field there aremultiple problems defined andmethods related to those problems.
Each method has its own specific use. In the subsection below the methods that might be of interest
to our research are elaborated.

2.2.1. Transportation and shortest path problem
The transportation problem focuses on the travel time minimization. As stated by Nikolić, 2007: there
are two types of problems regarding the transportation time: (i) minimization of the total transportation
time (linear function, as aggregate the products of transportation time and quantity), called minimization
of 1st transportation time, and (ii) minimization of the transportation time of the longest active trans-
porting route (nonlinear function), called minimization of 2nd transportation time or problem of Barasov,
1961. Transport problems are mainly found in supply chain scheduling. In real life transportation prob-
lem there are of a lot of uncertainties. Here a stochastic, Williams, 1963 or fuzzy, Singh and Yadav,
2016 approach is therefore often a good choice.

The shortest path problem is related to the transportation problem with a small difference in op-
timization goal. The shortest path problem is looking to minimizing the total traveled distance. The
definition is stated by Magzhan and Jani, 2013 as: a problem of finding the shortest path or route from
a starting point to a final destination. This can also include mandatory stops. The shortest path prob-
lem is often displayed as a graph as shown in figure 2.3. For less complex graphs the solution can be
calculated intuitively. For more complex situations methods have been created such as the Dijkstra’s
algorithm and Floyd-Warshall algorithm.

Figure 2.3: Example of a shortest path problem graph by Dumitrescu and Boland, 2001

2.2.2. Traveling salesman and vehicle routing problem
The traveling salesman problem (TSP) originates from the question: : if a traveling salesman wishes to
visit exactly once each of a list of X cities and then return to the home city, what is the least costly route
the traveling salesman can take,Hoffman et al., 2013. In contrary to the shortest path problem, TSP
want to find the overall shortest route without visiting a node twice. In TSP the order of nodes visited
does not matter. A good example of a TSP is the delivery of parcels. A delivery driver does not want
to visit the same street twice. His route should be selected in such a way this does not happen. This
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is an optimization of the travel distance, not of the amount of equipment (vehicles) needed to meet the
demand, Jünger et al., 1995.

Similar to the TSP are vehicle routing problems (VRP). The biggest difference is in TSP only one
vehicle is considered. In VRPs the goal is to distribute goods between depots and and final users as
efficiently as possible, Toth and Vigo, 2002. Here the term ’efficient’ means at the lowest cost. Since
VRPs consider the whole system, the amount of equipment needed can also be varied. This means
there is not only a minimization of travel time or distance. For example: it might be cheaper to use less
vehicles with longer routes instead. VRPs can be used to determine: amount of depots, optimal depot
locations, amount of vehicles needed and routing costs, Pillac et al., 2013. In figure 2.4 the difference
between TSP and VRP is depicted.

(a) TSP graph by Glen, 2022
(b) VRP graph by Zhang et al., 2022

Figure 2.4: Graphical representation of different methods

2.2.3. Generalized assignment problem
The generalised assignment problem (GAP) is the problem of finding the minimum cost assignment of 𝑛
jobs to𝑚 agents such that each job is assigned to exactly one agent, subject to an agents capacity, Chu
and Beasley, 1997. GAP is often used in production planning. Using a certain high end machine might
be costly but its throughput might also be high. Planning to produce a small batch on this machine will
then increase the costs since now the machine is not available anymore for larger batches of products.
In GAP the goal is to minimize the costs through optimal use of equipment for the jobs at hand.

2.2.4. Queueing theory
The last field of logistic operations research we discuss is queueing theory. In queueing theory the best
possible ways to handle customers and assign them to queues are discussed, Newell, 2013. Queueing
often is a stochastic process. This is due to multiple reasons such as different arrival and service
rates. The example of customers is common but queueing theory can also be used in warehouses
or computer science in order to optimize flow. Optimization is done into waiting times and partly into
resource minimization.

2.2.5. Summary of discussed methods
Since logistics is a process with multiple steps, logistic operations research has multiple focus points.
In table 2.2 the different focuses of the different methods are summarized. There are three distinct as-
pects: travel/transportation, equipment and waiting time. Depending on the specific situation, different
methods could be used or combined.
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Method Focus
Transportation Minimization of total transportation time
Shortest path Minimization of total travel distance
Traveling salesman Minimization of total travel distance
Vehicle routing Minimization of total transportation costs including equipment
Generalized assignment Minimization of equipment
Queueing theory Minimization of waiting time and equipment

Table 2.2: Focuses of different operations research topics

2.3. Buffering vs warehousing

The term ’buffer’ is defined as a safety margin to not disrupt a process when components fail and ensure
continuity. In supply chain systems a buffer is a small, local stock of items to accommodate fluctuations
in supply rate. From management strategies such as lean manufacturing, Gupta and Jain, 2013, we
learn that buffer systems increase the costs of any system. Meaning in an ideal world buffer systems
are as small as possible. This raises another question: what is as small as possible? A to small buffer
may not be able to accommodate fluctuations and will hold up the stream. If the buffer size is too large,
excessive space is allocated for hardware and inventory, it may result in unnecessary costs, although
the process reliability may improve. In our case the buffer system is not only used to ensure continuity
but also as a forward warehouse. Meaning production should be able to continue for X amount of time
without the need for an operator to resupply. Right of the bat it is clear the X amount of time will be a
cost driver. Since keeping stock for a full shift demands much more items being in the buffer than for
one hour.

The type of buffer in a bin handling system is subject to different requirements then a warehouse,
Umirzoqov, 2020. In production environments, all demand will always be met. Starting production with
one part of the product not in stock will hold up production immediately. The number and quantity of
products is known in advance, and will be constant for each shift. This makes it possible to perfectly
tune the size of the buffer capacities of the bin handling system. Problems emerge when one production
line can produce multiple different products, Mahadevan and Narendran, 1993.

2.4. Design parameters of bin handling systems

The design parameters of a bin handling system are to be defined by their application. However, some
design choices are more cost effective. The different design parameters of existing systems are to be
identified in order to answer the subquestion: What are the design strategies present in existing bin
handling systems

Mahadevan and Narendran, 1993 divides buffers in central and local buffers. Central buffers being
storage locations available to all products and units. Local buffers are buffers integrated in a unit,
specifically for one type of product. This is schematically illustrated in figure 2.5. Local buffers can be
optimized for specific products, but when flexibility or a broader employability of the system is required
this kind of buffer may require refitting.



2.5. Chapter summary 15

Figure 2.5: Schematic view of buffer types and their locations, by Mahadevan and Narendran, 1993

As noted by Furmans et al., 2010, bin handling systems are often inflexible due to components such
as conveyor belts. Newer systems therefore operate in more dynamic environments with fast changing
production line configurations. While facing new challenges, the main operating principles remain the
same from traditional bin and material handling systems. Kay, 2012 formulates five different major
equipment types.

1. Transport equipment. Equipment used for transportation of goods within the system from one
location to another.

2. Positioning equipment. Equipment handling products at a single location in order to position
products for further steps, often located in front of production cells.

3. Unit Load Formation Equipment. Equipment used to secure materials and preserve their integrity
during transport and storage. In bin handling systems these are often the moulds in the bins,
keeping the product in place in the bin.

4. Storage equipment. Equipment capable of storage for short, or sometimes longer, periods of
time. Often used as buffers to cope with supply fluctuations or the storage of parts needed for
production near the production environment.

5. Identification and Control Equipment. Equipment utilized for gathering and transmitting informa-
tion, crucial for coordinating the movement of materials within a facility.

While Kay, 2012 focuses on traditional material handling system equipment, newer autonomous
systems aim to consider functions and how they can be combined in a broader range of applications.
These systems however are novel and are few and far between. Some papers such as Ye et al., 2018
talk about the use of AGVs for product and bin handling, but not in a production environments setting.
However, Ye et al., 2018 does explain the combining of different function in one unit. Here, the transport
and positioning function are combined.

2.5. Chapter summary
In section 2.1 the methods of warehouse and buffer optimization are researched. In the literature
found, there is hardly any mention of buffer systems in bin handling systems in production environ-
ments. In table 2.3 different sources on storage optimization are summarized and their respective
focus. Only Mueller, 2020 mentions buffer systems, but in an implementation study and does not men-
tion the automation or optimization process. Studies into storage systems mainly focus on warehouse
optimization. This does not mean principles from this field can not be applied on bin handling systems.
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Source Focus
Warehouse Buffer systems

Quintanilla et al., 2015 X
Yu and De Koster, 2013 X
Yang et al., 2017 X
Bahrami et al., 2019 X
Park, 1987 X
Mueller, 2020 X

Table 2.3: Different sources on storage optimization

This chapter aims to answer two subquestions, the first of which being: what is the definition of
buffering and how does this relate to warehousing?. Hamada et al., 2006 defines a manufacturing
buffer as a short term storage locating for semi-finished product in order to adjust for variation in the
production process. The key term here is short. Buffers are often as small as possible since storage
in the production environment is costly. Warehousing is for long term, bulk storage. Warehouses can
take many different products over time. Also, an item is not always in stock. Shared storage strategies
are therefore often useful in warehouses since they are large and with this strategy travel distances can
be minimized. Buffers have only a small set of items they require to store, sometimes even only one.
In order to not halt production these items will always be in stock. Here a dedicated storage strategy
is mostly used. The storage part of a bin handling systems does not fit into the warehouse or buffer
definition since more storage is required then just accommodate fluctuations in the production process.
Therefore it is not clear what kind of storage strategy will be most useful from literature.

The second subquestion this chapter aims to answer is: What are the design strategies present
in existing bin handling systems? In section 2.4 five distinctly different equipment types are de-
fined by Kay, 2012. The equipment types can be translated to functions and these function can be
used to determine possible function combinations in bin handling units. Further more, Mahadevan and
Narendran, 1993 describes two types of storage or buffers in a bin handling system: central and local.
Autonomous bin handling systems are novel and not a lot of research on them exists. Most existing
bin handling systems use inflexible infrastructure or units such as conveyor belts. This thesis aims to
find design solutions for flexible systems. Ye et al., 2018 shown us a method how different system
functions can be integrated in one systems unit. This concept might also be useful for other units in the
system. In section 2.2 the different field of operations research are explained. Since bin handling sys-
tems are part of the larger production process, this gives insight in interaction with production cells and
other supporting systems. Operations research describes methods for optimizing different problems in
operations. While not all proven to be relevant for this research, it is important to see what might have
been useful. The generalized assignment methods is useful in the determination on how to shape the
transportation and storage function of a bin handling system.
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Methodology

To be able to accurately evaluate the impact of different design choices, the results have to be quan-
tified. In this chapter the following subquestion will be answered: How can a cost optimal solution be
found using quantitative modeling? Throughout this chapter, the steps necessary will be systematically
explained to ultimately answer the subquestion.

3.1. Quantitative optimization
Quantitative methods are based on objective data that can be clearly communicated through statistics
and numbers. This makes it measurable and comparable. This is why quantitative methods loan them
selves quite good for optimization problems. Optimization is a broad term, describing the search for
the best solution, as stated by Adby, 2013. The best solution however is subjective. One might be
looking to minimize costs while another might be looking to maximize profit. The fundamentals for
both problems remain the same. A system is described in a mathematical model and a cost function
is identified. Next, a computational solver is used to find the optimal solution according to the cost
function.

3.2. Deterministic and stochastic methods
Models can have a deterministic and a stochastic approach, Janssen et al., 2013. Deterministic models
give the same output each time for the same inputs. Here the inputs are assumed as known values
that do not change. This makes models easier to understand and implement. While some inputs can
be safely assumed not to change, some inputs may have a spread in their value. In these cases the
simplification of assuming a fixed value may lead to an inaccurate outcome of the model. When un-
certainty in input values becomes undeniably influential a stochastic model approach can be adopted.
Where deterministic models determine an exact solution, stochastic models predicts outcomes that
account for certain levels of unpredictability or randomness, Kenton and James, 2021.

To describe a real world system as accurately as possible, a stochastic approach is the best option.
A good example here is the throughput time of a product. In a deterministic model this could be defined
as 10 minutes. In the real world this could be 10 minutes slower or faster for each individual product
due to unforeseen reasons. This would mean the deterministic model is wrong. In a stochastic model
the input could be given in the form of normal distribution around a mean of 10 minutes. This however
results in more work in determining the required distribution and gives multiple outcomes while the
errors introduced by the simplification done by the deterministic model may be negligible. The degree
of deviation from the real world system indicates whether or not a deterministic model suffices. Since
stochastic models are more complex, one might choose a deterministic model when able.

In field where more precision is required or more unpredictable variables are present we see more
stochastic models. These fields include insurance, investing, statistics, biology and quantum physics,
Kenton and James, 2021. Even though warehouse operations are much more predictable, there is
some degree or uncertainty. Gong and de Koster, 2011 gives a review on the stochastic aspects of
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warehouse operations. In figure 3.1 he describes the sources of uncertainties in warehouse operations
related to strategic, operational and tactical impact.

Figure 3.1: Uncertainty sources of warehouse operations as stated by Gong and de Koster, 2011

3.3. Programming methods
To evaluate a deterministic problem, different programming methods could be used. Linear program-
ming (LP) is the most commonmethod since solving these equations is the least computationally heavy.
LP is the maximization or minimization of a linear objective function, Karloff, 2008. Since stochastic
methods often include a non-linear objective function, LP is more common in deterministic models. In
LP the constraints of a system span a space in n dimensions. Next the objective function is assessed
for the points in the spanned space and the minimum and maximum value can be found. For more
complex problems dynamic programming (DP) can be used. In DP a problem is split up into multiple
subproblems. Each subproblem is solved individually and then sub solutions are gathered and an op-
timal solution to the original problem is formulated. As stated by Sniedovich, 1991, this can only be
done to objective functions that follow the formulations of a dynamic programming optimality equation.
If an objective function is not separable as a DP problem and the objective function is of a higher or-
der, non-linear programming methods are needed. The key principles are the same as in LP with the
difference being that constraints can be of a higher order. This requires a more powerfull solver since
the space spanned by the constraints might be more complex.

3.4. Mathematical models
Real world systems of any kind can be described using mathematics. Aarts, 2010 defines a mathemat-
ical model as: a simplified representation of certain aspects of a real system, capturing the essence
of that system using mathematical concepts. Real world systems are very complex, therefore it is
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important to note here that a model is always a simplified representation. In figure 3.2 a graphical
representation of the mathematical modeling cycle is depicted.

Figure 3.2: Mathematical modeling cycle as stated by Aarts, 2010

A mathematical system consists of the four following classes: decision variables, parameters, con-
straints, and and objective function, Duinkerken and Atasoy, 2020. A system is always bounded by
rules. These could be physical rules, for example the inability to move due to bolted connections, or
system imposed rules. All these rules are called constraints. Since real world system can vary a lot,
each system has its own specific constraints. One constraint might be: the costs can not exceed the
money available and another could be the production time equals one hour. Even though constraints
are different, IBM, 2022 states all constraints could be categorized as one of the following:

• A not null constraint. Here a value or table index is prohibited from being zero.

• A unique constraint. Here a duplicate value is prohibited, for example when assigning supplier.

• A primary key constraint. Here relations between variables or tables are stated.

• a foreign key constraint. Here shared values between variables can be stated.

• a table check constraint. Here each variable can be prohibited from becoming lower or higher
then a certain value.

Parameters are the inputs of the system. These are unchangeable values. A good example is the
cost of raw material. These prices are fixed and the model can not decide on its value. The opposite
of parameters are decision variables. Decision variables are free for the model to assign in order to
find the best possible outcome. It may be cheaper to produce product A in January and product B in
February instead of the other way around. The values of the decision variables after optimization can
be used to tune the real world system. To determine the decision variables an objective function has to
be defined. The objective function is the heart of the mathematical model. Here the decision variables
are assigned a weight factor and the costs of changes in them are taken together. By minimizing or
maximizing the objective function the best possible result is calculated.
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3.5. Computational solver

To solve the model for the optimum value, a computational solver has to be used. If searches for the
optimum value for a formula is the objective cell by changing other cells connected to it via constraints.
First an initial solution is gathered by the solver. Next decision variables are altered in each iteration
of the solver and evaluated with respect to the initial solution. By updating the solution if the found
solution is better, the best solution is found after many iterations.

The solver used in this research is Gurobi Optimization for Python. Mathematical optimization
solvers like Gurobi are able to efficiently process all available data and consider a large number of
combinations of all relevant decision variables, constraints, and objectives Gurobi, 2021.

3.6. Verification and validation

Computer models can always contain errors. These errors may come from coding mistakes, unjustified
simplifications or incorrect relations between components. As stated by Babuska and Oden, 2004 the
question ”can computer predictions be used as a reliable bases for crucial decisions?” arises when
using computer models. To assess the reliability and accuracy of a model it is crucial to verify and
validate (V&V) it. Verification is the process of determining that a model implementation accurately
represents the developer’s conceptual description of the model and the solution to the model as stated
by Thacker et al., 2004. Here coding and calculation errors are identified and resolved. Code verifica-
tion can be done through comparison of the results with analytical solutions to the mathematical model..

Validation assessment is the process of determining the degree to which a model is an accurate
representation of the real world from the perspective of the intended uses of the model, as stated by
Thacker et al., 2004. While a mathematical model may be correct in the eyes of the developer, it might
not accurately represent the real world system. To assess if the model is a good representation the
results can be compared with the results of experiments. To validate the code and model one can also
simulate impossible situations. For example a problem where there is demand but no supply. The
model should give no result in these cases and break. If this is not true the model is not well defined.
Sargent, 2010 suggests the following methods of validation: animation, comparison to other models,
degenerate tests, event validity, extreme conditions tests and more. The methods of validation are
numerous but depend on the resources and data available. In figure 3.3 the verification and validation
steps are illustrated in the model design process.
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Figure 3.3: Model verification and validation in the design process, Thacker et al., 2004

3.7. Performance indicators
To evaluate the performance of a system, performance indicators need to be specified. In this section
the key performance indicators (KPIs) of this research are introduced. Information on what the KPIs
are, why they are relevant and how they are measured is given.

3.7.1. BOM costs
Implementing a bin handling system comes with different costs sources. One of which is the bill of
material (BOM) costs. Other cost factors are indicated in section 3.8. Each unit in a system had a
price. The BOM is the total price of all components required for a certain unit. More complex units
often have a higher BOM. The total BOM of a system is therefore not only dictated by the number
of units, but also by the type of units in the system. BOM is one of the KPIs used to evaluate the
performance of the system.

3.7.2. Floorspace
The second KPI is floorspace. Each system takes up a certain amount of space. Floorspace can be
presented in two ways: individual unit footprint and wasted space system footprint. When assuming
individual unit footprint, the footprint of each unit is added to determine the total footprint of the system.
This approach does not consider space between units. This space can be considered as ’wasted’. In
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figure 3.5 these different methods are depicted. In red the total system footprint is indicated. Walkways
and production cells are indicated in blue. A notable difference in total footprint can be seen here. Since
this wasted space can not be ignored, this thesis considers the method of including wasted space as
indicated in figure 3.4b.

(a) Individual footprint (b) Wasted space footprint

Figure 3.4: Example of floorspace definitions

3.7.3. Demand capabilities
The last KPI considered in this thesis is the ability to cope with increasing demand. This is a KPI
indicating how the system had to be expanded in order to cope with an increasing demand. In this
thesis, the demand of a system is based on the takt time of a product and a period of one shift. One
shift is defined as 8 hours of non stop production. Takt time indicates the time it takes for one product
to be produced. With a shorter takt time, more product will be produced in one shift, thus increasing the
demand for each production cell. Threemain factors are identified which increase costs and floorspace.
First, required storage space will increase since more semi-finished product need to be stored during
the shift. Next, the number of jobs for the AGVs will increase. This in turn will result in more AGVs
required in the system. Lastly, the (de)stacker capabilities. The (de)stackers must keep up with the
demand of the cells.

3.8. Optimization objectives
When a mathematical model as discussed in 3.4 is implemented, an optimization objective has to be
identified. Depending on what this objective is, the solver will prioritize certain decisions above others.
Below the three different optimization objectives of our model are discussed. These different objectives
are used to analyse the decision making logic of the model and see the difference in performance for
different optimal solutions.
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3.8.1. BOM
The first objective is the BOM. Focusing solely on the costs of units, the model will choose the cheapest
option possible. Floorspace optimization will be neglected due to it not being in the objective function.
It might be cheaper to place units outside of the wasted area since there is more space outside of
it. Depending of where a company is located, floorspace might be very cheap, or very costly. When
floorspace is very cheap, only optimizing for the BOM might be interesting.

3.8.2. Floorspace
As stated, depending on the location of a company floorspace might be very cheap or expensive. In
case of the latter, optimizing for floorspace only could be of interest. Placement of the units now plays
a larger role. In case of floorspace optimization the model will most likely choose to place units in the
wasted space area in order to save space. This will be done even tough other costs might increase. In
figure 3.5 the difference in unit placement is visualized. Storage units are indicated in green. In figure
3.5a an example of a possible BOM optimal solution is illustrated and in figure 3.5b an example of a
possible floorspace optimal solution. Here it can be seen how the model proposes a location for the
storage units based on the floorspace and wasted space costs.

(a) BOM optimal placement (b) Floorspace optimal placement

Figure 3.5: Visualisation of floorspace optimization objective
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3.8.3. Total costs
Lastly, the model should also be able to optimize the total system costs. These costs consist of four
different factors:

1. BOM costs

2. Assembly costs

3. Installation costs

4. Floorspace costs

BOM, assembly and installation costs all are directly tied to the unit amount. Each different unit in
a system comes in as components and need to be assembled and installed. More units means more
assembly and installation costs. Floorspace costs are based on the total system footprint, including
wasted space. To include square meters into the total costs and conversion has to be done. By
including the write-off of a square meter of floorspace, the footprint of the system can be included in the
costs. However, write-off is time based. That is why a time span has to be included in the total costs.
Therefore the total costs are defined as: the costs of a system over it’s lifespan. The depreciation
period of the units is the leading indicator for lifespan of the system. For instance: if the units of a
system have a depreciation period of ten years and the floorspace depreciation is 1 euro per day per
square meter, floorspace costs will be 3650 euro per square meter. Optimizing for total costs will result
in a balanced approach, placing units in the wasted space area only if the total cost decreases.

3.9. Generative design
As with all production environments, layout design is important for optimal performance. With layout
design, a multitude of factors should be considered such as facility shape, manufacturing systems and
material handling systems. As stated by Drira et al., 2006, there are even more factors which are de-
picted in figure 3.6. Considering all these factors is difficult when analytically constructing a layout and
results rely heavily on the experience and creativity of the involved planning experts, Süße and Putz,
2021. Another way to develop layouts is via generative design methods. Generative design enables a
much larger solution space and can provide the user with a visual design proposition.

When looking at figure 3.6 by Drira et al., 2006, only one aspect of all factors stated is relevant
to our system: the material handling system. The facility shape is assumed as predefined and the
manufacturing system layout is considered as input as stated in section 1.5. The degrees of freedom
for a generative design method is therefore limited in this thesis. Since floorspace is an KPI considered
in this research, generative design is still helpful. Placement of units is chosen by the model, and a
generative design method can provide an example of the generated layout including the bin handling
system.
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Figure 3.6: Facility layout consideration factors as stated by Drira et al., 2006
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3.10. Chapter summary
In this chapter an answer is formulated for the subquestion: How can an optimal solution be found
using quantitative modeling?. First the use of stochastic modeling methods is considered. While
stochastic methods often have a higher accuracy, the question can be asked if this is necessary. In
fully autonomous environments predictability is high. Add to this the fact stochastic models are more
computationally heavy, a deterministic approach seems appropriate. The deterministic model can then
be checked for critical demand and to what degree fluctuations can be absorbed. In order to construct
a model, the programming method should be identified. Multiple methods are defined in this chapter.
With the deterministic approach, a linear programming method seems to be appropriate.

To further quantify a real world bin handling system, a mathematical model of the system can be
constructed. This is done through interpretation of the system in terms of formulas and constraints. To
achieve the desired level of accuracy of a model that reflects reality, it might be necessary to repeat the
development process several times. To solve the mathematical model a computational solver is used.
In this thesis, the solver Gurobi is chosen since it is optimised for linear deterministic models. Once a
model is constructed, it needs to be verified and validated. Verification and validation are in essence
described by the the questions: ’is the model right’ and ’is it the right model’.

To find an ’optimal solution’, the definition of optimal should be clear. In this chapter three different
optimal solutions are identified: the bill of material, system footprint and total costs. The bill of material
is easily quantifiable since it is already expressed in term of costs. Floorspace however is expressed
in square meters. Also, a bin handling system might use more space then just the individual footprint
of each unit. Therefore the system footprint is defined as all the space required for the system to op-
erate, and the space wasted by unit placement. Wasted space refers to areas where unit placement
or movement restricts other activities from taking place, resulting in unused or unusable space. This
total footprint can then be quantified as costs by relating it to the write-off costs per square meter. The
model can also be used to find an equilibrium between bill of material and footprint optimal solutions.
This represents the total costs optimisation.
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4
System overview

To accurately construct a mathematical model, the systemmust be clear. In this chapter the modules of
an existing bin handling systems will be identified, as well as the operational environment. The system
described is based on a real world case. Eventually, this chapter will answer the subquestion: How is
a bin warehouse defined and how do the costs relate to the system?

4.1. System definition
Our system consists of three stages: the introduction stage, the storage stage and the production stage.
The introduction stage is the stage where items and stacks of items enter the system. Here an operator
is instructed to place a stack of items on single payload exchange platforn (SPEL) X by LES. LES then
sends a signal to the storage system telling it there is a stack of items introduced and waiting at SPEL
X. From now on the stack of bins is inside our system and is what we call the supply. The amount of
supplies introduced is regulated by LES and depends on the quantities being produced. Our systems
only considers the items after they are introduced. This means the speed of the operator introducing
them is not individually considered. Rather it is summarized by a supply parameter which can be varied
later on in testing. Opposite to the supply is the demand. The demand of our system is determined by
the production stage. Each individual production cell in the production line uses products. One might
use large, bulky products while another uses small products. These products all come in the same
standardized bins. Since the measurements of these bins are standardized, more small products are
supplied in one bin than large products. This makes the demand of different production cells larger or
smaller.

4.1.1. Second generation particle sensor
To fully understand the system, we also have to be informed on its environment. Our bin handling
system is integrated in the second generation particle sensor (SGPS) production line. The production
process consists of 33 steps. Each step is carried out by a production cell with a different function. The
layout of the production line is illustrated in figure 4.1. production cells, walkways and liquid reservoirs
are depicted in blue. The (de)stacker cabinets (DSCAB) are depicted in orange, the SPELs in red and
the multi bin cabinets (MBC) in green. Dark green indicated an MBC master and lighter green an MBC
HBT.
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Figure 4.1: Illustration of production environment SGPS line
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The Takt-time of the SGPS production is 60 seconds. The bin handling system is required to ac-
commodate this at all times, meaning enough buffer and supply should be in the system to not slow
down production. Also, components should enter the cells at the right time. This is currently done
through the placement of an DSCAB in front of each of the individual production cells. Through the
DSCABs a cell can be supplied with one stack of bins at a time, and de-stack these bins itself. This
means the AGV does not have to make a trip to the cell each time a bin is empty. The empty bins are
also stacked by the DSCAB, meaning the AGV can pick up multiple empty bins at once.

Even though all cells have the same throughput, supply requirements of each cell are different. This
is due to the difference in size of the parts required in the operation done by the cell. Parts are delivered
in bins. These bins are lined with a mold ensuring the right orientation of each part. Since parts are of
different sizes, the number of parts per bin differs. The demand of a cell is therefore defined as bins
per shift, instead of parts per shift.

4.1.2. Bin handling units
As stated in section 1.3, bin handling systems can consist of any number of different units. The system
in this case study consists of four distinctly different units. The four units are the SPEL, DSCAB, MBC
and AGV. Below each of the units are further elaborated.

Stand-alone Payload Exchange Location
The Stand-alone Payload Exchange Location (SPEL) is a stand alone or coupled unit used for inter-
action with operators or as connection between AGVs and external units. Since a SPEL is accessible
from all sides, operators can place or remove bins easily. It consists of one payload location, but can
be coupled with multiple SPELs to create longer lanes. Since they are accessible from both sides by
an AGV both a last in first out (LIFO) or first in first out (FIFO) strategy can be used. In figure 4.2 the
schematic configuration of a SPEL is depicted. In figure 4.3 a render of the SPEL can be seen. The
SPEL is capable of fulfilling the following functions within the system:

• Item introduction / extraction (operators)

• Storage

Figure 4.2: Schematic overview of a SPEL
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Figure 4.3: Render of a SPEL unit

(De)Stacking Cabinet
Transporting a stack of items instead of single bins drastically reduces the amount of AGV trips needed.
The bins arrive in the systems already stacked from the warehouse. However, the production cells
need single bins in order to access all the components. This means between the transportation and
production, a destacking unit is needed. The (De)stacking cabinet (DSCAB) is developed for this task.
It is not only capable of destacking full bins, it can also stack the empty bins. In a DSCAB the are two
payload exchange locations (PELs) each with a (de)stacking module(DSM) above or below it as can
be seen in figure 4.4. The PEL accepts a stack of items and carries is to the vertical bin transport (VBT)
module. Here the stack is elevated and delivered to the DSM. The DSM can then hold the stack and
return the bins one by one. The reverse of this process can also be done with empty bins in order to
transport stacks of empty bins back to the warehouse. In figure 4.5 a render of an DSCAB is depicted.
The DSCAB is capable of fulfilling the following functions within the system:

• Item introduction / extraction (production cells)

• Storage

• Stacking

• Destacking
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Figure 4.4: Schematic overview of a DSCAB

Figure 4.5: Render of a DSCAB unit
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Automated guided vehicle
Transport between the introduction stations, buffer cabinets and production cells is handled by auto-
mated guided vehicles (AGVs). These AGVs are capable of carrying one stack of items per trip. While
still guided by a logistic execution system (LES), the AGVs drive fully autonomous. They constantly
scan for obstacles and slowdown or stop when identifying one. The LES system gives the commands
to the AGVs where to pickup a product and where to deliver it. In table 4.1 Once arrived at a payload
exchange location (PEL), the AGV scans for the PEL orientation and aligns itself. The AGV is capable
of fulfilling the following functions within the system:

• Item transportation

Figure 4.6: Render of an AGV unit

Action
AGV depart time (s) 5
AGV approach time (s) 15
AGV (un)load time (s) 5
Average AGV speed (m/s) 0.8
Availability per AGV (s/hour) 3600

Table 4.1: AGV properties

Multi bin cabinet
The bulk of the storage space is provided by the multi bin cabinets (MBCs). These units provide four
unique storage locations (USLs) above each other. Since production environments can vary in available
space and demand, these units are modular in nature. Meaning multiple MBCs can be placed behind
each other in order to enlarge the size of each USL provided. To achieve this, three versions of the
MBC are developed: The MBC master, MBC Horizontal Bin Transport (HBT), and MBC slave. MBC
master units will always be placed first in a row. This is due to the AGV docking capabilities the master
cabinet has. The MBC HBT units are designed for the expansion of the USLs. Since they do not have
AGV docking capabilities they need an MBC master to operate. This lack of docking capabilities also
reduces their price. When access to the goods from the back of the row is required, an MBC slave can
be used. Slaves also have the docking capabilities the master has but lack the internal communication
capabilities since this is already done by the master. When using filling strategies such as FIFO, a
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slave is required. In figure 4.7 a schematic overview of an MBC configuration is depicted. The scheme
is similar to that of the SPEL with the difference being the capacity is four times as big in the same
floor space. Finally, in figure 4.8, a render of an MBC configuration is depicted. The MBC is capable
of fulfilling the following functions within the system:

• Storage

Figure 4.7: Schematic overview of an MBC configuration

Figure 4.8: Render of an MBC configuration of a master and a HBT

4.2. Costs
Due to confidentiality, real numbers cannot be given in this case study. It is however important to have
a sense of how the different costs relate to each other. Therefore costs will be depicted relative to each
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other as can be seen in table 4.2. For example, an MBC master costs almost twice as much as an
MBC HBT. The costs of using the bin handling system consists of different aspects as stated in section
3.8. The development costs are not considered in the implementation since they are shared over the
entire program and all later uses. The costs considered are the following:

• Bill of materials

• Installation costs

• Assembly costs

• Floorspace costs

Bill of material
The bill of material (BOM) consist of all the costs of all parts needed to create the units. Each unit
has a different BOM. Since a SPEL uses less parts, it is cheaper to produce then for instance an MBC
master. In table 4.2 the BOM of the different units is depicted. Notably is the difference in BOM between
an MBC master and an MBC HBT. This is due to the docking and communication capabilities of the
master unit. The totality of the BOM costs can be found by multiplying the number of units with their
BOM costs. The units needed are expected to be new, meaning they all need to be bought and there
are no ’in stock’ and all units require the full BOM cost to implement.

SPEL MBC master MBC HBT MBC slave DSCAB AGV
BOM single unit 35% 100% 55% 95% 250% 220%

Table 4.2: BOM costs per unit relative to the costs of the MBC Master

Installation and assembly costs
Since the buffer units arrive as parts, they need to be assembled and installed in the right location.
To do this a mechanic is required. The costs of assembling and installing a unit can be determined
through the time it costs to assemble and install and the hourly rate of a mechanic. The hourly rate
of the mechanic can be referred to as the full time equivalent (FTE) of a mechanic. An FTE is the
measuring unit of workhours of a certain capacity and can be related to a price. In table 4.3 the amount
of (day’s worth) FTEs it takes to assemble and install each unit is depicted.

SPEL MBC master MBC HBT MBC slave DSCAB AGV
Assembly time 1 1,5 1,25 1,5 1,5 2
Installation time 0,25 0,5 0,4 0,5 0,5 0,5

Table 4.3: Assembly and installation time (in days for one FTE)

Floor space costs
Floor space within a factory is not free. Occupying space means other production lines have less space
to be installed, eventually leading to the need for a larger production hall. This is why floor space has to
be depreciated. The price of floor space is indicated by euros per 𝑚2 per unit of time. This means this
costs source is time dependent. In table 4.4 the dimensions of the different units are depicted. Aside
from the units, the wasted space as explained in section 3.7.2 should also be defined as well as other
external units such as liquid reservoirs.

4.2.1. Maintenance access
Asmentioned in section 3.7.2, there are multiple methods of defining system footprint. Since placement
of units might hinder placement of other equipment in some places, space between units is seen as
wasted. While true, not all usage is hindered. Short term usage of these places can still occur. There
is one other factor in this wasted space: maintenance hatches. One part of each cell is outfitted with a
maintenance hatch. In figure 4.9 a close up of a single production cell is given. The cell is shown in blue.
The different shades of green each indicate a possible place for an MBC unit. The maintenance hatch



4.3. Chapter summary 37

is shown in red. A can be seen, placement of MBCs in two of the four locations will obstruct access
to the maintenance hatch. These locations are therefore not available for the bin handling system.
This means placement of bin handling units is not the only factor restricting use of this wasted space.
However, since the bin handling system does contribute, it is seen as part of the system footprint.

SPEL MBC Master MBC HBT MBc Slave DSCAB AGV
Width(𝑚) 0,7 0,7 0,7 0,7 0,7 1,3
Depth (𝑚) 0,8 0,9 0,8 0,9 1,3 1,2
Footprint (𝑚2) 0,56 0,63 0,56 0,63 0,91 1,56

Table 4.4: Dimensions of the different units

Figure 4.9: Zoom in of a production cell, possible unit placement and maintenance hatch

4.3. Chapter summary
In this chapter an existing bin handling system is explored in order to find an answer on the subquestion:
”How is a bin warehouse defined and how do the costs relate to the system?”. While the case study
system consists of four distinctly different units, does not mean this is required by all bin handling
systems. However, though these four units the different required functions of a bin handling system
can be defined:

• Item introduction / extraction (operators)

• Item introduction / extraction (production cells)

• Storage

• Stacking

• Destacking

• Item transportation

The goal of an autonomous bin handling system is supplying the production line without human
interaction. To reach this goal the system should, at minimum, be able to autonomously carry out
these functions. The number and type of units required by the system dictate the costs in four ways
as discussed in section 4.2. More, cheaper units might negatively impact the system footprint and
increase the floorspace costs. Less, more expensive units might increase total BOM costs.





5
System analysis

The bin handling system in our case study is already in use. The implementation however is done
through a quick calculation rather than a digital model and optimization strategy. In this chapter the
following subquestion will be answered: How does a quantitative cost optimal solution of a bin handling
system relate to an analytical solution? First the current analytical strategy will analyzed and the costs
of implementing through this method will be determined. Next a quantitative optimization will be done
using a mathematical model of the current system.

5.1. Dedicated storage and MBC usage

An MBC cluster can consist of multiple units. The first unit is always a master MBC with 4 rows and
only one location deep. As said earlier, each row can only hold one type of product at once due to the
dedicated storage restriction. We call a location with one specific product a unique storage location
(USL). This means the amount of HBTs behind a master will expand the size of an USL and will not
add more. In the strategy that is employed calculations are done with the assumption an MBC cluster
always has one master and three HBTs. This creates four USLs with a size of four stacks of bins each.

5.1.1. Production demand

The production of the SGPS sensor consists of 32 individual steps. From these steps, 15 of them
require a bin with components. In the table 5.1 these steps are numbered 1 through 15. Since com-
ponents have different dimensions, two types of bins are used: 50 mm high and 75 mm high. This
difference in height means a stack of 50 mm bins contains 7 bins while a stack 75 mm bins only con-
tains 5. This is due to the clearance height of a MBC. In the table the amount of bins, and what type of
bin, needed by a production cell is indicated.

39
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Production
Step Bins Total stacks

required
MBC rows
required

Unique storage
locations required

MBCs
required

50 mm 75 mm
1 5 1 0,25 1 0,25
2 11 2 0,5 1 0,25
3 41 6 1,5 2 0,5
4 13 2 0,5 1 0,25
5 13 2 0,5 1 0,25
6 82 17 4,25 5 1,25
7 82 12 3 3 0,75
8 20 3 0,75 1 0,25
9 31 5 1,25 2 0,5
10 25 4 1 1 0,25
11 49 7 1,75 2 0,5
12 4 1 0,25 1 0,25
13 4 1 0,25 1 0,25
14 6 1 0,25 1 0,25
15 16 3 0,75 1 0,25
Total 320 82 67 24 6

Table 5.1: Calculation sheet of amount of MBCs required

In the calculations there are many cases of rounding up. The best example of this can be seen in
the data of production step one. There only one stack location is required. As stated in section 5.1,
the current strategy only considers USLs with a capacity of 4 stack locations. This results in the need
for an overly spacious storage location for the product demanded by production step one. In this USL
there will be three empty stack locations. Due to the dedicated storage strategy these spaces can not
be used for other products.

5.2. AGV, DSCAB and SPEL usage
The amount of AGVs needed for the buffer system is calculated with the inputs shown in table 5.2. In
this calculation the assumption is made that charging has no impact on availability of the AGV. As for the
jobs to be carried out by the AGV the following definition is used. A job is considered to be the actions
of approaching. loading, departing, traveling, approaching and unloading at the target destination. This
means bringing and returning to the starting position equals two jobs. After calculations the usage of
AGVs is 3160 seconds per hour. With an AGV being available for 3600 second each hour, one unit will
suffice.

Inputs
AGV depart time (s) 5
AGV approach time (s) 15
AGV (un)load time (s) 5
Average AGV speed (m/s) 0.8
Availability per AGV (s/hour) 3600

Table 5.2: AGV inputs

The usage of DSCABs is bound by mechanical constraints of the production cells. Production cells
require a single bin to be placed near the automated robot arm. Since the bins travel through the
environment in stacks, they have to be destacked. The production cell itself is not capable of this,
which means an additional unit is required to carry out this job. A DSCAB is able to accept a stack and
return a single bin at a time. Placing one DSCAB in a single central location for destacking will results
in more jobs for the AGVs. To still be able to deliver a stack of bins to a production cell, each cell has its
own DSCAB. The DSCABs are then also able to stack up the empty bins to be picked up by the AGV
again. From table 5.1 we see there are fifteen production cell using bins, and thus needing DSCABs.
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As stated in section 4.1.2, the required amount of SPELs depends on numerous factors, many of them
outside of our scope. In the current state configuration a total of three SPELs are used.

5.3. Current unit-assignment costs
Combining the data and calculations from the previous sections we can find the total number of units
required, as well as the system footprint. This is depicted in table 5.3. In figure 5.1 the two environments
are plotted by our model.

SPEL MBC Master MBC HBT MBC Slave DSCAB AGVs
Number of units 4 7 21 0 16 1

Total Wasted space Individual
Square meters 114,1 71,6 42,5

Table 5.3: Results analytical solution
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(a) Environment (b) System footprint

Figure 5.1: Analytical solution to system implementation
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5.4. Mathematical model
The current state of the bin handling system indicated the constraints on which it is bound. For example
the dedicated storage constraint or the DSCAB required at each production cell. In the coming section
a mathematical model of the current state will be developed as stated in section 3.4. Since our sets
are dependent on parameters used as inputs the parameters are introduced first.

5.4.1. Parameters
Parameters are the inputs for our model. Parameters can be divided into two types. The first of which
being inputs by the user. These parameters indicate things such as demand, costs per unit, system
constraints, etc. The second being parameters calculated from inputs by the user. These are called
parameters since they do not change through the iteration of the model solver. The user could be asked
to do the calculations of these parameters themselves but doing them in the model makes outcomes
more reliable. Below the used parameters are described.

Parameters Info
UnitNames Text array with names of the buffer units
Units_init Array of initial amount of buffer units
BOM Array of Bill of Material of each buffer unit
AssemblyTime Array of assembly time of each buffer unit
InstallationTime Array of installation time of each buffer unit
Footprint Array of footprint of each buffer unit
BufferTime Integer of for how long the system should operate without resupply
TaktTime Integer of takt time of a finished product

D Array of the demand for each product
Bas Array of the number of bins in a stack of each product
Bs Calculated array of demand of stacks of each product (from D and Bas)

Sl Array of storage locations of each buffer unit
MaxMBCLength Integer of the max depth of an MBC cluster
MBCException Array of exceptions on the Max MBC Depth
Geometry Geometry of the environment

AvailableTime Integer of the available time of an AGV in a shift
AGVTravelInfoHeaders Text array of the info in the ATI array
ATI Array of AGV travel inputs
IntroMBC Array of number of actions of an AGV on the job: intro to MBC
MBCDSCAB Array of number of actions of an AGV on the job: MBC to DSCAB
FinishMBC Array of number of actions of an AGV on the job: Finished pproducts to MBC

Parameters we need to calculate are the amount of bin stacks per product 𝐵𝑠,𝑖 and the AGV work
time 𝐴𝑇. In equation 5.1 the formula for 𝐵𝑠,𝑖 is depicted. Important is to round up to the next integer
since the model does not work with half stacks.

𝐵𝑠,𝑖 = ⌈𝐷𝑖/𝐵𝑎𝑠,𝑖⌉ ∀𝑖 ∈ 𝐼 (5.1)
𝐴𝑇 can be calculated by

𝐴𝑇 =
𝑁

∑
𝑛=1
(𝑀𝐵𝐶𝐷𝑆𝐶𝐴𝐵𝑛 + 𝐼𝑛𝑡𝑟𝑜𝑀𝐵𝐶𝑛) ∗ 𝐴𝑇𝐼𝑛 ∗ (

𝐼

∑
𝑖=1
(𝐵𝑠) − 𝐵𝑠−1) + 𝐹𝑖𝑛𝑖𝑠ℎ𝑀𝐵𝐶𝑛 ∗ 𝐴𝑇𝐼𝑛 ∗ 𝐵𝑠−1 (5.2)

5.4.2. Indices and sets
Since our model should be able to evaluate a variety of different configurations, our sets are dependent
on the length of our inputs. These sets are depicted below.
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Index Info Set
i Products i in I with range length(D)
j Storage units j in J with range length(Sl)
k MBC locations behind MBC master k in K with range (MaxMBClength)
l Vertical storage locations of an MBC l in L with range (Sl[2])
m Possible locations for MBC master m in M with range length(D)
n Different info points of AGV data n in N with range length(ATI)
p Grid locations not in wasted space p in P with range length(MBCExceptions)

5.4.3. Decision variables
For our model to be able to find a solution, variables on which the solver may decide are introduced.
Here the variables are depicted and explained.

𝑋𝑢𝑛𝑖𝑡𝑠,𝑗 (5.3)

In equation 5.3 the most important variable is introduced. 𝑋𝑢𝑛𝑖𝑡𝑠 is an integer array that will hold the
amount of each system unit J.

𝑀𝐵𝐶𝑔𝑟𝑖𝑑,𝑙𝑚𝑘 (5.4)

To be able to track and visualize the amount of MBC masters and HBTs used, a grid of the available
locations is created. 𝑀𝐵𝐶𝑔𝑟𝑖𝑑 is a binary, three dimensional matrix where a 0 indicated no storage
location and a 1 indicates there is a storage location. The X-axis indicates the vertical amount of
storage locations of an MBC. The Y-axis shows the horizontal amount of MBCs. The Z-axis shows us
the depth of a MBC row (number of HBTs behind a master).

𝑀𝐵𝐶𝑢𝑠𝑙,𝑙𝑚 (5.5)

The front (XY plane or LM plane) of the matrix 𝑀𝐵𝐶𝑔𝑟𝑖𝑑 indicates the amount of USLs. The size of
these storage locations is stored in 𝑀𝐵𝐶𝑢𝑠𝑙. 𝑀𝐵𝐶𝑢𝑠𝑙 projects the amount of stacks that can be stored
in an USL on the LM plane.

𝐴𝑠𝑠𝑖𝑔𝑛𝑙𝑚𝑖 (5.6)

The binary matrix 𝐴𝑠𝑠𝑖𝑔𝑛 keeps track off if and where a product is stored. The front plane is the same as
𝑀𝐵𝐶𝑢𝑠𝑙 and the depth of this matrix equals the amount of different products. Each LM plane represent
a product i, and a location [𝑙, 𝑚] equal 1 if product i stored there. For example: if product 4 is stored in
𝑀𝐵𝐶𝑢𝑠𝑙[2, 3], then 𝐴𝑠𝑠𝑖𝑔𝑛[2, 3, 4] will equal 1.

𝐶𝑏,𝑗 (5.7)

Cost variable for the bill of material costs for system unit j

𝐶𝑎,𝑗 (5.8)

Cost variable for the assembly costs for system unit j

𝐶𝑖,𝑗 (5.9)

Cost variable for the installation costs for system unit j

𝐶𝑓,𝑗 (5.10)

Cost variable for the floorspace costs for system unit j
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5.4.4. Objective function
The objective function of our model describes our goal of what we want to achieve. In our case a
minimization of the total costs is required, where all costs weigh equally heavy. This results in the
following objective function.

𝑀𝐼𝑁𝐼𝑀𝐼𝑍𝐸 𝐶𝑡𝑜𝑡𝑎𝑙 =
𝐽

∑
𝑗=1
(𝐶𝑏,𝑗 + 𝐶𝑎,𝑗 + 𝐶𝑖,𝑗 + (𝐶𝑓,𝑗 ∗ 𝑂𝐷)) (5.11)

5.4.5. Constraints
To describe the systems workings and limitations, constraints are formulated. In this section these
constraints are depicted and elaborated as to why they are required. The constraints are divided in
general MBC, dedicated storage, unit assignment, cost and non-negativity constraints.

General MBC constraints

𝑀𝐵𝐶𝑔𝑟𝑖𝑑[𝑙, 𝑚, 𝑘] = 𝑀𝐵𝐶𝑔𝑟𝑖𝑑[0,𝑚, 𝑘] ∀𝑙 ∈ 𝐿, ∀𝑚 ∈ 𝑀, ∀𝑘 ∈ 𝐾 (5.12)

The MBC is always 𝑋 locations high. This value 𝑋 is given by Sl[2] and equals in this case 4. This is a
mechanical design constraint of the MBC unit. Equation 5.12 says if an MBC is placed in position [m,k]
all the l position in that location should also equal 1. If [m,k] does not contain an MBC, the l values in
that column also contain no MBCs.

𝑀𝐵𝐶𝑔𝑟𝑖𝑑[𝑙, 𝑚, 𝑘] ≥ 𝑀𝐵𝐶𝑔𝑟𝑖𝑑[𝑙, 𝑚, (𝑘 + 1)] ∀𝑙 ∈ 𝐿, ∀𝑚 ∈ 𝑀, ∀𝑘 ∈ (𝐾 − 1) (5.13)

Placement of MBCs should always start at the first row. Equation 5.13 says the value of the location in
front of an other location should always be larger or equal. Since 𝑀𝐵𝐶𝑔𝑟𝑖𝑑 is binary, this means there
can never be a 1 behind a 0.

𝑀𝐵𝐶𝑢𝑠𝑙[𝑙, 𝑚] =
𝐾

∑
𝑘=1

𝑀𝐵𝐶𝑔𝑟𝑖𝑑[𝑙, 𝑚, 𝑘] ∀𝑙 ∈ 𝐿, ∀𝑚 ∈ 𝑀 (5.14)

𝑀𝐵𝐶𝑢𝑠𝑙 should indicate the amount of stacks that fit in each unique stack location. To achieve this the
values of the rows behind each [l,m] location in 𝑀𝐵𝐶𝑔𝑟𝑖𝑑 are added.

𝐾

∑
𝑘=1

𝑀𝐵𝐶𝑔𝑟𝑖𝑑[0,𝑚, 𝑘] ≤ 𝑀𝐵𝐶𝑚𝑎𝑥[𝑚] ∀𝑚 ∈ 𝑀 (5.15)

To enable exceptions on the maximum MBC depth parameter, constraint 5.15 is introduced. 𝑀𝐵𝐶𝑚𝑎𝑥
is an array indicating the max depth of each individual row. This constraint checks to validity of row
placement according to 𝑀𝐵𝐶𝑚𝑎𝑥.

Dedicated storage constraints

𝐼

∑
𝑖=1
𝐴𝑠𝑠𝑖𝑔𝑛[𝑙,𝑚, 𝑖] ≤ 1 ∀𝑙 ∈ 𝐿, ∀𝑚 ∈ 𝑀 (5.16)

One unique storage location can only hold one product. This means if 𝑀𝐵𝐶𝑢𝑠𝑙 indicates a storage
location has room for four stacks, and only two are used, the remaining two can not be used for a
different product.
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𝐿

∑
𝑙=1

𝑀

∑
𝑚=1

(𝐴𝑠𝑠𝑖𝑔𝑛[𝑙,𝑚, 𝑖] ∗ 𝑀𝐵𝐶𝑢𝑠𝑙[𝑙, 𝑚]) ≥ 𝐵𝑠[𝑖] ∀𝑖 ∈ 𝐼 (5.17)

All products should be placed in the end of the model. Equation 5.17 ensures this. Since 𝐴𝑠𝑠𝑖𝑔𝑛 is
binary, we can multiply each the LM plane with 𝑀𝐵𝐶𝑢𝑠𝑙 and all locations where product i is not placed
will equal zero as well. Next a simple summation of all non zero values gives us the amount of storage
space there is for each product. By stating this amount should be greater or equal to the demand of
that product (𝐵𝑠[𝑖]) complete storage of all product is assured.

Unit count constraints

𝑋𝑢𝑛𝑖𝑡𝑠[1] = 𝑋𝑢𝑛𝑖𝑡𝑠_𝑖𝑛𝑖𝑡[1] (5.18)

As stated in section 5.2, the number of SPELs required depends on numerous factors. In this model
the initial number of SPELs stated in the 𝑋𝑢𝑛𝑖𝑡𝑠_𝑖𝑛𝑖𝑡 input array.

𝑋𝑢𝑛𝑖𝑡𝑠[2] =
𝑀

∑
𝑚=1

𝑀𝐵𝐶𝑔𝑟𝑖𝑑[0,𝑚, 0] (5.19)

The front row of 𝑀𝐵𝐶𝑔𝑟𝑖𝑑 is always filled with only MBC masters. This is because the HBTs lack the
capability of interacting with an AGV. To find the number of MBC masters the first row of binary variable
𝑀𝐵𝐶𝑔𝑟𝑖𝑑 can be added together.

𝑋𝑢𝑛𝑖𝑡𝑠[3] =
𝑀

∑
𝑚=1

𝐾

∑
𝑘=2

𝑀𝐵𝐶𝑔𝑟𝑖𝑑[0,𝑚, 𝑘] (5.20)

To determine the number of MBC units, any MK plane of the binary variable 𝑀𝐵𝐶𝑔𝑟𝑖𝑑 can be summed
up. This is possible due to equation 5.12. Since the first MBC in a row is always an MBC master, the
sum over set K start at row 2.

𝑋𝑢𝑛𝑖𝑡𝑠[4] = 𝑋𝑢𝑛𝑖𝑡𝑠_𝑖𝑛𝑖𝑡[4] (5.21)

The amount of MBC slaves is zero in the current state due to only the front of𝑀𝐵𝐶𝑔𝑟𝑖𝑑 being accessible.
This value is therefore imported from the 𝑋𝑢𝑛𝑖𝑡𝑠_𝑖𝑛𝑖𝑡 input array.

𝑋𝑢𝑛𝑖𝑡𝑠[5] = 𝑋𝑢𝑛𝑖𝑡𝑠_𝑖𝑛𝑖𝑡[5] (5.22)

The amount of DSCABs used is fixed by the mechanical constraints as explained in section 5.2. This
value is therefore imported from the 𝑋𝑢𝑛𝑖𝑡𝑠_𝑖𝑛𝑖𝑡 input array.

𝑋𝑢𝑛𝑖𝑡𝑠[6] = 𝐴𝐺𝑉𝑟𝑒𝑞 (5.23)

The demand for AGVs is directly coupled to input 𝐷𝑒𝑚𝑎𝑛𝑑 and AGV travel times and is calculated sep-
arately. The model can not optimize the need for AGVs since travel time is defined as constant. Even
tough placement of the system has a direct influence on travel times, and thus on AGV requirement,
this influence is ignored as stated in section 3.9

Cost constraints

𝐶𝑏,𝑗 = 𝑋𝑢𝑛𝑖𝑡𝑠[𝑗] ∗ 𝐵𝑂𝑀[𝑗]∀𝑗 ∈ 𝐽 (5.24)

Bill of material equals number of units of type j times their BOM costs

𝐶𝑎,𝑗 = 𝑋𝑢𝑛𝑖𝑡𝑠[𝑗] ∗ 𝐴𝑠𝑠𝑒𝑚𝑏𝑙𝑦𝑇𝑖𝑚𝑒[𝑗] ∗ 𝐹𝑇𝐸𝑐∀𝑗 ∈ 𝐽 (5.25)

Assembly costs equal the time it takes to assemble a unit of type j, times the number of units of type j,
times the cost of one FTE
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𝐶𝑖,𝑗 = 𝑋𝑢𝑛𝑖𝑡𝑠[𝑗] ∗ 𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝑎𝑡𝑖𝑜𝑛𝑇𝑖𝑚𝑒 ∗ 𝐹𝑇𝐸𝑐∀𝑗 ∈ 𝐽 (5.26)

Installation costs equal the time it takes to install a unit of type j, times the number of units of type j,
times the cost of one FTE

𝐶𝑓,𝑗 = 𝑂𝐷 ∗ 𝐹𝑙𝑜𝑜𝑟𝑠𝑝𝑎𝑐𝑒𝑊𝑟𝑖𝑡𝑒𝑜𝑓𝑓∗

(𝐺𝑒𝑜[1] +
𝑃

∑
𝑝=1

𝐾

∑
𝑘=1

𝑀𝐵𝐶𝑔𝑟𝑖𝑑[0, 𝑝, 𝑘] ∗ 𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡[2] + 𝑋𝑢𝑛𝑖𝑡𝑠[1] − 1 ∗ 𝐹𝑜𝑜𝑡𝑝𝑟𝑖𝑛𝑡[1])
(5.27)

Floorspace cost include wasted space, which is included in 𝐺𝑒𝑜, and units placed outside of the wasted
space. Through set P the model can quantify the cost benefit of placing a unit in the wasted space or
outside of it due to set P not spanning as for as set M.

Non-negativity constraints

Here the lasts constraints on the decision variables are stated. These constraints are meant to prevent
the decision variables to become negative.

𝑋𝑢𝑛𝑖𝑡𝑠,𝑗 ≥ 0 ∀𝑗 ∈ 𝐽 (5.28)

𝑀𝐵𝐶𝑔𝑟𝑖𝑑,𝑙𝑚𝑘 ≥ 0 ∀𝑙 ∈ 𝐿, ∀𝑚 ∈ 𝑀, ∀𝑘 ∈ 𝐾 (5.29)

𝑀𝐵𝐶𝑢𝑠𝑙,𝑙𝑚 ≥ 0 ∀𝑙 ∈ 𝐿, ∀𝑚 ∈ 𝑀 (5.30)

𝐴𝑠𝑠𝑖𝑔𝑛𝑙𝑚𝑖 ≥ 0 ∀𝑙 ∈ 𝐿, ∀𝑚 ∈ 𝑀, ∀𝑖 ∈ 𝐼 (5.31)

𝐶𝑏,𝑗 ≥ 0 ∀𝑗 ∈ 𝐽 (5.32)

𝐶𝑎,𝑗 ≥ 0 ∀𝑗 ∈ 𝐽 (5.33)

𝐶𝑖,𝑗 ≥ 0 ∀𝑗 ∈ 𝐽 (5.34)

𝐶𝑓,𝑗 ≥ 0 ∀𝑗 ∈ 𝐽 (5.35)

5.5. Model assessment
As mentioned in section 3.6, before the model can be used it has to be verified and validated. This is
done directly since outcomes must be reliable to compare them with the current method. Finally the
problems found in this verification and validation be used to modify the model to increase reliability and
validity.

5.5.1. Verification
The implementation of the model constructed in section 5.4 is done in Python. During coding, mistakes
or logic errors can be made. To ensure the model used is free of these errors the following tests can
be done:

1. External code check

2. Extreme cases simulations

3. (Intermediate) results checking
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To find coding errors it is best to have another expert take a look at the code. While coding, one
might not see their own mistakes as mistakes. This is especially true for assumptions on how the
code works. An external view often is refreshing and focuses on areas the creator would already have
accepted as ’good’.

Extreme cases are situations the model should never encounter. How the model would react on
these inputs can be reasoned. The following extreme cases are tested. First the required storage space
is not enough. The demand is increased in such a way that the model does not have the capability to
accommodate all the products. This should conclude in an infeasible model. Secondly we can increase
the amount of product types and have a demand of 1 stack per product. There should be no MBC HBTs
present during this setup. Thirdly we can increase the price of an MBC HBT. This will result in the max
amount of MBC masters the model can place and remaining products will be stored in an MBC HBT.

The intermediate results and steps of the solver can be evaluated where possible mistakes may lay.
When checking results it is not only important to check the result itself but also the sizes of matrices
of the results. When multiplying M x N matrix with an N x L matrix, the results should equal a M x L
matrix. These check indicate whether calculations are done correctly and dimensions are correct. An
MBC HBT can only be placed behind a master or another HBT. This means there can never be more
than three times the number of HBTs compared to masters. Simple results are also to be checked. A
good example of a simple result in our model is the amount of AGVs required. Since the calculation for
this result is easily done by hand it can be quickly compared to the model’s prediction. In table below
the tests, predictions and results are summarized.

Prediction Outcome
External code
check

Done by college Small code clarification
needed

No operational errors,
run time is long

Extreme cases
Demand to great Model infeasible Model infeasible
Demand one per product,
lots of different products No MBC HBTs No MBC HBTs

Price of MBC HBTs very high Max MBC masters Max MBC masters
(Intermediate)
results

Size MBC𝑔𝑟𝑖𝑑(𝑛𝑜𝑛𝑧𝑒𝑟𝑜𝑠&𝑧𝑒𝑟𝑜𝑠) 4x7x4 4x7x4
𝑋𝑢𝑛𝑖𝑡𝑠[3] ≤ 𝑋𝑢𝑛𝑖𝑡𝑠[2] ∗ 3 Correct Correct
Number of AGVs 1 1
Result Under analytical solution 95 % of analytical solution

Table 5.4: Summary of verification methods ant their outcomes

5.5.2. Validation
the next question that should be answered is: is our model the right model? In other words, did we
describe the right real world problem. In order to answer this question the results of the model can
be compared to known or analytically predicted results. Not only the final solution is of interest here.
Analysing decision variables of the system may give more insight in how the model makes decisions.
By varying the inputs for the system more knowledge on how the model reacts can be gathered.

First we check the current results of the MBC placement. To visualize this a grid is plotted in which
the cabinets are placed. This can be seen in figure 5.2. The YZ-plane on X equals zero is the front
view. From this plot it can be clearly seen here are two rows four, two of three, one of two and one
of one MBC. The placement of in the Y direction does not have influence on the total costs so this is
random. In table 5.1 is has been calculated there are at least 24 USLs are needed. The grid generated
by the model meets this requirement.
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Figure 5.2: Plot of the MBC cluster as composed by the model

The important thing is that there are no unnecessary MBC HBTs placed. By calculating the space
reserved for each product this can be checked. In figure 5.3 two front views of the MC cluster are
shown. In subfigure 5.4a the product IDs are shown. This indicates where in the cluster these products
are stored. In subfigure 5.4b the size of the USLs are shown in a front view of the MBC cluster shown
in figure 5.2. Together with these two figures the excess of storage space can be calculated. This is
shown in table 5.5. Here it can bee seen all requirements are met, and one stack location in the whole
cluster is unused. This location is marked in yellow in figure 5.3. This empty location does not result in
extra costs since the other locations of the MBC are required. Thus this results is as expected.

Product ID Stack demand Allocated
stack space

Quadruple
stack demand

Allocated stack space
quadruple demand

1 1 1 4 4
2 2 2 8 8
3 6 6 24 24
4 2 2 8 8
5 2 2 8 8
6 17 17 68 68
7 12 12 48 48
8 3 3 12 12
9 5 6 20 20
10 4 4 16 16
11 7 7 28 28
12 1 1 4 4
13 1 1 4 4
14 1 1 4 4
15 3 3 12 12

Table 5.5: Comparison of required and allocated storage space
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(a) Product placement in MBC cluster (product IDs) (b) USL size projected on the MBC cluster (in number of stacks)

Figure 5.3: Front views of the MBC cluster

The next tests are varying the inputs and observing how the decision variables change. First the
demand is varied and the empty stack locations can be calculated as done above. The demand is
scaled up to four times the demand of each product. The important thing is to look for excessive
MBCs. An MBC comes with four stack locations, thus a maximum of three unused stack locations may
occur before eliminating the MBC is more effective. Since the model now has more inputs to decide
on, empty spaces are most likely to be completely eliminated. As seen in section 4.2, the cost of an
MBC master is double that of an MBC HBT. This means it will be more effective to place a HBT than
to add a new collum. An MBC with a depth of one, such as the first column of figure 5.4b, is expected
to become 4 MBCs deep. In figure 5.4 the front view the generated MBC cluster is depicted. Together
with the results shown in table 5.5 we see the behaviour we expected from our model. There are no
columns of one or two MBCs deep and no empty stack locations.

(a) Product placement for a demand of four times the required amount (product ID)

(b) USL size projected on the MBC cluster for quadruple demand (in number of stacks)

Figure 5.4: Front views of the MBC cluster for quadruple demand

Next the amount of AGVs needed are evaluated. From real world testing we know the current state
can do with one AGV. For quadruple the demand this is not true. Since an usage of 80% is calculated
for a single AGV in the current state, a four times as big a demand should result in at least three AGVs.
Our model indicates two AGVs suffice with an usage of 87% both. This indicates the accuracy of the
amount of AGVs is not good enough. In section 5.5.3 modifications to better estimate the amount of
required AGVs are formulated.

5.5.3. Modifications
From previous sections a couple of problems are identified. In this section modification of the imple-
mentation and the model are suggested and implemented.

The first problem is the run time. The model takes 3808 seconds to solve for the demand indicated in
table 5.1. This is very long, even for a relatively small amount and quantity of products. When calcu-
lating for larger sets, the run time is expected to grow even more. Two main factors for the long run
time have been identified: the amount of loops and the size of set 𝑀. The code has been separated
into many loops for cosmetic and clarification purposes. This results in the need to run through each
loop in every iteration. By gathering all the constraints in the same loop, the run time is reduced to 512
seconds which is a improvement of 87 %.
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The second factor, the size of set 𝑀, is more difficult to fix. The model should have the freedom to
place as many MBC master as it wants, the size of M should not be a limiting factor. Since our model
is quantitative, the downside of making M excessively large, is the model trying every option. When
analytically it is easy to understand it does not matter where in the𝑀𝐵𝐶𝑔𝑟𝑖𝑑 the zeros row will be placed,
the model does not approach it this way. Every option will be tried, calculated and discarded if it not
improves the objective function. From initial calculations it can be found the width of non-zero entries
of𝑀 is 6. When setting the width of𝑀 to 6, instead of the number of products 𝑖, the run time decreases
to 15 seconds, and yields the same result. This is an improvement of 99.6 %. However, the set 𝑀
can not become a restriction on the choices of the model. While analytically it is always regarded as a
more costly decision to start a new column, it might be necessary or counter intuitive to do so. In order
to give the model the option to determine the length of 𝑀 without increasing the run time heavily the
code is adjusted. The size of 𝑀 is increased by one until the model is feasible and a solution is found.
Then 𝑀+1 is also calculated and the solution is compared to the solution of 𝑀. When 𝑀 has the best
solution, the loop breaks. If the the solution of 𝑀 + 1 is optimal, the same process is done for 𝑀 + 2
and so on. Combining the methods above fastest run time of under 1 second. These modifications
and their resulting improvements are summarized in table 5.6.

Modification Runtime
(seconds) Improvement

Nothing 3808 -
Loop bundling 512 87%
Incremental
increase of M 15 99.6%

Loop bundling
&
Incremental
increase of M

<1 ∼100 %

Table 5.6: Run time improvement modifications

5.6. Results - total cost optimal solution
In this section the results of the current state model are discussed and compared to the current unit-
assignment method results discussed in section 5.3. First the costs and system unit amount will be
showed. Next the critical demand of this configuration is determined. Lastly the buffer time required by
the system is varied. Due to confidentiality reasons, these results are shown as a percentage of each
other. At each result comparison it is noted how they relate to each other. Results are based on the
demand of the production environment at a takt time of 60 seconds as shown in figure 5.1.

5.6.1. Unit quantity and costs
Due to the constraints of the current implementation of the system, the model can not decide on the
number of SPELS and DSCABs. These values are directly copied from the unit initialization input
parameters. With this in mind, the required units are depicted in table 5.7. Here we can see the only
difference is the number of required MBC HBT cabinets. This is as expected since other values ae not
to be changed by the quantitative model due tot he system constraints.

SPEL MBCPELM MBCHBT MBCPELS DSCAB AGV
Quantitative model 4 7 14 0 16 1
Current assignment method 4 7 21 0 16 1

Table 5.7: Unit amount required by the current state model

This decrease in MBC HBT cabinets required will also be the driving factor behind the lower total
costs. In table 5.8 the costs as determined by the model are compared to the analytical solution. The
analytical solution is taken as 100%. In figure 5.5 the different costs from the model optimal solution
are depicted and how much they contribute to the total costs.
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Total BOM Assembly Installation Floorspace Floorspace (m2)
Analytical solution 100% 100% 100% 100% 100% 114,1
Model optimization 94% 94% 87% 87% 97% 110,2

Table 5.8: Costs as calculated by the quantitative model in euros

Figure 5.5: Buildup of different costs from total costs

5.6.2. Critical demand
Takt time for one product is currently 60 seconds. To scale up production one has multiple options.
One being shortening the takt time. Improvement on the production process will eventually lead to this
shorter takt time and thus to a higher output of the production line. This higher output also required a
higher demand of parts for the individual cells. The question ’how much more can the demand grow
before new buffer units are required’ is therefore important. By incrementally increasing the demand
by 0.5% in our model and checking the resulting required units, the critical demand of this solution can
be checked. These results are depicted below in table 5.9.

Critical demand analytical solution 102 %
Deciding factor analytical solution Number of unique storage locations

Critical demand model optimal solution 102 %
Deciding factor model optimal solution Number of unique storage locations

Table 5.9: Critical demand

The critical demand for the current storage assignment method as described in section 5.3 can
also be determined. Since in this method an USL always has 4 stack locations, the deciding factor
whether or not the costs increase is the number of USL required, not their size. This is different from
our quantitative model. There the USLs are not always as deep as possible, meaning an increase
in demand can first lead to adding a MBC HBT rather than adding a new MBC master to increase
the number of USLs. Through this comparison it can be concluded the critical demand of the current
assignment method is 102 % as well, even tough the costs of implementation are higher.
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5.6.3. Takt time modification
Buffering is broad term as described in section 2.3. How long production can continue without the need
for human operators or restocking depends on the amount of products stored in the system. The more
products need to be stored, the more units are required. In this section the demand is modified by
modifying the takt time of a product. These results are shown in figure 5.6. Results are shown as a
percentage of their respective value at a takt time of 60 seconds (base value for 100%). Notable are the
high costs at very low demand. At a takt time of 300 seconds (20% demand modifier) total costs only
have decreased by 15 %. This can be explained by the fact that even at low demand, all the DSCABs
are still needed in the current system design. Also, due to the dedicated storage strategy, the same
amount of USLs are required since different products can not be stored in the same USL. Higher takt
times also do not increase total system costs with the same proportions. As can be seen in the figure,
a takt time of 30 seconds (200% demand modifier) will only result in a 20% growth in costs.

Figure 5.6: Costs in relation to the demand, as a percentage of that cost source at 100% demand

5.6.4. Generative design
Our model also generates a floorplan based on the optimal solution found. In figure 5.7 the generated
solution is depicted. Here we can see placement of MBC units only occurs outside of the wasted space
area. This indicates it is more cost effective to be able to expand rows to 4 MBCs then to save space.
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(a) Environment (b) System footprint

Figure 5.7: Model optimal solution to system implementation
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5.7. Results - BOM and floorspace optimal solutions
Our model also includes the function to only optimize for BOM or floorspace. These results are shown
in table 5.10. Results are shown as a percentage of the results from the total cost optimal solution from
section 5.6. In figure 5.8 the environments generated by the model are depicted.

Total BOM Assembly Installation Floorspace Floorspace (m2)
Total 100% 100% 100% 100% 100% 107.52
BOM 100% 100% 100% 100% 100% 107.52
Floorspace 101% 105% 104% 105% 92% 98.56

Table 5.10: Result comparison of different optimal solutions

5.7.1. Floorspace depreciation cost alteration
From results show above, it can be seen how the total cost and BOM optimal solution are the same.
This indicated the BOM costs grow more rapidly than the floorspace costs. An interesting thing to see
is if our model can find a balance between both cost factors. This can be done by increasing the depre-
ciation cost per square meters in the production hall. This is helpful to check since values are based
on actual depreciation costs which are specific to Prodrive Technologies. Different situations can have
higher, or lower depreciation costs and our model should be able to perform in these cases as well. In
this test the depreciation costs are increased by 20%.

In figure 5.9 the resulting environment is depicted. Here the balance between choosing a longer
row outside of the wasted space area, and placing more short rows inside of it can be seen. The total
system footprint in this setup is 99.12 𝑚2, which is just a little higher than the footprint optimal solution.
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(a) BOM optimal solution

(b) Floorspace optimal solution

Figure 5.8: Different optimal solutions
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(a) Environment (b) Footprint

Figure 5.9: Total cost optimal solution with an 20% increase in depreciation costs
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5.8. Chapter summary
This chapter aims to answer the subquestion ”How does a quantitative cost optimal solution of a bin
handling system relate to an analytical solution?”. Analytical solutions are often based on safety since
a ’just enough’ solution is hard to determine. Interesting is the identical critical demand depicted in
section 5.6.2. Here it can be seen the analytical can not handle an increase in demand better than
the model optimal solution. This is due to the lack of USLs and the dedicated storage constraint. The
analytical solution contains more empty stack locations within the USLs since all USLs are considered
to have 4 stack locations. This unnecessarily increases the BOM costs. Often through usage these
over-capacities are noticed and capacity is altered. However, this means the units still are bought.

The analytical solution found in the current implementation method in the case study did in first not
include a clear floorspace cost factor. To accurately inspect the implementation costs of any system,
one should have a clear definition on how floorspace costs are handled. By clearly quantifying the
floorspace costs, better informed decisions can be made on implementation. As seen in section 5.7.1,
the quantitative model is able to find a optimal balance in floorspace and BOM costs. Such equilibriums
are tedious to find analytically. For quantitativemodels, more work needs to be done to set up themodel.
Once a model is constructed, analyzing new configurations, demands and units properties becomes
quicker and more reliable. This way predictions can be made on how different costs will increase.
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6
Scenarios

The current state model is bound by the mechanical limitations of the current system. However, design
of bin handling systems can vary. In this chapter a start is made in answering the subquestion: ’What is
the impact of different design strategies?’ This is done through real world, as well as purely theoretical
experimental setups. In chapter 7 the experimental setups are simulated and their results are shown
in order to fully answer the subquestion

6.1. Experimental setup boundaries
To be able to compare different experimental setups, most parameters should be kept constant. These
parameters are identified and explained in this section. The first constant factor is the production envi-
ronment. Placement of production cells is fixed. Experimental setups cannot assume altered placement
of production cells to improve their performance. This would introduce to much variables to reliably
compare different experimental setups. The same goes for the bins in the bin handling system. The
focus of this thesis is hardware of bin handling systems, and not the bin design. This is why bin type,
shape and size are kept constant in each experimental setup. (semi) Product design can not be altered
in order to improve throughput. One might opt to redesign products in order to fit the bins better and
thus increasing the products per bin. While this is a sound optimization strategy for very large volumes,
it is not considered an option in these experimental setups. Takt time, and thus demand, is kept at
60 seconds. This is the same as in the case study from chapter 4.1. To test the experimental setups
on their ability to cope with demand increase, this takt time of 60 is used as a base value to scale the
demand.

All other factors that may be of influence are based on the case study data. If not specifically noted,
they remain unchanged. When factors are altered, the difference in value is estimated and reasoned
why this value is chosen. In table 6.1 the different parameters are depicted once more.

Experimental setup parameter alteration
Fixed Can be altered individualy

Production cell placement Unit design
(semi) Product design Unit placement

Bin type, shape and size BOM
Takt time / demand Assembly time
Operating days Installation time

AGV docking time Footprint
AGV leaving time AGV travel time

AGV (un)loading time

Table 6.1: Parameters in experimental setups

To facilitate some experimental setups, assumptions on supporting systems have to be made.
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Mostly a high level of autonomy and planning of the external support LES system. As stated in section
1.5, the LES system is treated as an external system. This means alterations needed in the LES sys-
tem are not within the scope of this research. A note will be made of changed requirements by the bin
handling system in each experimental setup. Impact of the following changes in the LES system are
not included in the results. However, some calculations on the feasibility of experimental setups have
to be done. Mainly timing wise. These calculations are done to prove experimental setups are feasible
but are not further investigated for impact on other systems. An other assumption made in experimental
setups is the bin order of a stack. When adopting a strategy where different cells are served from one
stack, the order of the bins in the stack is assumed to be correct. Since the bin handling systems in the
experimental setups have a clear introduction point, the stacks which are introduced should be in the
right order. How this is accomplished, whether being with an FTE or order picking machine, is outside
of this scope. Some experimental setups bring with them new restrictions on unit placement or unit
interaction. These restrictions or introduced constraints are further reasoned in each relevant section.
Further possible assumptions needed for experimental setups are indicated at the experimental setup’s
description.

6.2. Storage capabilities of the DSCABs
The (de)stacker units are equipped with two DSMs as can be seen in figure 4.4. The workings of these
DSMs make it that they can hold one stack of bins. The holding of this stack is not technically seen
as storage. However, holding an entire stack could be enough to run one shift. When considering
production cell 13 from table 5.1, this can be seen. This production cell only needs 4 bins per shift.
Since a stack has 7 bins, this cell could produce for almost two shifts with one stack of bins. Holding
this stack of bins in the DSCAB rather then reserving an USL for this one stack eliminates the need for
one USL with a size of one. Also, the AGV does not have to travel from the introduction SPEL to the
MBC. It can now travel from the introduction station directly to the production cell. This eliminates one
job for the AGV. The empty bins can also be stored in the DSCAB. As can be seen in figure 4.7, there
is a second DSM. This DSM gathers the empty boxes. These empty boxes can stay in the DSCAB for
one shift since there are only four empty boxes at the most.

6.2.1. Enhanced storage capabilities of the DSCABs
Current design of the DSCABs allow for storage of one full stack of bins. Now the question arises: what
will happen if the design of the DSCABs allow for more storage. In this experimental setup the DSMs
of the DSCABs have additional storage locations. Namely an addition 2 stack locations in each DSM,
making the total 3 stack locations. With the addition of these storage locations the costs of a DSCAB
is expected to increase. This increase is estimated to be 30%.

6.3. Shared storage space
Current units in the case study are not equipped with scanners. This means they can not keep track
of product movements accurately enough to mix products. This results in the need for dedicated stor-
age. With dedicated storage an USL can be assigned a single product ID resulting in easier product
identification. Since an MBC HBT costs half of an MBC master, creating new USLs is more costly
then expanding existing USLs. In this experimental setup, the assumption is made that shared storage
strategies are allowed.

6.3.1. No MBC row limit
Due to restrictions related to the available space on the production floor, the case study has a maximum
amount of MBC units that can be placed behind each other. This is most likely the case for more
production environments. The question now arises: what if there is a limit of 10, or no limit at all?
Since it is known that expanding the row of MBCs is cheaper than adding a new one, different optimal
solutions might be reached. In this experimental setup a shared storage strategy is also applied.
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6.4. Central DSCAB
Since the stacking - destacking action is crucial to enable the transport of bins in stacks instead of single
bins, a (de)stacker is required in bin handling systems. In the system described in the case study, such
a (de)stacker is placed in front of each individual production cell. In the experimental setup discussed
in section 6.5 the possibilities of having mobile DSCABs are discussed. In this experimental setup the
stacking and destacking for the entire production line is done in a central location. AGVs bring single
bins to and from the different cells. In order to make this experimental setup viable, a couple changes
to the deployment of the units is made. Loading/unloading from the back of the MBC cluster is required
to ensure the AGVs to not collide with each other when transporting to the cells and the DSCAB. This
means MBC slaves are needed on in the back of the cluster, an extra AGV is needed on the back of the
of the cluster to move stacks between the MBCs and DSCABs. Behind the DSCAB a SPEL is needed
for loading and unloading on the back since here no docking module is present in the current DSCAB.
In figure 6.1 this needed configuration is depicted. Note the MBC cluster is not optimized, this is for
visualization purposes only. One more DSCAB is required at the end of the production line at cell F
since the bins with finished products should not be mixed with the empty bins coming back from the
other cells. This experimental setup required a high level of planning from the logistic execution system
since bins are mixed. This is assumed to be available. From figure 6.1 it can also be concluded the
floorspace required also increases.

Figure 6.1: Centralized DSCAB experimental setup unit requirement example

6.5. Mobile DSCABs
As mentioned in section 4.1, the DSCABs are needed to destack the bins and feed single bins in to the
production cells. In the case study, this is done through placing a DSCAB in front of each cell. As seen
in section 4.2 the DSCABs are the most costly units of the system, both in BOM and floorspace. For
some cells the demand per shift is so low the DSCAB is idle for most of the shift. In this experimental
setup the DSCAB is modified to enable movement of the unit. This movement is a basic one directional
movement along the length of the production line. This movement can be realized by rails or wheels
in order to keep costs low. The BOM costs for such a unit are estimated to be 100 % higher than the
original DSCAB discussed in the case study.
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6.5.1. No obstacles
Since the movement is only one directional, the modified DSCAB can not pass an obstacle such as a
liquid reservoir. The same experimental setup can be run when assuming there are no obstacles is the
path of the DSCAB. Then the question becomes: what is the next limiting factor? In this experimental
setup the crab like movements of a DSCAB could be extended over the entire length of the production
line.

6.6. AGV with (de)stacker function
Combining functions of units could lead to better handling and reduced costs. In this experimental setup
the possibilities of having a stacker - destacker unit in the AGVs is simulated. In order to enable this
experimental setup, some assumptions have to be made. The first being the increased BOM costs of
the AGVs. This is estimated to increase by 50% when outfitting the AGV with two stacker - destacker
modules. Next is limited interactions with other units such as the MBCs. With the two (de)stacker
modules, the AGVs will be high and more bulky. AGV travel speed is therefore reduced to 0.7 𝑚/𝑠.

6.7. Chapter summary
In this chapter experimental setups are introduced in order to evaluate different system configurations.
This with the goal to set up the frame work to find find the answer to the subquestion: What is the
impact of different design strategies?. In order to compare and depict experimental setups more
easily, the experimental setups are given an ID. These IDs are depicted below in table 6.2

Experimental setup Experimental setup ID
Case study 1

DSCAB storage included 2
DSCAB enhanced storage included 3

Shared storage 4
Shared - no MBC row limit 5

Central DSCAB 6
Mobile DSCAB 7

Mobile DSCAB no obstacles 8
AGV with (de)stacker function 9

Table 6.2: Experimental setup IDs
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Results

In chapter 6 the foundation is laid to answer the subquestion: What is the impact of different design
strategies? In this chapter the experimental setups are simulated and their results are shown per ex-
perimental setup, next the results are compared to each other. Generated designs for the production
environment are gathered in appendix B.

Results are always displayed relative to the optimal solution found in the case study in chapter
5, unless stated otherwise. For example, the assembly costs source of the BOM optimal solution of
experimental setup 2 is depicted as a percentage of the assembly costs source of the BOM optimal
solution of the case study (setup 1).

7.1. Storage capabilities of the DSCABs
When including the storage locations in current DSCABs storage demand for the MBC cluster reduces
by one stack for each product. This is shown in appendix C table C.1. Usage of this storage location
in the DSCABs does not increase the costs since this USL is already there. The main modification
needed is planning of the product flow, which is handled by LES. Results of the optimal solutions are
depicted in table 7.1 with respect to the case study.

Optimization Total BOM Assembly Installation Floorspace Floorspace (m2)
BOM 96% 96% 91% 91% 98% 107,95
Floorspace 96% 95% 91% 91% 99% 98,43

Optimization SPEL MBC master MBC HBT MBC slave DSCAB AGVs
BOM 4 6 11 0 16 1
Floorspace 4 9 8 0 16 1

Table 7.1: Results of the DSCAB storage experimental setup w.r.t. the case study cost source optimal solution

In table 7.1 it can be seen how both optimal solution save 4% on the total system costs. The
4 % decrease in total costs is notable since this system does not need any investments in order to
operate. This decrease can be explained by the decrease in number of MBCs required. There is a
difference of almost 10 𝑚2 between both optimal solutions, even though there difference in total costs
is comparable. This indicated the savings in floorspace are comparable to the increase in BOM costs
due to these savings.

7.1.1. Enhanced storage capabilities of the DSCABs
When increasing the storage capacities of the DSCABs, even less storage space in the MBCs is re-
quired. The BOM of the DSCABs however increases. In table 7.2 the results of this experimental setup
are depicted. Where experimental setup 2 lowered total costs, experimental setup 3 increase total
costs by 5-6 %. The BOM costs increase even though the total number of units required by the system
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decreases. This is due to the higher costs of the DSCABs after modification. System footprint for this
experimental setup’s floorspace optimal solution is equal to the footprint of experimental setup 2. Since
there are 20 locations in the wasted space area, which is already included in the footprint, all MBCs fit
in this area. Placing less MBCs thus does not decrease the footprint further.

Optimization Total BOM Assembly Installation Floorspace Floorspace (m2)
BOM 105% 111% 76% 81% 96% 105,71
Floorspace 106% 110% 76% 81% 99% 98,43

Optimization SPEL MBC master MBC HBT MBC slave DSCAB AGVs
BOM 4 4 9 0 16 1
Floorspace 4 7 6 0 16 1

Table 7.2: Results of the enhanced DSCAB storage experimental setup w.r.t. the case study

7.2. Shared storage space
The shared storage space strategy is where oneUSL can be used for multiple different products at once.
From the results in table 7.3 it can be concluded this strategy has almost no impact. The floorspace
optimal solution is exactly the same as the floorspace optimal solution of the case study. The BOM
optimal solution saves just 1% of the total costs. This 1% is due to the capability to extend an MBC row
once more instead of adding a new row. This results in the one less MBC master and one more MBC
HBT. This is as expected since we have seen in table 5.5 that the case study optimal solution only has
one excessive stack location.

Optimization Total BOM Assembly Installation Floorspace Floorspace (m2)
BOM 99% 99% 100% 99% 100% 110,19
Floorspace 100% 100% 100% 100% 100% 98,99

Optimization SPEL MBC master MBC HBT MBC slave DSCAB AGVs
BOM 4 6 15 0 16 1
Floorspace 4 11 10 0 16 1

Table 7.3: Results of the shared storage strategy experimental setup w.r.t. the case study

However, shared storage space strategies might be help full for lower volumes of more variety of
products. In order to check this, the model is used again with a much lower demand, only 20%. These
results are shown in table 7.4. Here it can be seen the shared storage strategy is more use full.

Experimental setup Total BOM Assembly Installation Floorspace
1 100% 100% 100% 100% 100%
4 97% 96% 95% 95% 99%

Table 7.4: Optimal solution experimental setup 3 with a takt time of 300 seconds w.r.t. the case study

7.2.1. No MBC row limit
Since there is no row limit and different products can be stored in the same USL, the model will opt
for one long row in the BOM optimal solution. This can be seen in table 7.5. As this row only has one
access point for the AGVs, one more is added on the back of the row through the addition of an MBC
slave. The main reason the BOM costs are lower in this experimental setup is due to the difference in
BOM cost between an MBC master and an MBC HBT unit. Since the floorspace optimal solution will
opt for placement of units in the wasted space area, and the max row limit here is only 2, this optimal
solution is identical to the case study optimal solution.
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Optimization Total BOM Assembly Installation Floorspace Floorspace (m2)
BOM 94% 92% 89% 89% 98% 107,95
Floorspace 100% 100% 100% 100% 100% 98,99

Optimization SPEL MBC master MBC HBT MBC slave DSCAB AGVs
BOM 4 1 15 1 16 1
Floorspace 4 11 10 0 16 1

Table 7.5: Results of the no MBC row limit experimental setup w.r.t. the case study

7.3. Central DSCAB
When implementing the experimental setup of one single, central DSCAB, the number of DSCABs re-
quired reduces drastically. This happens at the cost of requiring more of the other units. In table 7.6
the results of this experimental setup are depicted. From table 7.6 the costs seem to approve by about
15 %. While promising, there are downsides in this experimental setup. Since a production cell can
only hold one bin, replacing the empty bin with a full bin could slow down the process. Replacing the
empty now takes more actions: approaching, (un)loading and departing, twice. This has to be done
twice since one AGV takes the empty bin and another AGV brings the full bin. In table 4.1 the duration
of each of these actions can be found. This totals to 20 seconds for each AGV, resulting in 40 seconds
required for restocking the supply at a cell, leaving only 20 seconds for the use internal transport and
product picking. While this is enough, it strictly limits the takt time to a theoretical 40 seconds, not
including the time it takes for internal transport and product picking.

Optimization Total BOM Assembly Installation Floorspace Floorspace (m2)
BOM 85% 69% 109% 99% 122% 134,82
Floorspace 85% 67% 108% 97% 136% 134,82

Optimization SPEL MBC master MBC HBT MBC slave DSCAB AGVs
BOM 19 7 8 7 1 6
Floorspace 19 7 8 7 1 6

Table 7.6: Results of the single DSCAB experimental setup w.r.t. the case study

During this experimental setup some reasoning is needed on the workings of the system and the
introduced constraints. First there is the problem of the docking capabilities of an AGV onto the pro-
duction cells. The cells do not contain a docking module. Therefore, each cell needs to be outfitted
with a SPEL in order to be able to receive bins from the AGV. BOM costs of a SPEL are only 13% that
of an DSCAB, so total BOM will still be lower. Since they are placed in the wasted space area, they will
also not contribute to the total system footprint. Since there are now multiple AGVs operating at the
same time there might be not enough room in the walkay for the AGVs to pass each other. An AGV
has a width of 0.9 meter, so they should be able to pass each other. The length of an AGV is 1.1 meter.
This means when a AGV is unloading, and it is turned 90 degrees, the walkway which is 2 meters wide
will be to narrow. This is because in the (un)docking process, an AGV moves a bit backwards. The
walkway is therefore widened. This extra space is counted towards to total system footprint as well. In
order to supply the single DSCAB with stacks, and to not hinder AGV supplying the production cells, an
AGV is placed behind the MBCs. The last MBC in a row is replaced with an MBC slave so the AGV can
dock at the back and pick up stacks here. Since the DSCAB only has a docking module in the front, a
SPEL is needed at the back of the single DSCAB in order for the AGV to (un)dock from this side. This
method of (un)loading the DSCAB from the back means cell demand can be mathed. However, this
means the MBCs should be placed next to the DSCAB and not in the wasted space area. This results
in identical optimal solutions for BOM and floorspace optimization strategies. Due to this back loading,
extra walkways are needed to reach this area, which are included in the total system footprint as well.
In figure 7.1 the entire production environment is depicted for this experimental setup and the



68 7. Results

(a) Environment (b) System footprint

Figure 7.1: Generated environment design - experimental setup 6
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When further looking in to the AGVs in this experimental setup there are other problems. One
DSCAB - Production cell job is defined as: approaching DSCAB, loading, departing, traveling, ap-
proaching cell, unloading, departing and traveling back to DSCAB. This amount to a 100 second job
for each full, and empty bin. As stated above, the restocking has to be timed just after the bin is emp-
tied to not slow down production. To restock a cell, two AGVs are needed. Since the takt time is 60
seconds, this means only one cell can be restocked every 120 second by one pair of AGVs. Besides
the Restocking AGVs, there are two more AGVs needed: at the back of the MBCs and for the finished
products.

Since the time of one shift and the bin demand per shift is known, the time between bins per cell
can be calculated. This can be seen in table 7.7. To better understand what these times mean, table
7.8 is used. Here intervals are given for each cell, up to 120 minutes. From this table it can be seen
that early in the shift there are no problems with resupplying, but slowly more and more cells will need
new products. At 120 minutes in to the shift there are 9 different cells requesting a new bin. This would
mean there are 18 AGV needed, for just the resupply of the cells.

Product ID Bins per shift Time between bins (min)
1 5 96
2 11 44
3 41 12
4 13 37
5 13 37
6 82 6
7 82 6
8 20 24
9 31 16
10 25 20
11 49 10
12 4 120
13 4 120
14 6 80
15 16 30

Table 7.7: Time it takes to empty one bin per cell

Production
cell ID

Time (min)
6 10 12 16 20 24 30 37 44 80 96 120

1 x
2 x
3 x x x- x x
4 x
5 x x x
6 x x x x x- x x
7 x x x x x-
8 x x x
9 x x x
10 x x x
11 x x x x x
12 x
13 x
14 x
15 x x

Table 7.8: Bin requirement intervals
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To find if this experimental setup had any validity, it has to be checked if there is any method of
planning the resupply in such a way there are less AGVs needed. This is not the case if each cells
is first resupplied when the bin is empty. When allowing for the first bin to be half full on pickup, the
entire interval cycle can be shifted. This is essentially an optimization of table 7.8. This optimization
can be done through Gurobi as well. Information on time between bins is gathered in the parameter
𝑇𝑖𝑚𝑒𝐵𝑏𝑖𝑛𝑠[𝑖]. With set i for cell ID ∈ I with length(D) and set j for shift minutes ∈ J with length 480
(one shift) decision variable can be constructed. 𝐵𝑖𝑛𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙[𝑖, 𝑗] tracks each instance of resupply per
cell i for minute j. 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑐𝑜𝑢𝑛𝑡[𝑗] tracks the cells that are resupplied simultaneously. The following
constraints are formulated.

𝑇𝑖𝑚𝑒𝐵𝑏𝑖𝑛𝑠[𝑖]

∑
𝑗=1

𝐵𝑖𝑛𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙[𝑖, 𝑗] = 1 ∀𝑖 ∈ 𝐼 (7.1)

The range of sum ∑𝑇𝑖𝑚𝑒𝐵𝑏𝑖𝑛𝑠[𝑖]𝑗=1 represents the first bin in the cell. In this time, the model can decide
to resupply whenever is optimal, but resupply must have happened before the bins is empty.

𝐵𝑖𝑛𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙[𝑖, 𝑗] = 𝐵𝑖𝑛𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙[𝑖, 𝑗 + 𝑇𝑖𝑚𝑒𝐵𝑏𝑖𝑛𝑠[𝑖]] ∀𝑖 ∈ 𝐼 ∀𝑗 ∈ 𝐽 (7.2)

Only the first bin in the shift can be switched early. After this first bin, resupplying happens only
when the bin is empty. This constraints fills in the rest of the matrix according to the 𝑇𝑖𝑚𝑒𝐵𝑏𝑖𝑛𝑠[𝑖].

𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑐𝑜𝑢𝑛𝑡[𝑗] =
𝐼

∑
𝑖=1
𝐵𝑖𝑛𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙[𝑖, 𝑗]𝑓𝑜𝑟𝑗𝑖𝑛𝐽 (7.3)

Here all resupply occurrences are added together for each minute in the shift. With this last con-
straint, the objective function can be formulated.

𝑀𝐼𝑁𝐼𝑀𝐼𝑍𝐸 max(𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑐𝑜𝑢𝑛𝑡[𝑗]) (7.4)

Since 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑐𝑜𝑢𝑛𝑡 indicates the number of resupplies in each minute, the goal is to have no an
equal distribution of this function. Even one outlier of 5 resupplies, with the rest being 2 will result in the
need of 10 AGVs. In the objective function the maximum value of the 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑐𝑜𝑢𝑛𝑡[𝑗] function will be
reduced over the entirety of the set J. When plotting function 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑐𝑜𝑢𝑛𝑡[𝑗] the resupply instances
can be seen. This is done in figure 7.2 for the first two hours of the shift to better see what is happening.
It can be seen the maximum number of simultaneous resupplied cells is only two. This brings the need
for AGVs for resupply to a total of four. Including the AGVs needed for other activities there are only 6
AGVs needed for this experimental setup, which is almost 25% of the analytically determined amount
in table 7.8.



7.3. Central DSCAB 71

Figure 7.2: Function 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑐𝑜𝑢𝑛𝑡[𝑗] for the first two hours of the shift

Now the resupply optimization model is set up, the AGV requirements for different demands can be
checked. In table 7.9 the required number of AGVs for different demands are depicted.

Demand modifier 100% 150% 200% 300% 400% 500% 800% 1000%
Max simultaneous resupply 2 3 4 5 5 5 7 9
AGVs needed 6 8 10 12 12 12 16 20

Table 7.9: AGV requirements through resupply timing optimization
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7.4. Mobile DSCABs
When adding one directional mobility for the DSCABs, one DSCAB can serve multiple production cells.
In figure 7.4 the resulting production environments are illustrated. The alternative positions of themobile
DSCABs are indicated in a lighter shade of orange. The limiting factor for howmany cells can be served
by one DSCAB is the obstacles in its path. These obstacles are the reservoirs for the liquid used in
the product sealing steps of the production and the SPEL at cell C1. Also notable is the two DSCABs
at the end of the line. It appears they have no obstacles between them so they can be replaced by
one mobile DSCAB. This is not true since the last cell outputs bins of finished products. The DSCAB
at cell F feeds empty bins with the correct mold and receives and stacks the full bins. If this DSCAB
also has to serve cell 15, which outputs empty bins, there would be mixed stacks of empty bins and
finished product bins. In table 7.10 the results of this experimental setup are depicted. Here it can be
seen that however the number of units required is drastically lower, the BOM costs are still at 83 %.
This can be explained by the high costs of the mobile DSCABs. Since there are obstacles which the
DSCABs cannot pass, there is room for MBCs in the wasted space area.

Optimization Total BOM Assembly Installation Floorspace Floorspace (m2)
BOM 87% 83% 79% 78% 98% 108,51
Floorspace 87% 82% 79% 78% 101% 100,11

Optimization SPEL MBC master MBC HBT MBC slave DSCAB AGVs Mobile DSCAB
BOM 4 7 14 0 4 1 4
Floorspace 4 10 11 0 4 1 4

Table 7.10: Results of the mobile DSCABs experimental setup w.r.t. the case study

Figure 7.3: Legend for figure 7.4
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(a) BOM optimal solution (b) Floorspace optimal solution

Figure 7.4: Generated environment designs - experimental setup 7
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7.4.1. No obstacles
When not encountering obstacles, the DSCAB could theoretically serve every cell. In practice, this
would mean it has to be very very fast, both in movement speed and other actions. To determine the
maximum amount of cells that can be served by one mobile DSCAB the new limiting factor must be
identified. This is thought to be time. The bin demand of the cell with the highest demand dictates the
time the DSCAB has to serve other cells. In order to determine the time a DSCAB needs to serve all
cells, table 7.11 is needed. Here the time time between bins and distance between following cells is
depicted.

Cell ID Bins per shift Time between bins Distance between cells
1 82 6

4
2 41 12

2
3 31 16

2
4 13 37

2
5 5 96

2
6 13 37

6
7 11 44

10
8 4 120

2
9 4 120

6
10 6 80

2
11 25 20

6
12 20 24

8
13 82 6

2
14 16 30

6
15 49 10

Table 7.11: Bin demand per cell in order

The assumption is made that there is the possibility that all cells in a cluster (cluster of all cells
served by one DSCAB) have to be served in one cycle. Cycle time is dictated by the cell with the
highest demand. When selecting cells 1 to 5 as a cluster, cell 1 would be the this cell. This cell we
will call 𝑃𝑐 for production cell critical and is seen as the ”base” for the DSCAB. The total distance the
DSCAB may have to cover in a cycle is twice the distance from the beginning to the end of the cluster.
This distance we will denote as ∑𝑁−1𝑛=1 𝐷𝑛𝑛+1. Here 𝑛 is the the number of cell in the cluster. The time
is takes the DSCAB to carry out all actions also has to be determined. One action is summarized in
variable 𝑌′ = [𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑡𝑖𝑚𝑒, (𝑢𝑛)𝑙𝑜𝑎𝑑𝑡𝑖𝑚𝑒, 𝑑𝑒𝑝𝑎𝑟𝑡𝑡𝑖𝑚𝑒]. 𝑣 denotes the speed of the DSCAB and is
estimated to be 1𝑚/𝑠. Once the time of one action is known, the total time of a cycle can be determined
by multiplying by the number of cells in the cluster. This results in the equation 7.5.
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𝑌𝑡 = 2 ∗
𝑁−1

∑
𝑛=1

𝐷𝑛𝑛+1 ∗
1
𝑣 + 𝑛 ∗∑𝑌′ (7.5)

Here 𝑌𝑡 represents the total action time of a cycle. This total action time should not exceed the cycle
time. If this happens, the DSCAB can not be back in time to start the next cycle. Restocking by an
AGV and driving back to base should also be considered. Driving back to the 𝑃𝑐 cell is assumed to
always be equal to the maximum posible travel time 𝐷𝑚𝑎𝑥

𝑣 . Restocking is dictated by the AGV since the
DSCAB need to be static for this period. Restocking and unloading in to a cell can not happen at the
same time. From section 4.1 the restocking time can be determined. Since one restocking action can
restock one single stack with a maximum of 7 bins, exceeding more than 7 cell in a cluster requires an
extra restocking action. One restocking action is summarized in 𝑌′𝑟 . The time is takes to restock can
therefore be formulated as stated in equation 7.6.

𝑇𝑟𝑒𝑠𝑡𝑜𝑐𝑘 = roundup(𝑛/7) ∗ 𝑌′𝑟 (7.6)

𝑌𝑡 ≤ 𝑆𝑐 − 𝑇𝑟𝑒𝑠𝑡𝑜𝑐𝑘 −
𝐷𝑚𝑎𝑥
𝑣 (7.7)

Equation 7.7 shows the constraint which must be full filled when assigning clusters in order for a
cluster to be viable. Here 𝑆𝑐 represents the time between bins as demanded by the 𝑃𝑐 cell. Using
the equations, clusters of cells can be made. This is shown in table 7.12. For these calculation 𝑌′ is
estimated at [5, 15, 5]

Cluster 1

From 1 ID
to 8 ID
Pc 1 ID
Sc 6 min
Dmax 28 m
Davg 3,5 m
# 8 quantity
Trestock 0,83 min
Y’ 25 sec
Yt 4,3 min
Viable YES

Cluster 2

From 9 ID
to 13 ID
Pc 15 ID
Sc 6 min
Dmax 30 m
Davg 4,3 m
# 7 quantity
Trestock 0 sec
Y’ 25 sec
Yt 3,9 min
Viable YES

Table 7.12: Cluster selection according to equations 7.5 and 7.7

When implementing these clusters in our model, the results in table 7.13 are obtained. Since there
is no space for MBCs in the wasted space area, the optimal solutions for both BOM and floorspace
are identical. The resulting environment is depicted in figure 7.5. Here it can be seen how large the
clusters can be. Since the obstacles need to be moved to the other side of the production line, the
system footprint increases quite heavily.
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Optimization Total BOM Assembly Installation Floorspace Floorspace (m2)
BOM 76% 52% 66% 65% 135% 149,07
Floorspace 76% 51% 65% 64% 151% 149,07

Optimization SPEL MBC master MBC HBT MBC slave DSCAB AGVs Mobile DSCAB
BOM 4 7 14 0 1 1 2
Floorspace 4 7 14 0 1 1 2

Table 7.13: Results of the mobile DSCABs without obstacles experimental setup w.r.t. the case study
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(a) Environment (b) System footprint

Figure 7.5: Generated environment design - experimental setup 8
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7.5. AGV with (de)stacker function

When outfitting the AGVs with a stacker - destacker module, the DSCABs in front of the production
cells become obsolete. Instead, a SPEL is needed since the cells themselves do not have the docking
capabilities required for connecting with an AGV. To determine the number of AGVs needed, first the
limiting factor has to be determined. Supplying all the cell in time is this limiting factor since only one
bin can be present in each cell. This problem is similar to the problem discussed in section 7.4.1. Here
clustering is also key to finding the required number of AGVs.

One cycle is now defined as traveling from MBC to the cluster and back, and traveling from cell to
cell. Important is to note a cycle has amaximumof 7 cell since the AGV can only carry one stack and one
stack is at most 7 bins high. Traveling to and from the cluster is assumed to have an average distance
of (∑𝐼𝑖=1 𝐷𝑚𝑐,𝑖)/𝐼 where I is the number of cells in the cluster. Also, approach, (un)load and depart time
should be considered. These are included in variable 𝑌′𝑚𝑐 as [𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑡𝑖𝑚𝑒, (𝑢𝑛)𝑙𝑜𝑎𝑑𝑡𝑖𝑚𝑒, 𝑑𝑒𝑝𝑎𝑟𝑡𝑡𝑖𝑚𝑒].
These actions only occur once per cycle in the MBC to cell part of the cycle. The approaching, loading
and departure times of each cell are included in the cell-to-cell part of the cycle. Now an expression
for the variable 𝑌𝑚𝑐 can be formulated.

𝑌𝑚𝑐 =∑𝑌′𝑚𝑐 + 2 ∗
𝐼

∑
𝑖=1
𝐷𝑚𝑐,𝑖 ∗

1
𝐼 ∗ 𝑣 (7.8)

Next an expression for the cell to cell actions, 𝑌𝑐𝑐 is required. The total distance covered in a cluster
is easily calculated by ∑𝐼𝑖=1 𝐷𝑐𝑐,𝑖𝑖+1. Here approach, (un)load, and depart time are also included in
variable 𝑌′𝑐𝑐. Now an expression can be found for 𝑌𝑐𝑐 and eventually for total cycle time 𝑌𝑡. This total
cycle time can not exceed the time between bin demand of the most demanding cell in the cluster. This
time is denoted by 𝑆𝑐 standing for critical requested supply.

𝑌𝑐𝑐 = 𝐼 ∗∑𝑌′𝑐𝑐 +
𝐼

∑
𝑖=1
𝐷𝑐𝑐,𝑖𝑖+1 ∗

1
𝑣 (7.9)

𝑌𝑡 = 𝑌𝑚𝑐 + 𝑌𝑐𝑐 ≤ 𝑆𝑐 (7.10)
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Cluster 1

From 1 ID
to 7 ID
n 7 quantity
Dmc, avg 10 m
Dcc, tot 18 m
Sx 6 min
Ymc 50 sec
Ycc 236 sec
Yt 4,8 min
Viable YES

Cluster 2

From 8 ID
to 12 ID
n 5 quantity
Dmc, avg 37 m
Dcc, tot 16 m
Sx 20 min
Ymc 88 sec
Ycc 173 sec
Yt 4,4 min
Viable YES

Cluster 3

From 13 ID
to 15 ID
n 3 quantity
Dmc, avg 57 m
Dcc, tot 8 m
Sx 6 min
Ymc 117 sec
Ycc 101 sec
Yt 3,6 min
Viable YES

Optimization Total BOM Assembly Installation Floorspace Floorspace (m2)
BOM 74% 63% 94% 85% 100% 110,73
Floorspace 74% 64% 94% 86% 101% 99,53

Optimization SPEL MBC master MBC HBT MBC slave DSCAB AGVs AGV (de)stackers
BOM 19 7 14 0 1 0 3
Floorspace 19 11 10 0 1 0 3

7.6. Takt time modification
One of the KPIs this thesis test is the ability of a bin handling system to cope with demand growth.
Since the demand is defined by the production line, it is directly linked to the takt time of the prod-
ucts. A shorter takt time means more products will be produced per hour, and more semi products are
needed by the individual production cells. This increase in demand will require more storage space
and handling speed from the bin handling system. Three main factors are identified which are likely
to drive up the costs when increasing demand: storage space, AGV requirement and DSCAB supply
rate. In this section all experimental setups are testes for different product takt times in order to how
the system costs and footprint will change. Extended results are depicted in appendix C.

One important thing to note is experimental setup 6 - the central DSCAB. As stated in section 7.3,
this experimental setup is bound to a maximum takt time of 40 seconds due to the operation speed of
the AGV approach, depart and (un)load time. To be able to compare results, this restriction is ignored
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and the assumption is made the AGV action time can cope with the takt time.

7.6.1. Footprint optimal solutions
In table 7.14 the changes in system footprint for each experimental setup are depicted for the floorspace
optimal solutions. Here it can be seen most experimental setups increase in a similar way, except
experimental setup 3. The system footprint of this experimental setup only increases once the takt
time is 35 or lower. This means experimental setup 3 is most fitted for an environment with a growing
demand, when prioritizing floorspace.

Experimental setup
Takt Time 1 2 3 4 5 6 7 8 9
67 -0,6 0,0 0,0 -0,6 -0,6 -1,1 -0,6 -0,6 -0,6
60 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
50 2,8 1,1 0,0 2,8 2,8 4,2 3,9 2,8 2,8
43 4,5 2,8 0,0 4,5 5,0 5,9 4,5 4,5 4,5
35 7,8 6,7 3,4 7,8 8,4 9,3 7,8 7,8 7,8
33 10,5 10,0 5,5 10,5 11,1 10,9 10,5 10,5 9,5
30 11,6 10,5 8,3 12,2 12,8 12,1 11,6 11,6 10,6

Table 7.14: System footprint increase in 𝑚2 w.r.t. to takt time of 60 seconds

The total costs for the different takt times are also determined. Experimental setups might have a
small increase in footprint, but a large increase in total costs. In table 7.15 these results are depicted
as a percentage of the total system costs at a takt time of 60 seconds. The largest increases are in
experimental setups 7 and 8. Not coincidentally these experimental setups are variant of each other.
The jumps in total costs between a takt time of 35, 33 and 30 seconds can be tracked to the need for
an extra mobile DSCAB. The clusters as described in section 7.4.1 can not cope with this demand and
extra DSCABs are required. This is an example of a failing DSCAB supply rate. When tracking results,
it is concluded experimental setups one though 5 mainly cope with an increase in storage capacity,
which in turn increase the total costs. At one point, at a takt time of 33 seconds, one AGV cannot
handle the demand on its own and an additional AGV is required.

Experimental setup
Takt Time 1 2 3 4 5 6 7 8 9
67 -1% -1% 0% -1% -5% -2% -1% -1% -2%
60 0% 0% 0% 0% 0% 0% 0% 0% 0%
50 5% 5% 4% 5% 5% 12% 9% 14% 7%
43 8% 9% 6% 8% 9% 17% 10% 19% 11%
35 14% 16% 12% 14% 15% 24% 24% 26% 19%
33 20% 23% 17% 20% 21% 28% 31% 34% 23%
30 22% 24% 22% 23% 25% 32% 33% 37% 25%

Table 7.15: Total costs increase in w.r.t. to takt time of 60 seconds

Experimental setup
Takt Time 1 2 3 4 5 6 7 8 9
67 -2% -2% 0% -2% -7% -3% -1% -2% -3%
60 0% 0% 0% 0% 0% 0% 0% 0% 0%
50 5% 6% 5% 5% 5% 18% 10% 27% 8%
43 9% 10% 8% 9% 10% 25% 11% 33% 14%
35 15% 17% 14% 15% 16% 35% 29% 45% 23%
33 22% 26% 19% 22% 23% 41% 38% 59% 28%
30 24% 27% 24% 25% 27% 46% 40% 64% 31%

Table 7.16: BOM costs increase in w.r.t. to takt time of 60 seconds
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7.6.2. BOM optimal solutions
As with the footprint optimal solutions, the increase in system footprint can be checked for the BOM
optimal solutions. These results are depicted in table 7.17. Since the BOM optimal solution prefers to
place storage units in rows as long as possible, most storage units will be placed outside of the wasted
space area. The ability to place units inside of the wasted space area therefore does not play a big
role anymore. It can be seen how the increase in floorspace is comparable in all experimental setups.

Experimental setup
Takt Time 1 2 3 4 5 6 7 8 9
67 -0,6 -0,6 -0,6 -0,6 -0,6 -1,1 0,0 -0,6 -0,6
60 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
50 2,8 2,8 1,7 2,8 2,2 4,2 2,2 2,8 2,8
43 4,5 4,5 3,4 4,5 3,9 5,9 4,5 4,5 4,5
35 7,8 8,4 6,7 7,8 6,2 9,3 7,3 7,8 7,8
33 10,5 11,6 8,8 10,5 8,8 10,9 10,5 10,5 9,5
30 11,6 12,2 11,6 12,2 10,0 12,1 11,1 11,6 10,6

Table 7.17: System footprint increase in 𝑚2 w.r.t. to takt time of 60 seconds

In tables 7.18 and 7.19 the increase in total costs and BOM costs are depicted for the BOM optimal
solutions of different takt times.

Experimental setup
Takt Time 1 2 3 4 5 6 7 8 9
67 -1% -1% -1% -1% -1% -2% -1% -1% -1%
60 0% 0% 0% 0% 0% 0% 0% 0% 0%
50 5% 5% 3% 5% 4% 12% 5% 14% 7%
43 8% 8% 6% 8% 6% 17% 9% 19% 11%
35 14% 15% 12% 14% 10% 24% 23% 26% 19%
33 20% 23% 16% 20% 16% 28% 30% 34% 23%
30 22% 24% 22% 23% 18% 32% 32% 37% 26%

Table 7.18: Total costs increase in w.r.t. to takt time of 60 seconds

Experimental setup
Takt Time 1 2 3 4 5 6 7 8 9
67 -1% -1% -2% -2% -1% -3% -1% -2% -1%
60 0% 0% 0% 0% 0% 0% 0% 0% 0%
50 5% 6% 3% 5% 4% 18% 6% 27% 9%
43 9% 9% 6% 9% 7% 25% 11% 33% 14%
35 15% 17% 13% 15% 11% 35% 29% 45% 24%
33 23% 26% 18% 23% 18% 41% 38% 59% 30%
30 25% 27% 23% 26% 20% 46% 41% 64% 34%

Table 7.19: BOM costs increase in w.r.t. to takt time of 60 seconds

7.7. Chapter summary
In this chapter the results of each individual experimental setup are discussed, as well as how they
react to different takt times. The goal of this chapter is to find an answer to the subquestion: ’What is
the impact of different design strategies?’. To recap, the results are gathered once again in tables
7.20 and 7.21.

In experimental setups 2 to 5 only small variations are made on the already existing system. In ex-
perimental setup 2 the existing storage locations are used in order to reduce the required specialised
storage units, the MBCs. Through this relatively simple solution of coordinating and implementing more
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thoughtfully 4% can be saved on the total system costs and 2 % on system footprint. Taking this ex-
perimental setup further in experimental setup 3, the benefits of requiring less MBCs do not outweigh
the extra costs of the DSCABs anymore. Here we see an increase in costs of 6%. The necessity of
having storage space for 3 stacks in each DSCAB can be argued. From table C.2 in appendix C it
can be concluded some DSCABs only use one or two stacks in an entire shift. This results in empty
but costly storage locations in the system. Since the DSCABs are required for (de)stacking, they are
already there. Therefore it still is a viable method of reducing system footprint.

One seemingly effective method of reducing the number of MBCs required by the system was the
shared storage strategy from experimental setup 4. When reasoning on this strategy one can get the
impression storing multiple products next to each other reduces the number of empty storage locations.
In reality the number of empty storage locations are minimal to begin with. For the specific demand,
both quantity and variety, the shared storage strategy is almost equivalent to the case study optimal
solution. Experimental setup 4 is bounded by the geometry of the production environment. In experi-
mental setup 5 this restriction is lifted. When allowing for placement anywhere, one long row of MBCs
is formed. This is due to the MBC HBTs being cheaper. This is only the case when optimizing for BOM
since the footprint optimal solutions opts for placement in the wasted space area.

More divergent experimental setups are experimental setups 6 to 9. Here units are redesigned.
In experimental setup 6 the idea of having just one DSCAB is explored. Since DSCABs are the most
expensive and abundant units in the system, saving costs here could potentially have a great impact.
Transporting bins instead of stack increases the AGV requirements, but drastically decreases the BOM
of the system. Through planning optimization the minimum number of AGVs required can be reduced
but then another factor is introduced: transporting half-full bins. While this is not a problem on its own, it
should be noted since it will require additional actions to sort out these bins. Once takt time decreases,
this experimental setup becomes notably less efficient. Due to more AGVs the BOM costs increase
next to the increase in BOM due to the growth in MBC units. Restocking cells now requires two AGVs.
This restocking takes 40 seconds, which puts a hard limit on the possible takt time of the production
line. The takt time of 30 seconds therefore is purely theoretical. This experimental setup also required
a notable larger footprint.

Takt time - 60s Experimental setup
1 2 3 4 5 6 7 8 9

Total costs 100% 96% 106% 100% 100% 85% 88% 76% 74%
BOM costs 100% 95% 110% 100% 100% 67% 82% 51% 64%
Floorspace 100% 99% 99% 100% 100% 136% 106% 151% 101%
Floorspace m2 99,0 98,4 98,4 99,0 99,0 134,8 104,6 149,1 99,5

Takt time - 30s Experimental setup
1 2 3 4 5 6 7 8 9

Total costs 100% 98% 106% 101% 102% 92% 96% 86% 76%
BOM costs 100% 98% 111% 101% 103% 79% 93% 68% 68%
Floorspace 100% 98% 96% 101% 101% 133% 106% 145% 100%
Floorspace m2 110,6 108,9 106,7 111,2 111,7 146,9 117,3 160,7 110,2

Table 7.20: Summary of results w.r.t case study - floorspace optimal solutions
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Takt time - 60s Experimental setup
1 2 3 4 5 6 7 8 9

Total costs 100% 96% 105% 99% 94% 85% 88% 76% 74%
BOM costs 100% 96% 111% 99% 92% 69% 83% 52% 63%
Floorspace 100% 98% 96% 100% 98% 122% 103% 135% 100%
Floorspace m2 110,2 108,0 105,7 110,2 108,0 134,8 113,0 149,1 110,7

Takt time - 30s Experimental setup
1 2 3 4 5 6 7 8 9

Total costs 100% 97% 105% 100% 91% 91% 95% 85% 77%
BOM costs 100% 97% 109% 100% 89% 80% 93% 69% 67%
Floorspace 100% 99% 96% 100% 97% 121% 103% 132% 100%
Floorspace m2 121,8 120,1 117,3 122,4 117,9 146,9 125,2 160,7 121,4

Table 7.21: Summary of results w.r.t. case study - BOM optimal solutions

In experimental setup 7 another variation of the DSCAB is introduced: the mobile DSCAB. By mak-
ing this unit mobile in one direction, the DSCABs which are idle for most of the shift can be eliminated.
When looking at the generated environment design for this experimental setup it is clear there are ob-
stacles in its path. While saving on costs, the amount of savings rely heavily on the obstacles around
the production line. To test the influence of the obstacles, experimental setup 8 is introduced. Here
all the obstacles are moved to the other side of the production line. This drastically increases the
floorspace required by the system. Also, since no obstacles next to the line are allowed, no MBCs can
be placed in the wasted space area, increasing the system footprint even further. This comes with the
savings of almost half of the BOM costs of the system. When increasing the demand, the BOM savings
reduce but are still notable.

Lastly, in experimental setup 9 the DSCAB capabilities are taken even one step further. Instead of
unidirectional movement, the DSCABs now have the movement of an AGV. Or the other way around,
the AGVs are outfitted with the (de)stacker modules. This experimental setup cuts down BOM costs by
being able to replace all DSCABs with SPELs. At the same time, only three AGVs are required even
for a takt time of 30 seconds.

In table 7.22 The impact of all experimental setups is summarized. For visualization purposes, the
following classifications are used:

Minimal 0 - 2 % Moderate 8 - 15 % Large 26 - 35 %
Small 3 - 7 % Substantial 16 - 25 % Massive 36 - 50 %
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Experimental setup Direct impact Indirect impact
2 Small total costs savings Minor planning changes

Small BOM savings
Minimal floorspace savings
Results steady through demand increase

3 Small total costs Increase Minor planning changes
Small BOM increase Moderate unit modification
Small floorspace savings
Results steady through demand increase

4 Minimal total costs savings Moderate planning changes
Minimal BOM savings Moderate unit modification (sensor placement)
No floorspace savings
Results steady through demand increase

5 Small total costs savings Environment requirements
Small BOM savings Moderate planning changes
Minimal floorspace savings Moderate unit modification (sensor placement)
Results steady through demand increase

6 Moderate total costs savings Large unit modification
Large BOM savings Large planning changes
Large floorspace increase Bin sorting post-production
Less effective through demand increase Bin supply order required

Walkway enlargement

7 Moderate total costs savings Large unit modification
Substantial BOM savings Large planning changes
Small floorspace increase Bin supply order required
Less effective through demand increase

8 Substantial total costs savings Large unit modification
Massive BOM savings Large planning changes
Masive floorspace increase Bin supply order required
Less effective through demand increase

9 Large total costs savings Large unit modification
Large BOM savings Large planning changes
Minimal floorspace increase Bin supply order required
Results steady through demand increase

Table 7.22: Overview of impact of each experimental setup
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Experimental setup
Takt time (s) 1 2 3 4 5 6 7 8 9

Total costs 60 100% 96% 106% 100% 100% 85% 88% 76% 74%
30 100% 98% 106% 101% 102% 92% 96% 86% 76%

BOM costs 60 100% 95% 110% 100% 100% 67% 82% 51% 64%
30 100% 98% 111% 101% 103% 79% 93% 68% 68%

Floorspace 60 100% 99% 99% 100% 100% 136% 106% 151% 101%
30 100% 98% 96% 101% 101% 133% 106% 145% 100%

Floorspace m2 60 99,0 98,4 98,4 99,0 99,0 134,8 104,6 149,1 99,5
30 110,6 108,9 106,7 111,2 111,7 146,9 117,3 160,7 110,2

Table 7.23: Floorspace

Experimental setup
Takt time (s) 1 2 3 4 5 6 7 8 9

Total costs 60 100% 96% 105% 99% 94% 85% 88% 76% 74%
30 100% 97% 105% 100% 91% 91% 95% 85% 77%

BOM costs 60 100% 96% 111% 99% 92% 69% 83% 52% 63%
30 100% 97% 109% 100% 89% 80% 93% 69% 67%

Floorspace 60 100% 98% 96% 100% 98% 122% 103% 135% 100%
30 100% 99% 96% 100% 97% 121% 103% 132% 100%

Floorspace m2 60 110,2 108,0 105,7 110,2 108,0 134,8 113,0 149,1 110,7
30 121,8 120,1 117,3 122,4 117,9 146,9 125,2 160,7 121,4

Table 7.24: BOM
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Discussion

This thesis aims to answer the question: what are the effects of different design strategies of an au-
tonomous bin handling system on costs, floorspace and throughput capabilities? This is done
by first constructing a method of evaluating the performance of a bin handling system. Through a de-
terministic linear optimization model, the optimal configuration of a bin handling system is determined.
Now a method of generating optimal solutions is constructed, the performance of different bin handling
systems can be compared.

To do this, different experimental setups are generated. In the first few experimental setups there is
a focus on the implementation of the system and small changes to existing strategies. Here it is found
that small storage capacities at each cell, instead of more general storage capacity, has a positive
effect on the total BOM. Due to this potential, the storage capacities at each cell have been expanded.
Such a strategy turned out to have a negative impact on the BOM, while having a small positive impact
on the floorspace. Having this expanded storage space at each cell, some storage location will remain
empty due to the low bin requirement of the cell.

In order to maximize the use of the unique storage locations, a shared storage strategy is intro-
duced. Shared storage strategies are common in warehouses due to ability of always being able to
fill an empty spot. In a bin handling system such as evaluated in this thesis, the storage stage does
not have many empty slots to begin with. The demand of a production line is known far in advance
and does seldom fluctuate. A shared storage strategy turned out not to be effective in both reducing
footprint and BOM. At lower demands, shared storage strategies might have more of an effect since
then storage units are configured differently and shared storage enables more configurations. When
designing the production environment around a shared strategy, i.e. if the designer has all freedom,
the BOM can be notably reduced.

Transporting bins, instead of stacks of bins which need to be destacked at each cell, introduces
new obstacles. It is has been proven the number AGVs needed in such an experimental setup counter
intuitively does not increase as much as would have thought. By optimizing resupply strategies, it
is possible to maintain a reasonable number of AGVs required for efficient operations. The number
of (de)stackers reduces drastically, and so does the BOM. This happens at a trade-off in floorspace,
which increases. However, the effectiveness of this experimental setup drops when demand increases.
Transporting bins has one big drawback: the action time of the AGVs. The product takt time is limited
by the AGVs capabilities to extract and insert bins into the cell fast enough.

The possibility of unidirectional, mobile (de)stackers is also explored. While having a comparable
system footprint as the case study configuration, BOM costs go down. This happens even though the
new (de)stackers aremore expensive and there are obstacles in their paths. By removing the obstacles,
the total BOM costs drop even further. Since obstacles are moved, the total system footprint increases
drastically. When demand increases, the effectiveness of such a strategy drops since more of the extra
expensive (de)stackers are needed. From these experimental setups it can be concluded that due to
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the (de)stackers high BOM, lowering the number needed will have a large impact on the costs. By
taking the concept of a mobile (de)stackers one step further, a strategy of outfitting the AGVs with a
(de)stacker module is tested. Since they can move around obstacles the total system footprint does
not increase. The BOM costs drop drastically since there are no more expensive static (de)stackers.
In contrast to the unidirectional (de)stackers, results are now stable when increasing demand.

This chapter also reviews the factors that may potentially impact the findings of the research, through
a detailed discussion. The first of which is the configuration of the production environment. A bin han-
dling system is only a small part of the total production environment. Production line configuration
is defined as a constant, which means the model constructed in this thesis cannot alter it in order to
improve results. This is done in order to be able to compare results of different experimental setups
more accurately. It is possible that certain experimental setups or design solutions may exhibit better
performance on particular production line configurations, such as a U-shaped line. A U-shaped line
is taken as example here, but there are infinitely more production line configurations. Included in the
production line configuration is the requirement of liquid reservoirs or obstacles next to the line. As can
be seen in experimental setup 7, these play a big role in the effectiveness of some experimental setups.

As previously stated in section 3.7.2, there are several ways to define the system footprint.In this
thesis the choice is made to include space which is made unusable by the system in the total system
footprint. However, the level to which space is unusable can differ. As mentioned in section 4.2.1,
there can be more factors restricting usage of space in and around the system. The number, and
level of contribution, of different factors can differ from situation to situation. The depreciation costs
also contribute directly to the floorspace costs, and thus to the optimal generated floorspace design.
As floorspace gets more expensive, the optimal solution will place more an more units in the wasted
space. Therefore these optimal solutions are situational.

In this thesis, the bin handling system was considered to have an infinite and instant supply of new
products. While this is often the case in production environments, there are situations where supply is
not steady. This should be considered when interpreting the results of this thesis.
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Conclusions

This thesis aims to inform the reader on the performance of different design choices of autonomous
bin handling systems. In section 9.1 the findings of this research are summarized. Lastly, in section
9.2 recommendations on future work are given.

9.1. Conclusions
Autonomous, flexible bin handling systems are state of the art. Designing such systems therefore is
often done with few examples or knowledge of performance alteration design strategies. This thesis
composed a quantitative optimization model which is used on different design strategies of bin handling
systems.This is done in order to find an answer on the main research question: what are the effects
of different design strategies of an autonomous bin handling system on costs, floorspace and
throughput capabilities? Design strategies researched in this thesis are compared to the case study
system. Conclusion are drawn in reference to performance of the optimal solutions for the case study
system

Firstly, with the definition of system footprint this thesis proposes, only small reductions of 2 to 4
% in footprint are found. Reductions found are mainly caused by the placement of units in bill of ma-
terial wise undesirable locations. A second factor found for the reduction of systems footprint is the
extended use of local buffers. Local buffers are located in the already existing equipment and thus do
not increase system footprint. In contrast to warehousing, shared storage strategies have minimal im-
pact on both costs and floorspace in bin handling systems. Design choices such as mobile (de)stacker
equipment and bin transportation instead of stack transportation proved to have a negative impact of
floorspace. Mobile (de)stackers require the relocation of obstacles, or other equipment, to reach their
full potential. This increases the system footprint drastically by 35 %. The transportation of bin instead
of stacks introduced more traffic in the environment. This traffic leads to the need for wider walkways
and thus an increase in footprint. This increase can amount to up to 22 %.

Secondly, design strategies are evaluated for their bill of material costs. While extended local buffers
have a positive influence on floorspace, the system BOM increases by 10 %. The individual BOM of
existing units increases due to the requirement a larger internal storage location, which ultimately in-
creases the BOM. Shared storage strategies, which are common in warehouse optimizations, are also
tested. Due to limitations on available space in the production environment there is only a 1% improve-
ment in BOM. When removing space limitations, this improvement grows up to 8 %. While increasing
system footprint, bin transportation instead of stack transportation decreases the BOM by 30 %. This
seems counterintuitive since transporting bin would seem to lead to the need for an excessive amount
of transporting units. This reduction is due to the elimination of most (de)stacker units, and a quantita-
tive optimal solution for resupply planning. The largest savings in BOM are found when adding mobility
functions to (de)stacker equipment. Here a decrease of 48% can reached. When fully integrating the
transportation and (de)stacking function in one unit, a positive result for the system BOM is found. This
strategy does not seem to have a negative result for the system footprint. A reduction of 36% is obtained
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when combining these function in one unit, while keeping system footprint constant with the case study.

Lastly, the throughput capabilities of the design strategies are evaluated. Product takt time is de-
creased and the changes in results are compared. Noteworthy is the the improved result for shared
storage without placement limitations. Here the total system costs reduced further from 6% at a takt
time of 60 seconds to 9% at a takt time of 30 seconds. Effectiveness of solutions as bin transport instead
of stack transport and mobile (de)stackers reduces as takt times get lower. Bin transport strategies see
the total cost reduction of 15 % at a takt time of 60 seconds go to 9% reduction at a takt time of 30
seconds. Mobile (de)stackers have their total cost reduction reduce to 15 % at a takt time of 30 sec-
onds. For this strategy, total cost reduction was 25 % at a takt time 60 seconds. Full integration of the
transportation and (de)stacking function shows only a 3% less effective total cost at a 30 seconds takt
time. Floorspace still does not increase in this strategy.

9.2. Future research
This thesis only touches the hardware design part of bin handling systems. Bin handling systems are
part of a larger system, the production environment. In order to keep results reliable, other factors are
kept constant since their influence could not reliably be estimated and quantified. For future research
promising experimental setups from this thesis might be used and other factors can be altered such
as:

Production line layout. Placement of bin handling units is heavily restricted in this thesis due to the
predefined production line placement. The production line is defined as a line. However, production
lines come in all kinds of shapes and configurations. Testing the validity of experimental setups given in
this thesis for different production line configurations will broaden the understanding of certain design
choices.

Not only the predefined production line layout but also the production environment layout limits the
placement of bin handling units. Future work might consider total freedom in unit placement by having
no restrictions on production environments.

This study is based on a case study. This case study has such a throughput that the employed
AGVs are able to cope with demand easily. Therefore unit placement optimization for AGV perfor-
mance is left outside of the scope. For future work, when assessing higher throughput systems this
should be taken into account in order to find the absolute minimal number of AGVs required.

Lastly, in this thesis bin type, shape and size are based on the bins already existing in the case
study. Bins play a big role in the performance of bin handling systems. Further research could look
into the alteration of the bins in order to increase performance. Since bins are supposed to be uni-
versal, meaning all products should fit in them and all units should be able to handle them, all factors
surrounding the bins should be considered. This thesis considers two types of bins. Future works could
also consider more, or less types.
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Abstract

Fully autonomous bin handling systems are relatively new and examples of existing systems
are hard to find. This makes designing such a system more difficult. The goal of this research
is to provide insight in the effects of different design strategies of autonomous bin handling
systems. This is done through a quantitative optimization model of an existing autonomous
bin handling system. With this model, modifications to the system are made and evaluated.
Optimal solutions for bill of material and floorspace, for different demand quantities are
generated and compared.
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1 Introduction

Throughout history, people have striven for effi-
ciency. This is especially true for manufacturing
processes. With inventions such as the steam en-
gine and the conveyor belt production could be
increased drastically. Nowadays most manufactur-
ing processes are highly automated and optimized,
Jayal et al., 2010. The remaining part in the au-
tomation process is the logistics, more specifically
the intralogistics, Wang et al., 2009. The imple-
mentation of autonomous transport for goods in
a factory presents both mechanical and logistical
challenges. Since goods can greatly vary in size and
shape, equipment used to handle them must possess
a wide range of mechanical properties, Kroemer,
2017. By introducing a standardized transport bin,
equipment can be simplified. A system designed
to handle standardized bins is referred to as a bin
handling system.

Autonomous bin handling systems are relatively
new, and there are few existing examples of such
systems. Designing such a system is therefore dif-
ficult. The effects and impacts of certain design
choices may only become evident later in the de-
velopment process. According to Baral, 2021, up
to 50% of the costs associated with a product are
incurred during the design conceptualization phase

of the development process. Therefore, cost reduc-
tion becomes increasingly difficult in later stages
of the process. Being able to make informed, well
grounded decisions during this phase is therefore
crucial. This paper aims to provide insight in the
impact of different design choices, better informed
decisions can be made when developing, or alter-
ing bin handling systems. The research questions
therefore is:

What are the effects of different design
strategies of an autonomous bin handling

system on costs, floorspace and throughput
capabilities?

This research includes a case study of a real life
bin handling system present at Prodrive Technolo-
gies, a company specialized in high tech industrial
automation solutions. This case study is used as
a benchmark to evaluate the performance of other
systems.

First, existing storage strategies and bin han-
dling systems are evaluated in section 2. The case
study systems is further identified in section 3

Next, a mathematical model of the bin han-
dling system is constructed. This model is then
used in a computational solver to find a quantita-
tive optimal solution based on costs or floorspace
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in section 4. Here the product takt time is varied
to mimic an increase in demand and changes in op-
timal solutions are evaluated. Scenarios of different
bin handling systems are constructed and tested in
the same method. Lastly, in section 5, conclusions
are drawn based on the findings, and recommenda-
tions for future work are made.

2 Literature and methodology

In this section literature on existing bin handling
and comparable systems is reviewed. Next, the
methods used in this research are described.

2.1 Literature

Before creating a model or designing scenarios, a
literature study is done into existing design strate-
gies and system definitions. Bin handling systems
are a subgroup of material handling systems which
only handle standardized bins, Furmans et al.,
2010. Since production environments vary greatly,
bin handling systems can as well. To define a
bin handling system, Kay, 2012 has identified five
different types of equipment, the first of which is
transport equipment. This is equipment used for
transportation of goods within the system from
one location to another. The second is position-
ing equipment. Positioning equipment handles
products at a single location in order to position
products for further steps, often located in front
of production cells. Next is unit load formation
equipment, equipment used to secure materials and
preserve their integrity during transport and stor-
age, popiela2014optimization. In bin handling
systems these are often the moulds in the bins,
keeping the product in place in the bin. Fourth
is the storage equipment. Equipment capable of
storage for short, or sometimes longer, periods of
time. Storage equipment is mainly used to cope
with supply fluctuations or to store parts needed
for production near the production environment.
Lastly, there is the identification and control equip-
ment. This equipment is utilized for gathering and
transmitting information, crucial for coordinating
the movement of materials within a facility. While
Kay, 2012 focuses on traditional material handling
system equipment, newer autonomous systems aim
to consider functions and how they can be com-
bined in a broader range of applications. These
systems however are novel and are few and far be-
tween. Some papers such as Ye et al., 2018 talk
about the use of AGVs for product and bin han-
dling, but not in a production environment setting.
However, Ye et al., 2018 does explain the combin-

ing of different functions in one unit namely the
transport and positioning function.

The storage stage of a bin handling system
can be further defined. In a company, goods are
mostly stored in two locations: in the warehouse
or in a buffer before a production cell or follow-
up step, Reyes et al., 2019. The optimization of
storage in warehouses is a well-practiced area of
study, Karásek, 2013, and could be useful in the
design of the storage stage of a bin handling sys-
tem. De Koster et al., 2007 states there are two
main methods of assigning storage locations: ded-
icated and shared storage. Warehouses are not
always full. To not have empty locations in be-
tween products, and thus increasing travel distance
when order picking, shared location strategies are
adopted, as done by Park, 1987. Shared locations
introduce the ability to use preferable locations as
soon as they are free. Also, storage capacity can
be based on the total demand of the system, and
not on each product. Yang et al., 2017 Describes a
variant of dedicated storage, a method where one
location only holds one type of good, even if it is
out of stock. Yang et al., 2017 describes a loca-
tion assignments method called full turnover which
takes into account the turn over of a product and
puts the more in-demand products in the front of
the ware house. Yu and De Koster, 2013 states full
turnover reduces some downsides of dedicated stor-
age, but not all: there will still be empty locations
in the front.

The term ’buffer’ is defined by Gupta and Jain,
2013 as a safety margin to not disrupt a process
when components fail and ensure continuity. In
supply chain systems a buffer is often a small, local
stock of items to accommodate fluctuations in sup-
ply rate. Mahadevan and Narendran, 1993 iden-
tifies a second type of buffer, a central buffer, as
shown in figure 1. The type of buffer in a bin han-
dling system is subject to different requirements
then a warehouse, Umirzoqov, 2020. In produc-
tion environments, all demand will always be met.
Starting production with one part of the product
not in stock will hold up production immediately.
The number and quantity of products is known in
advance, and will be constant for each shift. This
makes it possible to perfectly tune the size of the
buffer capacities of the bin handling system. Prob-
lems emerge when one production line can produce
multiple different products, Mahadevan and Naren-
dran, 1993.
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Figure 1: Schematic view of buffer types and
their locations, by Mahadevan and Narendran,
1993

2.2 Methods

To be able to compare results of different design
strategies, the best possible solution of each system
should be determined. In this section the methods
to define the best possible solution are explained.

2.2.1 Mathematical modeling

Implementation of a BHS can be done in an optimal
way. The goal of a BHS is to support production.
Product takt time is dictated by the production
line, and the BHS is supposed to be able to handle
it. Therefore the demand of products is dictated
by the production line and the BHS should be de-
signed accordingly. In order to ensure the BHS
can cope with all demand made by the production
line, a linear deterministic mathematical model is
constructed. Gong and de Koster, 2011 talks about
uncertainty sources in warehouses and production
environments and states only unpredicted unit fail-
ure introduces significant uncertainty in such sys-
tems. Also, deterministic models are inherently
less computationally heavy the stochastic models
as stated by Kenton and James, 2021. Therefore a
deterministic model is preferred. This model con-
tains equations describing the relations between
different system units, demand and capabilities.
To meet demand, different choices can be made.
By integrating the model of the BHS into a com-
putational solver the best possible solution can be
found. For this research the solver Gurobi Opti-
mizer is used.

The model will include four different cost
sources. First are the bill of material costs. These
include all the costs related to the unit parts. Sec-
ond are the assembly costs. Since units arrive as
parts, they need to be assembled. This is the job

of a mechanic, who is paid wages. These costs are
defined as the time it takes one full-time equiv-
alent (FTE) to assemble all units combined with
the costs of an FTE. Thirdly as the Installation
costs. Similar to the assembling costs, mechanics
are needed in this step and need to be paid. Lastly,
the floorspace costs are included in the model.
Floorspace costs are required since floorspace has
a depreciation time. This cost source is the only
one which is time related. The time on which these
costs are based is the life time of the units, so the
model will determine the total lifetime costs of the
system.

The model not only finds the optimal solution,
it also generates a design of the production envi-
ronment for the proposed solution. In this design
it can be directly checked on how the model makes
its choices and where units should be placed.

2.2.2 KPIs

The term optimal solution should be further defined
since this solution depends on the optimization di-
rection. In this research three different optimal so-
lutions are generated.

Bill of material. The first of which is the bill
of material (BOM) of the system. Each unit in the
system had its own BOM. By optimizing for the
total BOM, the model will prioritize less expensive
units. This could also mean unit placement will in-
crease system footprint, as long as the BOM costs
decrease.

System footprint. The second KPI is the total
system footprint. Floorspace can be very costly, es-
pecially in the production environment. Having a
system with a small footprint means more produc-
tion facilities can be placed in the building. Foot-
print optimal solutions can increase the BOM in or-
der to place units in more strategic locations. Also,
more expensive units could be used in order to re-
duce footprint. System footprint should be defined
the same way for all system designs. To that pur-
pose a definition is proposed in this paper which
not only includes unit footprint but spaces between
them as well. Placement of units in certain loca-
tions could restrict use for other activities of areas
around the units. Therefore a definition including
”wasted space” is proposed. In figure 2 an example
is given of the total system footprint according to
this definition.

Total system costs. Lastly, the total system
costs are defined as a KPI. In the total system costs
the model will find an equilibrium between BOM,
assembly, installation and floorspace costs and find
the overall most cost effective solution.
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(a) Production environment. Blue: walkways and production cells, Orange: (de)stackers, Green: storage
stages, Red: product introduction

(b) System footprint

Figure 2: Model optimal solution to system implementation

3 System analysis

This paper includes a case study of an existing BHS
at Prodrive Technologies. This BHS is further iden-
tified in section 3.1. Next, in section 3.2 the model
is constructed and implemented on the system.

3.1 System overview

Bin handling systems can consist of any number of
different units. The case study BHS gives insight
into how different functionalities are allocated to
different robots. Also, this system gives a bench-
mark to which future design changes can be com-
pared to. The production demand, line and envi-
ronment will be used for future design scenarios as
well. Therefore it is important to first understand
this system.

The system operates in an environment with
a 60 meter long, straight production line, as can
be seen in figure 2. This production line consist
of 33 individual steps, of which 15 are assembly
steps. For these assembly steps, the cells need
semi-finished products. These products arrive in
bins. Since some products are small and others
are large, the number of products per bin differs.
This means the number of bins needed per shift
differ as well, since each cell uses one semi-finished
product per finished product. Thus, the takt time

together with the number of products per bin dic-
tates the demand of each individual cell. Bins are
transported through the system as stacks of bins.
Since there two type of bins, 50 mm and 75 mm
high, stacks can contain 5 or 7 bins. Also, due to
unit constraints, only dedicated storage strategies
are possible in this system.

In figure 3 a render of the system is shown. Here
the four distinctly different units can be seen. The
first unit (1) is the single payload exchange loca-
tion (SPEL). This unit is used for introduction of
products into the system, but can also be used as
storage for one stack of bins. The functions of these
units are defined as: item introduction / extraction
and storage. The second unit (2) is the main stor-
age stage of the system called multi bin cabinet
(MBC). This unit is modular and can be combined
with itself to form deep rows of storage locations.
To achieve this, various versions of this unit have
been developed: the main MBC in the front (MBC
Master), the back expansion (MBC HBT) and a
back docking version (MBC Slave). The MBCMas-
ter is always the first in the row since this version
had both communication and AGV docking capa-
bilities. The MBC HBT version costs half as much
as the Master version but does not include commu-
nication or docking capabilities because it does not
need them when connected to a Master.
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Figure 3: Render of case study bin handling system.

(1) SPEL (2) MBC (3) DSCAB (4) AGV

The MBC Slave costs slightly less than the
Master version but does include AGV docking ca-
pabilities, which allow for (un)loading from the
back of a row of MBCs. The main function of
the MBCs is storage. The third (3) unit in the
system is the (de)stacker cabinet (DSCAB). The
DSCABs are designed to enable the transporta-
tion of stacks through the system by allowing the
destacking of bins before reaching the production
cells. The DSCABs contain two internal stack
storage locations, two payload exchange locations
and two (de)stacker modules. The DSCAB func-
tion are: (de)stacking, item introduction/extrac-
tion, storage. The fourth and last unit in the sys-
tem (4) is the automated guided vehicle (AGV).
The AGVs handle all transportation of stack, or
bin, between the other units. Functionality of the
AGV is: item transportation. To summarize, the
functions identified from this systems are:

• Item introduction / extraction (operators)

• Item introduction / extraction (production
cells)

• Storage

• Stacking

• Destacking

• Item transportation

3.2 Model construction

Next, the model for the case study BHS is con-
structed. This model should determine both unit
count and unit placement. First unit count con-
straints are added. A decision variable representing
a three dimensional grid of storage locations, called
MBCgrid, is introduced. Since only MBC Masters
have both connection and docking capabilities, the
first unit placed should be a Master. This is stated
in equation 3.1.

MBCgrid[l,m, k] ≥ MBCgrid[l,m, (k + 1)] (3.1)

Here l is the set of vertical storage locations
(height), k the set of locations behind each other
(depth) and m the locations next to each other
(width). Next all unique storage locations are iden-
tified. Since dedicated storage does not allow for
location sharing, each [l,m] location of MBCgrid

represents a unique storage location of size k.

MBCusl[l,m] =
K∑

k=1

MBCgrid[l,m, k] (3.2)

MBCusl can be constructed from the summation
of MBCgrid since MBCgrid is binary, as shown in
equation 3.2. To include the ”wasted space” into

5



the model and enable costless placement of units
here, equation 3.3 is added.

K∑
k=1

MBCgrid[0,m, k] ≤ MBCmax[m] (3.3)

MBCmax is a variable indicating the locations
available for MBC placement in each row m. m has
a subset p indicating the ”wasted space” and its lo-
cations. To determine whether the demand of each
product is met, the decision variable Assign[l,m, i]
is introduced. Also, the parameter Bs[i] is con-
structed which indicated the bin demand per prod-
uct.

L∑
l=1

M∑
m=1

(Assign[l,m, i] ∗MBCusl[l,m]) ≥ Bs[i]

(3.4)
In equation 3.4 the relation which ensures

placement of all products is depicted. From
MBCgrid, the different MBC unit quantities can be
extracted. The quantities of SPELs and DSCABs
are dictated by system limitations and are directly
copied from model initiation data. The number of
AGVs required is determined by the equation 3.5.

AT =
N∑

n=1

(MBCDSCABn + IntroMBCn) ∗ATIn

∗(
I∑

i=1

(Bs)−Bs−1) + FinishMBCn ∗ATIn ∗Bs−1

(3.5)

Here ATIn includes data on AGV travel and
action time and other statements indicate the dif-
ferent actions per job. From these variables, the
cost functions, and thus the objective function, can
be constructed. The objective function depends on
the optimization objective, being footprint, BOM
or total costs.

OBJ =

 Cb + Ca + Ci + Cf Total costs
Cb BOM costs
Cf System footprint

.

(3.6)

4 Model implementation

Now that a model has been constructed, it is pos-
sible to test and evaluate various design scenarios.
This section explains eight different scenarios and
presents their results.

4.1 Scenario design

With the case study as a reference, changes are
made to the system introducing different buffer lo-
cation usage, storage strategies and function com-
binations. 1) Case study. First the results of the
case study BHS are evaluated. 2) Usage of the
internal storage locations of the (de)stackers.
The DSCABs have a small local buffer, as ex-
plained by Mahadevan and Narendran, 1993. Us-
age of these buffers will decrease the storage capac-
ity needed by the central buffer. Since these storage
locations are already present, no unit modifications
are needed. 3) Expanded local buffers in the
(de)stackers. By increasing the size of the local
buffers, the central buffer size can be even smaller.
To do this, a unit modification is required. This is
assumed to increase DSCAB unit BOM by 30%. 4)
Shared storage strategy. The case study BHS
is bound to dedicated storage strategies. In this
scenario, different products can be placed in the
same USL, reducing the need for more USLs and
empty locations in the storage units. 5) Shared
storage, no environment limitations. In sce-
nario 4, limitations on unit placement were still
considered. This meant no rows with more than
4 MBCs could be constructed. In this scenario this
limitation is removed and the model is free to con-
struct rows as long as it deems fit. 6) Central-
ized (de)stacking. DSCABs are currently placed
before each cell, even though some cells have such
a small demand the DSCAB is idle for 99% of the
shift. In this scenario an central (de)stacker is used
and AGVs will transport bins instead of stacks. 7)
Mobile (de)stackers. As mentioned above, some
DSCABs are idle most of the time. In this sce-
nario the DSCABs are outfitted with a unidirec-
tional movement module. They can travel along the
production line, serving multiple cells. This means
a unit modification is required, and thus an increase
in BOM. This increase is estimated at 100%. 8)
Mobile (de)stackers - no obstacles. The uni-
directional movement of the DSCABs in scenario
7 means the DSCABs can not pass obstacles along
the production line. By relocating obstacles, the
DSCABs can now travel along the entire produc-
tion line. 9) AGV with (de)stacker modules.
Taking scenario 8 one step further, AGV now have
the ability of both (de)stacking and omnidirectional
movement. This integrates the functions: item
transportation and (de)stacking. Since the AGVs
now have to be outfitted with a (de)stacker module,
the BOM is estimated to increase with 50 %.

4.2 Results
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Takt time - 60s Scenario
1 2 3 4 5 6 7 8 9

Total costs 100% 96% 106% 100% 100% 85% 88% 76% 74%
BOM costs 100% 95% 110% 100% 100% 67% 82% 51% 64%
Floorspace 100% 99% 99% 100% 100% 136% 106% 151% 101%
Floorspace m2 99,0 98,4 98,4 99,0 99,0 134,8 104,6 149,1 99,5

Table 1: Summary of results w.r.t case study - floorspace optimal solutions

Takt time - 60s Scenario
1 2 3 4 5 6 7 8 9

Total costs 100% 96% 105% 99% 94% 85% 88% 76% 74%
BOM costs 100% 96% 111% 99% 92% 69% 83% 52% 63%
Floorspace 100% 98% 96% 100% 98% 122% 103% 135% 100%
Floorspace m2 110,2 108,0 105,7 110,2 108,0 134,8 113,0 149,1 110,7

Table 2: Summary of results w.r.t. case study - BOM optimal solutions

In tables 1 and 2 results from both BOM and
Footprint optimal solutions are depicted. In ap-
pendix B and C the entirety of the results are de-
picted, both quantitative results and generated en-
vironment designs.

5 Conclusion

This thesis aims to inform the reader on the per-
formance of different design choices of autonomous
bin handling systems. In section 5.1 the findings of
this research are summarized. Lastly, in section 5.2
recommendations on future work are given.

5.1 Conclusions

Autonomous, flexible bin handling systems are
state of the art. Designing such systems there-
fore is often done with few examples or knowledge
of performance alteration design strategies. This
thesis composed a quantitative optimization model
which is used on different design strategies of bin
handling systems.This is done in order to find an
answer on the main research question: what are
the effects of different design strategies of an
autonomous bin handling system on costs,
floorspace and throughput capabilities? De-
sign strategies researched in this thesis are com-
pared to the case study system. Conclusions are
drawn in reference to performance of the optimal
solutions for the case study system

Firstly, with the definition of system footprint
this thesis proposes, only small reductions of 2 to

4 % in footprint are found. Reductions found are
mainly caused by the placement of units in bill of
material wise undesirable locations. A second fac-
tor found for the reduction of systems footprint is
the extended use of local buffers. Local buffers are
located in the already existing equipment and thus
do not increase system footprint. In contrast to
warehousing, shared storage strategies have min-
imal impact on both costs and floorspace in bin
handling systems. Design choices such as mobile
(de)stacker equipment and bin transportation in-
stead of stack transportation proved to have a
negative impact of floorspace. Mobile (de)stackers
require the relocation of obstacles, or other equip-
ment, to reach their full potential. This increases
the system footprint drastically by 35 %. The
transportation of bin instead of stacks introduced
more traffic in the environment. This traffic leads
to the need for wider walkways and thus an increase
in footprint. This increase can amount to up to 22
%.

Secondly, design strategies are evaluated for
their bill of material costs. While extended lo-
cal buffers have a positive influence on floorspace,
the system BOM increases by 10 %. The indi-
vidual BOM of existing units increases due to
the requirement a larger internal storage location,
which ultimately increases the BOM. Shared stor-
age strategies, which are common in warehouse
optimizations, are also tested. Due to limitations
on available space in the production environment
there is only a 1% improvement in BOM. When re-
moving space limitations, this improvement grows
up to 8 %. While increasing system footprint,
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bin transportation instead of stack transportation
decreases the BOM by 30 %. This seems counter-
intuitive since transporting bin would seem to lead
to the need for an excessive amount of transporting
units. This reduction is due to the elimination of
most (de)stacker units, and a quantitative optimal
solution for resupply planning. The largest savings
in BOM are found when adding mobility functions
to (de)stacker equipment. Here a decrease of 48%
can reached. When fully integrating the trans-
portation and (de)stacking function in one unit, a
positive result for the system BOM is found. This
strategy does not seem to have a negative result for
the system footprint. A reduction of 36 % is ob-
tained when combining these function in one unit,
while keeping system footprint constant with the
case study.

Lastly, the throughput capabilities of the de-
sign strategies are evaluated. Product takt time is
decreased and the changes in results are compared.
Noteworthy is the the improved result for shared
storage without placement limitations. Here the to-
tal system costs reduced further from 6% at a takt
time of 60 seconds to 9% at a takt time of 30 sec-
onds. Effectiveness of solutions as bin transport in-
stead of stack transport and mobile (de)stackers re-
duces as takt times get lower. Bin transport strate-
gies see the total cost reduction of 15 % at a takt
time of 60 seconds go to 9% reduction at a takt time
of 30 seconds. Mobile (de)stackers have their total
cost reduction reduce to 15 % at a takt time of 30
seconds. For this strategy, total cost reduction was
25 % at a takt time 60 seconds. Full integration of
the transportation and (de)stacking function shows
only a 3% less effective total cost at a 30 seconds
takt time. Floorspace still does not increase in this
strategy.

5.2 Future work

This thesis only touches the hardware design part
of bin handling systems. Bin handling systems
are part of a larger system, the production envi-
ronment. In order to keep results reliable, other
factors are kept constant since their influence could
not reliably be estimated and quantified. For fu-
ture research promising scenarios from this thesis
might be used and other factors can be altered such
as:

Production line layout. Placement of bin han-
dling units is heavily restricted in this thesis due
to the predefined production line placement. The
production line is defined as a line. However, pro-
duction lines come in all kinds of shapes and con-

figurations. Testing the validity of scenarios given
in this thesis for different production line configu-
rations will broaden the understanding of certain
design choices.

Not only the predefined production line layout
but also the production environment layout limits
the placement of bin handling units. Future work
might consider total freedom in unit placement by
having no restrictions on production environments.

This study is based on a case study. This
case study has such a throughput that the em-
ployed AGVs are able to cope with demand easily.
Therefore unit placement optimization for AGV
performance is left outside of the scope. For future
work, when assessing higher throughput systems
this should be taken into account in order to find
the absolute minimal number of AGVs required.

Lastly, in this thesis bin type, shape and size
are based on the bins already existing in the case
study. Bins play a big role in the performance of
bin handling systems. Further research could look
into the alteration of the bins in order to increase
performance. Since bins are supposed to be uni-
versal, meaning all products should fit in them and
all units should be able to handle them, all factors
surrounding the bins should be considered. This
thesis considers two types of bins. Future works
could also consider more, or less types.
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102 B. Production layout

Figure B.1: Legend
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(a) BOM optimal solution

(b) Floorspace optimal solution

Figure B.2: Generated environment designs - case study



104 B. Production layout

(a) BOM optimal solution

(b) Floorspace optimal solution

Figure B.3: System footprint of optimal solutions - case study
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(a) BOM optimal solution

(b) Floorspace optimal solution

Figure B.4: Generated environment designs - experimental setup 2
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(a) BOM optimal solution

(b) Floorspace optimal solution

Figure B.5: System footprint of optimal solutions - experimental setup 2
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(a) BOM optimal solution

(b) Floorspace optimal solution

Figure B.6: Generated environment designs - experimental setup 3
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(a) BOM optimal solution

(b) Floorspace optimal solution

Figure B.7: System footprint of optimal solutions - experimental setup 3
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(a) BOM optimal solution

(b) Floorspace optimal solution

Figure B.8: Generated environment designs - experimental setup 4
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(a) BOM optimal solution

(b) Floorspace optimal solution

Figure B.9: System footprint of optimal solutions - experimental setup 4



111

(a) BOM optimal solution (b) Floorspace optimal solution

Figure B.10: Generated environment designs - experimental setup 5
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(a) BOM optimal solution (b) Floorspace optimal solution

Figure B.11: System footprint of optimal solutions - experimental setup 5
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(a) BOM optimal solution (b) Floorspace optimal solution

Figure B.12: Generated environment designs - experimental setup 6
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(a) BOM optimal solution (b) Floorspace optimal solution

Figure B.13: System footprint of optimal solutions - experimental setup 6
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(a) BOM optimal solution (b) Floorspace optimal solution

Figure B.14: Generated environment designs - experimental setup 7
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(a) BOM optimal solution (b) Floorspace optimal solution

Figure B.15: System footprint of optimal solutions - experimental setup 7
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(a) BOM optimal solution (b) Floorspace optimal solution

Figure B.16: Generated environment designs - experimental setup 8
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(a) BOM optimal solution (b) Floorspace optimal solution

Figure B.17: System footprint of optimal solutions - experimental setup 8
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(a) BOM optimal solution

(b) Floorspace optimal solution

Figure B.18: Generated environment designs - experimental setup 9
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(a) BOM optimal solution

(b) Floorspace optimal solution

Figure B.19: System footprint of optimal solutions - experimental setup 9



C
Tables

Production cell 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Demand (in bins per shift) 5 11 41 13 13 82 82 20 31 25 49 4 4 6 16
Bin height (mm) 50 50 50 50 50 75 50 50 50 50 50 50 50 50 50
Demand (in stacks per shift) 1 2 6 2 2 17 12 3 5 4 7 1 1 1 3
Storage capabilities DSCAB 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Stack for MBC 0 1 5 1 1 16 11 2 4 3 6 0 0 0 2

Table C.1: Demand change due to storage location DSCABs usage - experimental setup storage capabilities DSCAB

Production cell 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Demand (in bins per shift) 5 11 41 13 13 82 82 20 31 25 49 4 4 6 16
Bin height (mm) 50 50 50 50 50 75 50 50 50 50 50 50 50 50 50
Demand (in stacks per shift) 1 2 6 2 2 17 12 3 5 4 7 1 1 1 3
Storage capabilities DSCAB 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
Stack for MBC 0 0 3 0 0 14 9 0 2 1 4 0 0 0 0

Table C.2: Demand change due to storage location DSCABs usage - experimental setup enhanced storage capabilities DSCAB

C.1. Demand modification results - system footprint optimal solu-
tions

Total system footprint - Floorspace optimal solution
Takt Time 1 2 3 4 5 6 7 8 9
67 98,43 98,43 98,43 98,43 98,43 133,7 99,55 148,51 98,97
60 98,99 98,43 98,43 98,99 98,99 134,82 100,11 149,07 99,53
50 101,79 99,55 98,43 101,79 101,79 139,04 104,03 151,87 102,33
43 103,47 101,23 98,43 103,47 104,03 140,72 104,59 153,55 104,01
35 106,83 105,15 101,79 106,83 107,39 144,08 107,95 156,91 107,37
33 109,5 108,38 103,9 109,5 110,06 145,76 110,62 159,58 109,05
30 110,62 108,94 106,7 111,18 111,74 146,88 111,74 160,7 110,17
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122 C. Tables

Increase in footprint in percentage - Floorspace optimal solution
Takt Time 1 2 3 4 5 6 7 8 9

67 -1% 0% 0% -1% -1% -1% -1% 0% -1%
60 0% 0% 0% 0% 0% 0% 0% 0% 0%
50 3% 1% 0% 3% 3% 3% 4% 2% 3%
43 5% 3% 0% 5% 5% 5% 4% 3% 5%
35 8% 7% 3% 8% 8% 8% 9% 5% 8%
33 11% 10% 6% 11% 11% 11% 11% 7% 10%
30 12% 11% 8% 12% 13% 13% 12% 8% 11%

BOM cost increase w.r.t. 60s takt time - Floorspace optimal solution
Takt Time 1 2 3 4 5 6 7 8 9

67 -2% -2% 0% -2% -7% -3% -1% -2% -3%
60 0% 0% 0% 0% 0% 0% 0% 0% 0%
50 5% 6% 5% 5% 5% 18% 10% 27% 8%
43 9% 10% 8% 9% 10% 25% 11% 33% 14%
35 15% 17% 14% 15% 16% 35% 29% 45% 23%
33 22% 26% 19% 22% 23% 41% 38% 59% 28%
30 24% 27% 24% 25% 27% 46% 40% 64% 31%

Total cost increase w.r.t. 60s takt time - Floorspace optimal solution
Takt Time 1 2 3 4 5 6 7 8 9

67 -1% -1% 0% -1% -5% -2% -1% -1% -2%
60 0% 0% 0% 0% 0% 0% 0% 0% 0%
50 5% 5% 4% 5% 5% 12% 9% 14% 7%
43 8% 9% 6% 8% 9% 17% 10% 19% 11%
35 14% 16% 12% 14% 15% 24% 24% 26% 19%
33 20% 23% 17% 20% 21% 28% 31% 34% 23%
30 22% 24% 22% 23% 25% 32% 33% 37% 25%

Floorspace increase w.r.t. case study - Floorspace optimal solution
Takt Time 1 2 3 4 5 6 7 8 9

67 0% 0% 0% 0% 0% 36% 6% 51% 1%
60 0% -1% -1% 0% 0% 36% 6% 51% 1%
50 0% -2% -3% 0% 0% 37% 7% 49% 1%
43 0% -2% -5% 0% 1% 36% 5% 48% 1%
35 0% -2% -5% 0% 1% 35% 6% 47% 1%
33 0% -1% -5% 0% 1% 33% 6% 46% 0%
30 0% -2% -4% 1% 1% 33% 6% 45% 0%

BOM increase w.r.t. case study - Floorspace optimal solution
Takt Time 1 2 3 4 5 6 7 8 9

67 0% -5% 12% 0% -5% -34% -17% -49% -37%
60 0% -5% 10% 0% 0% -33% -18% -49% -36%
50 0% -4% 9% 0% 0% -25% -14% -39% -34%
43 0% -4% 9% 0% 1% -24% -15% -37% -33%
35 0% -3% 9% 0% 1% -22% -7% -35% -32%
33 0% -2% 7% 0% 1% -23% -7% -33% -33%
30 0% -2% 11% 1% 3% -21% -7% -32% -32%
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Total costs increase w.r.t. case study - Floorspace optimal solution
Takt Time 1 2 3 4 5 6 7 8 9

67 0% -4% 7% 0% -4% -15% -12% -24% -26%
60 0% -4% 6% 0% 0% -15% -12% -24% -26%
50 0% -4% 5% 0% 0% -9% -9% -17% -25%
43 0% -4% 4% 0% 1% -8% -11% -17% -24%
35 0% -3% 4% 0% 1% -7% -5% -16% -23%
33 0% -2% 3% 0% 1% -9% -4% -15% -24%
30 0% -2% 6% 1% 2% -8% -4% -14% -24%

C.2. Demand modification results - BOM optimal solutions

Total system footprint - BOM optimal solution
Takt Time 1 2 3 4 5 6 7 8 9
67 109,63 107,39 105,15 109,63 107,39 133,70 108,51 148,51 110,17
60 110,19 107,95 105,71 110,19 107,95 134,82 108,51 149,07 110,73
50 112,99 110,75 107,39 112,99 110,19 139,04 110,75 151,87 113,53
43 114,67 112,43 109,07 114,67 111,87 140,72 112,99 153,55 115,21
35 118,03 116,35 112,43 118,03 114,11 144,08 115,79 156,91 118,57
33 120,70 119,58 114,54 120,70 116,78 145,76 119,02 159,58 120,25
30 121,82 120,14 117,34 122,38 117,90 146,88 119,58 160,70 121,37

Floorspace increase w.r.t. 60s takt time - BOM optimal solution
Takt Time 1 2 3 4 5 6 7 8 9

67 -1% -1% -1% -1% -1% -1% 0% 0% -1%
60 0% 0% 0% 0% 0% 0% 0% 0% 0%
50 3% 3% 2% 3% 2% 3% 2% 2% 3%
43 4% 4% 3% 4% 4% 4% 4% 3% 4%
35 7% 8% 6% 7% 6% 7% 7% 5% 7%
33 10% 11% 8% 10% 8% 8% 10% 7% 9%
30 11% 11% 11% 11% 9% 9% 11% 8% 10%

BOM increase w.r.t. 60s takt time - BOM optimal solution
Takt Time 1 2 3 4 5 6 7 8 9

67 -1% -1% -2% -2% -1% -3% -1% -2% -1%
60 0% 0% 0% 0% 0% 0% 0% 0% 0%
50 5% 6% 3% 5% 4% 18% 6% 27% 9%
43 9% 9% 6% 9% 7% 25% 11% 33% 14%
35 15% 17% 13% 15% 11% 35% 29% 45% 24%
33 23% 26% 18% 23% 18% 41% 38% 59% 30%
30 25% 27% 23% 26% 20% 46% 41% 64% 34%

Total costs increase w.r.t. 60s takt time - BOM optimal solution
Takt Time 1 2 3 4 5 6 7 8 9

67 -1% -1% -1% -1% -1% -2% -1% -1% -1%
60 0% 0% 0% 0% 0% 0% 0% 0% 0%
50 5% 5% 3% 5% 4% 12% 5% 14% 7%
43 8% 8% 6% 8% 6% 17% 9% 19% 11%
35 14% 15% 12% 14% 10% 24% 23% 26% 19%
33 20% 23% 16% 20% 16% 28% 30% 34% 23%
30 22% 24% 22% 23% 18% 32% 32% 37% 26%
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Floorspace increase w.r.t. case study - BOM optimal solution
Takt Time 1 2 3 4 5 6 7 8 9

67 0% -2% -4% 0% -2% 22% 3% 35% 0%
60 0% -2% -4% 0% -2% 22% 3% 35% 0%
50 0% -2% -5% 0% -2% 23% 2% 34% 0%
43 0% -2% -5% 0% -2% 23% 2% 34% 0%
35 0% -1% -5% 0% -3% 22% 3% 33% 0%
33 0% -1% -5% 0% -3% 21% 3% 32% 0%
30 0% -1% -4% 0% -3% 21% 3% 32% 0%

BOM increase w.r.t. case study - BOM optimal solution
Takt Time 1 2 3 4 5 6 7 8 9

67 0% -4% 10% -2% -8% -33% -17% -48% -38%
60 0% -4% 11% -1% -8% -31% -17% -48% -37%
50 0% -4% 9% -1% -9% -23% -16% -37% -35%
43 0% -4% 8% -1% -9% -21% -16% -36% -34%
35 0% -3% 9% -1% -11% -20% -8% -34% -32%
33 0% -2% 7% -1% -11% -21% -7% -32% -34%
30 0% -3% 9% 0% -11% -20% -7% -31% -33%

Total costs increase w.r.t. case study - BOM optimal solution
Takt Time 1 2 3 4 5 6 7 8 9

67 0% -4% 5% -1% -6% -16% -12% -25% -26%
60 0% -4% 5% -1% -6% -15% -12% -24% -26%
50 0% -4% 3% -1% -7% -9% -12% -18% -25%
43 0% -4% 3% -1% -8% -8% -11% -17% -24%
35 0% -3% 4% 0% -9% -7% -5% -16% -23%
33 0% -1% 2% 0% -9% -9% -5% -15% -24%
30 0% -3% 5% 0% -9% -9% -5% -15% -23%
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Python code

D.1. Quantitative optimization model
# −*− coding : u t f −8 −*−
” ” ”
Created on Tue Nov 8 15:06:06 2022

@author : TIMMAA
” ” ”
# impor t gurobipy as GRB
from gurobipy import *
import numpy as np
import ma t p l o t l i b . pyp lo t as p l t
import math
import pandas as pd
import gurobipy as gp
from openpyxl import load_workbook

#%% Read Data from f i l e
DataF i le = r ’C : \ Users \TIMMAA \ . spyder −py3 \ MBC_Opt imizat ion_InputFi le . x l sx ’

DataS = pd . read_excel ( DataFi le , sheet_name= ’ S ing le�data ’ )
DataU = pd . read_excel ( DataFi le , sheet_name= ’ Un i t�data ’ )
DataP = pd . read_excel ( DataFi le , sheet_name= ’ Product�data ’ )
DataE = pd . read_excel ( DataFi le , sheet_name= ’MBC�Except ion�data ’ )
DataA = pd . read_excel ( DataFi le , sheet_name= ’AGV�data ’ )

#%% Condi t ions
StoreFin ishedProducts = pd . DataFrame (DataS , columns =[ ’SFP ’ ] ) . bool ( )
# True or False f o r cond i t i on
UseStorageInMBC = pd . DataFrame (DataS , columns =[ ’USIM ’ ] ) . bool ( )
# True or False f o r cond i t i on
Foo t p r i n t To t a l = pd . DataFrame (DataS , columns =[ ’WSF ’ ] ) . bool ( )
# True or False f o r cond i t i on
Opt im iza t ion = pd . DataFrame (DataS , columns =[ ’OPT ’ ] ) . OPT. i tem ( )
# True or False f o r cond i t i on

#%% Inpu ts

125



126 D. Python code

Bin50Size = pd . DataFrame (DataS , columns =[ ’ 50MM’ ] ) . to_numpy ( ) [ : , 0 ]
# The number o f 50 mm bins i n a stack
Bin75Size = pd . DataFrame (DataS , columns =[ ’ 75MM’ ] ) . to_numpy ( ) [ : , 0 ]
# The number o f 75 mm bins i n a stack
FTE_c = pd . DataFrame (DataS , columns =[ ’FTE ’ ] ) . to_numpy ( ) [ : , 0 ]
# FTE Costs per day
FloorspaceCosts = pd . DataFrame (DataS , columns =[ ’FLOORSPACE ’ ] ) . to_numpy ( ) [ : , 0 ]
# Costs o f m2 f loo rspace per day
OD = pd . DataFrame (DataS , columns =[ ’OD ’ ] ) . to_numpy ( ) [ : , 0 ]
# Operat ing Days ( i n days )
MaxMBClength = pd . DataFrame (DataS , columns =[ ’MaxMBC ’ ] ) . to_numpy ( ) [ : , 0 ]
# Maximum number o f MBC slaves behind the master
BufferTime = pd . DataFrame (DataS , columns =[ ’ BufTime ’ ] ) . to_numpy ( ) [ : , 0 ]
# How long does the system have to run wi thour res tock ing? ( hours )
TaktTime = pd . DataFrame (DataS , columns =[ ’ TaktTime ’ ] ) . to_numpy ( ) [ : , 0 ]
# Takt t ime f o r one product
FPPB = pd . DataFrame (DataS , columns =[ ’FPPB ’ ] ) . to_numpy ( ) [ : , 0 ]
# Fin ished products per b in

UnitNames = pd . DataFrame (DataU , columns =[ ’Name ’ ] ) . values . t o l i s t ( )
# L i s t o f headers o f u n i t data
Un i t s _ i n i t = pd . DataFrame (DataU , columns =[ ’ U n i t s _ i n i t ’ ] ) . to_numpy ( )
# I n i t i a l amount o f un i t s
BOM = pd . DataFrame (DataU , columns =[ ’BOM’ ] ) . to_numpy ( )
# B i l l o f ma te r i a l f o r each un i t
AssemblyTime = pd . DataFrame (DataU , columns =[ ’ASST ’ ] ) . to_numpy ( )
# Assembly t ime in days
I n s t a l l a t i o nT ime = pd . DataFrame (DataU , columns =[ ’ INST ’ ] ) . to_numpy ( )
# I n s t a l l a t i o n t ime in days
Foo tp r i n t = pd . DataFrame (DataU , columns =[ ’FOOTPRINT ’ ] ) . to_numpy ( )
# Foo tp r i n t o f each machine i n m2
Sl = pd . DataFrame (DataU , columns =[ ’ Sl ’ ] ) . to_numpy ( ) [ : , 0 ]
# Stack l o ca t i ons per u n i t

ProdCel l = pd . DataFrame (DataP , columns =[ ’ ProdCel l ’ ] ) . to_numpy ( ) [ : , 0 ]
# Height o f the b ins f o r product i
ProdID_import = pd . DataFrame (DataP , columns =[ ’ ProdID ’ ] ) . to_numpy ( ) [ : , 0 ]
# Height o f the b ins f o r product i
BinHeight = pd . DataFrame (DataP , columns =[ ’ BinHeight ’ ] ) . to_numpy ( ) [ : , 0 ]
# Height o f the b ins f o r product i
Demand_import = pd . DataFrame (DataP , columns =[ ’Demand ’ ] ) . to_numpy ( ) [ : , 0 ]
# Demand in b ins f o r product i i n I f o r one s h i f t

MBCException = pd . DataFrame (DataE , columns =[ ’ Except ion ’ ] ) . to_numpy ( ) [ : , 0 ]
# Data o f the except ions on the MBC g r i d max values

AGVTravelInfo_headers = pd . DataFrame (DataA , columns =[ ’ Headers ’ ] ) . values . t o l i s t ( )
# Headers f o r the AGV i n f o
ATI = pd . DataFrame (DataA , columns =[ ’ Times ’ ] ) . to_numpy ( ) [ : , 0 ]
# AGV Trave l I n f o ( see headers above )
IntroMBC = pd . DataFrame (DataA , columns =[ ’ IntroMBC ’ ] ) . to_numpy ( ) [ : , 0 ]
# Number o f ac t i ons descr ibed by AGV Trave l I n f o Headers f o r job : From i n t r o to MBC
MBCDSCAB = pd . DataFrame (DataA , columns =[ ’MBCDSCAB ’ ] ) . to_numpy ( ) [ : , 0 ]
# Number o f ac t i ons descr ibed by AGV Trave l I n f o Headers f o r job : From MBC to DSCAB
FinishMBC = pd . DataFrame (DataA , columns =[ ’ FinishMBC ’ ] ) . to_numpy ( ) [ : , 0 ]
# Number o f ac t i ons descr ibed by AGV Trave l I n f o Headers f o r job : From Fin ished product DSCAB to MBC
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#%% Rewri te i npu ts i n t o r i g h t matr ices and data types . Delete zeros from inpu ts .

ProdID_import = [ i for i in ProdID_import i f i != 0 ]
# Delete zero inpu ts ( non used c e l l s )
Demand_import = [ i for i in Demand_import i f i != 0 ]
# Delete zero inpu ts ( non used c e l l s )

Demand = np . ze ros_ l i ke ( ProdID_import )
# I n i t i a l i z e demand vec to r
ProdID = np . arange ( len ( ProdID_import ) )+1
# Create product ID vec to r

for j in range ( len (Demand ) ) :
# Gather demand f o r product i i n c e l l j f o r a l l products i . Usage : i f mu l t i p l e c e l l need the same product they can be stored toge ther

for i in range ( len (Demand ) ) :
i f ProdID [ j ] == ProdID_import [ i ] :

# Find product IDs not on ID ’ s index i n vec to r
Demand [ j ] = Demand [ j ] + Demand_import [ i ]

# Add the demand of those IDs to the demand vec to r

Bas = np . zeros ( len ( ProdID ) )
# Amount o f b ins i n a stack o f product i
for i in range ( len ( ProdID ) ) :
# Couple b ins i ze to number o f b ins o f t ha t s ize i n a stack

i f BinHeight [ i ] == 50:
Bas [ i ] = Bin50Size [ 0 ]

i f BinHeight [ i ] == 75:
Bas [ i ] = Bin75Size [ 0 ]

i f Opt im iza t ion == ’ Foo t p r i n t ’ :
# I f op t im i z i ng f o r f o o t p r i n t , wasted space must be considered .

Foo t p r i n t To t a l = True

#%% Store f i n i s hed products c r i t e r e a check

Bu f f e rMod i f i e r = BufferTime / 8
# BufferTime base value i s 8 hours . Inpu t d i v ided by 8 gives the f r a c t i o n to modify by .

D = Demand * Bu f f e rMod i f i e r
# Bu f fe r mod i f i e r app l ied to the demand vec to r

i f StoreFin ishedProducts == True :
# Number o f s tored f i n i s hed product i s ca lcu la ted f rom the tak t t ime of a product

BufTime = 3600 * BufferTime
# Bu f fe r t ime in seconds

Fin ishedBins = ( BufTime / TaktTime ) / ( FPPB)
# Produced product i n bu f f e r t ime d iv ided by the numbr o f f i n i s hed product per b in

ProdID = np . append ( ProdID , ProdID [ −1]+1)
# Add f i n i s hed product to product ID vec to r

D = np . append (D, F in ishedBins )
# Add f i n i s hed product demand to storage demand vec to r D

Bas = np . append (Bas , 5 )
# Add f i n i s hed product b ins per stack to b ins per stack vec to r Bas
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#%% Opt iona l demand mod i f ie r , base value 1
Change = 1.0
D = D * Change

#%% −−−−− Code support parameters −−−−−
PrevCost = 99999999999
ObjValueHeaders = [ ’ To ta l ’ , ’BOM’ , ’ Assembly ’ , ’ I n s t a l l a t i o n ’ , ’ Floorspace ’ ]
ObjValue = np . zeros ( [ 6 , len (D ) ] )

#%% −−−−−− Sets −−−−−−
I = range ( len (D) ) # Set o f d i f f e r e n t products
J = range ( len ( U n i t s _ i n i t ) ) # Set o f d i f f e r e n t storage un i t s
L = range ( Sl [ 1 ] ) # Set o f number o f storage l o ca t i ons o f a MBC ( v e r t i c a l )
N = range ( len ( ATI ) ) # Set o f d i f f e r e n t i n f o po in t s o f an AGV

#%% Bin supply needed per product ID
Bs = np . ze ros_ l i ke (D)
# Number o f s tacks o f b ins o f product i i n I
i f UseStorageInMBC == True :

for i in range ( np . s ize (D ) ) :
Bs [ i ] = math . c e i l (D[ i ] / Bas [ i ] ) − math . c e i l ( Sl [ 4 ] / 2 )

# Number o f s tacks o f b ins o f product i i n I minus one l o ca t i o n f o r empty b in storage
else :

for i in range ( np . s ize (D ) ) :
Bs [ i ] = math . c e i l (D[ i ] / Bas [ i ] )

# Number o f s tacks o f b ins o f product i i n I

#%% AGV t r a v e l t imes Data gathered from : RSD6996203261R04 . pdf
Avai lab leTime = BufferTime * 3600
# The amount o f t ime a s i ng l e AGV i s ava i l ab l e . Equal to the bu f f e r t ime , charging t ime i s ignored (See RSD6996203261R04 . pdf )

i f StoreFin ishedProducts == True :
# I f f i n i s hed product need to be stored , an ex t ra job i s added

AGVtimes = np . zeros ( [ 3 , len (N ) ] )
for n in N:

AGVtimes [0 , n ] = IntroMBC [ n ]*ATI [ n ] * (sum(Bs ) − Bs [ −1 ] )
AGVtimes [1 , n ] = MBCDSCAB[ n ]*ATI [ n ] * (sum(Bs ) − Bs [ −1 ] )
AGVtimes [2 , n ] = FinishMBC [ n ]*ATI [ n ]*Bs[ −1]

else :
AGVtimes = np . zeros ( [ 2 , len (N ) ] )
for n in N:

AGVtimes [0 , n ] = IntroMBC [ n ]*ATI [ n ]*sum(Bs )
AGVtimes [1 , n ] = MBCDSCAB[ n ]*ATI [ n ]*sum(Bs )

Act iveTime = sum(sum( AGVtimes ) )
# To ta l t ime an AGV i s needed to be ac t i ve i n the environment .

AGVreq = math . c e i l ( Act iveTime / Avai lab leTime )
# To ta l number AGVs needed in the environment

#%% MBC row except ion

MBCException = [ i for i in MBCException i f i != 0 ]
i f Foo t p r i n t To t a l == True :

MBCmax = np . f u l l ( ( 1 , ( len (D) ) ) , MaxMBClength )
for e in range ( len ( MBCException ) ) :
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MBCmax[ 0 ] [ e ] = MBCException [ e ]
#else :
# MBCmax = np . f u l l ( ( 1 , ( len (D) ) ) , MaxMBClength )

K = range (max(MBCmax [ 0 ] ) ) # Set o f maximum number o f MBCs to be placed behind each other

#%% Model pa r t

for Mmax in range ( len ( MBCException )+1 ,9 ) : # len (D ) ) :
model = Model ( ’ c u r r en t s t a t e ’ )
pr in t ( ’ Current�width�of�m�i s : ’ , Mmax)
M = range (Mmax) # Large enough set o f d i f f e r e n t places f o r MBCs f o r the model to decide how much are needed

#%% −−−−−− Decis ion va r i ab l es −−−−−−

# Var iab le Xun i ts ( Array w i th i n t ege rs i n d i c a t i n g how much of each un i t are used )
Xuni ts = { }
for j in J :

Xun i ts [ j ] = model . addVar ( l b = 0 , vtype = GRB. INTEGER, name= ’ Xun i ts [ ’ + st r ( j ) + ’ ] ’ )

# The g r i d o f the MBCs and t h e i r s tack l o ca t i ons
# X−ax is = v e r t i c a l amount o f s torage l oca t i ons i n an MBC (4 i n the cu r ren t u n i t )
# Y−ax is = ho r i z on t a l number o f MBC un i t s t ha t are next to each other
# Z−ax is = depth o f the MBC combi ina t ion ( amount o f s laves behind each master )
MBCGrid = { }
MBCusl = { }
Assign = { }
for l in L :

for m in M:
MBCusl [ l ,m] = model . addVar ( l b = 0 , vtype = GRB.CONTINUOUS, name = ’MBCuls [ ’ + st r ( l ) + ’ , ’ + st r (m) + ’ ] ’ )

# Unique storage l o ca t i o n s izes ( i n stacks ) and t h e i r places pro jec ted on the MBC g r i d
for k in K:

MBCGrid [ l ,m, k ] = model . addVar ( l b = 0 , vtype = GRB.BINARY, name = ’MBCGrid [ ’ + st r ( l ) + ’ , ’ + st r (m) + ’ , ’ + st r ( k ) + ’ ] ’ )
for i in I :

Assign [ l ,m, i ] = model . addVar ( l b = 0 , vtype = GRB.BINARY, name = ’ Assign [ ’ + st r ( l ) + ’ , ’ + st r (m) + ’ , ’ + st r ( i ) + ’ ] ’ )

#%% Costs va r i ab l es

# Costs per un i t (BOM)
Cb = model . addVar ( l b = 0 , vtype = GRB.CONTINUOUS, name = ’Cb [ ] ’ )

# Costs f o r assamble
Ca = model . addVar ( l b = 0 , vtype = GRB.CONTINUOUS, name = ’Ca [ ] ’ )

# Costs f o r i n s t a l l a t i o n
Ci = model . addVar ( l b = 0 , vtype = GRB.CONTINUOUS, name = ’ Ci [ ] ’ )

# Costs f o r f l oo rspace
Cf = model . addVar ( l b = 0 , vtype = GRB.CONTINUOUS, name = ’ Cf [ ] ’ )

# To ta l va r i ab l e costs ( t ime depend costs ) per u n i t type j
Ct = model . addVar ( l b = 0 , vtype = GRB.CONTINUOUS, name = ’ Ct [ ] ’ )
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# Maximum depth o f Grid
GridMax = model . addVar ( l b = 0 , vtype = GRB.CONTINUOUS, name = ’ GridMax ’ )

# In t eg ra t e new va r i ab l es
model . update ( )

#%% −−−−−− Cost f unc t i ons and ob j ec t i v e f unc t i on −−−−−−

# Ct ( t o t a l costs ) i s ca l cu la ted by adding t o t a l f i x ed and va r i ab l e costs
#Ct = quicksum (Cb [ j ] f o r j i n J ) + quicksum ( Ct_v [ j ] f o r j i n J )
i f Opt im iza t ion == ’ Foo t p r i n t ’ :

model . se tOb jec t i ve ( Cf )
i f Opt im iza t ion == ’BOM’ :

model . se tOb jec t i ve (Cb)
i f Opt im iza t ion == ’ To ta l ’ :

model . se tOb jec t i ve ( Ct )
model . modelSense = GRB.MINIMIZE
model . update ( )

#%% −−− General cons t r a i n t s −−−

con1 = { } # Cons t ra in t 1 : F i l l MBCGrid i n the l d i r e c t i o n ( he ig th ) s ince an MBC i s always 4 high
con2 = { } # Cons t ra in t 2 : There i s always an un i t before another un i t ( no gaps )
con3 = { } # Cons t ra in t 3 : The numer o f s tack l o ca t i ons i n an USL i s the number o f cab ine ts i n the row
con10 = { } # Cons t ra in t 10: One USL can only hold one product ID
for l in L :

for m in M:
con3 [ l ,m] = model . addConstr ( ( MBCusl [ l ,m] == quicksum (MBCGrid [ l ,m, k ] for k in K ) ) )
con10 [ l ,m] = model . addConstr ( ( quicksum ( Assign [ l ,m, i ] for i in I ) <=1))
for k in K:

con1 [m] = model . addConstr (MBCGrid [ l ,m, k ] == MBCGrid [0 ,m, k ] )
for k in range (0 , len (K) −1 ) :

con2 [ l ,m, k ] = model . addConstr ( ( MBCGrid [ l ,m, k ] >= MBCGrid [ l ,m, ( k + 1 ) ] ) )

con11 = { } # Cons t ra in t 11: Quant i ty o f a l l s torage l oca t i ons o f product i should equal or exceed requ i red amount . To do t h i s the l o ca t i o n o f the product ( assign [ j ,m] ) i s mu l t i p l i e d by the space of t ha t l a c t i o n (MBCusl [ j ,m] )
for i in I :

con11 [ i ] = model . addConstr ( ( quicksum ( Assign [ l ,m, i ] * MBCusl [ l ,m] for l in L for m in M) >= Bs [ i ] ) )

con4 = { } # Cons t ra in t 4 : Cons t ra in t enabl ing MBC except ions
for m in M:

con4 [m] = model . addConstr ( quicksum (MBCGrid [0 ,m, k ] for k in K) <= MBCmax[ 0 ] [m] )

#%% −−− Uni t count cons t r a i n t s −−−

# Cons t ra in t 30: Set up MBCGrid f r o n t row , amount o f MBC masters un MBCGrid equals amount o f MBC Masters i n Un i ts counter ar ray
con30 = model . addConstr ( ( Xun i ts [ 1 ] ) == quicksum (MBCGrid [0 ,m, 0 ] for m in M) )

# Cons t ra in t 31: Count the amount o f MBCs and sub t rac t number o f Masters (MBC HBTs)
con31 = model . addConstr ( Xun i ts [ 2 ] == ( quicksum (MBCGrid [0 ,m, k ] for m in M for k in K) − Xuni ts [ 1 ] ) )

# Cons t ra in t 33: Number o f requ i red (SPEL) i n t r o du c t i o n s t a t i o n s
con33 = model . addConstr ( ( Xun i ts [ 0 ] == Un i t s _ i n i t [ 0 ] ) , ’ con33 [ ] ’ )

# Cons t ra in t 34: Number o f requ i red MBC back docks (MBC Slaves )
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con34 = model . addConstr ( ( Xun i ts [ 3 ] == Un i t s _ i n i t [ 3 ] ) , ’ con34 [ ] ’ )

# Cons t ra in t 35: Number o f requ i red DSCABs
con35 = model . addConstr ( ( Xun i ts [ 4 ] == Un i t s _ i n i t [ 4 ] ) , ’ con35 [ ] ’ )

# Cons t ra in t 36: Number o f requ i red AGVs
con36 = model . addConstr ( ( Xun i ts [ 5 ] == AGVreq ) )

# ! ! ! ! !

#%% −−− Cost cons t r a i n t s −−−
# Cons t ra in t 40: BOM costs o f un i t s equals Xun i ts [ j ] t imes BOM[ j ]
con40 = model . addConstr (Cb == quicksum ( ( Xun i ts [ j ] * BOM[ j , 0 ] ) for j in J ) )

# Cons t ra in t 41: Assembly costs
con41 = model . addConstr (Ca == quicksum ( Xuni ts [ j ] * FTE_c * AssemblyTime [ j ] for j in J ) )

# Cons t ra in t 42: I n s t a l l a t i o n costs
con42 = model . addConstr ( Ci == quicksum ( Xuni ts [ j ]* I n s t a l l a t i o nT ime [ j ]*FTE_c for j in J ) )

# Cons t ra in t 44: Max value o f MBC us l
con44 = model . addConstr ( GridMax == max_(MBCusl [ 0 ,m] for m in M) )

# Support f o r c ons t r a i n t 45. Set P to s l i c e o f f g r i d where except ion begin ( inc luded i n waspet space )
P = range (0 , len ( MBCException ) )

i f Foo t p r i n t To t a l == True and len ( MBCException ) == 0:
# Cons t ra in t 46: ca l cu l a t e f loo rspace costs
con46 = model . addConstr ( Cf == FloorspaceCosts [ 0 ] * OD[0 ] * (96 + quicksum (MBCGrid [0 ,m, k ] for m in M for k in K) * Foo tp r i n t [ 1 ] [ 0 ] + ( Xun i ts [0 ] −1) * Foo tp r i n t [ 0 ] [ 0 ] ) )

e l i f Foo t p r i n t To t a l == True and len ( MBCException ) != 0 :
con46 = model . addConstr ( Cf == FloorspaceCosts [ 0 ] * OD[0 ] * (96 + quicksum (MBCGrid [0 , p , k ] for p in P for k in K) * Foo tp r i n t [ 1 ] [ 0 ] + ( Xun i ts [0 ] −1) * Foo tp r i n t [ 0 ] [ 0 ] ) )

else :
con46 = model . addConstr ( Cf == FloorspaceCosts [ 0 ] * OD[0 ] * quicksum ( Xuni ts [ j ] * Foo tp r i n t [ j ] [ 0 ] for j in J ) )

# Cons t ra in t 48: To ta l cost
con48 = model . addConstr ( Ct == Cb + Ca + Ci + Cf )

#%% −−−−−− Optimize −−−−−−
model . update ( )

model . setParam ( ’ OutputFlag ’ , False ) # s i l e n c i ng gurob i output or not
model . setParam ( ’MIPGap ’ , 0 ) ; # f i n d the opt ima l so l u t i o n
model . w r i t e ( ” output . l p ” ) # p r i n t the model i n . l p format f i l e
model . setParam ( ’ T imeLimi t ’ ,500)
model . op t im ize ( )

#%% −−−−−−− Break statements f o r the loop

i f model . s ta tus == GRB. Status .OPTIMAL :
pr in t ( ’ For�M�i s ’ , Mmax, ’�the�so l u t i o n�i s�i s : ’ ,model . ob j va l )
SQM = Cf . x / ( FloorspaceCosts [ 0 ] * OD[ 0 ] )
ObjValue [0 ,Mmax] = Ct . x
ObjValue [1 ,Mmax] = Cb . x
ObjValue [2 ,Mmax] = Ca . x
ObjValue [3 ,Mmax] = Ci . x
ObjValue [4 ,Mmax] = Cf . x
ObjValue [5 ,Mmax] = SQM
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i f PrevCost <= model . ob j va l +10:
pr in t ( ’We�z i j n�k laa r�en�Prevcost�i s ’ , PrevCost , ’�en�ob j va l�i s ’ ,model . ob j va l )
break

PrevCost = model . ob j va l

#%% −−−−−− P r i n t c a l c ua l t i o n s −−−−−−

i f model . s ta tus == GRB. Status .OPTIMAL :
Grid = np . zeros ( ( len ( L ) , len (M) , len (K ) ) )
for l in L :

for m in M:
for k in K:

Grid [ l ,m, k ] = round (MBCGrid [ l ,m, k ] . x )

Gr idUsl = np . zeros ( ( len ( L ) , len (M) ) )
for l in L :

for m in M:
GridUsl [ l ,m] = round (MBCusl [ l ,m] . x )

Assign2 = np . zeros ( ( len ( L ) , len (M) , len ( I ) ) )
for l in L :

for m in M:
for i in I :

Assign2 [ l ,m, i ] = round ( Assign [ l ,m, i ] . x )

Un i ts = np . zeros ( len ( J ) )
for j in J :

Un i ts [ j ] = round ( Xun i ts [ j ] . x )

Assign3 = np . zeros ( ( len ( L ) , len (M) ) )
for l in L :

for m in M:
Assign3 [ l ,m] = Assign2 [ l ,m, : ] . t o l i s t ( ) . index (1 ) +1
i f GridUsl [ l ,m] == 0:

Assign3 [ l ,m] = 0

# −−−−−− P r i n t c a l c ua l t i o n s −−−−−−

i f model . s ta tus == GRB. Status .OPTIMAL :
pr in t ( ” −−−−−−−−−−−−−−�Resul ts�−−−−−−−−−−−−−−−− ” )
pr in t ( ’ Best�so l u t i o n�i s :� ’ , model . ob j va l , ’ euro ’ )
pr in t ( ’BOM�Costs�are :� ’ , Cb . x , ’ euro ’ )
# p r i n t ( model . ob j va l )
pr in t ( ’ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ )
pr in t ( ’ Unique�storage�loca t i ons�pro jec ted�on�the�f r o n t�view�of�the�MBC�gr i d ’ )
pr in t ( Gr idUsl )
pr in t ( ’ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ )
pr in t ( ’Number�of�AGV�decided�by�model�equals : ’ , Xun i ts [ 5 ] . x )
pr in t ( ’ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− ’ )
pr in t ( ’ The�un i t s�needed�are : ’ )
pr in t ( UnitNames )
pr in t ( Un i ts )
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fn = r ’C : \ Users \TIMMAA \ . spyder −py3 \ Geometry . x l sx ’

book = load_workbook ( fn )

w r i t e r = pd . Exce lWr i te r ( fn , engine= ’ openpyxl ’ )

w r i t e r . book = book
w r i t e r . sheets = dic t ( ( ws . t i t l e , ws) for ws in book . worksheets )

Rgr id . to_exce l ( w r i t e r , sheet_name= ’ Resul ts�g r i d ’ , header=None , index=False ,
s t a r t c o l =1 , s t a r t r ow =2)

Rzeros . to_exce l ( w r i t e r , sheet_name= ’ Resul ts�g r i d ’ , header=None , index=False ,
s t a r t c o l =1 , s t a r t r ow =10)

Rassign . to_exce l ( w r i t e r , sheet_name= ’ Resul ts�g r i d ’ , header=None , index=False ,
s t a r t c o l =1 , s t a r t r ow =10)

w r i t e r . save ( )
w r i t e r . c lose ( )
#%% Return r e su l t s to excel

D.2. Design generation code
# −*− coding : u t f −8 −*−
” ” ”
Created on Tue Nov 8 15:06:06 2022

@author : TIMMAA
” ” ”
# impor t gurobipy as GRB
from gurobipy import *
import numpy as np
import ma t p l o t l i b . pyp lo t as p l t
import math
import pandas as pd
import gurobipy as gp
from openpyxl import load_workbook

#%% Condi t ions

for i in range ( 2 0 ) :
pr in t ( ’ F loorp lan�f o r�costs�of�f loo rspace�op t im i za t i on�[C/F]? ’ )
InputCheck = ’C ’
i f InputCheck == ’C ’ or ’F ’ or ’ c ’ or ’ f ’ :

pr in t ( ’ Lets�go ’ )
break

pr in t ( ’ Please�s ta te�only�a�[C]�of�a�[F ] ’ )

Case = True
DSCAB_S = False
DSCAB_SE = False
Shared = False
Shared_NL = False
DSCAB_C = False
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DSCAB_MOD = False
DSCAB_MOD_NO = False
AGV_Stack = False

ShowIndiv idual = False

i f InputCheck == ’C ’ or ’ c ’ :
CostOpt = False

else :
CostOpt = False

#%% Data impor t
i f Case == True :

i f CostOpt == True :
Data = pd . read_excel ( r ’C : \ Users \TIMMAA \ . spyder −py3 \Geo . x l sx ’ , sheet_name= ’Case−C ’ )

else :
Data = pd . read_excel ( r ’C : \ Users \TIMMAA \ . spyder −py3 \Geo . x l sx ’ , sheet_name= ’Case−F ’ )

i f DSCAB_S == True :
i f CostOpt == True :

Data = pd . read_excel ( r ’C : \ Users \TIMMAA \ . spyder −py3 \Geo . x l sx ’ , sheet_name= ’DSCAB−S−C ’ )
else :

Data = pd . read_excel ( r ’C : \ Users \TIMMAA \ . spyder −py3 \Geo . x l sx ’ , sheet_name= ’DSCAB−S−F ’ )

i f DSCAB_SE == True :
i f CostOpt == True :

Data = pd . read_excel ( r ’C : \ Users \TIMMAA \ . spyder −py3 \Geo . x l sx ’ , sheet_name= ’DSCAB−SE−C ’ )
else :

Data = pd . read_excel ( r ’C : \ Users \TIMMAA \ . spyder −py3 \Geo . x l sx ’ , sheet_name= ’DSCAB−SE−F ’ )

i f Shared == True :
i f CostOpt == True :

Data = pd . read_excel ( r ’C : \ Users \TIMMAA \ . spyder −py3 \Geo . x l sx ’ , sheet_name= ’ Shared−C ’ )
else :

Data = pd . read_excel ( r ’C : \ Users \TIMMAA \ . spyder −py3 \Geo . x l sx ’ , sheet_name= ’ Shared−F ’ )

i f Shared_NL == True :
i f CostOpt == True :

Data = pd . read_excel ( r ’C : \ Users \TIMMAA \ . spyder −py3 \Geo . x l sx ’ , sheet_name= ’ Shared−NL−C ’ )
else :

Data = pd . read_excel ( r ’C : \ Users \TIMMAA \ . spyder −py3 \Geo . x l sx ’ , sheet_name= ’ Shared−NL−F ’ )

i f DSCAB_C == True :
i f CostOpt == True :

Data = pd . read_excel ( r ’C : \ Users \TIMMAA \ . spyder −py3 \Geo . x l sx ’ , sheet_name= ’DSCAB−C−C ’ )
else :

Data = pd . read_excel ( r ’C : \ Users \TIMMAA \ . spyder −py3 \Geo . x l sx ’ , sheet_name= ’DSCAB−C−C ’ )

i f DSCAB_MOD == True :
i f CostOpt == True :

Data = pd . read_excel ( r ’C : \ Users \TIMMAA \ . spyder −py3 \Geo . x l sx ’ , sheet_name= ’DSCAB−MOD−C ’ )
else :

Data = pd . read_excel ( r ’C : \ Users \TIMMAA \ . spyder −py3 \Geo . x l sx ’ , sheet_name= ’DSCAB−MOD−F ’ )

i f DSCAB_MOD_NO == True :
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i f CostOpt == True :
Data = pd . read_excel ( r ’C : \ Users \TIMMAA \ . spyder −py3 \Geo . x l sx ’ , sheet_name= ’DSCAB−MOD−NO−C ’ )

else :
Data = pd . read_excel ( r ’C : \ Users \TIMMAA \ . spyder −py3 \Geo . x l sx ’ , sheet_name= ’DSCAB−MOD−NO−F ’ )

i f AGV_Stack == True :
i f CostOpt == True :

Data = pd . read_excel ( r ’C : \ Users \TIMMAA \ . spyder −py3 \Geo . x l sx ’ , sheet_name= ’AGV−S−C ’ )
else :

Data = pd . read_excel ( r ’C : \ Users \TIMMAA \ . spyder −py3 \Geo . x l sx ’ , sheet_name= ’AGV−S−F ’ )

DataC = pd . read_excel ( r ’C : \ Users \TIMMAA \ . spyder −py3 \Geo . x l sx ’ , sheet_name= ’ Co l l o r ’ )

#%% Co l l o r impor t
C_walkways = pd . DataFrame (DataC , columns =[ ’Walkways ’ ] ) . Walkways . i tem ( )

C_walkways_E = pd . DataFrame (DataC , columns =[ ’WWE’ ] ) .WWE. i tem ( )

C_Cells = pd . DataFrame (DataC , columns =[ ’ Ce l l s ’ ] ) . Ce l l s . i tem ( )

C_Liquid = pd . DataFrame (DataC , columns =[ ’ L i qu id ’ ] ) . L i qu id . i tem ( )

C_Borders_L = pd . DataFrame (DataC , columns =[ ’ BordersL ’ ] ) . BordersL . i tem ( )

C_SPEL = pd . DataFrame (DataC , columns =[ ’SPEL ’ ] ) . SPEL. i tem ( )

C_Master = pd . DataFrame (DataC , columns =[ ’ Master ’ ] ) . Master . i tem ( )

C_HBT = pd . DataFrame (DataC , columns =[ ’HBT ’ ] ) . HBT. i tem ( )

C_Slave = pd . DataFrame (DataC , columns =[ ’ Slave ’ ] ) . Slave . i tem ( )

C_DSCAB = pd . DataFrame (DataC , columns =[ ’DSCAB ’ ] ) .DSCAB. i tem ( )

C_DSCAB_Move_M = pd . DataFrame (DataC , columns =[ ’DSCABmoveM ’ ] ) . DSCABmoveM. i tem ( )

C_DSCAB_Move = pd . DataFrame (DataC , columns =[ ’DSCABmove ’ ] ) . DSCABmove. i tem ( )

C_Borders_U = pd . DataFrame (DataC , columns =[ ’ BordersU ’ ] ) . BordersU . i tem ( )

C_Indicate = pd . DataFrame (DataC , columns =[ ’ I nd i ca t e ’ ] ) . I nd i ca t e . i tem ( )

C_Arrow = pd . DataFrame (DataC , columns =[ ’ Arrow ’ ] ) . Arrow . i tem ( )

C_Borders_Mob = pd . DataFrame (DataC , columns =[ ’ BordersMob ’ ] ) . BordersMob . i tem ( )

#%% Import l o ca t i ons
Ce l l s = pd . DataFrame ( Data , columns =[ ’ Ypos ’ ] ) . to_numpy ( ) [ : , 0 ]
Ce l l s = Ce l l s [~np . isnan ( Ce l l s ) ]

Lengte = pd . DataFrame ( Data , columns =[ ’ Lengte ’ ] ) . to_numpy ( ) [ : , 0 ]
Lengte = Lengte [~np . isnan ( Lengte ) ]

L iqu id_y = pd . DataFrame ( Data , columns =[ ’ L i qu id ’ ] ) . to_numpy ( ) [ : , 0 ]
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L iqu id_y = L iqu id_y [~np . isnan ( L iqu id_y ) ]

# DSCABs
DSCAB_y = pd . DataFrame ( Data , columns =[ ’DSCAB ’ ] ) . to_numpy ( ) [ : , 0 ]
DSCAB_y = DSCAB_y[~np . isnan (DSCAB_y ) ]

DSCABVx = pd . DataFrame ( Data , columns =[ ’DSCABVx ’ ] ) . to_numpy ( ) [ : , 0 ]
DSCABVx = DSCABVx[~np . isnan (DSCABVx ) ]

DSCABVy = pd . DataFrame ( Data , columns =[ ’DSCABVy ’ ] ) . to_numpy ( ) [ : , 0 ]
DSCABVy = DSCABVy[~np . isnan (DSCABVy ) ]

# DSCABS mobile
DSCAB_MM_y = pd . DataFrame ( Data , columns =[ ’DSCABMM’ ] ) . to_numpy ( ) [ : , 0 ]
# Master l o ca t i ons o f Mobi le DSCAB
DSCAB_MM_y = DSCAB_MM_y[~np . isnan (DSCAB_MM_y) ]

DSCAB_MS_y = pd . DataFrame ( Data , columns =[ ’DSCABMS ’ ] ) . to_numpy ( ) [ : , 0 ]
# Slave loca ion o f Mobi le DSCAB
DSCAB_MS_y = DSCAB_MS_y[~np . isnan (DSCAB_MS_y ) ]

# SPELs
SPELH = pd . DataFrame ( Data , columns =[ ’SPELH ’ ] ) . to_numpy ( ) [ : , 0 ]
SPELH = SPELH[~np . isnan (SPELH ) ]

SPELVx = pd . DataFrame ( Data , columns =[ ’SPELVx ’ ] ) . to_numpy ( ) [ : , 0 ]
SPELVx = SPELVx[~np . isnan (SPELVx ) ]

SPELVy = pd . DataFrame ( Data , columns =[ ’SPELVy ’ ] ) . to_numpy ( ) [ : , 0 ]
SPELVy = SPELVy[~np . isnan (SPELVy ) ]

# MBCs
MBCMVx = pd . DataFrame ( Data , columns =[ ’MBCMVx ’ ] ) . to_numpy ( ) [ : , 0 ]
MBCMVx = MBCMVx[~np . isnan (MBCMVx) ]

MBCMVy = pd . DataFrame ( Data , columns =[ ’MBCMVy ’ ] ) . to_numpy ( ) [ : , 0 ]
MBCMVy = MBCMVy[~np . isnan (MBCMVy) ]

MBChbtVx = pd . DataFrame ( Data , columns =[ ’MBChbtVx ’ ] ) . to_numpy ( ) [ : , 0 ]
MBChbtVx = MBChbtVx[~np . isnan (MBChbtVx ) ]

MBChbtVy = pd . DataFrame ( Data , columns =[ ’MBChbtVy ’ ] ) . to_numpy ( ) [ : , 0 ]
MBChbtVy = MBChbtVy[~np . isnan (MBChbtVy ) ]

MBCMHx = pd . DataFrame ( Data , columns =[ ’MBCMHx ’ ] ) . to_numpy ( ) [ : , 0 ]
MBCMHx = MBCMHx[~np . isnan (MBCMHx) ]

MBCMHy = pd . DataFrame ( Data , columns =[ ’MBCMHy ’ ] ) . to_numpy ( ) [ : , 0 ]
MBCMHy = MBCMHy[~np . isnan (MBCMHy) ]

MBChbtHx = pd . DataFrame ( Data , columns =[ ’MBChbtHx ’ ] ) . to_numpy ( ) [ : , 0 ]
MBChbtHx = MBChbtHx[~np . isnan (MBChbtHx ) ]

MBChbtHy = pd . DataFrame ( Data , columns =[ ’MBChbtHy ’ ] ) . to_numpy ( ) [ : , 0 ]
MBChbtHy = MBChbtHy[~np . isnan (MBChbtHy ) ]
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MBCSVx = pd . DataFrame ( Data , columns =[ ’MBCSVx ’ ] ) . to_numpy ( ) [ : , 0 ]
MBCSVx = MBCSVx[~np . isnan (MBCSVx) ]

MBCSVy = pd . DataFrame ( Data , columns =[ ’MBCSVy ’ ] ) . to_numpy ( ) [ : , 0 ]
MBCSVy = MBCSVy[~np . isnan (MBCSVy) ]

#%% P l o t t i n g
f i g = p l t . gc f ( )
f i g . se t_s ize_ inches (18 .5 , 10 .5)
f i g . se t_s ize_ inches (10 .5 , 18.5 , forward=True )
f i g . se t_dp i (100)

#%% Product ion Line

# Walkways
WalkwayLongV = p l t . Rectangle ( ( −2 ,0 ) , 2 , ( Lengte +1 .8 ) , f c = C_walkways , ec=C_walkways )
p l t . gca ( ) . add_patch (WalkwayLongV )

WalkwayLongH = p l t . Rectangle ( ( −8 .2 , −2) , 15 , 2 , f c= C_walkways , ec=C_walkways )
p l t . gca ( ) . add_patch (WalkwayLongH )

i f DSCAB_C == True :
WalkwayLongVE = p l t . Rectangle ( ( −2 .3 ,0 ) , 0 .3 , ( Lengte +1 .8 ) , f c= C_walkways_E , ec=C_walkways_E )
p l t . gca ( ) . add_patch (WalkwayLongVE )

WalkwayShortV = p l t . Rectangle ( ( −8 .2 , −7 .2 ) , 2 , 5 .2 , f c= C_walkways , ec=C_walkways )
p l t . gca ( ) . add_patch (WalkwayShortV )

WalkwayShortH = p l t . Rectangle ( ( −6 .2 , −7 .2 ) , 7 , 2 , f c= C_walkways , ec=C_walkways )
p l t . gca ( ) . add_patch (WalkwayShortH )

# Ce l l s
for i in range ( len ( Ce l l s ) ) :

Cel ls_p = p l t . Rectangle ( ( 1 . 6 , Ce l l s [ i ] ) , 2 , 1 .8 , f c=C_Cells , ec=C_Borders_L )
p l t . gca ( ) . add_patch ( Cel ls_p )

# L iqu ids
i f DSCAB_MOD_NO == True :

for i in range ( len ( L iqu id_y ) ) :
L iqu id_p = p l t . Rectangle ( ( 3 . 6 , L iqu id_y [ i ] ) , 1 , 0 .8 , f c=C_Liquid , ec=C_Borders_L )
p l t . gca ( ) . add_patch ( L iqu id_p )

else :
for i in range ( len ( L iqu id_y ) ) :

L iqu id_p = p l t . Rectangle ( ( 0 . 6 , L iqu id_y [ i ] ) , 1 , 0 .8 , f c=C_Liquid , ec=C_Borders_L )
p l t . gca ( ) . add_patch ( L iqu id_p )

#%% Uni ts

# DSCABs ho r i z on t a l
for i in range ( len (DSCAB_y ) ) :

DSCAB_p = p l t . Rectangle ( ( 0 ,DSCAB_y[ i ] ) , 1 .6 , 0 .8 , f c= C_DSCAB, ec=C_Borders_U )
p l t . gca ( ) . add_patch (DSCAB_p)
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# DSCABs ho r i z on t a l Mobi le Master Locat ion
for i in range ( len (DSCAB_MM_y ) ) :

DSCAB_MM_p = p l t . Rectangle ( ( 0 ,DSCAB_MM_y[ i ] ) , 1 .6 , 0 .8 , f c= C_DSCAB_Move_M, ec=C_Borders_Mob )
p l t . gca ( ) . add_patch (DSCAB_MM_p)

# DSCABs ho r i z on t a l Mobi le Slave l o ca t i ons
for i in range ( len (DSCAB_MS_y ) ) :

DSCAB_MS_p = p l t . Rectangle ( ( 0 ,DSCAB_MS_y[ i ] ) , 1 .6 , 0 .8 , f c= C_DSCAB_Move, ec=C_Borders_Mob )
p l t . gca ( ) . add_patch (DSCAB_MS_p)

# DSCABs ve r i c a l
for i in range ( len (DSCABVy ) ) :

DSCABV_p = p l t . Rectangle ( (DSCABVx[ i ] ,DSCABVy[ i ] ) , 0 .8 , 1 .6 , f c= C_DSCAB, ec=C_Borders_U )
p l t . gca ( ) . add_patch (DSCABV_p)

# Spel Hor i zon taa l
i f DSCAB_MOD_NO == True :

for i in range ( len (SPELH ) ) :
SPELH_p = p l t . Rectangle ( ( 3 . 6 ,SPELH[ i ] ) , 0 .8 , 0 .6 , f c= C_SPEL , ec=C_Borders_U )
p l t . gca ( ) . add_patch (SPELH_p)

else :
for i in range ( len (SPELH ) ) :

SPELH_p = p l t . Rectangle ( ( 0 . 8 ,SPELH[ i ] ) , 0 .8 , 0 .6 , f c= C_SPEL , ec=C_Borders_U )
p l t . gca ( ) . add_patch (SPELH_p)

# Spel Ve r t i c a l
for i in range ( len (SPELVx ) ) :

SPELV_p = p l t . Rectangle ( ( SPELVx [ i ] ,SPELVy [ i ] ) , 0 .6 , 0 .8 , f c= C_SPEL , ec=C_Borders_U )
p l t . gca ( ) . add_patch (SPELV_p)

# MBC Master V
for i in range ( len (MBCMVx) ) :

MBCMV_p = p l t . Rectangle ( (MBCMVx[ i ] ,MBCMVy[ i ] ) , 0 .7 , 0 .8 , f c=C_Master , ec=C_Borders_U )
p l t . gca ( ) . add_patch (MBCMV_p)

# MBC HBT V
for i in range ( len (MBChbtVx ) ) :

MBChbtV_p = p l t . Rectangle ( ( MBChbtVx [ i ] ,MBChbtVy [ i ] ) , 0 .7 , 0 .8 , f c=C_HBT, ec=C_Borders_U )
p l t . gca ( ) . add_patch (MBChbtV_p )

# MBC Slave V
for i in range ( len (MBCSVx ) ) :

MBCSV_p = p l t . Rectangle ( (MBCSVx[ i ] ,MBCSVy[ i ] ) , 0 .7 , 0 .8 , f c=C_Slave , ec=C_Borders_U )
p l t . gca ( ) . add_patch (MBCSV_p)

# MBC Master H
for i in range ( len (MBCMHx) ) :

MBCMH_p = p l t . Rectangle ( (MBCMHx[ i ] ,MBCMHy[ i ] ) , 0 .8 , 0 .7 , f c=C_Master , ec=C_Borders_U )
p l t . gca ( ) . add_patch (MBCMH_p)

# MBC HBT H
for i in range ( len (MBChbtHx ) ) :

MBChbtH_p = p l t . Rectangle ( (MBChbtHx [ i ] ,MBChbtHy [ i ] ) , 0 .8 , 0 .7 , f c=C_HBT, ec=C_Borders_U )
p l t . gca ( ) . add_patch (MBChbtH_p)
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# Arrows
i f DSCAB_MOD == True :

p l t . arrow (0 . 8 , 0 .4 , 0 , 10.4 , head_width = 0.5 , head_length = 0.5 , f c= C_Arrow , ec=C_Arrow )
# Clus te r 1

p l t . arrow (0 . 8 , 25.6 , 0 , 1 .4 , head_width = 0.5 , head_length = 0.5 , f c= C_Arrow , ec=C_Arrow )
# Clus te r 2

p l t . arrow (0 . 8 , 32.8 , 0 , 1 .4 , head_width = 0.5 , head_length = 0.5 , f c= C_Arrow , ec=C_Arrow )
# Clus te r 3

p l t . arrow (0 . 8 , 47.2 , 0 , 1 .4 , head_width = 0.5 , head_length = 0.5 , f c= C_Arrow , ec=C_Arrow )
# Clus te r 4

i f DSCAB_MOD_NO == True :
p l t . arrow (0 . 8 , 0 .4 , 0 , 25 , head_width = 0.5 , head_length = 0.5 , f c= C_Arrow , ec=C_Arrow )

# Clus te r 1
p l t . arrow (0 . 8 , 47.2 , 0 , −19.6 , head_width = 0.5 , head_length = 0.5 , f c= C_Arrow , ec=C_Arrow )

# Clus te r 2
p l t . arrow (0 . 8 , 47.2 , 0 , 6 .8 , head_width = 0.5 , head_length = 0.5 , f c= C_Arrow , ec=C_Arrow )

# Clus te r 2

#%% Wasted space
i f ShowIndiv idual == False :

# DSCAB area
Ind ica te_p = p l t . Rectangle ( ( 0 , 0 ) , 1 .6 , ( Lengte +1 .8 ) , f c = C_Indicate , ec=C_Indicate )
p l t . gca ( ) . add_patch ( Ind ica te_p )

# MBC Master V
for i in range ( len (MBCMVx) ) :

MBCMV_p = p l t . Rectangle ( (MBCMVx[ i ] ,MBCMVy[ i ] ) , 0 .7 , 0 .8 , f c=C_Indicate , ec=C_Indicate )
p l t . gca ( ) . add_patch (MBCMV_p)

# MBC HBT V
for i in range ( len (MBChbtVx ) ) :

MBChbtV_p = p l t . Rectangle ( ( MBChbtVx [ i ] ,MBChbtVy [ i ] ) , 0 .7 , 0 .8 , f c=C_Indicate , ec=C_Indicate )
p l t . gca ( ) . add_patch (MBChbtV_p )

# MBC Slave V
for i in range ( len (MBCSVx ) ) :

MBCSV_p = p l t . Rectangle ( (MBCSVx[ i ] ,MBCSVy[ i ] ) , 0 .7 , 0 .8 , f c=C_Indicate , ec=C_Indicate )
p l t . gca ( ) . add_patch (MBCSV_p)

i f DSCAB_C == True :
WalkwayLongVE = p l t . Rectangle ( ( −2 .3 ,0 ) , 0 .3 , ( Lengte +1 .8 ) , f c=C_Indicate , ec=C_Indicate )
p l t . gca ( ) . add_patch (WalkwayLongVE )

WalkwayShortV = p l t . Rectangle ( ( −8 .2 , −7 .2 ) , 2 , 5 .2 , f c=C_Indicate , ec=C_Indicate )
p l t . gca ( ) . add_patch (WalkwayShortV )

WalkwayShortH = p l t . Rectangle ( ( −6 .2 , −7 .2 ) , 7 , 2 , f c=C_Indicate , ec=C_Indicate )
p l t . gca ( ) . add_patch (WalkwayShortH )

WastedSpace = p l t . Rectangle ( ( −6 .2 , −5 .2 ) ,7 , 3 .2 , f c=C_Indicate , ec=C_Indicate )
p l t . gca ( ) . add_patch (WastedSpace )

i f DSCAB_MOD_NO == True :
Ind i ca te_obs tac les = p l t . Rectangle ( ( 3 . 6 , L iqu id_y [ 0 ] ) , 1 , ( L iqu id_y [ −1] − L iqu id_y [0 ]+1
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) , f c= C_Indicate , ec=C_Indicate )
p l t . gca ( ) . add_patch ( Ind i ca te_obs tac les )

# Spel Ve r t i c a l
for i in range ( len (SPELVx ) ) :

SPELV_p = p l t . Rectangle ( ( SPELVx [ i ] ,SPELVy [ i ] ) , 0 .6 , 0 .8 , f c= C_Indicate , ec=C_Indicate )
p l t . gca ( ) . add_patch (SPELV_p)

#%% Show
p l t . ax is ( ’ scaled ’ )
f i g . save f ig ( ’ test2png . png ’ , dp i =100)

p l t . show ( )
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