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FARA: A Fast Artifact Recovery Algorithm with
Optimum Stimulation Waveform for Single-Cell
Resolution Massively Parallel Neural Interfaces

Rohan Brash, Wouter Serdijn, Dante G. Muratore
Department of Microelectronics, Delft University of Technology, The Netherlands

Abstract—This paper introduces a fast artifact recovery algo-
rithm (FARA) that uses electrochemical impedance spectroscopy
to model the electrode-tissue interface and design an optimum
stimulation waveform to minimize the residual artifact duration
in single-cell resolution neural interfaces. Results in saline solu-
tion with a custom PCB and a 30 µm diameter microelectrode
array show a worst case artifact recovery time of 160 µs
when measured from the end of the working phase (anodic
500 nA, 250 µs). On average, the proposed algorithm provides an
81% improvement over a triphasic charge-balanced stimulation
waveform.

I. INTRODUCTION

Future neural interfaces will be able to modulate the nervous
system at single-cell resolution over a large population of cells
to provide better clinical and scientific tools. To do so, they
will need to calibrate their stimulation parameters based on
the recorded neural response, moving away from heuristic-
based stimulation protocols. To achieve single-cell resolution,
the interface needs to record the directly elicited spike with
low latency after the stimulation (e.g. <500 µs in an ex-vivo
monkey retina [1]). Notably, a critical problem towards closed-
loop neural modulation is the stimulation artifact, which is the
voltage that results from injecting the stimulation current into
the large electrode impedance (ZEL). Typically, the resulting
stimulation artifact is orders of magnitude larger than the
neural signal of interest, obscuring the neural response on
the stimulating electrode and its neighboring sites [1]. Also,
because of the large time constant associated with ZEL and the
charge imbalance at the electrode after the stimulation is over,
the stimulation artifact can last for several milliseconds [2]. We
refer to the artifact during stimulation as the direct artifact, and
after stimulation as the residual artifact. It is important to note
that a perfectly charge-balanced stimulation waveform does
not necessarily ensure charge balancing at the electrode, due
to the electrode-tissue interface (ETI) non-linearity [3]. Also,
as we will show below, balancing the charge at the output of
the AFE does not ensure that the charge at the electrode is
also balanced.

When targeting the directly elicited spike, the direct artifact
is not so problematic as recording is not needed during
stimulation. Typically, it is sufficient to avoid saturation of the
analog front-end (AFE) during stimulation by disconnecting it
from the electrode (blanking) [4]. However, the residual arti-
fact can still obscure the recording channel during the arrival
of the elicited spike. Active discharging can be implemented

to reduce the duration of the residual artifact by shorting the
input to a fixed potential (hard reset) [5] or shifting the pole
of the AFE to a higher frequency (soft reset) [6]. However,
these methods still blank the AFE for a significant time.
Alternatively, a high dynamic-range (DR) AFE can be used to
record the superimposed signals [7]–[9] and the artifact can be
removed in the digital domain [1], [2]. However, this comes at
the cost of increased power and area consumption for the AFE.
A very effective and popular method to reduce the required
DR is to perform artifact cancellation at the input of the AFE
combined with template matching in the digital backend [10]–
[12]. This solution significantly improves the power efficiency
of the recording channel, but it still requires a low noise
cancellation circuit at the input. The resulting overhead can
become a limiting factor when trying to massively scale up
the number of recording channels.

An interesting alternative is to mitigate the residual artifact
by modifying the stimulation waveform to push the artifact
to higher frequencies to facilitate filtering in the AFE [13],
[14], or to reduce the artifact duration based on equalization
techniques [15]. Similar to [15], this paper predistorts the
stimulation waveform based on a linear time-invariant (LTI)
model of the ETI - Fig. 1(a). However, the proposed approach
allows for arbitrary constraints to produce distorted wave-
forms (optimum stimulation) that maintain the effectiveness
of stimulation while minimizing the artifact duration (optimum
response) - Fig. 1(b). It also introduces a low-cost trimming
step to account for any errors in the response prediction due
to the LTI assumption - Fig. 1(c). We validated the proposed

-+
Voltage

Response

Optimum  
Stimulation

Optimum  
Response

C
Electrode

working ph 
# corr. ph 
V/I limits

Constraints

Electrode
Model

I = f(..)

Current
Calculation

Optimum  
Response

Trim Optimum  
Stimulation

Controller

Test Input Electrode
Model

Parameter
Fitting

a) b)

c)

Fig. 1. Proposed fast artifact recovery algorithm (FARA) based on (a) an LTI
model of the electrode-tissue interface to (b) design an optimum stimulation
waveform for minimum residual artifact duration with (c) a trimming step to
account for small errors in the model.
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technique in saline solution with a custom PCB based on the
Intan RHS2116 chip [16] and a microelectrode array (MEA).
In the worst case, the residual artifact duration was reduced
to 160 µs, which shows an 81% improvement over a triphasic
pulse typically used for artifact reduction [17].

Section II describes the ETI model used in this paper. The
fast artifact recovery algorithm (FARA) is presented in Section
III, while its results are discussed in Section IV.

II. ELECTRODE-TISSUE INTERFACE MODEL

The electrode-tissue interface is usually modeled by means
of an electrode impedance, ZEL, that describes how electronic
current in the stimulator is transduced to ionic current in the
tissue. Unfortunately, modeling ZEL is not a simple task, as
the model needs to capture all the electrochemical reactions
happening at the interface, some of which are not reversible
and voltage dependent. However, for small deviations from the
equilibrium potential across ZEL, negligible irreversible reac-
tions occur, and a linear model can be employed. If linearity
holds, electrochemical impedance spectroscopy (EIS) captures
the interface behavior accurately and it can be used to predict
the artifact shape [18]. In single-cell resolution applications
small stimulation currents are typically used, hence, we expect
small deviations from the equilibrium potential. For example,
[19] shows that the threshold for most neurons in an ex-vivo
retina is below 125 pC, which requires only 500 nA if using
250 µs pulses.

The impedance model used here is ZEL = RS + ZCPE, where
ZCPE = (Asα)−1 is referred to as a constant-phase element
(CPE), and A and α are constants [20]. The constant α ranges
from 0 to 1, where for α = 0, the CPE is equivalent to a
resistor of value A−1, and for α = 1 the CPE is equivalent to
a capacitor of value A.
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Fig. 2. Experimental setup schematic and photograph. (A) Saline solution, (B)
reference electrode, (C) MEA, (D) custom PCB with Intan chip, (E) raspberry
Pi microcontroller.

We used the experimental setup in Fig. 2 to test the LTI
assumption and perform EIS on the MEA to fit our impedance
model. The attenuator in front of the Intan chip is to avoid
saturation of the AFE during the direct artifact. This results in
an extended input range of ±100 mV, while still keeping an
input-referred resolution of 4 µV which is sufficient for our
experiments. The MEA used in this work has gold electrodes
with 30 µm diameter and 240 µm pitch, and it is embedded
in a flexible polyurethane substrate.

To assess linearity the artifact is measured for a 250 µs
pulse with amplitudes ranging from 200 nA to 1200 nA.
The normalized input-output relationship shows a linearity
deviation of <6% across the entire amplitude range. Time-
invariance was also verified by recording the artifact when a
biphasic 250 µs, 1 µA pulse is applied [10, 100, 1000] seconds
apart, which results in deviations within the noise floor of the
system. Hence, we conclude that the system is LTI within the
operating range of our application.

EIS on the MEA is performed with the Intan chip in
the [0.2-7] kHz range using the recording and stimulation
channels - i.e. no dedicated EIS system is used for this
measurement. The impedance model parameters RS, A, and
α are calculated based on the measurement results. Given our
impedance model, the time-domain step response is given by:

Vstep(t) = L−1

{
Rs

s

}
+ L−1

{
1

Asα+1

}
(1)

=

(
Rs +

1

A

tα

Γ(1 + α)

)
u(t) (2)

The discrete time step response at sample n, given a sampling
period Ts and step current magnitude ∆I0 is then

Vstep(nTs) = ∆I0Rs +
∆I0
A

Tα
s

Γ(1 + α)
nα (3)

where Γ is the gamma function. We can extend this to N
current steps ∆Ii to find the voltage response to an arbitrary
current waveform. At sample k ≥ N (i.e. only prior current
steps contribute), the response is given by

V (k) = Rs

N∑
i=1

∆Ii +

N∑
i=1

{∆IiK(k − i)α} , (4)

where K = Tα
s /AΓ(1+α). FARA uses this estimated response

to design an optimal waveform that minimizes the residual
artifact. We show that with the only parameters RS , K and α
we can estimate the voltage response with enough accuracy for
our target application - e.g. NMSE = -31.4 dB for a random
stimulation waveform (Fig. 3).

III. FAST ARTIFACT RECOVERY ALGORITHM

FARA uses the model described in Section II to design a
stimulation waveform based on the desired optimum response,
while meeting specific constraints. Given the desired charge
to deliver to the tissue (working phase), corrective phases are
added to the waveform to minimize the artifact duration. The
following constraints are considered here:

1) the working phase is not modified by the algorithm,
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Fig. 3. Model performance. (a) Random current stimulation waveform. (b)
Recorded and predicted voltage response.

2) maximum limits in the used currents and generated
voltages can be applied, and

3) corrective phases are always of opposite polarity with
respect to the working phase.

In this work, we use an anodic working phase (but the op-
posite can be implemented), 10 corrective phases before (pre-
correction) and 5 after (post-correction) the working phase,
respectively. Each corrective phase is 20 µs long.

A possible approach to design the optimum stimulation
waveform is to expand Eq. 4 to a matrix form V = Z∆I ,
and invert matrix Z to find the required current waveform for
the desired voltage response, ∆I = Z−1V . The objective is
to find the different current steps needed to force the voltage
response to zero after the end of the stimulation waveform.
However, as the number of degrees of freedom (i.e. corrective
phases) increase, the matrix inversion problem becomes too
large and results in unstable results. Hence, instead of an
explicit solution, an iterative approach is used to find the
optimum stimulation waveform.

The implemented iterative approach forces the residual
artifact to zero one sample at a time, as new corrective phases
are added to the waveform - see Fig. 4 for an illustrative
example. This avoids the need for large matrix inversions, and
allows for easier implementation of constraints, such as current
and voltage limiting. For example, limiting the maximum
current to be used will result in a voltage residue. However,
subsequent phases can easily account for this, while the matrix
inversion approach could not.

The pre-correction and post-correction pulses are used to
force the long-term and short-term residual voltage to zero,
respectively. To account for their mutual effect, the iterative
process is repeated over 5 convergence cycles - see Fig. 4(d).

The proposed algorithm relies on the electrode-tissue in-
terface being an LTI system. Although this assumption is
realistic for the small stimulation thresholds in single-cell
resolution applications, small non-linearities and inaccuracy
in the current output could lead to a residual error in the
voltage response. This issue becomes more predominant as
the stimulation amplitude increases. Hence, we introduced
an optional trimming step that corrects for these errors by
adjusting the stimulation waveform based on the recorded
voltage response. The trimming algorithm performs a binary

I

t t

V

0V

0V

0V

0V

post-correctionworking
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pre-correction working
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0A
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0A

Fig. 4. Iterative approach of the fast artifact recovery algorithm - (left) stim-
ulation current waveform, (right) predicted voltage response, i.e. stimulation
artifact.

search to correct for the short-term response first (i.e. post-
correction pulses) and the long-term response later (i.e. pre-
correction pulses). Experimentally, we found that only 5
trimming iterations are needed for the worst case scenario
to reach the optimum response. Given the time-invariance
behavior of the ETI, this trimming step is needed only once
for each stimulation waveform and its result can be stored for
future use.

A. Algorithm Cost

The hardware overhead in the recording channels for the
proposed algorithm is minimal, as it only requires a blanking
technique to avoid saturation during the direct artifact. The
trimming step only requires to record the residual artifact,
which is already within the input range of the amplifier, so
high DR AFEs are not needed. A single high DR AFE can be
shared among all channels for the EIS measurement.

The stimulation side requires an arbitrary waveform gen-
erator with moderate resolution (e.g. 8 bits are used in the
Intan chip for the results reported here), which can also be
used for generating the test signals for the EIS measurement.
It is important to note that single-cell resolution requires to
calibrate the stimulation parameters based on the recorded
response, which can become an intractable problem if multiple
stimulation channels operate at the same time in the same
region. As a result, only a few stimulation channels are used
simultaneously, even for massively parallel MEAs [21]. This
allows for resource sharing to reduce the system cost of each
stimulation channel.

To find the optimum stimulation waveform, FARA predicts
the voltage response based on the stimulation current, accord-
ing to V = ∆I (RS +Knα). We refer to this operation as
Model Voltage Calculation (MVC). To reduce the computa-
tional cost of each MVC, we limit the range to n = 1:100
(with step 1) and α = 0.01:0.99 (with step 0.01) and store
the pre-computed value in a look-up table (LUT). Each MVC
requires then one 16-bit addition, two 16-bit multiplications,
and one 100x99 LUT inquiry. On average, 3 MVCs are needed
per correction phase per convergence cycle. Given 10 pre-
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Fig. 5. (a) 250 µs, 500 nA pulse using triphasic, untrimmed optimum and
trimmed optimum stimulation waveforms. (b) Recorded artifact.

and 5 post-correction phases, and 5 convergence cycles, we
need 150 MVCs per waveform optimization. This might not
be feasible for the power and area constraints of an implant,
especially as the number of channels increase. However, the
optimum waveforms can be computed off the implant and
transmitted to the stimulation channels as needed. The required
data rate for a single waveform, assuming a 100 µs working
phase, is

R = (16ph ∗ 8bit)/(100µs+ 15ph ∗ 20µs) = 320kbps

which is possible based on the data rates demonstrated in
recent wireless retinal prostheses [22]–[24]. This is true if
we consider that single-cell resolution applications might not
stimulate on all channels simultaneously [25].

The trimming step only requires to implement a binary
search controlled by the recorded voltage response, and this
can be easily implemented on the implant itself.

IV. RESULTS

The proposed algorithm was validated in-vitro for different
working phase amplitudes (100 nA to 500 nA) and periods
(50 µs to 250 µs). The recovery time is defined as the time
from the end of the working phase to the time at which the
residual artifact drops below ±20 µV (approximately twice the
input-referred peak-to-peak noise).

To illustrate the behavior of FARA, Fig. 5 shows the
stimulation waveform and recorded artifact for a working
phase of 250 µs, 500 nA when a triphasic, optimum untrimmed
and trimmed waveforms are applied. A summary of all tests for
the working electrode is provided in Fig. 6(a). The proposed
algorithm is compared against mono-, bi-, and tri-phasic wave-
forms, as well as the active discharge built-in functionality
in the Intan chip. The worst-case recovery time is only 160
µs, which shows an 81% improvement over a triphasic pulse.
It is important to notice that trimming is only necessary for
large amplitude phases (i.e. >400 nA), as the proposed model
performs well for small deviations from equilibrium at the
ETI. Fig. 6(b) shows that the proposed algorithm reduces the
artifact duration also at neighboring electrodes (d = 240 µm).

We also investigated the effect of the proposed algorithm on
the DC accumulated charge at the ETI after 50 consecutive
stimulation pulses - see Fig. 6(c). The proposed algorithm
results in a larger DC charge accumulated at the ETI when
compared to conventional waveforms. This is to be expected

(a)

(b)

(c)

Fig. 6. Recovery time for different stimulation parameters (a) on the working
electrode and (b) on the neighboring electrode. (c) DC accumulated voltage
at the working electrode after 50 consecutive pulses.

as the algorithm accounts for the AFE transfer function and,
hence, minimizes the AC charge at the output of the AFE,
and not the DC charge at its input. However, the accumulated
charge is always <15 mV, well below the safety thresholds
for neural stimulation [26], [27]. Also, single-cell stimulation
strategies typically do not employ stimulation pulse trains, as
they account for the refractory period of the cell.

V. CONCLUSION

This paper presents an optimum stimulation waveform algo-
rithm for artifact fast recovery in single-cell resolution. FARA
is designed to work with small stimulation currents, which
are always the case in single-cell resolution applications. We
show that very fast artifact recovery is possible when properly
designing the corrective phases of the stimulation waveform.
The proposed algorithm will enable future neural interfaces to
record the directly elicited spikes with very low latency. Future
work will focus on reducing the algorithm implementation cost
to allow for integration directly on the implant.
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