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Abstract

Quantitative analyses of plantar pressure images typically occur at the group level and

under the assumption that individuals within each group display homogeneous pressure

patterns. When this assumption does not hold, a personalized analysis technique is

required. Yet, existing personalized plantar pressure analysis techniques work at the image

level, leading to results that can be unintuitive and difficult to interpret. To address these limi-

tations, we introduce PAPPI: the Personalized Analysis of Plantar Pressure Images. PAPPI

is built around the statistical modelling of the relationship between plantar pressures in

healthy controls and their demographic characteristics. This statistical model then serves as

the healthy baseline to which an individual’s real plantar pressures are compared using sta-

tistical parametric mapping. As a proof-of-concept, we evaluated PAPPI on a cohort of 50

hallux valgus patients. PAPPI showed that plantar pressures from hallux valgus patients did

not have a single, homogeneous pattern, but instead, 5 abnormal pressure patterns were

observed in sections of this population. When comparing these patterns to foot pain scores

(i.e. Foot Function Index, Manchester-Oxford Foot Questionnaire) and radiographic hallux

angle measurements, we observed that patients with increased pressure under metatarsal

1 reported less foot pain than other patients in the cohort, while patients with abnormal pres-

sures in the heel showed more severe hallux valgus angles and more foot pain. Also, inci-

dences of pes planus were higher in our hallux valgus cohort compared to the modelled

healthy controls. PAPPI helped to clarify recent discrepancies in group-level plantar pres-

sure studies and showed its unique ability to produce quantitative, interpretable, and person-

alized analyses for plantar pressure images.

Introduction

For gait-related complaints, plantar pressures—pressures between one’s foot and the ground—

have shown to be useful quantities to measure and analyze for diagnostic purposes [1]. In
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recent years, the standardization of plantar pressure measurement devices [2] and the introduc-

tion of a variety of analysis techniques [3] have shown that there is a desire to capitalize on the

information that these measurements provide. Despite these advancements, recent studies have

shown that existing analysis techniques have limitations on what information can be extracted

from plantar pressures [4] as well as the repeatability of studies involving that information [5].

From a quantitative and statistical perspective, the majority of plantar pressure analysis

techniques operate at the group level [3, 6, 7]. In particular, statistical parametric mapping

(SPM) techniques have recently gained popularity in the performance of these group studies,

whether they be for region-of-interest studies [8], centre of pressure trajectories [9], pressure

pattern images [10], or plantar pressure videos [11]. SPM works by bringing all plantar pres-

sure measurements into anatomical (and possibly also temporal) alignment, then performing

statistical tests at each sampled point (e.g. each pixel in an image or each time point in a

sequence). By performing statistics in this manner, SPM localizes and highlights regions of

plantar pressures that show statistically significant group differences, thereby simplifying the

interpretation of a study’s results.

The motivation behind SPM group studies is to highlight abnormal pressure patterns that

can be used as a biomarker for a particular foot complaint. However, the pressure patterns

highlighted by these group-level statistical tests are only the ones that consistently differ

between the groups, where consistency is defined by the test’s significance level (e.g. α = 0.05

implying 95% of the time). As a result, the way groups are defined becomes a key and challeng-

ing parameter to set. Liberal inclusion and exclusion criteria can lead to large within-group

variances, making it hard to observe group differences. Conversely, strict criteria can result in

low group sizes, when in turn reduces the statistical power of the analysis.

One example of the sensitivity to group definitions in plantar pressure studies is the dis-

crepancy in results reported on hallux valgus patients [5]. Table 1 summarizes the plantar pres-

sure studies involving hallux valgus patients based on where group-level statistical tests

showed significant differences. Note that none of the studies match exactly and, in some cases,

they contradict each other. In particular, the works of Booth et al. and Galica et al. disagree

about pressures under the lesser toes [5, 12]. Those two works also disagree with the works of

Bryant et al., Hida et al., and Koller et al. regarding pressures under lateral forefoot [13–15].

The inconclusive results in these studies are not surprising. It is known that even healthy

individuals show significant differences in plantar pressures [17]. There are also a variety of

demographic factors that can impact plantar pressure measurements [18, 19]. While some of

these factors can be statistically modelled as covariates, others might be unknown or not easy

Table 1. Summary of the results of group-level plantar pressure analyses of hallux valgus patients.

Study Location of Pressure Differences

Heel Midfoot MT 1-2 MT 3-5 Hallux Toes 2-5

Booth et al. [5] # # #

Bryant et al. [13] " "

Galica et al. [12] # # # "

Hida et al. [14] "

Koller et al. [15] " " #

Wen et al. [16] " #

Up arrows indicate that the hallux valgus group had higher plantar pressures than healthy controls, while down arrows indicate the opposite. MT1 to MT5 refer to

metatarsals 1-5. Note the lack of agreement between studies. See text for further details.

https://doi.org/10.1371/journal.pone.0229685.t001

PAPPI: Personalized analysis of plantar pressure images

PLOS ONE | https://doi.org/10.1371/journal.pone.0229685 February 27, 2020 2 / 22

Valgus dataset is available at https://doi.org/10.

5281/zenodo.1441308.

Funding: B.G.B. received funding from the

European Union’s Horizon 2020 research and

innovation programme under the Marie

Sklodowska-Curie grant agreement no. 746614

(https://cordis.europa.eu/project/rcn/209771/

factsheet/en). B.G.B., T.H., and J.S. received

funding from imec Belgium through ICON grant no.

150218. (https://www.imec-int.com/en/what-we-

offer/research-portfolio/footwork). The funders had

no role in study design, data collection and

analysis, decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0229685.t001
https://doi.org/10.1371/journal.pone.0229685
https://doi.org/10.5281/zenodo.1441308
https://doi.org/10.5281/zenodo.1441308
https://cordis.europa.eu/project/rcn/209771/factsheet/en
https://cordis.europa.eu/project/rcn/209771/factsheet/en
https://www.imec-int.com/en/what-we-offer/research-portfolio/footwork
https://www.imec-int.com/en/what-we-offer/research-portfolio/footwork


to model. These latter factors introduce within-group variance, making it not only harder to

identify group-level statistical differences, but also making the group-level analysis sensitive to

the specific individuals included in the study.

As a result of these limitations in group-level studies, cluster-based analysis techniques have

begun to appear in plantar pressure studies [20–24]. These cluster analyses allow us to group

plantar pressure measurements into distinctive clusters such that all individuals in a cluster

show similar plantar pressures. While this analysis technique introduces the challenge of accu-

rately choosing a priori the expected number of clusters, all these studies have been able to

highlight that both patient and healthy control groups comprise of multiple clusters. These

analyses also show that an individual’s plantar pressures can differ as much between the clus-

ters as they do between the patient groups. Overall, these results highlight the challenge in

defining biomarkers of foot complaints based on plantar pressure measurements.

More recently, machine learning algorithms have been employed in order to classify an

individual’s plantar pressure measurement into patient or healthy control groups [25–29]. In

these studies, a database of plantar pressure data is combined with the corresponding group

memberships in order to define a non-linear regression function between the two quantities.

A variety of machine learning algorithms have been used to perform this regression, from arti-

ficial neural networks [25, 27], to logistic regression [29], to nearest neighbour classification

[28], to support vector machines [26]. Regardless of the algorithm used, the resulting classifier

produces a personalized result: an individual’s plantar pressure measurement, as a whole, gets

labelled as either healthy or unhealthy. However, these machine learning techniques often

appear to users as a black box: it is unclear how the algorithm is making its choice [30]. Specifi-

cally, classifiers have traditionally labelled the whole plantar pressure measurement, making it

a challenge to localize the aspect of a person’s gait underlying the classification result.

Despite all the advances in the analysis of plantar pressure measurements, there remains a

need for an analysis technique that provides both a personalized analysis of a person’s plantar

pressures while also localizing abnormal pressure measurements to precise locations on the

foot. The objective of this paper is to fill that gap with PAPPI: the Personalized Analysis of

Plantar Pressure Images. Fig 1 shows how PAPPI relates to other plantar pressure analysis

techniques. At a high level, PAPPI combines the localization benefits of SPM with the person-

alization benefits of classification algorithms. Like SPM, PAPPI is based on the idea of bringing

plantar pressure measurements into anatomical alignment, then performing statistics at each

pixel. Unlike SPM, PAPPI employs a statistical outlier detection algorithm to classify plantar

pressure abnormalities pixel-by-pixel [31, 32]. This outlier detection involves the pixel-by-

pixel modelling of plantar pressures from a healthy population as well as the relationship

between those pressures and demographic factors such as age, weight, and gender. This model

then serves as a healthy baseline to which an individual’s plantar pressures are compared,

pixel-by-pixel, using single-sample t-tests. Plantar pressures that do not agree with the model

are then classified as abnormalities and are highlighted for display.

With PAPPI, we introduce two methodological contributions. First, we introduce pixel-by-

pixel outlier detection to the analysis of plantar pressure measurements. Second, we incorpo-

rate the impact of multiple demographic factors into the statistical outlier detection, thereby

allowing PAPPI to fine tune its outlier detection to specific individuals. With these contribu-

tions, we aim to provide the intuitive summaries of abnormal plantar pressures that SPM is

known for, while also personalizing the SPM procedure in a way that accounts for the natural

variability in plantar pressure measurements. As a proof-of-concept, we apply PAPPI to a

cohort of hallux valgus patients and aim to show that a personalized analysis technique like

PAPPI can clarify results from earlier hallux valgus group studies.

PAPPI: Personalized analysis of plantar pressure images
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Materials and methods

Data collection

To perform a proof-of-concept of PAPPI, we make use of dynamic plantar pressure measure-

ments from the CAD WALK open access database [33]. Two data sets are employed here.

First, plantar pressure measurements from 55 healthy controls are used to build the statistical

model [34]. Second, plantar pressure measurements from 50 hallux valgus patients are used to

evaluate the proposed PAPPI framework [35]. To our knowledge, no previous results have

been reported on these datasets, so no multiple comparison issues exist between our study and

previous works. In our descriptions, we will refer to a dynamic plantar pressure measurement

as being a video V containing plantar pressure samples indexed by a pixel location x = [x, y]

and a time frame t.
The plantar pressure measurements were collected in two ways: (a) using an internally-cali-

brated 1.5 m footscan1 plate (rs scan, Paal, Belgium; dimensions: 160.5 × 46.9 cm, sensor

dimensions: 0.762 × 0.508 cm), and (b) using a 0.5 m footscan1 plate (rs scan, Paal, Belgium;

dimensions: 48.8 × 32.5 cm, sensor dimensions: 0.762 × 0.508 cm) on top of a Kistler force

plate (9286AA, Kistler, Wintherthur, Switzerland), with both synchronized to each other using

a rs scan footscan1 3D interface box. The pressure data was gathered in rs scan’s footscan1

software 7 gait 2nd generation, from which it was exported and then converted to NIfTI format

using MATLAB version 2016b (The MathWorks, Natuck, USA). The plantar pressures of the

healthy controls were measured 24 times per foot at a frequency of 500 Hz, while the hallux

valgus patients were measured a minimum of 8 times per foot at a frequency of 200 Hz. Given

the international standards for pressure-sensing plates [2], the difference in sampling

Fig 1. The positioning of PAPPI with respect to competing plantar pressure analysis techniques. The proposed

PAPPI technique is unique in providing a highly personalized result (i.e. one result per foot) while also localizing

plantar pressure abnormalities to a high degree (i.e. pixel-by-pixel abnormality identification).

https://doi.org/10.1371/journal.pone.0229685.g001
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frequency is not expected to influence the accuracy of the measurements. All participants were

measured using the 3-step protocol [36] while walking barefoot at their preferred walking

speed.

In addition to the plantar pressure measurements, each participant’s age, sex, shoe size,

weight, and height were recorded. The participant’s weight was measured using a traditional

scale while the other measures are self-reported. These five demographic factors are collected

in order to account for their effects on the plantar pressure measurements in the statistical

modelling [18, 19].

For the hallux valgus group, additional clinical information was collected. First, the hallux

valgus patients filled out two foot function self-assessment questionnaires: the 5 pt. Foot Func-

tion Index (FFI-5pt) [37] and the Manchester-Oxford Foot Questionnaire (MOXFQ) [38].

Additionally, the hallux valgus angle (HVA) and the intermetatarsal angle (IMA) of each

patient were also recorded based on measurements from the patient’s dorsoplantar weight-

bearing radiograph. A patient’s foot was deemed to have a hallux valgus if its IMA met or

exceeded 9 degrees, or if its HVA met or exceeded 15 degrees [39]. From the 50 patients in our

cohort, 69 hallux valgus cases met these inclusion criteria.

Data preprocessing

The rs scan footscan1 pressure plate used in the data collection has non-square sensor

dimensions, resulting in the plantar pressure measurements being compressed in the anterior-

posterior direction. In order to recover the original foot geometry, each plantar pressure mea-

surement was upsampled to a 3 mm × 3 mm grid using cubic interpolation [11]. Each plantar

pressure measurement was then normalized by the total mean pressure to reduce the influence

of walking speed on the magnitude—but not the distribution—of the plantar pressures. This

normalization, proposed and validated by Keijsers [7], involves dividing each plantar pressure

sample by the sum of all pixel values in the 2D mean pressure image M:

MðxÞ ¼
P

tVðx; tÞ d½Vðx; tÞ > t�
P

td½Vðx; tÞ > t�
; ð1Þ

where τ = 5 kPa, δ is the Kronecker delta function, and the normalized plantar pressure mea-

surement becomes ~V ðx; tÞ ¼ Vðx; tÞ=
P

xMðxÞ. Finally, peak pressure images I were computed

from each plantar pressure measurement by retaining the maximum pressure values recorded

at each pixel across the stance phase:

IðxÞ ¼ max
t

~V ðx; tÞ: ð2Þ

Additionally, the presence of multiple plantar pressure measurements from each foot allows

us to align and average all peak pressure images from a foot in order to reduce biological and

measurement noise [10]. To perform this task, we select at random one of the foot’s peak pres-

sure images as a reference, Iref, then align all images {I1, � � �, IK} to the reference using a rigid

spatial image registration (i.e. the rotation and translation of one image to match another).

This rigid registration is computed by maximizing mutual information between the image

pairs:

Tj ¼ argmaxT MIðIref ; Ij � TÞ; ð3Þ

where MI() is the histogram-based mutual information metric (with 50 bins per dimension), T
is a rigid transformation, and the � operator represents the application of the transformation

to the corresponding image. Mutual information is a probabilistic measure that encourages

PAPPI: Personalized analysis of plantar pressure images
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homogeneous image regions to match to each other [40]. Eq 3 was optimized using the 1+1

evolutionary optimizer proposed by Styner et al. [41]. Once all peak pressure images from the

same foot are aligned, we average the aligned images to produce a single representative image

of the peak pressures:

�I ¼
1

K

XK

j¼1

Tj � Ij; ð4Þ

where K is the number of peak pressure images collected from the given foot.

Finally, we follow the convention of Pataky et al. by assuming that there is no common

asymmetry pattern between a person’s left and right plantar pressures, thereby allowing us to

regard the plantar pressures from an individual’s left and right feet as being essentially inde-

pendent samples [42]. Using this independence assumption, we can group the left and right

feet into a single statistical model. In this work, we chose to build a single “left” foot model. To

do so, peak pressure images from right feet are flipped along the medial-lateral axis in order to

simplify the subsequent model building and analysis steps.

Statistical modelling

Fig 2 shows the workflow of the proposed statistical modelling in PAPPI. The workflow con-

tains three main components. First, an anatomically-unbiased peak pressure template is cre-

ated to which all measurements will be aligned for the subsequent analysis. Second, all peak

pressure measurements are aligned to the template so that we have a pixel-by-pixel anatomical

correspondence between all individuals’ peak pressures. Finally, statistical models are built at

each pixel to model both the relationship between the peak pressures and demographic factors

as well as the fraction of the peak pressures that are not explained by the demographics. We

introduce each of these steps below.

Pairwise registration. Pairwise registration is employed here to bring peak pressure

images into alignment prior to building the statistical model. It is also used as part of the algo-

rithm that generates the anatomically-neutral peak pressure template. This alignment step is

required in order to establish anatomical correspondence between plantar pressures from dif-

ferent individuals, a correspondence that allows us to compute meaningful statistics pixel-by-

pixel.

To perform this pairwise registration, we follow the registration framework proposed by

Pataky et al. [42]. Given the peak pressure image Ii of individual i, and a chosen template

image Itemplate (described in the following section), we first perform a rigid registration using

Eq (3) to rigidly align Ii to Itemplate, followed by a deformable registration using the peak pres-

sure silhouette images. We define a peak pressure silhouette image, Si, as

Si xð Þ ¼
1 if Ti � IiðxÞ > 5 kPa;

0 otherwise

(

ð5Þ

where Ti is the rigid transformation obtained from Eq (3).

The silhouette image, Si, is then non-rigidly aligned to the template’s silhouette image,

Stemplate, using diffeomorphic demons [43]. The diffeomorphic demons algorithm computes a

deformation vector field ϕ that minimizes:

� ¼ argmin
�

kStemplate � Si � �k
2

2
þ l1k� � ok

2

2
þ l2krok

2

2
;

subject to � 2 G
ð6Þ
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where G is the set of diffeomorphic transformations (i.e. invertible, smooth deformation

vector fields) and the variable ω is an artificial variable introduced to split the optimization

in two. One step of the optimization minimizes the first term that encourages similarity

between the silhouette images, while the second step minimizes the third term to encourage

the deformation to be smooth. Both optimization steps include the second term to encour-

age the smooth deformation, ω, and the accurate deformation, ϕ, to be equal. These

optimization steps are interleaved until both converge. Finally, the regularization variables,

λ1 = λ2 = 2, are empirically set to control the trade-off between the three objectives in the

registration function. Once Eq (6) is optimized, the aligned peak pressure image is obtained

as I0i ¼ �i � Ti � Ii.
Groupwise registration. Generally speaking, statistical modelling and parametric map-

ping techniques like those used in PAPPI produce more accurate results when an anatomi-

cally-unbiased peak pressure image is chosen as a reference [42]. To create such an unbiased

template image, we employed the groupwise registration algorithm of Guimond et al. [44] in

combination with the pairwise registration technique introduced above. The groupwise regis-

tration algorithm consists of four main steps:

Fig 2. Flow chart of statistical modelling workflow. The proposed PAPPI technique begins by creating an anatomically-unbiased template to which all healthy peak

pressure images are aligned. Once aligned, statistical models are built pixel-by-pixel in order to provide localized statistical analysis. Specifically, the images and their

corresponding demographic factors are used to build (a) linear regression models of the peak pressures and (b) Normal distributions of the model residuals.

https://doi.org/10.1371/journal.pone.0229685.g002

PAPPI: Personalized analysis of plantar pressure images
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1. Randomly select an initial template image from the N peak pressure images in the healthy

controls dataset Itemplate 2 {I1, � � �, IN},

2. Align Itemplate to each peak pressure image Ii 2 {I1, � � �, IN} using Eqs (3) and (6), thereby

obtaining rigid transformations Ti 2 {T1, � � �, TN} and deformation vector fields ϕi 2 {ϕ1, � � �,

ϕN},

3. Average the linear transformations and deformation vector fields from step 2 above to

obtain �T and ��. These transformations capture how Itemplate differs from the population

average,

4. Apply the average transformations to the template image Itemplate ¼
�� � �T � Iref . By applying

these transformations, we move Itemplate towards the average foot shape and size.

These four steps are repeated until no further change in Itemplate is seen.

Once this algorithm has been run and an unbiased template image Itemplate has been

obtained, all peak pressure images are aligned to this template using the pairwise image regis-

tration algorithm described in the previous section.

Statistical model building. Once all peak pressure images are anatomically aligned, we

model—pixel-by-pixel—the relationship between the peak pressures and demographic factors.

In this work, we use the demographic factors of age, sex, weight, height, and shoe size, resulting

in the demographics vector zi = [agei, sexi, weighti, heighti, shoe sizei, 1] for the individual i. At

each pixel, x, we employ ordinary least squares to fit a linear regression model

yðxÞ ¼ ZbðxÞ þ �ðxÞ; ð7Þ

where yðxÞ ¼ ½I0
1
ðxÞ; � � � ; I0NðxÞ�

T
are the peak pressures at pixel x, Z = [z1, � � �, zN]T is a matrix

containing the corresponding participant’s demographic factors, and b(x) are the model

parameters that indicate the influence of each factor on the peak pressures. The residuals, �(x),

are subsequently modelled as being uncorrelated and following a zero-centred normal distri-

bution

�ðxÞ � N ð0; s2ðxÞÞ; ð8Þ

where s2(x) is the sampled variance of the residuals at pixel x.

It is important to note that two items are being modelled here: the effect of demographic

factors is modelled in Eq (7), and the remaining peak pressure variances are statistically mod-

elled in Eq (8) through normal distributions on the residuals. Additionally, these statistical

models were built only for the pixels within the silhouette of the reference image Stemplate. This

constraint is applied as the registration steps should reduce the presence of non-zero peak

pressures outside this region and, therefore, areas outside this region are unlikely to have peak

pressures that satisfy the normality assumption expressed in Eq (8).

Statistical testing

The personalized evaluation of a patient’s peak pressure image follows the workflow shown in

Fig 3 and is similar to outlier detection techniques seen elsewhere [31, 32]. The patient’s demo-

graphic factors (age, sex, weight, height, shoe size) are inputted into our linear regression

model to predict their peak pressure image. The patient’s real peak pressures, acquired by mea-

surement, are then aligned to the predicted image in order to obtain a pixel-by-pixel anatomi-

cal correspondence between the two peak pressure images. Once aligned, the residuals

between the measured and predicted peak pressures are computed and compared to the

PAPPI: Personalized analysis of plantar pressure images
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Normal distributions in our statistical model. Any outlier pressures are then highlighted using

SPM. Details on these steps are outlined below.

Predict pressures. Given a new patient’s demographic information in the vector znew =

[agenew, sexnew, weightnew, heightnew, shoe sizenew, 1], their peak pressure image is estimated

from our linear regression model as

IpredictðxÞ ¼ znewbðxÞ; ð9Þ

where b(x) are the linear regression coefficients estimated at pixel x using Eq (7).

Pairwise registration. To analyze the new patient’s peak pressures pixel-by-pixel, we first

align their peak pressure image Inew to their predicted peak pressure image Ipredict from Eq (9).

This alignment is performed using the pairwise image registration framework described in

Eqs (3) and (6). The aligned image I0new ¼ �new � Tnew � Inew is then used for further analysis.

Fig 3. Flow chart of statistical testing workflow. Given a peak pressure image and demographic characteristics from a new patient, a healthy peak pressure image for

the patient is estimated using the statistical model. The patient’s measured pressures are then aligned to the estimated image, and a residual image is created by

subtracting the estimated pressures from the measured ones. Finally, statistical parametric mapping is used with single-sample t-tests in order to identify patient

residuals that are outliers from the statistical model’s Normal distributions over the residuals.

https://doi.org/10.1371/journal.pone.0229685.g003
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Statistical parametric mapping. Once the patient’s peak pressure image is aligned to its

prediction, we compute the residuals R as

RðxÞ ¼ I0newðxÞ � IpredictðxÞ: ð10Þ

Based on our statistical model, we assumed that these residuals are sampled from the Nor-

mal distributions defined in Eq (8). To test whether this assumption is valid for a new patient,

we compute single-sample t-tests on the residuals at each pixel to create a statistical parametric

map of t-statistics:

SPMftgðxÞ ¼
RðxÞ

�ðxÞ=
ffiffiffiffi
N
p : ð11Þ

Note that the use of single-sample t-tests is equivalent to the DisCo-Z approach that is seen in

other subject-specific abnormality studies [45]. Random field theory was then used on the

resulting statistical parametric map, SPM{t}, to identify pixels, and clusters of pixels, whose

peak pressures are significantly different (at α = 0.05) than those predicted by the statistical

model [46]. T-statistics that are below the significance threshold are zeroed out and the result-

ing statistical outliers in SPM{t} are highlighted for display.

Results

Fig 4 shows an example result of the PAPPI algorithm for a hallux valgus patient. The patient’s

peak pressure image is shown in Fig 4(a) while the model’s prediction of their baseline peak

pressures is shown in Fig 4(c). PAPPI aligns the measured pressures to the predicted pressures,

the result of which is shown in Fig 4(b). It is worthwhile at this point to evaluate the quality of

the alignment and we do so by superimposing the aligned image (in blue) to the predicted

image (in red) in Fig 4(d). In this example, as in all images examined in our study, any align-

ment error appeared to be minimal. The raw single-sample t-statistics for this patient’s peak

pressures are shown in Fig 4(e), and after thresholding these t-statistics for significance, we

obtain the abnormality map shown in Fig 4(f). Significantly higher peak pressures were

observed under metatarsal 1 compared to our modelled healthy controls. It is these pressures

that PAPPI highlights for a clinician’s further analysis. Similar figures for all 69 hallux valgus

cases in our study are shown in S1 File.

To summarize all of our PAPPI results, we present them according to which foot regions

contained abnormal peak pressures: the heel, midfoot, metatarsal 1, metatarsals 2-5, and toes.

We defined these regions using the Novel 10 region mask [7], with some regions merged (e.g.

medial and lateral heel, metatarsals 2-5, hallux and other toes) in order to increase the statisti-

cal power in subsequent following experiments. Note that, in contrast to Table 1, we combined

the hallux and lesser toes into a single group, as well as isolating metatarsal 1 from the rest of

the forefoot, as these groupings aligned more closely with the results we observed. Some

patients presented with abnormal pressures in more than one region while others presented

with no abnormal plantar pressures.

The abnormal pressure pattern most frequently seen in our hallux valgus cohort is the one

shown in the example highlighted above: abnormally high peak pressures under metatarsal 1.

Out of our 69 hallux valgus cases, 26 of them showed this pattern (38%). All 26 of these cases

are displayed in Fig 5.

The second-most frequently seen abnormal pressure pattern is seen in the toes. Of the 69

hallux valgus cases in our study, 25 of them showed increased pressures under toes 2-5 and,

occasionally, decreased pressures under the hallux (36%). All 25 of these hallux valgus cases

PAPPI: Personalized analysis of plantar pressure images
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are shown in Fig 6. These abnormalities may indicate a more lateral roll off of the toes in these

hallux valgus patients.

The next-most observed abnormal pressure pattern includes increased peak pressures in

the midfoot. This pattern of abnormal pressures is commonly seen in individuals with pes pla-

nus (i.e. a flat foot arch) [47, 48]. Of the 69 hallux valgus cases in our study, 24 of them showed

this pes planus pressure pattern (35%). These 24 cases are shown in Fig 7.

A fourth group of patients displayed abnormal peak pressures in the forefoot and outside

metatarsal 1. Of the 69 hallux valgus cases studied, 16 presented abnormal peak pressures in

this area (23%). These 16 cases are presented in Fig 8.

Fig 4. Example of PAPPI Output. Given a patient’s peak pressure image (a), it is aligned (b) to the peak pressure image predicted

for this patient by the statistical model (c). The aligned (blue) and predicted (red) images are superimposed (d) to ensure that an

accurate alignment between them has been achieved. Once aligned, single-sample t-statistics are computed at each pixel (e) and

random field theory is used to test for significance (f).

https://doi.org/10.1371/journal.pone.0229685.g004
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A fifth pattern of abnormal peak pressures is also occasionally seen: abnormal peak pres-

sures under the heel. Of the 69 hallux valgus cases studied, 13 of them show this abnormality

pattern (19%). They are shown in Fig 9. In addition to these 5 abnormal peak pressure pat-

terns, 16 of the 69 hallux valgus cases studied showed no peak pressure abnormalities at all

(23%).

To get a further understanding of these abnormal peak pressure patterns, we compared the

presence of each pattern with the foot function scores obtained from the FFI-5pt and MOXFQ

questionnaires. For each abnormality pattern, unpaired t-tests were performed on the foot

function scores between cases with the abnormality pattern and cases without. Over all five

abnormality patterns, only the MOXFQ showed significant differences, and only for these

groups shown in Fig 10. Hallux valgus patients with abnormally high peak pressures under

metatarsal 1 showed significantly lower MOXFQ scores (p = 0.011) than those patients who

Fig 5. Patients with increased MT 1 pressures. Out of the 69 hallux valgus cases we examined, these 26 displayed abnormally high peak pressures under metatarsal 1

(38%).

https://doi.org/10.1371/journal.pone.0229685.g005
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did not show this abnormal pressure pattern. Conversely, patients with abnormal heel pres-

sures showed higher foot pain scores on the MOXFQ than those who did not (p = 0.014).

However, after correcting for multiple comparisons using false discovery rate [49], both results

lose statistical significance (corrected α = 0.002). No significant differences in FFI-5pt scores

were seen.

Similarly, we compared both the radiographic IMA and HVA measurements to the

observed abnormality patterns. Once again, unpaired t-tests were used to compare the angles

between patients with the abnormality pattern and those who do not. Fig 11 show the patterns

that contained significant HVA differences. Hallux valgus patients with abnormal heel pres-

sures showed significantly higher HVA than those who did not. Conversely, patients with no

plantar pressure abnormalities showed significantly lower HVA than those who did. Again,

Fig 6. Patients with abnormal pressures under the toes. Out of the 69 hallux valgus cases we examined, these 25 displayed abnormally high peak pressures under toes

2-5 and, occasionally, abnormally low pressures under the hallux (36%).

https://doi.org/10.1371/journal.pone.0229685.g006
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these results lose statistical significance after correcting for multiple comparisons using false

discovery rate. No significant differences in IMA were seen.

Finally, we evaluated the normality assumption on the residuals in our statistical model

using Kolmogorov-Smirnov tests [50]. Multiple comparison correction was performed using

false discovery rate. These results are shown in Fig 12. Of the 2024 pixels within our model, the

null hypothesis (that our residuals are sampled from the normal distributions used in our

model) was rejected in only 57 of them (2.8%, corrected α = 0.0014). Most pixels that reject

this hypothesis appear around the edges of the heel and the toes. The lone exception is a

4-pixel large area near metatarsal 5 where the peak pressure distributions are skewed towards

higher pressures. Note that none of our results reported abnormally high pressures in this

4-pixel region, suggesting that this skew in the modelled residuals did not impact our analysis.

Fig 7. Patients with pes planus pressure patterns. Out of the 69 hallux valgus cases we examined, these 24 displayed abnormally high peak pressures under the midfoot

(35%). These abnormality patterns have previously been seen in individuals with pes planus [47, 48].

https://doi.org/10.1371/journal.pone.0229685.g007
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Fig 8. Patients with abnormal pressures under MT 2-5. Out of the 69 hallux valgus cases we examined, these 16 displayed abnormal peak pressures under metatarsals

2-5 (23%).

https://doi.org/10.1371/journal.pone.0229685.g008

Fig 9. Patients with abnormal pressures under heel. Out of the 69 hallux valgus cases we examined, these 13 displayed abnormal peak pressures under the heel (19%).

https://doi.org/10.1371/journal.pone.0229685.g009
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Discussion

When examining the abnormal pressure patterns identified by PAPPI, we noted that they

share similarities with results from previous group studies on hallux valgus patients. For

Fig 10. Significant t-test results for Manchester-Oxford Foot Questionnaire Scores (MOXFQ). Hallux valgus patients with abnormally high pressures under

metatarsal 1 showed lower foot pain scores on the MOXFQ than those who did not (p = 0.011). Conversely, patients with abnormal heel pressures showed higher foot

pain scores on the MOXFQ than those who did not (p = 0.014). After performing a false discovery rate correction, both results lose statistical significance (α = 0.002).

https://doi.org/10.1371/journal.pone.0229685.g010

Fig 11. Significant t-test results for hallux valgus angles. Hallux valgus patients with abnormal heel pressures showed higher hallux valgus angles than those who did

not (p = 0.033). Conversely, patients that showed no pressure abnormalities had lower hallux valgus angles than those who did (p = 0.018). After performing a false

discovery rate correction, both results lose statistical significance (α = 0.002).

https://doi.org/10.1371/journal.pone.0229685.g011
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example, the increases in peak pressure under metatarsal 1 were also found in the studies of

Bryant et al. and Wen et al. [13, 16]. Similarly, the pes planus abnormality pattern, with its

increases in midfoot pressures, was also reported previously [15]. Decreases in hallux pressures

and increases in pressures under toes 2-5 would also agree with the work of Galica et al. [12],

while pressure abnormalities seen under metatarsals 2-5 may relate to similar pressure differ-

ences reported in previous studies [12–16]. We hypothesize that the discrepancies in previ-

ously-reported results may simply come down to how many patients in those studies present

with one or more of our identified pressure abnormality patterns. It may also depend on how

many of the selected patients showed no abnormal peak pressures at all, as 23% of our cohort

did. Ultimately, the variability in the results produced by PAPPI may disambiguate the results

seen at the group level in previous studies, thereby highlighting the need and the value of this

personalized analysis technique in evaluating plantar pressures.

Additionally, the abnormal pressure patterns identified by PAPPI suggest some intuitive

interpretations. The pressure abnormalities in the toes may be explained by a more lateral roll-

off from the toes for hallux valgus patients compared to healthy controls. The fact that 36% of

our hallux valgus patients also showed evidence of pes planus, indicated by increased pressure

under the midfoot [51], suggests that individuals with flat feet may be more susceptible to

developing a hallux valgus than the rest of the population (note that body weight was included

in our modelling, so arch height is more likely to explain these results). The results showing

lower MOXFQ scores for patients with higher pressures under metatarsal 1 could indicate that

the pain these patients experience is not yet strong enough for them to begin unloading meta-

tarsal 1. The lower hallux valgus angles for patients that show no plantar pressure abnormali-

ties also suggest that mild hallux valgus cases do not significantly alter one’s gait. Finally,

abnormal pressures in the heel suggest more painful and severe hallux valgus cases, cases that

may require a patient to significantly alter their gait. These interpretations of PAPPI’s results

Fig 12. Normality of residuals in statistical model. P-values from Kolmogorov-Smirnov tests that evaluate the

goodness of fit for the normal distributions over the residuals in our statistical model. Note that only 2.8% of the pixels

in the model reject this hypothesis (corrected α = 0.0014). The image region within the statistical model is outlined in

red.

https://doi.org/10.1371/journal.pone.0229685.g012
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could be used as hypotheses in future studies, thereby also highlighting PAPPI’s value as a per-

sonalized plantar pressure exploration and research tool.

While the current study applies PAPPI to peak pressure images for the evaluation of hallux

valgus patients, there are few limitations to the technique. Mean pressure and pressure-time

integral images could just as equally be used in PAPPI, and other patient groups could be

examined so long as the image registration steps result in accurate footprint alignments. Addi-

tionally, a variety of demographic factors could be included in the statistical modelling (e.g.

footedness, leg length, foot progression angle). PAPPI could also be used in region-of-interest

studies or centre of pressure studies by simply removing the registration steps from the work

flow. Similarly, PAPPI could be extended to plantar pressure videos by incorporating the

dynamic time warping used in STAPP [11]. The general applicability of PAPPI and its exten-

sions to other plantar pressure measures are items we intend to examine in future work. We

have also shared the MATLAB code for PAPPI as supplementary material (S2 File) in order to

allow other groups to use and extend PAPPI as they see fit.

Despite the strengths of PAPPI, we would caution against over-interpretation of the results

presented here. One key reason for exercising caution is the limited number of individuals

(55) included in the statistical model. When building statistical models, it is typically advised

that the model satisfy the one-in-ten rule: that one predictive variable is studied using a mini-

mum of ten events [52]. In this work, our pixel-by-pixel statistical models contain 7 predictive

variables: the five linear regression coefficients for the demographics factors, the bias variable

in the linear regression, and the standard deviation of the residuals. Using the one-in-ten rule,

at least 70 individuals would be desirable for building the statistical model and ensuring rea-

sonable validity. We are currently unable to hit this threshold due to a lack of available data. As

a result, it may be the case that some of the abnormalities observed in the hallux valgus patients

may be due to the fact that the 55 individuals in our statistical model provide an incomplete

view of a true healthy population. There is some evidence that this might be the case since the

abnormalities seen in some foot regions did not correlate with either the foot function scores

or the radiographic measurements. Nevertheless, what we have shown is a proof-of-concept

for the methodology behind PAPPI. A full validation of PAPPI, including an evaluation of the

one-in-ten rule for this framework, is planned as future work.

It should also be noted that PAPPI makes two simplifying assumptions in the statistical

modelling. First, we assume that the relationship between peak pressures and demographic

factors is a linear one. While there is some evidence to support this claim [18, 19], it does not

rule out the possibility that a non-linear regression model could improve upon these results.

Consequently, the use of non-linear models is something we are currently exploring in our

CAD WALK project (http://cadwalk.eu). Second, we assume that the residuals in our linear

regression model follow a normal distribution. While this was generally the case in our study

(see Fig 12), the validity of this assumption is not always guaranteed. We would recommend

that this assumption be checked whenever PAPPI is used. This normal distribution assump-

tion will also affect the amount of the midfoot that gets evaluated. PAPPI currently uses the

plantar surface area of the template as a boundary in order to increase the chances that this

normal distribution assumption holds for all statistical analyses. Unfortunately, this boundary

can omit some of the plantar surface area measured from individuals with pes planus. Never-

theless, PAPPI was able to observe the effects of pes planus through increased midfoot pres-

sures (see Fig 7). Removing this normal distribution assumption, thereby allowing for

modelling of variable surface areas, is also a potential area of future work.

Finally, there are situations where the use of PAPPI may not be advised. If a patient has a

severe foot deformity or pathological condition, the registration algorithms used by PAPPI

may not be able to bring their pressure measurement into alignment with a prediction from
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our statistical model. In this situation, the statistical testing would not compare plantar pres-

sures from similar locations on the foot, resulting in statistics that are not meaningful. To vali-

date PAPPI in our study, we qualitatively confirmed the accuracy of image registrations using

visualizations like those in Fig 4(d) and in S1 File. We recommend that these checks be per-

formed whenever PAPPI is used in order to make sure that the abnormal pressures highlighted

by PAPPI are indeed meaningful statistical outliers. Given successful registration results, vali-

dated normality assumptions, and enough plantar pressure measurements, PAPPI can com-

bine the localized analysis of SPM techniques with the ability to analyze individual plantar

pressure measurements, a combination that has yet to appear in the plantar pressure analysis

literature.

Conclusion

We have introduced PAPPI as a statistical framework for the personalized analysis of plantar

pressure images. PAPPI statistically models plantar pressures and demographics of healthy

controls so that a personalized baseline can be created for an individual’s plantar pressures.

These baseline estimates, combined with Normal distributions on the errors of the estimates,

are then compared to the individual’s real plantar pressures using single-sample t-tests. The

resulting t-statistic maps, thresholded for statistical significance, help highlight where an indi-

vidual’s plantar pressures are abnormal. When applying PAPPI to a cohort of hallux valgus

patients, we observed 5 abnormality patterns, patterns which overlap with those observed in

previous group-level studies. Unlike those previous group studies, PAPPI is able to point out

that hallux valgus patients have rather heterogeneous plantar pressures and suggests that this

heterogeneity may have an impact on both a person’s susceptibility to this foot deformity as

well as the amount of foot pain they experience. While further validation of PAPPI is neces-

sary, its ability to provide an intuitive, quantitative, and personalized plantar pressure analysis

makes it unique as a plantar pressure exploration and research tool.
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39. Piqué-Vidal C, Vila J. A geometric analysis of hallux valgus: correlation with clinical assessment of

severity. Journal of Foot and Ankle Research. 2009; 2(15). https://doi.org/10.1186/1757-1146-2-15

PMID: 19442286

40. Booth BG, Hamarneh G. Consistent information content estimation for diffusion tensor MR images. In:

Proceedings of IEEE International Conference on Healthcare Informatics, Imaging and Systems Biol-

ogy (HISB); 2011. p. 166–173.
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