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Abstract We prove R-bisectoriality and boundedness of the H∞-functional calculus
in L p for all 1 < p < ∞ for the Hodge–Dirac operator associated with Witten
Laplacians on complete Riemannianmanifolds with non-negative Bakry–Emery Ricci
curvature on k-forms.
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1 Introduction

The Witten Laplacian was introduced by Witten [55] as a deformation of the Hodge
Laplacian on a complete Riemannian manifold M and has been subsequently stud-
ied by many authors; see [9,13,15,23,26,29,30,44–46,56] and the references cited
therein. The Witten Laplacian associated with a smooth strictly positive function
ρ : M → R is the operator

Lρ : f �→ � f − ∇ log ρ · ∇ f, f ∈ C∞
c (M),
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where � = ∇∗∇ is the (negative) Laplace-Beltrami operator and ∇ is the gradient.
Identifying functions with 0-forms, we have

Lρ f = (
dρ d

∗
ρ + d∗

ρ dρ

)
f, f ∈ Cc(M), (1.1)

where dρ is the L2-realisation of the exterior derivative d with respect to the measure
m(dx) = ρ(x) dx on M , and d∗

ρ is the adjoint operator. The representation (1.1) can be
used to define theWitten Laplacian for k-forms for k �= 0. In the special case M = R

n

and ρ(x) = exp(− 1
2 |x |2), Lρ corresponds to the Ornstein-Uhlenbeck operator.

Let m(dx) = ρ(x) dx be the weighted volume measure on M . Generalising the
celebrated Meyer inequalities for the Ornstein-Uhlenbeck operator, Bakry [9] proved
boundedness of the Riesz transform∇L− 1/2

ρ on L p(M, m) for all 1 < p < ∞ under a
curvature conditionon M .Anextensionof this result to the corresponding L p-spaces of
k-forms is contained in the same paper. These results have been subsequently extended
into various directions. As a sample of the extensive literature on this topic, wemention
[15,44–46,56] (for the Witten Laplacian); see also [3,4,10,19,37,42,47,49,52,54]
(for the Laplace-Beltrami operator), [17,31,51] (for the Hodge-de Rham Laplacian),
and [11] (for sub-elliptic operators).

The aim of the present paper is to develop Bakry’s result along a different line by
analysing the Hodge–Dirac operator

Dρ = dρ + d∗
ρ

from the point of view of its functional calculus properties. Our main result can be
stated as follows (the relevant definitions are given in the main body of the paper).

Theorem 1.1 If M has non-negative Bakry–Emery Ricci curvature on k-forms for all
1 ≤ k ≤ n, then the Hodge–Dirac operator Dρ is R-bisectorial and admits a bounded
H∞-calculus in L p(�T M, m) for all 1 < p < ∞.

By standard arguments (cf. [8]), the boundedness of the H∞-calculus of Dρ implies
(by considering the operator sgn(Dρ),which is thenwell defined through the functional

calculus) the boundedness of the Riesz transform Dρ L−1/2
ρ = sgn(Dρ). As such our

results may be thought of as a strengthening of those in [9].
In the unweighted case ρ ≡ 1, the second assertion of Theorem 1.1 is essentially

known, although we are not aware of a place where it is formulated explicitly or in
some equivalent form. It can be pieced together from known results as follows: Firstly,
[6, Theorem 5.12] asserts that the unweighted Hodge–Dirac operator D has a bounded
H∞-calculus on the Hardy space H p(�T M), even for 1 ≤ p ≤ ∞, provided the
volume measure has the so-called doubling property. By the Bishop comparison theo-
rem (see [12]), this property is always satisfied if M has non-negative Ricci curvature.
Secondly, for 1 < p < ∞, this Hardy space is subsequently identified in [6, Theo-
rem 8.5] to be the closure in L p(�T M) of the range of D, provided the heat kernel
associated with L satisfies Gaussian bounds on k-forms for all 0 ≤ k ≤ n. When M
has non-negative Ricci curvature, such bounds were proved in [43] for 0-forms, i.e.
for functions on M . The bounds for k-forms then follow, under the curvature assump-
tions in the present paper, via pointwise domination of the heat kernel on k-forms by
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L p-Analysis of the Hodge–Dirac Operator Associated Associated…

the heat kernel for 0-forms (cf. (3.7) below). Modulo the kernel-range decomposition
L p(�T M, m) = N(D) ⊕ R(D) (which follows from R-bisectorialy proved in the
present paper, but could also be established on the basis of other known results), this
gives the boundedness of the H∞-calculus in L p(�T M, m) in the unweighted case.

In the weighted case, this approach cannot be pursued due to the absence of the
doubling property andGaussian bounds. Instead, our approach exploits the fact, proved
in [56], that the non-negativity of the Bakry–Emery Ricci curvature implies, among
other things, square function estimates on k-forms.

The analogue of Theorem 1.1 for the Hodge–Dirac operator associated with the
Ornstein-Uhlenbeck operator has been established, in a more general formulation, in
[48]. The related problem of the L p-boundedness of the H∞-calculus of Hodge–Dirac
operators associated with the Kato square root problem was initiated by the influential
paper [8] and has been studied by many authors [7,24,32–34,51].

The organisation of the paper is as follows: After a brief introduction to R-
(bi)sectorial operators and H∞-calculi in Sect. 2, we introduce the Witten Laplacian
Lρ in Sect. 3 and recall some of its properties. Among others we prove that it is
R-sectorial of angle less than 1

2π and admits a bounded H∞-calculus in L p for
1 < p < ∞. In Sect. 4 this result, together with the identity D2

ρ = Lρ , is used
to prove the corresponding assertions for the Hodge–Dirac operator Dρ .

On some occasions, we will use the notation a � b to signify that there exists a
constant C such that a ≤ Cb. To emphasise the dependence of C on parameters p1,
p2, …, we shall write a �p1,p2,... b. Finally, we write � (respectively, �p1,p2,...) if
both a � b and b � a (respectively, a �p1,p2,... b and b �p1,p2,... a) hold.

2 R-(Bi)sectorial Operators and the H∞-functional Calculus

In this section, we present a brief overview of the various notions from operator theory
used in this paper.

2.1 R-boundedness

Let X and Y be Banach spaces and let (r j ) j≥1 be a sequence of independent
Rademacher variables defined on a probability space (�, P), i.e. P(r j = 1) = P(r j =
− 1) = 1

2 for each j .
A collection of bounded linear operatorsT ⊆ L (X, Y ) is said to be R -bounded if

there exists a C ≥ 0 such that for all M = 1, 2, . . . and all choices of x1, . . . , xM ∈ X
and T1, . . . , TM ∈ T we have

E

∥∥∥
∥∥

M∑

m=1

rm Tm xm

∥∥∥
∥∥

2

≤ C2
E

∥∥∥
∥∥

M∑

m=1

rm xm

∥∥∥
∥∥

2

,

where E denotes the expectation with respect to P. By considering the case M = 1,
one sees that every R-bounded family of operators is uniformly bounded. In Hilbert
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spaces the converse holds, as is easy to see by expanding the square of the norm as an
inner product and using that Ermrn = δmn .

Motivated by certain square function estimates in harmonic analysis, the theory of
R-boundedness was initiated in [18] and has found widespread use in various areas of
analysis, among them parabolic PDE, harmonic analysis and stochastic analysis. We
refer the reader to [21,35,36,40] for detailed accounts.

2.2 Sectorial Operators

For σ ∈ (0, π), we consider the open sector

	+
σ := {z ∈ C : z �= 0, | arg z| < σ }.

A closed densely defined operator (A,D(A)) acting in a complex Banach space X

is said to be sectorial of angle σ ∈ (0, π) if σ(A) ⊆ 	+
σ and the set {λ(λ − A)−1 :

λ /∈ 	+
ϑ } is bounded for all ϑ ∈ (σ, π). The least angle of sectoriality is denoted by

ω+(A). If A is sectorial of angle σ ∈ (0, π) and the set {λ(λ − A)−1 : λ /∈ 	+
ϑ } is

R-bounded for all ϑ ∈ (σ, π), then A is said to be R-sectorial of angle σ . The least
angle of R-sectoriality is denoted by ω+

R (A).

Remark 2.1 We wish to point out that most authors (including [21,36,40]) impose
the additional requirements that A be injective and have dense range. In the setting
considered here, thiswould be inconvenient: already in the special case of theOrnstein-
Uhlenbeck operator, the kernel is non-empty. It is worth noting, however, (see [28,
Proposition 2.1.1(h)]) that a sectorial operator A on a reflexiveBanach space X induces
a direct sum decomposition

X = N(A) ⊕ R(A).

The part of A in R(A) is sectorial and injective and has dense range. Thus, A
decomposes into a trivial part and a part that is sectorial in the more restrictive sense
of [21,36,40]. Since we will be working with L p-spaces in the reflexive range 1 <

p < ∞ the results of [21,36,40] can be applied along this decomposition.

The typical example of a sectorial operator is the realisation of the Laplace operator
� in L p(Rn), 1 ≤ p < ∞, and this operator is R-sectorial if 1 < p < ∞. More
general examples, including the Laplace-Beltrami operator, are discussed in [21,36,
40].

2.3 Bisectorial Operators

The theory of sectorial operators has a bisectorial counterpart. We refer the reader to
[1,5,22] for more information. For 0 < σ < 1

2π , we set 	
−
σ := −	+

σ and

	±
σ := 	+

σ ∪ 	−
σ .

123



L p-Analysis of the Hodge–Dirac Operator Associated Associated…

The set 	±
σ is called the bisector of angle σ . A closed densely defined linear

operator (A,D(A)) acting in a complex Banach space X is called bisectorial of angle

σ if σ(A) ⊆ 	±
σ and the set {λ(λ − A)−1 : λ /∈ 	±

ϑ } is bounded for all ϑ ∈ (σ, 1
2π).

The least angle of bisectoriality is denoted by ω±(A). If A is bisectorial and the set

{λ(λ − A)−1 : λ /∈ 	±
ϑ } is R-bounded for all ϑ ∈ (σ, 1

2π), then A is said to be
R-bisectorial of angle σ ∈ (0, 1

2π). The least angle of R-bisectoriality is denoted by
ω±

R (A).

Remark 2.2 If A is bisectorial (of angle ϑ), then i A is sectorial (of angle 1
2π + ϑ),

and therefore Remark 2.1 applies to bisectorial operators as well.

Typical examples of bisectorial operators are ±i d/ dx in L p(R) and the Hodge–

Dirac operator
(0 ∇∗
∇ 0

)
on L p(Rn) ⊕ L p(Rn; C

n), 1 ≤ p < ∞. These operators are

R-bisectorial if 1 < p < ∞.

2.4 The H∞-Functional Calculus

In a Hilbert space setting, the H∞-functional calculus was introduced in [50]. It was
extended to the more general setting of Banach spaces in [20]. For detailed treatments,
we refer the reader to [21,28,36,40].

Let H∞(	+
σ ) be the space of all bounded holomorphic functions on 	+

σ , and let
H1(	+

σ ) denote the space of all holomorphic functions ψ : 	+
σ → C satisfying

sup
|ν|<σ

∫ ∞

0
|ψ(eiν t)| dt

t
< ∞.

If A is a sectorial operator and ψ is a function in H1(	+
σ ) with 0 < ω+(A) < σ < π ,

we may define the bounded operator ψ(A) on X by the Dunford integral

ψ(A)x := 1

2π i

∫

∂	+
ν

ψ(z)(z − A)−1x dz, x ∈ X,

where ω+(A) < ν < σ and ∂	+
ν is parametrised counter-clockwise. By Cauchy’s

theorem, this definition does not depend on the choice of ν.

A sectorial operator A on X is said to admit a bounded H∞(	+
σ ) -functional

calculus, or a bounded H∞ -calculus of angle σ , if there exists a constant Cσ ≥ 0
such that for all ψ ∈ H1(	+

σ ) ∩ H∞(	+
σ ) and all x ∈ X , we have

‖ψ(A)x‖ ≤ Cσ ‖ψ‖∞‖x‖,

where ‖ψ‖∞ = supz∈	+
σ

|ψ(z)|. The infimumof all anglesσ forwhich such a constant

C exists is denoted by ω+
H∞(A). We say that a sectorial operator A admits a bounded

H∞ -calculus if it admits a bounded H∞(	+
σ )-calculus for some 0 < σ < π .
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Typical examples of operators having a bounded H∞-calculus include the sectorial
operators mentioned in Sect. 2.2. In fact, it requires quite some effort to construct sec-
torial operators without a bounded H∞-calculus, and to this date only rather artificial
constructions of such examples are known.

Replacing the role of sectors by bisectors, the above definitions can be repeated
for bisectorial operators. The examples of bisectorial operators mentioned in Sect. 2.3
have a bounded H∞-calculus.

2.5 R-(bi)sectorial Operators and Bounded H∞-functional Calculi

The following result is a straightforward generalisation of [5, Proposition 8.1] and [1,
Sect. H] (see [36, Chapter 10] for the present formulation):

Proposition 2.3 Suppose that A is an R-bisectorial operator on a Banach space of
finite cotype. Then A2 is R-sectorial, and for each ω ∈ (0, 1

2π) the following assertions
are equivalent:

(1) A admits a bounded H∞(	±
ω )-calculus;

(2) A2 admits a bounded H∞(	+
2ω)-calculus.

3 The Witten Laplacian

Let us begin by introducing some standard notations from differential geometry. For
unexplained terminology, we refer to [27,41].

Throughout this paper, we work on a complete Riemannian manifold (M, g) of
dimension n. The exterior algebra over the tangent bundle T M is denoted by

�T M :=
n⊕

k=0

�k T M.

Smooth sections of �k T M are referred to as k -forms. We set

C∞
c (�T M) :=

n⊕

k=0

C∞
c (�k T M),

whereC∞
c (�k T M) denotes the vector space of smooth, compactly supported k-forms.

The inner product of two k-forms dxi1 ∧ · · · ∧ dxik and dx j1 ∧ · · · ∧ dx jk is defined,
in a coordinate chart (U, x), as

(
dxi1 ∧ · · · ∧ dxik

) · (
dx j1 ∧ · · · ∧ dx jk

) := det
(
gir js

)
r,s,

where (gi j ) is the inverse of the matrix (gi j ) representing g in the chart (U, x). This
definition extends to general k-forms by linearity. For smooth sections ω, η of �T M ,
say ω = ∑n

k=0 ωk and η = ∑n
k=0 ηk , we define
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ω · η :=
n∑

k=0

ωk · ηk,

and we write |ω| := (ω · ω)1/2.

We now fix a strictly positive function ρ ∈ C∞(M) and consider the measure

m (dx) := ρ(x) dx

on M , where dx is the volume measure. For 1 ≤ p < ∞, we define L p(�k T M, m)

to be the Banach space of all measurable k-forms for which the norm

‖ω‖p :=
(∫

M
|ω|p dm

)1/p

is finite, identifying two such forms when they agree m-almost everywhere on M .
Equivalently,we could define this space as the completion ofC∞

c (�k T M)with respect
to the norm ‖ · ‖p. Finally, we define

L p(�T M, m) :=
n⊕

k=0

L p(�k T M, m)

and endow this space with the norm ‖ · ‖p defined by ‖ω‖p = ∑n
k=0 ‖ωk‖p

p, where
ω = ∑n

k=0 ωk for k-formsωk . In the case of p = 2, we will denote the L2(�k T M, m)

inner product of two k-forms ω, η ∈ L2(�k T M, m) by

〈ω, η〉ρ :=
∫

M
ω · η dm.

Here, the subscript ρ indicates the dependence of the inner product on the function ρ.
When considering the L2(�k T M, dx) inner product, we will simply write 〈·, ·〉.

The exterior derivative, defined a priori only on C∞
c (�T M), is denoted by d. Its

restriction as a linear operator from C∞
c (�k T M) to C∞

c (�k+1T M) is denoted by
dk . As a densely defined operator from L2(�k T M, m) to L2(�k+1T M, m), dk is
easily checked to be closable. With slight abuse of notation, its closure will again be
denoted by dk . Its adjoint is well defined as a closed densely defined operator from
L2(�k+1T M, m) to L2(�k T M, m). We will denote this adjoint operator by δk . It
maps C∞

c (�k+1T M) into C∞
c (�k T M).

Remark 3.1 It would perhaps be more accurate to follow the notation used in the
Introduction and denote the operators d, dk and δk by dρ , dρ,k and d∗

ρ,k , respectively,
to bring out their dependence on ρ, but this would unnecessarily burden the notation.

In Lemma 3.3 below, we will state an identity relating δk to the operator d∗
k , the

adjoint of dk with respect to the volume measure dx . For this purpose, we need the
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following definition. Let k ∈ {1, . . . , n}. Let ω be a k-form and X a smooth vector
field. We define ι(X)ω as the (k − 1)-form given by

ι(X)ω (Y1, . . . , Yk−1) = ω (X, Y1, . . . , Yk−1)

for smooth vector fields Y1, . . . , Yk−1. We refer to ι as the contraction on the first entry
with respect to X . The next two lemmas are implicit in [9]; we include proofs for the
reader’s convenience.

Lemma 3.2 For all smooth k-forms ω and (k − 1)-forms ε and compactly supported
smooth functions f on M, we have

ω · (d f ∧ ε) = ι
(
d f ∗) ω · ε,

where d f ∗ is the smooth vector field associated to the 1-form d f by duality with
respect to the Riemannian metric g.

Proof Working in a coordinate chart (U, x), by linearity it suffices to prove the claim
for ω = gdxi1 ∧· · ·∧dxik where 1 ≤ i1 < · · · < ik ≤ n and ε = hdx j1 ∧· · ·∧dx jk−1

where 1 ≤ j1 < · · · < jk−1 ≤ n. In that case, we find

ω · (d f ∧ ε)

= gh
(
dxi1 ∧ · · · ∧ dxik

)
·
(
d f ∧ dx j1 ∧ · · · ∧ dx jk−1

)

=
k∑

r=1

(−1)r+1gh
(
dxir · d f

) (
dxi1 ∧ · · · ∧ d̂xir ∧ · · · ∧ dxik

)

·
(
dx j1 ∧ · · · ∧ dx jk−1

)

= ι
(
d f ∗) ω · ε.

Here, the third line follows by recalling that the inner product can be seen as the
determinant of a matrix, and that we can develop this determinant to the row of d f .
The last equality follows by simply expanding ι(d f ∗)ω. ��
Lemma 3.3 If ω is a k-form, then

δk−1ω = d∗
k−1ω − ι

(
(d log ρ)∗

)
ω,

where d(log ρ)∗ is the smooth vector field associated to the 1-form d(log ρ) by duality
with respect to the Riemannian metric g.

Proof Suppose that ω is a k-form. For any (k − 1)-form ε, we have

〈ε, d∗
k−1ω − ι

(
(d log ρ)∗

)
ω)〉ρ = 〈ρε, d∗

k−1ω〉 − 〈ρε, ι
(
(d log ρ)∗

)
ω〉

= 〈dk−1 (ρε) , ω〉 − 〈ε, ι (ρ (d log ρ)∗
)
ω〉

= 〈ρdk−1ε + dρ ∧ ε, ω〉 − 〈ε, ι ((dρ)∗
)
ω〉

= 〈dk−1ε, ω〉ρ,
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where we used that k-forms are linear over C∞ functions to arrive at the second line.
The last equality follows from the previous lemma. The claim now follows. ��
Definition 3.4 [Witten Laplacian] The Witten Laplacian on k -forms associated with
ρ is the operator Lk defined on C∞

c (�k T M) as

Lk := dk−1δk−1 + δk dk .

In the special case that ρ ≡ 1, we recover the Hodge-de Rham Laplacian

�k = dk−1d∗
k−1 + d∗

k dk .

Using Lemma 3.3 for 1-forms, we obtain the following identity for the Witten Lapla-
cian on functions:

L0 = d∗
0 d0 − ι

(
( d log ρ)∗

)
d0 = �0 − d log ρ · d0 = �0 − ∇ log ρ · ∇,

where the second identity follows by duality via the Riemannian inner product. The
Bochner-Lichnérowicz-Weitzenböck formula (cf. [9, Sect. 5]) asserts that

1

2
�0|ω|2 = ω · �kω − |∇ω|2 − Q̃k(ω, ω), (3.1)

where Q̃k is a quadratic form which depends on the Ricci curvature tensor (see [9,
Sect. 5]). Notice that in [9] there is an additional term 1

k! , which comes from the fact
that we define |∇ω|2 in a similar way as for k-forms, while [9] defines it in the sense
of tensors.

An analogue of (3.1) may be derived for the Witten Laplacian as follows: Firstly,
if we expand the above definitions using Lemma 3.3, we can express Lk in terms of
�k :

Lkω = �kω − dk
(
ι((d log ρ)∗

)
ω) − ι

(
(d log ρ)∗

)
dkω. (3.2)

Obviously, when k = 0 the second term on the right-hand side vanishes, while for
k = n the last termvanishes. Inserting (3.2) into equation (3.1),we obtain the following
variant of the Bochner-Lichnérowicz-Weitzenböck formula:

1

2
L0|ω|2 = ω · Lkω − |∇ω|2 − Qk (ω, ω) , (3.3)

where

Qk (ω, ω)= Q̃k(ω, ω)+1

2
d|ω|2·d log ρ−ω·d (

ι
(
(d log ρ)∗

)
ω

)−ω·ι ((d log ρ)∗
)
dω.

(3.4)
As Q̃k only depends on the Ricci curvature tensor, we see that Qk only depends on the
Ricci curvature tensor and the positive function ρ. One has Q0 = 0, while for k = 1
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one has Q1(ω, ω) = Ric(ω∗, ω∗) − ∇∇ log ρ(ω∗, ω∗) (see [9]). The latter is usually
referred to as the Bakry–Emery Ricci curvature. In what follows, we will refer to Qk

as the Bakry–Emery Ricci curvature on k -forms.

3.1 The Main Hypothesis

We are now ready to state the key assumption, which is a special case of the one in
Bakry [9]:

Hypothesis 3.5 (Non-negative curvature condition) For all k = 1, . . . , n the Bakry–
Emery Ricci curvature on k-forms is non-negative, i.e. we have Qk(ω, ω) ≥ 0 for all
k-forms ω.

We assume non-negativity of the Bakry–Emery Ricci curvature, rather than its
boundedness from below (as done in [9]), as in the case of (negative) lower bounds
one obtains inhomogeneous Riesz estimates only (see [9, Theorem 4.1,5.1]). Also
note (see [9]) that to obtain boundedness of the Riesz transform on k-forms, not only
does one need non-negativity of Qk , but also of Qk−1 and Qk+1.

As an example, we will show what this assumption means in the case of M = R
n .

The result of our computation is likely to be known, but for the reader’s convenience
we provide the details of the computation. Note that, the case k = 1 is much easier
due to the simple coordinate free expression for the Bakry–Emery Ricci curvature Q1.
In particular, we will see that this assumption is satisfied in the case of the Ornstein-
Uhlenbeck operator on R

n .

Example 3.6 Let M = R
n with its usual Euclidean metric and consider a smooth

strictly positive function ρ on R
n . Let k ∈ {1, 2 . . . , n}. We will derive a sufficient

condition on ρ so that Qk(ω, ω) ≥ 0 for all k-forms ω.
Since R

n has zero curvature, Q̃k(ω, ω) = 0 for all k-forms ω. Focussing on the
remaining terms in (3.4), we will first show that Qk has the ‘Pythagorean’ property
described in (3.5) below. Suppose

ω = ω(1) + · · · + ω(N ),

where eachω( j) is of the form f ( j)dxi ( j)
1 ∧· · ·∧dxi ( j)

k with 1 ≤ i ( j)
1 < · · · < i ( j)

k ≤ n,

and write I ( j) = {i ( j)
1 , . . . , i ( j)

k }. If the index sets I (1), . . . , I (N ) are all different, then

Qk(ω, ω) = Qk(ω1, ω1) + · · · + Qk(ωN , ωN ). (3.5)

To keep notations simple, we will prove (3.5) for the case N = 2; the reader will have
no difficulty in generalising the argument to general N .

So let us take k-forms ω1 = f dxi1 ∧ · · · ∧ dxik , where 1 ≤ i1 < · · · < ik ≤ n
and ω2 = gdx j1 ∧ · · · ∧ dx jk , where 1 ≤ j1 < · · · < jk ≤ n and suppose that
(i1, . . . , ik) �= ( j1, . . . , jk). Now consider ω = ω1 +ω2. Since the set of ‘elementary’
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k-forms

{dxi1 ∧ · · · ∧ dxik : 1 ≤ i1 < · · · < ik ≤ n}

is an orthogonal basis for �k T R
n , we have |ω|2 = |ω1|2 + |ω2|2 and consequently,

d|ω|2 · d(log ρ) = d|ω1|2 · d(log ρ) + d|ω2|2 · d(log ρ).

Furthermore, for any smooth vector field X ,

ω · d(ι(X)ω)=ω1 · d(ι(X)ω1)+ ω2 · d(ι(X)ω2)+ ω1 · d(ι(X)ω2)+ ω2 · d(ι(X)ω2)

and

ω · ι(X) dω = ω1 · ι(X) dω1 + ω2 · ι(X) dω2 + ω1 · ι(X) dω2 + ω2 · ι(X) dω1.

Now

ι(X) dω1 =
n∑

i=1

∂i f dxi (X) dxi1 ∧ · · · ∧ dxik

+
n∑

i=1

k∑

l=1

(− 1)l∂i f dxil (X) dxi ∧ dxi1 ∧ · · · ∧ d̂xil ∧ · · · ∧ dxik

and

d(ι(X)ω1) = −
n∑

i=1

k∑

l=1

(− 1)l∂i f dxil (X) dxi ∧ dxi1 ∧ · · · ∧ d̂xil ∧ · · · ∧ dxik .

Consequently,

ι(X) dω1 + d(ι(X)ω1) =
n∑

i=1

∂i f dxi (X) dxi1 ∧ · · · ∧ dxik .

By orthogonality, we thus obtain that

ω2 · d(ι((d log ρ)∗)ω1) + ω2 · ι((d log ρ)∗) dω1

= ω2 · ( d(ι((d log ρ)∗)ω1) + ι((d log ρ)∗) dω1)

=
n∑

i=1

g∂i f dxi ((d log ρ)∗)( dxi1 ∧ · · · ∧ dxik ) · ( dx j1 ∧ · · · ∧ dx jk ) = 0.

Obviously, the same holds if we interchange ω1 and ω2. Putting everything together,
we obtain Qk(ω, ω) = Qk(ω1, ω1) + Qk(ω2, ω2). This concludes the proof of (the
case N = 2 of) (3.5).
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Now consider a k-form ω of the form f dxi1 ∧ · · · ∧ dxik with 1 ≤ i1 < · · · <

ik ≤ n. To simplify notations a bit, we shall suppose that (i1, . . . , ik) = (1, . . . , k).
We compute the three last terms on the right-hand side of (3.4).

As to the first term, from |ω|2 = f 2, we obtain

1

2
d|ω|2 · d(log ρ) =

n∑

i=1

f ∂i f ∂i (log ρ).

Turning to the second term,

ι((d log ρ)∗) dω =
n∑

j=1

((d log ρ)∗) j ι(∂ j ) dω

=
n∑

j=1

n∑

i=k+1

∂i f ∂ j (log ρ)ι(∂ j ) dxi ∧ dx1 ∧ · · · ∧ dxk

=
n∑

i=k+1

∂i f ∂i (log ρ) dx1 ∧ · · · ∧ dxk

+
n∑

i=k+1

k∑

j=1

(−1) j∂i f ∂ j (log ρ) dxi ∧ dx1 ∧ · · · ∧ d̂x j ∧ · · · ∧ dxk .

Hence

ω · ι((d log ρ)∗) dω =
n∑

i=k+1

f ∂i f ∂i (log ρ).

Computing the final term, we have

ι((d log ρ)∗)ω = f
n∑

j=1

((d log ρ)∗) j ι(∂ j ) dx1 ∧ · · · ∧ dxk

= f
k∑

j=1

(− 1) j∂ j (log ρ) dx1 ∧ · · · ∧ d̂x j ∧ · · · ∧ dxk .

From this, it follows that

d(ι((d log ρ)∗)ω) =
k∑

j=1

n∑

i=1

(−1) j∂i ( f ∂ j (log ρ)) dxi ∧ dx1 ∧ · · · ∧ d̂x j ∧ · · · ∧ dxk

=
k∑

j=1

n∑

i=1

(− 1) j∂i f ∂ j (log ρ) dxi ∧ dx1 ∧ · · · ∧ d̂x j ∧ · · · ∧ dxk
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+
k∑

j=1

n∑

i=1

(− 1) j f ∂i∂ j (log ρ) dxi ∧ dx1 ∧ · · · ∧ d̂x j ∧ · · · ∧ dxk .

Noting that only the terms with i = j can contribute a non-zero contribution to the
inner product with ω, we obtain

ω · d(ι((d log ρ)∗)ω) =
k∑

i=1

f ∂i f ∂i (log ρ) + f 2∂2i (log ρ).

Collecting everything, we find that

Qk(ω, ω) = Q̃k(ω, ω) + 1

2
d|ω|2 · d log ρ − ω · d(ι((d log ρ)∗))ω

− ω · ι((d log ρ)∗) dω

= − f 2
k∑

i=1

∂2i (log ρ).

We thus see that Qk(ω, ω) ≥ 0 precisely when
∑k

i=1 ∂2i (log ρ) ≤ 0. Recalling the
simplification for notational purposes, we conclude that Qk(ω, ω) ≥ 0 for all k-forms
ω precisely if for all 1 ≤ i1 < · · · < ik ≤ n it holds that

k∑

r=1

∂2ir (log ρ) ≤ 0.

In the special case ρ(x) = e− 1
2 |x |2 which corresponds to the Ornstein-Uhlenbeck

operator, this condition is clearly satisfied. Indeed, for any j = 1, . . . , n, we have
∂2j (log ρ) = − 1.

We can use the previous example to consider a more general situation.

Example 3.7 Let (M, g) be a complete Riemannian manifold. Suppose the quadratic
form Q̃k depending solely on the Ricci curvature is bounded from below for all 1 ≤
k ≤ n, i.e. there exist constants a1, . . . , an such that for all k-forms ω, we have

Q̃k(ω, ω) ≥ ak |ω|2.

Fix k ∈ {1, . . . , n}. In normal coordinates around a point p ∈ M , the expres-
sion for Qk(ω, ω) at p reduces to the one of the previous examples. Consequently,
Qk(ω, ω) ≥ 0 for any k-form ω if for any p ∈ M and any 1 ≤ i1 < · · · < ik ≤ n
one has

∑k
r=1 ∂2ir (log ρ)(p) ≤ ak , where the last expression is in normal coordinates

around p.
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3.2 The Heat Semigroup Generated by −Lk

We return to the general setting described at the beginning of this section. For each
k = 0, 1, . . . , n the operator Lk is essentially self-adjoint on L2(�k T M, m) (see
[9,54] for the case ρ ≡ 1 and [56]) and satisfies 〈Lkω,ω〉ρ = |dkω|2 + |δk−1ω|2 ≥
0 for all smooth k-forms ω. Consequently, its closure is a self-adjoint operator on
L2(�k T M, m).With slight abuse of notation, we shall denote this closure by Lk again.
By the spectral theorem, −Lk generates a strongly continuous contraction semigroup

Pk
t := e−t Lk , t ≥ 0,

on L2(�k T M, m).
From now on, we assume that Hypothesis 3.5 is satisfied. As was shown in [9,56],

under this assumption, the restriction of (Pk
t )t≥0 to L p(�k T M, m) ∩ L2(�k T M, m)

extends to a strongly continuous contraction semigroup on L p(�k T M, m) for any
p ∈ [1,∞). These extensions are consistent, i.e. the semigroups (Pk

t )t≥0 on
L pi (�k T M, m), i = 1, 2, agreeon the intersection L p1(�k T M, m)∩L p2(�k T M, m).

The infinitesimal generator of the semigroup (Pk
t )t≥0 in L p(�k T M, m) will be

denoted (with slight abuse of notation) by −Lk and its domain by Dp(Lk).
As an operator acting in L2(�k T M, m), Lk is the closure of an operator defined

a priori on C∞
c (�k T M) and therefore the inclusion C∞

c (�k T M) ⊆ D2(Lk) trivially
holds. The definition of the domainDp(Lk) is indirect, however, and based on the fact
that Lk generates a strongly continuous semigroup on L p(�k T M, m). Nevertheless
we have:

Lemma 3.8 C∞
c (�k T M) is contained in Dp(Lk) for all 1 < p < ∞.

Proof We follow the idea of [48, Lemma 4.8]. Pick an arbitrary k-form ω ∈
C∞
c (�k T M, m). Then ω ∈ D2(Lk) (by definition of Lk on L2(�k T M, m)) and also

ω ∈ L p(�k T M, m). Since L p(�k T M, m) is a reflexive Banach space, a standard
result in semigroup theory states that in order to show that ω ∈ Dp(Lk) it suffices to
show that

lim sup
t↓0

1

t
‖Pk

t ω − ω‖p < ∞

(see, e.g. [14]). Note that 1t (Pk
t ω − ω) = − 1

t

∫ t
0 Pk

s Lkω ds in L2(�k T M, m). How-
ever, since Lkω ∈ C∞

c (�k T M) (as both d and δ map C∞
c (�T M) to C∞

c (�T M)),
we can interpret the integral on the right-hand side as a Bochner integral in the Banach
space L p(�k T M, m) (see [35, Chapter 1]). Consequently, we may estimate

1

t
‖Pk

t ω − ω‖p ≤ 1

t

∫ t

0
‖Pk

s Lkω‖p ds ≤ 1

t

∫ t

0
‖Lkω‖p ds = ‖Lkω‖p.

But then lim supt↓0 1
t ‖Pk

t ω − ω‖p ≤ ‖Lkω‖p < ∞. This proves the claim. ��
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By the Stein interpolation theorem [53, Theorem 1 on p.67], for p ∈ (1,∞) and
k = 0, 1, . . . , n the mapping t �→ Pk

t extends analytically to a strongly continuous
L (L p(�k T M, m))-valued mapping z �→ Pk

z defined on the sector 	ωp with ωp =
π
2 (1 − |2/p − 1|). On this sector, the operators Pk

z are contractive. This implies that
Lk is sectorial of angle ωp.

As explained in [56, p. 625], it follows from the general theory of Dirichlet forms
[25] that there exists a Markov process (Xt )t≥0 such that

P0
t f (x) = E

x ( f (Xt )) (3.6)

for all f ∈ C∞
c (M). Here, E

x denotes expectation under the law of the process
(Xt )t≥0 starting almost surely in x ∈ M . Using this together with Hypothesis 3.5 (this
corresponds to the assumption made in [56, Eq. (1.2)], see the explanation preceding
the proof of theorem 3.12), it is then shown in [56, Proposition 2.3] that there exists a
Markov process (Vt )t≥0 such that

Pk
t ω(v) = E

v(ω(Vt ))

for all ω ∈ C∞
c (�k T M). Here, E

v denotes expectation under the law of the process
(Vt )t≥0 starting almost surely in v ∈ M .

As a consequence of (3.6), the operators P0
t are positive, in the sense that they send

non-negative functions to non-negative functions. This, together with the following
lemma, allows us to show that Lk is in fact R-sectorial of angle < 1

2π .

Lemma 3.9 (R-sectoriality via pointwise domination) Let M be a Riemannian man-
ifold of dimension n equipped with a measure m. Let k ∈ {0, 1 . . . , n} and suppose
A and B are sectorial operators of angle < 1

2π on the space L p(M, m) and
L p(�k T M, m), respectively, with 1 ≤ p < ∞. Suppose the bounded analytic C0-
semigroups (St )t≥0 and (Tt )t≥0 generated by −A and −B satisfy the pointwise bound

|Ttω| ≤ C St |ω|

for all ω ∈ L p(�k T M, m) and t ≥ 0, where C is a constant. If the set {(I + s A)−1 :
s > 0} is R-bounded (in particular, if A is R-sectorial), then B is R-sectorial of angle
< 1

2π .

For the proof of this lemma, we need the following result.

Lemma 3.10 Let (M, g) be a Riemannian manifold of dimension n equipped with a
measure m. For all ω1, . . . , ωN ∈ L p(�k T M, m), we have

E

∥
∥∥∥∥

N∑

i=1

riωi

∥
∥∥∥∥

L p(�k T M,m)

�p

∥
∥∥∥∥∥

(
N∑

i=1

|ωi |2
)1/2

∥
∥∥∥∥∥

L p(M,m)

,

where (ri )i is a Rademacher sequence; the implicit constant only depends on p.
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Proof Step 1—First we assume that ω1, . . . , ωN are supported in a single coordi-
nate chart (U, x). With slight abuse of notation, we will identify each ωi |U with the
corresponding C

dk -valued function on U ; here, dk = (n
k

)
is the dimension of �k T U .

Denote by G−1
k the symmetric, positive definite dk × dk-matrix with elements

(G−1
k )i1i2...ik , j1 j2... jk = ( dxi1 ∧ · · · ∧ dxik ) · ( dx j1 ∧ · · · ∧ dx jk ),

where 1 ≤ i1 < · · · < ik ≤ n and 1 ≤ j1 < · · · < jk ≤ n.
Since G−1

k is orthogonally diagonalisable, we have G−1
k (p) = Q(p)D(p)Q(p)T ,

where D(p) is diagonal with positive diagonal entries. Now set

ηi (p) := √
D(p)Q(p)T ωi (p)

for p ∈ U . By using the Kahane-Khintchine inequality,

E

∥
∥∥∥∥

∑

i

riωi

∥
∥∥∥∥

p

L p(�k T M,m)

= E

∥
∥∥∥∥

∑

i

riωi

∥
∥∥∥∥

p

L p(�k T U,m|U )

�p E

∥∥
∥∥∥

∑

i

riωi

∥∥
∥∥∥

p

L2(�k T U,m|U )

=
⎛

⎝E

∫

U

∣∣
∣∣∣

∑

i

riωi

∣∣
∣∣∣

2

dm

⎞

⎠

p/2

=
⎛

⎝E

∫

U

∑

i, j

ri r j (ωi · ω j )G−1
k

dm

⎞

⎠

p/2

=
⎛

⎝E

∫

U

∑

i, j

ri r jω
T
i G−1

k ω j dm

⎞

⎠

p/2

=
⎛

⎝E

∫

U

∑

i, j

ri r jη
T
i η j dm

⎞

⎠

p/2

=
⎛

⎝
∫

U
E

∣
∣∣∣∣

∑

i

riηi

∣
∣∣∣∣

2

dm

⎞

⎠

p/2

= E

∥∥
∥∥∥

∑

i

riηi

∥∥
∥∥∥

p

L2(U,m|U ;Cdk )

.
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Next, by the square function characterisation of Rademacher sums for C
dk -valued

functions,

E

∥∥∥
∥∥

∑

i

riηi

∥∥∥
∥∥

p

L2(U,m|U ;Cdk )

�p

∥∥∥∥
∥∥

(
∑

i

|ηi |2
)1/2

∥∥∥∥
∥∥

p

L p(U,m|U )

=
∥∥∥∥∥
∥

(
∑

i

ηT
i ηi

)1/2
∥∥∥∥∥
∥

p

L p(U,m|U )

=
∥
∥∥∥∥∥

(
∑

i

ωT
i G−1

k ωi

)1/2
∥
∥∥∥∥∥

p

L p(U,m|U )

=
∥∥
∥∥∥∥

(
∑

i

ωi · ωi

)1/2
∥∥
∥∥∥∥

p

L p(U,m|U )

=
∥∥∥
∥∥∥

(
∑

i

|ωi |2
)1/2

∥∥∥
∥∥∥

p

L p(M,m)

.

Step 2—We now turn to the general case. Let (φU )U∈U be a partition of unity
subordinate to a collection of coordinate charts U covering M . Then, using Fubini’s
theorem and the result of Step 1,

E

∥∥
∥∥∥

∑

i

riωi

∥∥
∥∥∥

p

L p(�k T M,m)

= E

∑

U

∫

M
φU

∣∣
∣∣∣

∑

i

riωi

∣∣
∣∣∣

p

dm

= E

∑

U

∥∥∥∥∥

∑

i

riφ
1/p
U ωi

∥∥∥∥∥

p

L p(�k T M,m)

�p

∑

U

∥∥∥∥
∥∥

(
∑

i

|φ1/p
U ωi |2

)1/2
∥∥∥∥
∥∥

p

L p(M,m)

=
∑

U

∫

M

(
∑

i

|φ1/p
U ωi |2

)p/2

dm

=
∑

U

∫

M
φU

(
∑

i

|ωi |2
)p/2

dm

=
∫

M

(
∑

i

|ωi |2
)p/2

dm
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=
∥
∥∥∥∥∥

(
∑

i

|ωi |2
)1/2

∥
∥∥∥∥∥

p

L p(M,m)

.

��
Proof of Lemma 3.9 Upon taking Laplace transforms, the pointwise assumption
implies, for λ ∈ C with Reλ > 0,

|(I + λB)−1ω| ≤ C(I + Re λA)−1|ω|.

Hence if Re λ1, . . .Re λN > 0, then for all ω1, . . . , ωN ∈ L p(�k T M, m) we find, by
Lemma 3.10,

E

∥∥
∥
∥∥

N∑

i=1

ri (I + λi B)−1ωi

∥∥
∥
∥∥

L p(�k T M,m)

�p

∥
∥∥
∥
∥∥

(
N∑

i=1

|(I + λi B)−1ωi |2
)1/2

∥
∥∥
∥
∥∥

L p(M,m)

≤ C

∥
∥∥
∥
∥∥

(
N∑

i=1

[(I + Re λi A)−1|ωi |]2
)1/2

∥
∥∥
∥
∥∥

L p(M,m)

�p CE

∥
∥∥
∥
∥

N∑

i=1

ri (I + λi A)−1|ωi |
∥
∥∥
∥
∥

L p(M,m)

≤ C RE

∥
∥∥
∥∥

N∑

i=1

ri |ωi |
∥
∥∥
∥∥

L p(M,m)

�p C R

∥∥
∥∥
∥

N∑

i=1

|ωi |2
∥∥
∥∥
∥

L p(M,m)

�p C RE

∥
∥
∥∥
∥

N∑

i=1

riωi

∥
∥
∥∥
∥

L p(�k T M,m)

.

Here, R denotes the R-bound of the set {(I + s A)−1 : s > 0}. This gives the R-
boundedness of the set {(I + λB)−1 : Re λ > 0}. A standard Taylor expansion
argument allows us to extend this to the R-boundedness of the set {(I + λB)−1 : λ ∈
	ν} for some ν > 1

2π . ��
We now return to the setting considered at the beginning of this section. Combining

the preceding lemmas, we arrive at the following result.

Proposition 3.11 (R-sectoriality of Lk) Let Hypothesis 3.5 be satisfied. For all 1 <

p < ∞ and k = 0, 1, . . . , n, the operator Lk is R-sectorial on L p(�k T M, m) with
angle ω+

R (Lk) < 1
2π .
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Proof Fix 1 < p < ∞. As we have already noted, −Lk generates a strongly con-
tinuous analytic contraction semigroup on L p(�k T M). By [9,56], these semigroups
satisfy the pointwise bound

|Pk
t ω| ≤ P0

t |ω| (3.7)

for all ω ∈ L p(�k T M, m). Since the semigroup generated by −L0 is positive, L0 is
R-sectorial by [38, Corollary 5.2]. Lemma 3.9 then implies that Lk is R-sectorial, of
angle < 1

2π . ��
We are now ready to state our first main result.

Theorem 3.12 [Bounded H∞-calculus for Lk] Let Hypothesis 3.5 be satisfied. For
all 1 < p < ∞ and all k = 0, 1, . . . , n, the operator Lk has a bounded H∞-calculus
on L p(�k T M, m) of angle < 1

2π .

For k = 0 the proposition is an immediate consequence of [38, Corollary 5.2]; see
[16] for a more detailed quantitative statement. For k = 1, . . . , n this argument cannot
be used and instead we shall apply the square function estimates of [56]. To make
the link between the definitions used in that paper and the ones used here, we need to
make some preliminary remarks.

In [56], the Hodge Laplacian on k-forms is defined as

�̃k := −Tr(∇∇).

This is motivated by the fact that on functions this operator agrees with �k (see [27]).
Similarly in [56] one defines

L̃k := �̃k − Tr(∇(log ρ) ⊗ ∇). (3.8)

Actually, the definition in [56] there differs notationally from (3.8) in that e−ρ is
written for the strictly positive function that we denote by ρ.

Define

Vk := Lk − L̃k

as a linear operator on C∞
c (�k T M) (cf. [56, eq. (1.2)], recalling our convention of

considering the negative Laplacian). We will show in a moment that

ω · Vkω = Qk(ω, ω), (3.9)

so that Hypothesis 3.5 can be rephrased as assuming thatω·Vkω ≥ 0. This corresponds
to the assumption made in [56, Eq. (1.4)]. Thus, the results from [56] may be applied
in the present situation.

Turning to the proof of (3.9), first observe that �̃k satisfies

1

2
�̃0|ω|2 = ω · �̃kω − |∇ω|2,
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from which it follows that

1

2
L̃0|ω|2 = ω · L̃kω − |∇ω|2 − 1

2
Tr(∇(log ρ) ⊗ ∇|ω|2) + ω · Tr(∇(log ρ) ⊗ ∇ω).

This can be simplified to

1

2
L̃0|ω|2 = ω · L̃kω − |∇ω|2. (3.10)

Indeed, in a coordinate chart one has

1

2
Tr(∇(log ρ) ⊗ ∇|ω|2) = 1

2

n∑

j=1

∇ j (log ρ)∇ j |ω|2

=
n∑

j=1

∇ j (log ρ)∇ jω · ω = Tr(∇(log ρ) ⊗ ∇ω) · ω.

Noting that L0 = L̃0, combining (3.3) and (3.10) gives ω · Vkω = Qk(ω, ω) as
desired.

Proof of Theorem 3.12 Fix 1 < p < ∞. By Proposition 3.11, Lk is R-sectorial on
L p(�k T M, m) and ω+

R (Lk) < 1
2π . Pick ϑ ∈ (ω+

R (Lk),
1
2π). The function ψ(z) :=

1√
2

√
ze−√

z belongs to H1(	+
ϑ ) ∩ H∞(	+

ϑ ). Using the substitution t = s2, we see
that

∫ ∞

0
|ψ(t Lk)ω|2 dt

t
=

∫ ∞

0

∣∣
∣∣
∂

∂t

∣
∣∣
t=s

e−t L1/2
k ω

∣∣
∣∣

2

s ds.

Accordingly, by [56, Theorem 5.3],

‖ω − Ek
0ω‖p �p

∥∥
∥∥

∫ ∞

0
|ψ(t Lk)ω|2 dt

t

∥∥
∥∥

p
�p ‖ω‖p (3.11)

for all ω ∈ C∞
c (�k T M), where Ek

0 denotes projection onto the kernel of Lk . By a
routine density argument (using that convergence in the mixed L p(L2)-norm implies
almost everywhere convergence along a suitable subsequence), these inequalities
extend to arbitrary k-forms ω ∈ L p(�k T M, m).

Now it is well known that for an R-sectorial operator, the square function estimate
(3.11) implies the operator having a bounded H∞-calculus of angle at most equal to
its angle of R-sectoriality (see [39] or [36, Chapter 10]). ��

4 The Hodge–Dirac Operator

Throughout this section, we shall assume that Hypothesis 3.5 is in force. Under this
assumption one may check, using the Bochner-Lichnérowicz-Weitzenböck formula
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(3.3) instead of (3.1), that the results in [9, Sect. 5] proved for the special case ρ ≡ 1
carry over to general strictly positive functions ρ ∈ C∞(M). Whenever we refer to
results from [9], we bear this in mind.

Definition 4.1 [Hodge–Dirac operator associated with ρ] TheHodge–Dirac operator
associated with ρ is the linear operator D on C∞

c (�T M) defined by

D := d + δ.

As in Remark 3.1 it would be more accurate to denote this operator by Dρ , but again
we prefer to keep the notation simple.

With respect to the decomposition C∞
c (�T M) = ⊕n

k=0 C∞
c (�k T M), D can be

represented by the (n + 1) × (n + 1)-matrix

D =

⎛

⎜
⎜⎜⎜⎜
⎝

0 δ0
d0 0 δ1

. . .
. . .

. . .

dn−2 0 δn−1
dn−1 0

⎞

⎟
⎟⎟⎟⎟
⎠

,

From d2 = δ2 = 0, it follows that

D2 =
⎛

⎜
⎝

L0
. . .

Ln

⎞

⎟
⎠ =: L .

Lemma 4.2 For all 1 ≤ p < ∞, the operator D is closable as a densely defined
operator on L p(�T M, m).

Proof For the reader’s convenience,we include the easy proof. Let (ωn)n be a sequence
in C∞

c (�T M) and suppose that ωn → 0 and Dωn → η in L p(�T M, m). Decom-
posing along the direct sum, we find that ωk

n → ωk in L p(�k T M, m) for 0 ≤ k ≤ n
and dk−1ω

k−1
n + δkω

k+1
n → ηk in L p(�k T M, m) for 1 ≤ k ≤ n − 1; for k = 0

we have δ0ω
1
n → η0 in L p(�0T M, m) and for k = n we have dn−1ω

n−1
n → ηn in

L p(�nT M, m).
First consider 1 ≤ k ≤ n − 1, and pick φ ∈ C∞

c (�k T M, m). By Hölder’s inequal-
ity,

〈ηk, φ〉ρ = lim
n→∞〈dk−1ω

k−1
n + δkω

k+1
n , φ〉ρ

= lim
n→∞〈ωk−1

n , δk−1φ〉ρ + 〈ωk+1
n , dkφ〉ρ

= 〈0, δk−1φ〉ρ + 〈0, dkφ〉ρ
= 0.

This is justified since both ωk+1
n and φ are compactly supported and therefore belong

to Dq(δk), respectively, Dq(δk−1), with 1
p + 1

q = 1. It follows that ηk = 0 by density.
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The cases k = 0 and k = n are treated similarly. We conclude that ηk = 0 for all k,
so η = 0. ��

With slight abuse of notation, we will denote the closure again by D and write
Dp(D) for its domain in L p(�T M, m). The main result of this section asserts that,
under Hypothesis 3.5, for all 1 < p < ∞ the operator D is R-bisectorial on
L p(�T M, m) and has a bounded H∞-calculus on this space.

Since Lk is sectorial on L p(�k T M, m), 1 < p < ∞, its square root is well defined
and sectorial. Moreover, we have C∞

c (�k T M) ⊆ Dp(Lk) ⊆ Dp(L1/2
k ) (cf. Lemma

3.8).

Lemma 4.3 For all 1 < p < ∞ and k = 0, 1, . . . , n, C∞
c (�k T M) is dense in

Dp(L1/2
k ).

Proof Pick an arbitrary ω ∈ Dp(L1/2
k ). By [2, Proposition 3.8.2], we have ω ∈

Dp((I − Lk)
1/2). From the proof of [9, Corollaries 4.3 and 5.3], we see that there

exists a sequence (ωn)n in C∞
c (�k T M) such that (I + Lk)

1/2ωn → (I + Lk)
1/2ω in

L p(�k T M, m). By [9, Lemmas 4.2 and 5.2], we then find that

‖ωn − ω‖Dp(L1/2
k )

= ‖ωn − ω‖p + ‖L1/2
k (ωn − ω)‖p � ‖(I + Lk)

1/2(ωn − ω)‖p.

By the choice of the sequence ωn , the latter tends to 0 and consequently we have
ωn → ω in Dp(L1/2

k ). ��
The following result is essentially a restatement of [9, Theorem 5.1, Corollary 5.3]

in the presence of non-negative curvature. The results in [9] are stated only for the case
ρ ≡ 1 and given in the form of inequalities for smooth compactly supported k-forms.

Theorem 4.4 (Boundedness of the Riesz transform associated with Lk) Let
Hypothesis 3.5 hold. For all 1 < p < ∞ and k = 0, 1, . . . , n, we have

Dp

(
L1/2

k

)
= Dp(dk + δk−1),

and for all ω in this common domain we have

‖L1/2
k ω‖p �p,k ‖(dk + δk−1)ω‖p.

Here, Dk := dk + δk−1 is the restriction of D as a densely defined operator acting
from L p(�k T M, m) into L p(�T M, m).

Proof We start by showing thatDp(L1/2
k ) ⊆ Dp(dk +δk−1) together with the estimate

‖(dk + δk−1)ω‖p �p,k ‖L1/2
k ω‖p.

Pick an arbitrary ω ∈ Dp(L1/2
k ). As C∞

c (�k T M) is dense in Dp(L1/2
k ) by Lemma

4.3, we can find a sequence (ωi )i of k-forms in this space converging toω inDp(L1/2
k ).
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By [9, Theorem 5.1] we then find, for all i, j ,

‖ωi − ω j‖p + ‖(dk + δk−1)(ωi − ω j )‖p

� ‖ωi − ω j‖p + ‖dkωi − dkω j‖p + ‖δk−1ωi − δk−1ω j‖p

� ‖ωi − ω j‖p + ‖L1/2
k ωi − L1/2

k ω j‖p

which shows that (ωi )i is Cauchy in Dp(dk + δk−1). By the closedness of dk + δk−1,

this sequence converges to some η ∈ Dp(dk +δk−1). Since bothDp(L1/2
k ) andDp(dk +

δk−1) are continuously embedded into L p(�k T M, m), we have ωi → ω and ωi → η

in L p(�k T M, m), and therefore η = ω. This shows thatω ∈ Dp(dk +δk−1). To prove
the estimate, by [9, Theorem 5.1] we obtain, for all i ,

‖(dk + δk−1)ωi‖p ≤ ‖dkωi‖p + ‖δk−1ωi‖p ≤ C p,k‖L1/2
k ωi‖p.

Since ωi → ω both in Dp(L1/2
k ) and Dp(dk + δk−1), it follows that

‖(dk + δk−1)ω‖p ≤ C p,k‖L1/2
k ω‖p.

The reverse inclusion and estimate may be proved in a similar manner. Now one
uses that C∞

c (�k T M) is dense in Dp(dk + δk−1), dk + δk−1 being the closure of its
restriction to C∞

c (�k T M). One furthermore uses the estimate in [9, Corollary 5.3]
which holds (with e = 0 in the notation of [9]) byHypothesis 3.5. Finally, by definition
of the norm on L p(�T M, m), for all ω ∈ C∞

c (�k T M), we have

‖dkω‖p + ‖δk−1ω‖p �p ‖(dk + δk−1)ω‖p (4.1)

noting that dkω ∈ C∞
c (�k+1T M) and δk−1ω ∈ C∞

c (�k−1T M). ��
Our proof of the R-bisectoriality of D will be based on R-gradient bounds to which

we turn next. We begin with a lemma.

Lemma 4.5 For all 1 < p < ∞ and k = 0, 1, . . . , n, we have Dp(L1/2
k ) ⊆ Dp(dk)∩

Dp(δk−1).

Proof Pickω ∈ Dp(L1/2
k ) arbitrarily.AsC∞

c (�k T M) is dense inDp(L1/2
k )byLemma

4.3, we can find a sequence (ωi )i of k-forms in this space converging toω inDp(L1/2
k ).

By [9, Theorem 5.1] we then find, for all i, j ,

‖ωi − ω j‖p + ‖dkωi − dkω j‖p � ‖ωi − ω j‖p + ‖L1/2
k ωi − L1/2

k ω j‖p (4.2)

which shows that (ωi )i is Cauchy in Dp(dk). By the closedness of dk , we then find
that this sequence converges to some η ∈ Dp(dk). As in the proof of Theorem 4.4, we
show that ω = η. It follows that ω ∈ Dp(dk).

This proves the inclusion Dp(L1/2
k ) ⊆ Dp(dk). The inclusion Dp(L1/2

k ) ⊆ Dp(δk)

is proved in the same way. ��
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Thanks to the lemma, the operators

dk L−1/2
k : Rp(L1/2

k ) → Rp(dk), L1/2
k ω �→ dkω

and

δk−1L−1/2
k : Rp(L1/2

k ) → Rp(δk−1), L1/2
k ω �→ δk−1ω

are well defined, and by Theorem 4.4 combined with the equivalence of norms (4.1)
they are in fact L p-bounded.

It also follows from the lemma that the operators dk(I + t2Lk)
−1 and δk−1(I +

t2Lk)
−1 are well defined and L p-bounded for all t ∈ R; indeed, just note that

Dp(Lk) ⊆ Dp(L1/2
k ) ⊆ Dp(dk) ∩ Dp(δk−1). The next proposition asserts that these

operators form an R-bounded family:

Proposition 4.6 (R-gradient bounds) Let Hypothesis 3.5 hold. For all 1 < p < ∞
and k = 0, 1, . . . , n the families of operators

{tdk

(
I + t2Lk

)−1 : t > 0}

and

{tδk−1

(
I + t2Lk

)−1 : t > 0}

are both R-bounded.

Proof We will only prove that the first set is R-bounded. The R-boundedness of the
other set is proved in exactly the same way.

For t > 0, standard functional calculus arguments show that

tdk

(
I + t2Lk

)−1 =
(
dk L−1/2

k

) ((
t2Lk

)1/2 (
I + t2Lk

)−1
)

=
(
dk L−1/2

k

) (
ψ

(
t2Lk

))
,

where ψ(z) =
√

z
1+z . Observe that ψ ∈ H1(	+

ϑ ) ∩ H∞(	+
ϑ ) for any ϑ ∈ (0, 1

2π). By
a result of [39] (see also [40, Chapter 12]) the set

{ψ
(

t2Lk

)
: t > 0}

is R-bounded in L (L p(�k T M, m)). Since dk L−1/2
k is bounded, it follows that the

set

{
(
dk L−1/2

k

) (
ψ

(
t2Lk

))
: t > 0}
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is R-bounded inL (L p(�k T M, m), L p(�k+1T M, m)). This concludes the proof.
��

In order to prove the R-bisectoriality of the Hodge–Dirac operator, we need one
more lemma, which concerns commutativity rules used in the computation of the
resolvents of the Hodge–Dirac operator.

Lemma 4.7 For all 1 ≤ p < ∞, k = 0, 1, . . . , n, and t > 0, the following identities
hold on Dp(dk) and Dp(δk), respectively:

(
I + t2Lk+1

)−1
dk = dk

(
I + t2Lk

)−1

and

(
I + t2Lk

)−1
δk = δk

(
I + t2Lk+1

)−1
.

Similar identities hold with (I + t2Lk+1)
−1 replaced by (I + t2Lk+1)

−1/2 or Pk+1
t .

Proof We will only prove the first identity; the second is proved in a similar manner.
The corresponding results for Pk+1

t can be proved along the same lines, or deduced
from the results for the resolvent using Laplace inversion, and in turn the identities
involving (I + t2Lk+1)

−1/2 follow from this.
For k-forms ω ∈ C∞

c (�k T M, m), we have Pk+1
t dkω = dk Pk

t ω (see [9]). Here,
the right-hand side is well defined as Pk

t ω ∈ Dp(Lk) ⊆ Dp(dk) (which holds by ana-
lyticity of Pk

t ). Now pick ω ∈ Dp(dk) and let ωn ∈ C∞
c (�k T M) be a sequence

converging to ω ∈ Dp(dk). Such a sequence exists by the definition of dk as a
closed operator. Thus ωn → ω and dkωn → dkω in L p(�k T M, m) respectively
L p(�k+1T M, m). The boundedness of Pk

t and Pk+1
t then implies that Pk

t ωn → Pk
t ω

and Pk+1
t dkωn → Pk+1

t dkω in L p(�k T M, m) respectively L p(�k+1T M, m). As
Pk+1

t dkωn = dk Pk
t ωn for every n, and as the left-hand side converges, we obtain

that dk Pk
t ωn converges in L p(�k+1T M, m). The closedness of dk shows that

Pk
t ω ∈ Dp(dk) and that Pk+1

t dkω = dk Pk
t ω.

Taking Laplace transforms on both sides, we obtain

(
t−2 + Lk+1

)−1
dkω = dk

(
t−2 + Lk

)−1
ω

from which one deduces the desired identity. ��
Remark 4.8 Although we will not need it, we point out the following consequence of
the preceding results: for all k = 0, 1, . . . , n we have

Dp(Dk) = Dp(dk) ∩ Dp(δk−1)

with equivalent norms.
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To prove this, we note that Lemma 4.5, combined with the domain equality of
Theorem 4.4, gives the inclusionDp(Dk) ⊆ Dp(dk)∩Dp(δk−1). To prove the reverse
inclusion we argue as follows: For ω ∈ C∞

c (�k T M) we observed in (4.1) that

‖Dkω‖p �p,k ‖dkω‖p + ‖δk−1ω‖p. (4.3)

By Theorem 4.4 and the estimate (4.2) used in the proof of Lemma 4.5 and its analogue
for δk−1, this equivalence of norms extends to arbitrary ω ∈ Dp(L1/2

k ).
Now let ω ∈ Dp(dk)∩Dp(δk−1) be arbitrary. For t > 0 we have Pk

t ω ∈ Dp(Lk) ⊆
Dp(L1/2

k ), so that

‖Dk Pk
t ω‖p �p,k ‖dk Pk

t ω‖p + ‖δk−1Pk
t ω‖p. (4.4)

ByLemma4.7we have ‖dk Pk
t ω‖p = ‖Pk+1

t dkω‖p → ‖dkω‖p as t ↓ 0, and similarly
‖δk−1Pk

t ω‖p → ‖δk−1ω‖p. As a consequence, Pk
t ω → ω in Dp(dk) ∩ Dp(δk−1).

By (4.4) and the closedness of Dk , we then also have ω ∈ Dp(Dk) and Pk
t ω → ω in

Dp(Dk). We conclude that Dp(dk) ∩Dp(δk−1) ⊆ Dp(Dk) and that (4.3) holds for all
ω ∈ Dp(dk) ∩ Dp(δk−1).

We now obtain the following result.

Theorem 4.9 (R-bisectoriality of D) Let Hypothesis 3.5 hold. For all 1 < p < ∞
the Hodge–Dirac operator D is R-bisectorial on L p(�T M, m).

Proof We will start by showing that the set {i t : t ∈ R, t �= 0} is contained in the
resolvent set of D. We will do this by showing that I − i t D has a two-sided bounded
inverse given by

⎛

⎜
⎜⎜
⎜⎜⎜
⎜
⎝

(
I + t2L0

)−1
i tδ0

(
I + t2L1

)−1

i td0
(
I + t2L0

)−1 (
I + t2L1

)−1
i tδ1

(
I + t2L2

)−1

. . .
. . .

. . .

i tdn−2
(
I + t2Ln−2

)−1 (
I + t2Ln−1

)−1
i tδn−1

(
I + t2Ln

)−1

i tdn−1
(
I + t2Ln−1

)−1 (
I + t2Ln

)−1

⎞

⎟
⎟⎟
⎟⎟⎟
⎟
⎠

with zeroes in the remaining entries away from the three main diagonals. By the R-
sectoriality of Lk (Proposition 3.11) and the R-gradient bounds (Proposition 4.6) all
entries are bounded. It only remains to check that this matrix defines a two-sided
inverse of I − i t D. Let us first multiply with I − i t D from the left. It suffices to
compute the three diagonals, as the other elements of the product clearly vanish. It is
easy to see that the k-th diagonal element becomes

t2dk−2δk−2

(
I + t2Lk−1

)−1 +
(

I + t2Lk−1

)−1 + t2δk−1dk−1

(
I + t2Lk−1

)−1

=
(

I + t2Lk−1

) (
I + t2Lk−1

)−1 = I

(4.5)
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using that Lk−1 = − ( dk−2δk−2 + δk−1dk−1); obvious adjustments need to be made
for k = 1 and k = n. For the two other diagonals, it is easy to see that one gets two
terms which cancel.

To make this argument rigorous, note that both dk−2δk−2(I + t2Lk−1)
−1 and

δk−1dk−1(I + t2Lk−1)
−1 are well defined as bounded operators, so that it suffices

to check the computations for ω ∈ C∞
c (�T M). The asserted well-definedness and

boundedness of the first of these operators can be seen by noting that

dk−2δk−2

(
I + t2Lk−1

)−1 = dk−2

(
I + t2Lk−2

)−1/2 ◦ δk−2

(
I + t2Lk−1

)−1/2
,

using Lemma 4.7; the boundedness of the other operator follows similarly.
If we multiply with I − i t D from the right and use Lemma 4.7, we easily see that

the product is again the identity.
It remains to show that the set {i t (i t − D)−1 : t �= 0} = {(i t − D)−1 : t �= 0} is R-

bounded. For this, observe that the diagonal entries are R-boundedby the R-sectoriality
of Lk . The R-boundedness of the other entries follows from the R-gradient bounds
(Proposition 4.6). Since a set of operator matrices is R-bounded precisely when each
entry is R-bounded, we conclude that D is R-bisectorial. ��
Proposition 4.10 Let 1 < p < ∞. Then D2 = L as densely defined closed operators
on L p(�T M, m).

This result may seem obvious by formal computation, but the issue is to rigorously
justify the matrix multiplication involving products of unbounded operators.

Proof It suffices to show thatDp(L) ⊂ Dp(D2) and D2(I + t2L)−1 = L(I + t2L)−1,
or equivalently, (dk−1δk−1 + δk dk)(I + t2Lk)

−1 = Lk(I + t2Lk)
−1 for all k =

0, 1, . . . , n. The rigorous justification of the equivalent identity (4.5) has already been
given in the course of the above proof.

If ω ∈ Dp(D2), then by Lemma 4.7 we find

D2
(

I + t2L
)−1

ω =
(

I + t2L
)−1

D2ω → D2ω, t → 0.

Here we used that (I + t2L)−1 converges to I strongly as t → 0 by the general theory
of sectorial operators. But then we find that

L
(

I + t2L
)−1

ω = D2
(

I + t2L
)−1

ω → D2ω, t → 0.

As (I +t2L)−1ω → ω as t → 0, the closedness of L givesω ∈ D(L) and Lω = D2ω.
��

We are now ready to prove that D has a bounded H∞-calculus on L p(�T M, m).

Theorem 4.11 (Bounded H∞-functional calculus for D) Let Hypothesis 3.5 hold.
For all 1 < p < ∞ the Hodge–Dirac operator D on L p(�T M, m) has a bounded
H∞-calculus on a bisector.
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Proof With all the preparations done, this now follows by combining Proposition 2.3
with Theorems 3.12 and 4.9 and Proposition 4.10. ��
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