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Measuring and utilizing temporal network
dissimilarity

Check for updates

Xiu-Xiu Zhan1, Chuang Liu1, Zhipeng Wang2, Huijuan Wang3, Petter Holme4,5 & Zi-Ke Zhang 6

Quantifying the structural and functional differences of temporal networks remains a fundamental and
challenging problem in the era of big data. Traditional network comparison methods, originally
developed for static networks, often fall short in capturing the intricate interplay between structural
configurations and dynamic temporal patterns inherent in complex systems. This work proposes a
temporal dissimilarity measure for temporal network comparison based on the first arrival distance
distribution and spectral entropy based Jensen-Shannon divergence. Experimental results on both
synthetic and empirical temporal networks show that the proposed measure could discriminate
diverse temporal networks with different structures by capturing various topological and temporal
properties. Moreover, the proposed measure can discern the functional distinctions and is found
effective applications in temporal network classification and spreadability discrimination.

Complex networks are the leading framework for understanding real-world
complex systems, ranging from physical and nervous systems1, biological
and chemical reactions2,3, to financial4 and social platforms5,6. The primary
entities of a complex network are represented by nodes, whereas links
indicate relationships or interactions among nodes. Despite the substantial
advances in expressing and analyzing entities with simplex7, multiple8,9 or
signed10,11 relationships across various systems, the temporal networks,
which characterize the evolutionary process of dynamic systems12–14, call for
an immediate solution to take into account the precise record when each
interaction happens or perishes and analyze the underlying mechanisms
that drive the emergence of such structural differences15.

Network comparison16,17, which aims to provide a principled answer to
the seemingly simple question of how different two networks are, becomes
notably challenging when applied to temporal networks18. One common
approach is to aggregate a temporalnetwork intoa static one (Fig. 1a−c)and
then use static network comparison methodologies19,20. In addition,
Researchers have developed methods to compare snapshots of the same
temporal network21,22. However, reducing temporal networks to static
representations and comparing snapshots neglects the time-ordering of
interactions, which can encapsulate rich andmeaningful information, such
as daily or circadian rhythms12,13. As a consequence, the corresponding
comparison methods18,23–27 that are tailored to static networks, therefore,
cannot fully capture the dynamical patterns. For example, as shown inFig. 1,
two distinctive temporal networks G1 (Fig. 1a) and G2 (Fig. 1b) have the
same static network structure (Fig. 1c). The differences between G1 and G2

will be zero according to static network-based comparison methods.

Therefore, to address this problem, it is essential to take into account
temporal information to discern slight structural differences and crucial
underlying dynamic patterns.

In this work, we explore the first arrival distance (FAD) and spectral
entropy based Jensen-Shannon divergence25,26,28 to characterize the dis-
similarity of temporal networks (Fig. 1d−g). Furthermore, we apply the
derived measure to network classification and spreading dynamics to
demonstrate its validity. To perform the analysis, we use both synthetic
and real-world datasets to evaluate the effectiveness of the proposed
measure in discriminating the differences between temporal networks.
These detailed datasets allow us to examine the impact of time-varying
interactions on diverse temporal paradigms with different network sizes
and time scales.

Results
Temporal dissimilarity characterization
For a given temporal network G = (V, E) in a time window [0, T], V
represents the node set, and E = {(i, j, t), t∈ [0,T], i, j∈V} is the contact set.
An element (i, j, t) indicates that there is a contact between nodes i and j at
time step t. The number of nodes and temporal edges is given by N and C,
respectively. The aggregated static networkGsof a temporal networkG is the
graph with the same node set and an edge between all pairs of nodes that
have at least one temporal edge in E. The number of edges in the aggre-
gated network Gs is denoted byM. In Fig. 1a−c, we show examples of two
temporal networks with five nodes and six timestamps, i.e.,G1 and G2, and
its corresponding aggregated static network.
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A temporal path P in G is a node sequence P ¼ fiνgnþ1
ν¼1, where (iν,

iν+1, t)∈E for all ν∈ [1, n]. The length ofP, l(P), is defined as the number of
contacts in thepath. In thiswork,we shall base our temporal dissimilarity on
the concept of first arrival paths, which can capture both topological and
temporal proximity between nodes and has been shown to be an effective
way to extract temporal network topology28. Given two nodes is and ig, we
suppose the first time when is appears is ts. The first arrival path between
nodes is and ig is the temporal path from is starting at ts that reaches ig the
earliest.Meanwhile,we adopt thefirst arrival distance (FAD) as the lengthof
the first arrival path between two nodes. The temporal paths between nodes
1 and2 inG1 are shown inFig. 1d, i.e.,P1, ⋯ ,P4.According to thedefinition
of the first arrival path, we can obtain that P1 is the first arrival path between
nodes 1 and 2, and thus the FAD value between them is l(P1) = 1.

We define the FADdistribution of node i asHi = {hi(q)}, where hi(q) is
the fraction of nodeswith anFADof q from i. There is exactly onenodewith
an FADof 0 to node i, namely, node i itself, as it can reach itself in zero time.
Consequently, we have hi(0) = 1/N for every node i. To construct the FAD
distribution for each node, we consider q starting from 1. We use lmax to
denote the maximal FAD among all first arrival paths in a temporal net-
work. If everynodepair is reachable throughafirst arrival path in a temporal
network, the dimension ofHi is 1 × lmax. If there are node pairs in a network
that are not reachable, we define themaximal FAD between reachable node
pairs as lmax and the infinite FAD is defined as lmax þ 1. In this case, the
dimension of Hi is 1× ðlmax þ 1Þ. The node specific FAD distribution Hi

contains the connectivity heterogeneity of node i. Subsequently, we
adopt the Jensen-Shannon divergence to characterize the connectivity
heterogeneity of a temporal network based on FAD. The temporal network
node dispersion (TNND) reads:

TNNDðGÞ ¼ JðH1;H2; � � � ;HN Þ
logðlmax þ 1Þ ; ð1Þ

where JðH1;H2; � � � ;HN Þ ¼ 1
N

P
i;qhiðqÞ logðhiðqÞ=uqÞ is the Jensen-

Shannon divergence29. The term μq ¼ 1
N

PN
i¼1 hiðqÞ is the average

over {h1(q), h2(q), ⋯ , hN(q)}. It represents the fraction of source-
destination node pairs with FAD q. The average FAD distribution of a
network, i.e., the probability distribution of the FAD of a random source
destination pair, is given by μ = {μ1, μ2,⋯ , μk,⋯ }. The dimension of μ is
either 1× lmax or 1× ðlmax þ 1Þ. Generally, a larger TNND implies higher
connection diversity among the nodes.

Finally, for two given networksG1 andG2, their temporal dissimilarity,
TD(G1, G2), reads

TDðG1;G2Þ ¼ ω1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
JðμG1

; μG2
Þ

log 2

s

þ ω2j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TNNDðG1Þ

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TNNDðG2Þ

p
j; ð2Þ

where TNND(G1) and TNND(G2) represent the temporal network node
dispersion, and μG1

and μG2
are the average FAD distribution ofG1 andG2,

respectively. And ω1, ω2 ∈ [0, 1] (satisfying ω1 + ω2 = 1) are tunable
parameters tomeasure the contributionof the averageFADdistributionand
TNND difference, respectively. For the sake of simplification, we use
ω1 =ω2 = 0.5 in the following analyses unless otherwise specified. Generally,
TD falls in [0, 1] and the larger TD is, the more dissimilar the networks will
be. For the extreme cases, TD = 1 suggests the two networks are completely
different from each other, and vice versa for TD= 0. The detailed procedure
of computing the dissimilarity between two exampled temporal networks
G1 (Fig. 1a) and G2 (Fig. 1b) is shown in Fig. 1e–g. For the two temporal
networks, G1 and G2, which have the same number of nodes and time-
stamps, the dissimilarity between them, denoted as TD(G1, G2) = 0.0569,
indicates a relatively similar temporal structure. However, the dissimilarity
value between them is zero based on static network comparison methods
because they share the identical aggregated static network structure (Fig. 1c).
Therefore, it is of vital importance and urgent necessity to consider network

Temporal Paths between
nodes

1 and 2 in

Aggregated static network
of and

a)

d)

b) c)

e) FAD matrix FAD distribution

0.1543

0.1061

, 0.0569

Temporal dissimilarity
between and

f) g)

Fig. 1 | Illustration of temporal dissimilarity characterization. a, bVisualization of
two temporal networks G1 and G2, which share the same number of nodes N and
window size T; c The aggregated static network of G1 and G2; d Temporal paths
between nodes 1 and 2 in G1. e−g Illustration of computing the dissimilarity between
G1 and G2. Firstly, we compute the FAD matrix, i.e., the first arrival distance between
node pairs, forG1 andG2, respectively. Here, we denote lmaxðGÞ to be themaximal FAD

among all first arrival paths in temporal network G. When a first arrive path does not
exist between two nodes thus the two nodes are not reachable, the corresponding FAD
is set as lmaxðGÞ þ 1. This happens in G1, and we have lmaxðG1Þ ¼ 2. Secondly, the
FAD distribution Hi of node i and μG1

ðμG2
Þ of the whole network are computed

according to the FAD matrix. Finally, the temporal node dispersion (TNND) and
temporal dissimilarity (TD(G1, G2)) are given based on Eqs. (1) and (2).
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temporality when conducting the comparisons. Regarding computational
complexity, we observe that the algorithm’s primary computational cost
arises from calculating the first arrival paths between nodes, with a com-
plexity of O(T ⋅ (C + N)).

Comparisons on synthetic temporal networks
To verify the validity of the temporal dissimilarity (TD)metric, we perform
comparisons on temporal synthetic networks. The objective is to explore
whether the temporal dissimilarity could distinguish synthetic networks
with different parameters/properties. The activity driven model30 (see
Methods) is used to generate a collection of temporal networks
GðFðaÞ;mÞ ¼ fGtgTt¼0 via the tunable function F(a) and parameterm. The
function F(a) controls the node activity distribution, andm determines the
number of contacts that every active node releases at each discrete time step
t. Larger m shall result in a temporal network with more contacts. The
distribution of F(a) determines the heterogeneity of activation rates of
nodes. In this work, we select two representative types of activity distribu-
tion, i.e., (i) the uniform distribution FðaÞ ¼ 1=amax, for 0≤ a≤ amax ≤ 1;
where a is the active rate of a node and here we choose to use amax ¼ 1, and
(ii) the power-law distribution F(a) = (r− 1)a−r, where r > 2, 0 < a < 1.

Figure 2a shows the comparison results on synthetic temporal
networks generated by the uniform activity distribution for different
values of m. It indicates that the temporal dissimilarity tends to be small
for the networks generated with similar m, suggesting that networks
generated with similar m would be more akin to each other and vice
versa. Comparatively, Fig. 2b shows the temporal dissimilarities of
temporal networks generated by different heterogeneity parameters r. It
shows that the temporal dissimilarity between temporal networks with
closer r are inclined to be smaller, suggesting that networks with closer r
tend to be similar. Here, the network size N is 300, and the time window
size T is 30,000. We can also see similar patterns for different network
sizes, time window sizes, as well as other parameters (see Figs. S1−S6 in
Supplementary Note 1).

In addition to the analysis in the main text, we compare the temporal
dissimilarities between networks derived from uniform and power-law
distributions in Fig. 2c, d and also Figs. S7−S9 in Supplementary Note 1. It
shows that networks generated by the power-law activity distributionwith a
higher r are more similar to those generated by the uniform activity dis-
tribution. This is because a higher r can result in networks with more

homogeneous activity distribution, hence are more similar to the networks
generated by uniform activity distribution. These observations in synthetic
networks suggest TD to be a powerful index to discriminate the synthetic
temporal networks. Meanwhile, the different curves in the figures represent
various combinations of ω1 and ω2, all of which exhibit similar trends: as r
increases, networks generated by a power-law activity distribution become
increasingly similar to those generated by a uniform activity distribution.
This suggests that the dissimilarity between temporal networks is not sig-
nificantly affected by the choice of weights, aligning with findings by
Schieber et al.26 in their comparison of static networks. Consequently, we
adopt ω1 = ω2 = 0.5 for most of the experiments.

Comparisons on real-world temporal networks
Here, we introduce 17 representative temporal networks31–38, including five
email networks and 12 physical contact networks, to further validate the
effectiveness of the proposed method (for details of datasets (Table 1), see
Methods). We begin by comparing a temporal network with its aggregated
static network. Given a static network, different from the temporal network,
we alternatively use the shortest path distance distribution (Hs

i ¼ fhsi ðqÞg,
where hsiðqÞ is denoted as the fraction of nodes that connect to i at shortest
path distance q instead of FAD distribution. We then substitute the FAD
distribution (Hi) by shortest path distance distribution (Hs

i) inEq. (1) for the
aggregated static network, and then update Eq. (2) accordingly (see Sup-
plementary Note 2 for details).

The resultingdissimilaritybetween an empirical temporal network and
its aggregated static network is shown in Fig. 3a. The nonzero value of the
dissimilarity between a temporal network and its static counterpart suggests
that insights and regularitiesmay be overlookedwhenusing a static network
to address time-varying interactions, particularly if the rich temporal
information is ignored.

Comparisonsbasedon temporal nullmodels.We compare each of the
empirical temporal networks with their null models39–41, which are
obtained by specific reshuffled methods (see Methods). For each null
model, topological and temporal correlations are in various degrees of
destruction (Table 2). For EWLSS, TS and URT, all topological correla-
tions are preserved, while the temporal correlations are destroyed to
different extents. For CM and RN, the temporal and topological corre-
lations are both eliminated in varying degrees. Take HS2013 as an

Fig. 2 | Comparisons on synthetic temporal net-
works. a Temporal dissimilarity between synthetic
networks generated by the activity driven model
with node activity following the uniform distribu-
tion and different m. b Temporal dissimilarity TD
between synthetic networks generated by the activ-
ity driven model with node activity following the
power-law distribution and different r. Here, we set
m = 3. Temporal dissimilarity TD between networks
generated by the uniform activity distribution and
those generated by a power-law activity distribution
as a function of r when m is set as 3 and 5 for (c, d),
respectively. Different curves indicate we choose
different combinations of ω1 and ω2 for the calcu-
lation of temporal dissimilarity values. Here, each
dissimilarity value in every sub-figure is the averaged
over 100 realizations. The network size and time
scale are set as N = 300, T = 30,000, respectively.
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example, Fig. 3b shows that the temporal dissimilarities between the
original temporal network and the null models are very small for EWLSS,
while the dissimilarities are much larger for TS,URT, CM and RN. It can
be found that, although TS only eliminates one more number of prop-
erties than EWLSS, it shall lead to higher dissimilarity as it destroys the
temporal information (sorted sequence list on each link) other than static

topology correlation (weight). Comparatively, even though RN discards
the most number of properties, the resulting network does not show
significantly different from that derived by CM, suggesting that degree-
degree correlation may not be a primary factor in a time-varying envir-
onment. Similar patterns can also be found for other datasets in Fig. S11
in Supplementary Note 2.

Table 1 | Basic statistics of real-world temporal networks

Networks N C T M S 〈FAD〉 ± std References Type

EEU1 309 61,046 35,097 3,031 0.04 5.14 ± 1.96 31 email

EEU2 162 46,772 32,340 1,772 0.08 4.34 ± 1.54 31 email

EEU3 89 12,216 8,911 1,506 0.25 5.06 ± 2.34 31 email

EEU4 142 48,141 26,496 1,375 0.08 4.12 ± 1.36 31 email

ME 167 82,876 57,791 3,250 0.23 6.26 ± 2.34 32 email

Gallery1 200 5,943 1,238 714 0.04 6.86 ± 3.31 33 visitor

Gallery2 204 6,709 1,311 739 0.04 10.16 ± 5.74 33 visitor

Gallery3 186 5,691 1,240 615 0.04 7.72 ± 3.62 33 visitor

Gallery4 211 7,409 1,398 563 0.03 9.64 ± 5.24 33 visitor

Gallery5 215 7,634 975 967 0.04 9.96 ± 5.02 33 visitor

Gallery6 305 13,281 1,024 1,847 0.04 9.26 ± 4.29 33 visitor

HS2011 126 28,560 5,609 1,709 0.22 5.61 ± 2.58 34,35 school

HS2012 180 45,047 11,273 2,220 0.14 7.66 ± 3.16 34,35 school

HS2013 327 188,508 7,375 5,818 0.11 8.45 ± 3.30 34,35 school

PS 242 125,773 3,100 8,317 0.29 8.52 ± 3.53 34,35 school

HT2009 113 20,818 5,246 2,196 0.35 3.74 ± 1.82 37 conference

SFHH 403 70,261 3,509 9,565 0.12 6.71 ± 2.40 38 conference

N represents the number of nodes,C represents the total number of contacts (temporal edges),T represents the duration of the observation timewindow,M represents the number of links,S represents the
link density, and 〈FAD〉 ± std represents the average and standard deviation of FAD.M and S are calculated according to the aggregated unweighted static networks G, which can be obtained by
aggregating the contacts between each node pair. 〈FAD〉 is averaged among the nodes that are reachable by first arrival path, regardless of unreachable pairs.

Fig. 3 | Comparisons on real temporal networks. a Dissimilarity between a tem-
poral network and its aggregated static network. b Temporal dissimilarity between
the original data and the temporal networks derived from null models. c Temporal
dissimilarity between the original and perturbed temporal networks. f denotes the
fraction of contacts added (f > 0) or deleted (f < 0) from the original temporal
network (f = 0). Each data point is averaged over 100 realizations. d, e Temporal

dissimilarity between different daily divided sub-networks, e.g., sub1 and sub2
represent the temporal sub-networks of the first and second day, respectively. sub1-2
represents the cumulative temporal sub-network for the first two days. f The ratio of
nodes and edges of different sub-networks. b−f show comparisons on HS2013, for
more results of other networks, see Figs. S11−S13 in Supplementary Note 2.
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Comparisonsbasedonnetworkperturbation andevolution.We then
assess the discriminative ability of the proposed measure by network
perturbation method. That is to say, for a given temporal network, we
randomly add or delete a fraction of contacts (f) and then compare the
differences. Figure 3c shows the temporal dissimilarity between the ori-
ginal data and gradually perturbed network for HS2013. The negative f
corresponds to the deletion process, and vice versa. Large f indicates that
more contacts are added (f > 0) or deleted (f < 0), resulting in larger
differences with respect to the original network (f = 0). Note that, for
networks with many contacts (large C/N in Table 1), the disparity will
even be reduced rather than increased, when adding new contacts (see
Fig. S12 in Supplementary Note 2), suggesting that the ceiling effect42 of
time-varying interactions governs the structural differences of temporal
networks.

Furthermore, we examine the temporal dissimilarity from the per-
spective of network evolution. We divide a temporal network into sub-
networks according to the time order of contacts. TakeHS2013 for instance,
we separate it into five distinct sub-networks where each contains all the
contacts in one single day as the observation window is five days. We then
use sub1 and sub2 to respectively represent the temporal sub-networksof the
first and second day, and sub1-2 to represent the temporal sub-network of
thefirst twodays. Similar symbols are alsodescribed for other sub-networks.
Figure 3d shows that, in general, sub-networks that are closer in time are
more similar to each other, e.g., the temporal dissimilarity between sub1 and
sub2 (TDsub1,sub2) ismuch smaller than those between sub1 and others. This
is further enhanced in Fig. 3e that a sub-network that forms earlier is quite
different from the whole temporal network (sub1-5) which cumulatively
considers all the contacts. It is worth noting that, the short-term temporal
dissimilarities (TDsub1,sub3 = 0.062 and TDsub2,sub3 = 0.059) are relatively
high, indicating that temporal interactions have undergone subtle but
noticeable changes in the short run. Figure 3f shows that, although the
number of nodes (N) are the same in sub1-4 and sub1-5, the number of links
(M) are still slightly different with eachother, which can be further captured
by our proposed temporal dissimilarity mesure (TDsub1-4,sub1-5 = 0.0036
in Fig. 3e).

Applications of temporal network comparison
Temporal network classification. In general, the 17 empirical temporal
networks used in thiswork can be classified into four categories according
to the contact type and venues where they were recorded (see Table 1).
We first construct a dissimilarity matrix where each element represents
the value of temporal dissimilarity of the corresponding two temporal
networks (for the full matrix, see Table S1 in Supplementary Note 2). We
then adoptmultidimensional scalingmap43 to show the distance between
them in a geometric space (Fig. 4a). It shows that the four categories are
spontaneously clustered into two major regions, upper right and lower
left (gray shadow). In general, networks from the same category aremore
likely to be clustered geometrically in the two-dimensional space, except
for EEU3 and ME, two essential email networks yet now are situated in

the left corner with those of schools and conferences. To obtain a deep
understanding, we further study the topological and temporal properties,
including (i) link density; (ii) average node degree in the corresponding
static networks; (iii) coefficient of variation of the node lifespan CV(Δt),
defined as the δΔt/ξΔt where Δt is the time difference of a node’s first and
last occurrence, δ and ξ are respectively the standard deviation andmean;
(iv) fraction of reachable node pairs via temporal paths (~R ¼ R

NðN�1Þ,
where R is the number of reachable node pairs and N is the number of
nodes); and (v) fraction of nodes ~Np in an evolutionary time window
[0, p*T], where p ∈ [0, 1]. Results in Fig. 4b−e show that the networks in
the same region (gray shadowed or not) in Fig. 4a tend to have similar
topological and temporal properties. It is observed that networks clus-
tered in the upper region of Fig. 4a show low link density, average degree,
~R but high CV(Δt), and vice versa for lower region (gray shadowed) in
Fig. 4a. It also clearly shows that EEU3 andME have similar topological
and temporal properties with those of schools and conferences, which is
additionally demonstrated by the evolutionary process of ~Np in Fig. 4f.
This suggests that those two virtually connected data may have coin-
cident interaction patterns with the physical contact networks.

Temporal network spreadability. The spreading process is one of the
most important dynamics of complex networks44. Here, we conduct the
Susceptible-Infected (SI) spreading process in temporal networks45.
Initially, an arbitrary node i is randomly chosen as the infected seed
(I-state), and all the remaining nodes are set as the susceptible individuals
(S-state). The subsequent spreading process shall follow the time step of
the contacts. That is to say, at every time step t∈ [0,T], an I-state nodewill
only infect its neighbors through the temporal contacts exactly existing at
t with infection probability β. The spreading process comes to the end at
time step T. The fraction of final infected nodes is averaged by setting
every node as the seed: hIi ¼ 1

N Σ
N
i¼1Ii, where Ii is the final fraction of

infected nodes by setting i as the seed. As a consequence, the spreadability
difference can be immediately obtained as ΔI = ∣〈IG1〉 − 〈IG2〉∣, where
〈IG1〉 and 〈IG1〉 are respectively the average fraction offinal infected nodes
of two temporal networks G1 and G2. Figure 4g shows the correlation
between ΔI and temporal dissimilarity for every two temporal networks
for β = 1. The Pearson correlation coefficient (PCC) is high at 0.919
(p < 0.0001). That is, in time-varying interaction structures, networks
with close temporal dissimilarity tend to exhibit similar spreadability
when the spreading probability β is equal to 1. Figure 4h further
demonstrates that such correlation is becoming more and more obvious
as β increases. Actually, when β = 1, the SI spreading process becomes
deterministic, while for β < 1, the process is stochastic. Specifically, when
β = 1, an infected node will infect all its neighboring nodes at each time
step. Consequently, the SI spreading tree for β = 1 is identical to the first
arrival tree when a given node is designated as the seed or source, as
illustrated in Fig. S16 of Supplementary Note 2. In contrast, for β < 1, the
spreading trees differ significantly from the first arrival tree, leading to a
relatively lower correlation for β < 1, as shown in Fig. 4h. Despite the SI
model, we also evaluate our method’s performance on other diffusion
processes, such as the Linear Threshold (LT) model, within temporal
networks. Figure S15 in Supplementary Note 2 presents the PCC values
between diffusion differences using the LT model and temporal network
dissimilarity across various time resolutions. All PCC values exceed 0.5,
indicating a strong correlation.

Conclusion
In this work, we propose to use the first arrival distance (FAD) and spectral
entropy based Jensen-Shannon divergence to characterize the temporal
dissimilarity of temporal networks. To evaluate the proposed measure, we
performed comprehensive analyses on both synthetic and empirical tem-
poral networks. Experimental results show that the proposed temporal
dissimilarity can successfully discriminate temporal networks known to
have different structures. Furthermore, its good performance in temporal
network classification and spreadability discrimination suggests that the

Table 2 | Properties that are preserved (✓) and destroyed (✗) in
the corresponding null models, including three topological
properties, degree distribution (DD), static configuration (SC)
and weight correlation (WR), and three temporal properties,
global timestamp sequence (GTS), the sorted contact
sequence list on each link (LCS) and the whole contact
sequence (WCS)

Null models DD SC WR GTS LCS WCS

EWLSS ✓ ✓ ✓ ✓ ✓ ✗

TS ✓ ✓ ✓ ✓ ✗ ✗

URT ✓ ✓ ✓ ✗ ✗ ✗

CM ✓ ✗ ✗ ✓ ✓ ✗

RN ✗ ✗ ✗ ✓ ✓ ✗
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proposedmeasure could be a good indicator of the functional differences of
various temporal networks with various network sizes and time scales by
detecting subtle structural distinctions.

Our temporal dissimilarity method falls under the category of
using graph distances and Jensen-Shannon divergence for network
comparison26. The proposed framework is versatile and can be
applied to various types of networks, including multi-layer and
signed networks. Additionally, it is suitable for comparing different
time slices within the same temporal network. In this case, the FAD
distribution can be substituted with the shortest path distance dis-
tribution within the method for effective comparison. The temporal
aspect of a network allows for the definition of paths28 between nodes
in various ways, thereby capturing different topological structures
when comparing two temporal networks. We initially employed the
shortest path distance28, which identifies the path that requires the
least overall traversal time between nodes i to j, as input for our
framework. However, this approach demonstrated inferior perfor-
mance compared to FAD. Therefore, future work could explore
alternative distance distributions as inputs to our framework to more
effectively characterize the differences between temporal networks.
We limit ourselves to use first arrival path for network comparison as
it has relatively lower computation complexity compared to the other

time respecting paths defined in the literature28. However, first arrival
path only considers the earliest paths between node pairs, a better
definition of time respecting distance between nodes can potentially
offer further improvements for network comparison. In validating
our proposed method, we utilize a fundamental temporal network
generation model, namely, the activity driven model to generate a
temporal network, disregarding memory effects in the interactions46.
However, memory effects are pervasive in real-world systems and can
significantly impact interaction dynamics. Additionally, the temporal
networks used in our experiments are based on the finest temporal
resolution. Using different resolutions may result in varying contact
weights between nodes. Thus, designing a temporal dissimilarity
method that accounts for memory effects and edge weights presents a
compelling direction for future research.

Furthermore, we deem that other network comparison meth-
odologies, such as network portraits19, communicability47, Laplacian
spectral48, persistent homology49, can also be promising methods for
temporal network comparison with appropriate definition, hence
may boost the studies of temporal structures and functions, e.g.,
network topology variation identification50, node similarity
characterization51, vital node identification52, community detection53

and network synchronization54.

�

�

�

Fig. 4 | Temporal network classification and spreading dynamics.
aMultidimensional scaling map of temporal dissimilarity between 17 empirical
temporal networks. The colors represent different categories of networks in Table 1.
b−e Topological and temporal properties of every empirical temporal network.
Gray shadows indicate the same networks at the lower left corner in (a). Link density
(b) and average node degree (c) of the aggregated static networks. Coefficient of

variation of node lifespan (d) and fraction of reachable node pairs via temporal
paths (e) for each temporal network. f The fraction of nodes as the function of
network evolution (p). g Spreadability differences as the function of temporal dis-
similarity between 17 temporal networks. h Pearson correlation between spread-
ability differences and temporal dissimilarity as the function of infection
probability β.
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Methods
Description of empirical temporal networks
The descriptions of the temporal network datasets are provided below, and
the properties of these temporal networks are summarized in Table 1.
Additionally, the FADdistributions of the empirical networks are illustrated
in Fig. S10 of Supplementary Note 2.

Email-EU-core temporal networks (EEU)31 are email contact net-
works between members in a large European research institution. We
have four respective networks, i.e., EEU1, EEU2, EEU3, EEU4, repre-
senting the email contacts between members of four different depart-
ments at the institution.

Manufacturing Email (ME)32 is an email contact network between
individuals in a manufacturing company.

Gallery networks33 are physical proximity networks of visitors of a
science galleryduring69days.A contact represents twovisitors beingwithin
1–1.5m during a 20 s interval. We restrict ourselves to the six first days of
this data set—Gallery1 through Gallery6.

High School datasets34,35 contain proximity events between high school
students in Marseille, France. The datasets are recorded by sensors at 20 s
intervals and contain data in the year of 2011, 2012 and 2013. Therefore, we
can form three different temporal networks, i.e.,High School 2011 (HS2011),
High School 2012 (HS2012), High School 2013 (HS2013).

Primary School (PS)36 contains physical contacts between the children
and teachers in a primary school.

Hypertext 2009 (HT2009)37 contains physical contacts between atten-
dees in the ACM Hypertext 2009 conference.

SFHH conference data (SFHH)38 contains physical contacts between
attendees in the 2009 SFHH conference in Nice, France.

Activity driven model
GivenN nodes, we assign every node iwith an active probability ai, which is
defined as the probability of creating a new contact with another node at
time step t.We assume ai is extracted from an activity distribution F(a), and
thewindowof the network is [0,T]. The temporal network is then generated
by the following steps:
• At each time step t, we assume a network Gt having N nodes and no

contact.
• Every node i is activated with probability ai and connects to m ran-

domly selected nodes. All the new contacts at time step t are added
to Gt.

Following these procedures, we can obtain a temporal
networkGðFðaÞ;mÞ ¼ fGtgTt¼1, inwhichF(a) controls thenode activity and
m determines the number of contacts that every active node releases.

Temporal null models
In this work, we adopt six representative temporal null models as follows
(Table 2 shows the static and temporal properties that are preserved or
destroyed for each null model)39–41:
• The equal-weight Link-sequence shuffled model (EWLSS) The link

time sequences are exchangeduniformly at randombetween linkswith
the same number of contacts.

• Time shuffled model (TS) For all the contacts in a temporal network,
the timestamps are randomly reshuffled.

• Uniformly random times (URT) The timestamp of every contact is
obtained uniformly at random from the given observation time win-
dow [0, T].

• Configuration model (CM) A connected random static network G0 is
generated via the configuration model based on the given degree
sequence of static network aggregated from the corresponding tem-
poral networkG, of which the timestamps are then randomly assigned
on each link of G0.

• Random network (RN) A connected Erdős-Rényi network is
generated based on the given number of nodes and links of the

aggregated static network of a temporal network, of which the
timestamps are then randomly assigned on each link of the obtained
Erdős-Rényi network.

Data availability
All datasets are available via https://github.com/zhanxiuxiu/Measuring-and-
utilizing-temporal-network-dissimilarity and http://www.sociopatterns.org/
datasets/.

Code availability
The codes used in this work can be accessed via: https://github.com/
zhanxiuxiu/Measuring-and-utilizing-temporal-network-dissimilarity.
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