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Abstract
One important problem that needs tackling for wide deployment
of Automatic Speech Recognition (ASR) is the bias in ASR,
i.e., ASRs tend to generate more accurate predictions for cer-
tain speaker groups while making more errors on speech from
other groups. We aim to reduce bias against non-native speak-
ers of Dutch compared to native Dutch speakers. We investi-
gate three different data augmentation techniques - speed and
volume perturbation and pitch shift - to increase the amount
of non-native accented Dutch training data, and use the aug-
mented data for two transfer learning techniques: model fine-
tuning and multi-task learning, to reduce bias in a state-of-the-
art hybrid HMM-DNN Kaldi-based ASR system. Experimental
results on Dutch read speech and human-machine interaction
(HMI) speech showed that although individual data augmenta-
tion techniques did not always yield an improved recognition
performance, the combination of all three did. Importantly, bias
was reduced by more than 18% absolute compared to the base-
line system for read speech when applying pitch shift and multi-
task training, and by more than 7% for HMI speech when apply-
ing all three data augmentation techniques during fine-tuning,
while improving recognition accuracy of both native and non-
native Dutch speech.
Index Terms: Automatic speech recognition, bias, transfer
learning, data augmentation

1. Introduction
Automatic Speech Recognition (ASR) systems aim to deliver
objective transcriptions of speech, and in order to do so they
have to deal with the highly ambiguous nature and variability
of human speech. However, state-of-the-art (SOTA) ASR sys-
tems do not have an equally good recognition accuracy for every
speaker: Recent evidence has shown that speech variability due
to, e.g., gender [1, 2, 3, 4, 5], age [6, 5], speech impairment
[3], regional accents [2, 5], racial disparity [7], and non-native
accents [5, 4], [8] lead to a degradation in ASR performance.
There are many reasons for this bias to occur, e.g., imbalanced
training data sets, a mismatch between the test data and the
training data, vocal characteristics of certain speaker groups,
and as recently shown by [5], specific architectures and algo-
rithms used during ASR system development lead to different
types of bias. Bias can occur at the level of the language model
(LM) due to a mismatch of the speaker’s use of words or gram-
matical structures compared with the LM training data, and at
the level of the Acoustic Model (AM) due to a mismatch be-
tween the speaker’s pronunciation or articulation with the AM
training data (e.g., [5]). For instance, for non-native speakers,
the speaker’s mother tongue typically affects the pronunciation
of the non-native language [9]. This deviance in pronunciation
of specific sounds causes the speech recognition system’s accu-
racy to decrease, leading to a bias against non-native listeners.

In this work, we build a Dutch SOTA ASR system and aim
to reduce the bias, i.e., reduce the performance gap between
non-native and native speech while not hurting performance
on native speech too much. To achieve this, we focus on two
approaches: increasing the amount of non-native speech data
for training and using the available data more effectively while
training. To increase the amount of training data, several data
augmentation techniques applied in the time and/or frequency
domain have been tried and proven to be successful for ASR, in-
cluding for the recognition accuracy of foreign accented speech
[10]. In this paper, we use speed perturbation [11], volume per-
turbation [12] and pitch shift [13] to augment the speech data.
Next, to use the data more effectively when only limited train-
ing data of the target speech is available (as in our case only
limited non-native accented Dutch speech is available), trans-
fer learning can be used to use the available data in a more ef-
fective way. Transfer learning aims to transfer the knowledge
obtained from the source or in-domain data, in our case native
Dutch, to learn the unknown characteristics of the target or out-
of-domain data, i.e., non-native accented Dutch. We investigate
two types of transfer learning: fine-tuning and multi-task learn-
ing, both of which have proven effective in reducing the word
error rate (WER) of the target speech when compared with mod-
els trained with source data only [14, 15]. Fine-tuning, though,
might result in a deterioration of the recognition performance of
the source speech as it is not concerned with the source speech.
Multitask learning, on the other hand, aims to achieve good per-
formance on both the source and target speech.

We analyse the ASR recognition performance of native
and non-native speech and the bias for both read and spon-
taneous human-machine interaction (HMI) speech. Based on
the previous research in [5], which showed that a hybrid
Time-Delay Neural Network Factorisation (TDNNF)-Hidden
Markov Model (HMM) showed a smaller bias against non-
native speaker groups in comparison to End-to-End (E2E) mod-
els, we aim to reduce bias against non-native accented Dutch
using the TDNNF-HMM-based ASR model and compare the
three data augmentation techniques and two transfer learning
techniques outlined above. This research complements our re-
cent work in which we investigated reducing bias against non-
native speech in E2E models using voice conversion (VC) and
speed perturbation based data augmentation techniques and us-
ing fine-tuning and domain-adversarial training (DAT). The re-
sults of the current paper contribute to the study on the fairness
of inclusive ASR systems by demonstrating that data augmen-
tation and more effective use of the available training data can
reduce bias against non-native Dutch speakers.

2. Methodology
This section discusses the database details (Section 2.1) and
the baseline hybrid TDNNF-HMM model (Section 2.2). The
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three data augmentation techniques (Section 2.3) and the train-
ing techniques (Section 2.4) and the experiments and evaluation
method (Section 2.5) are also described here.

2.1. Corpora

2.1.1. The spoken Dutch corpus (CGN)

The CGN is a dataset of contemporary standard Dutch as spo-
ken by adults (age 18-approximately 60 years) in the Nether-
lands and Flanders [16]. It covers different speaking styles
including read, broadcast news (BN), and conversational tele-
phone speech (CTS). The size of the corpus is close to ten mil-
lion words (about 1,000 hours of speech), two thirds of which
originates from the Netherlands and one third from Flanders
[16]. Only the data from the Netherlands was used in our study.
We followed the standard training and test partitions as defined
by [17]. The total amount of training data is 423 hours of stan-
dard Dutch speech data after segmenting the audio files to clips
of at least 6 seconds in duration, and is denoted by Ctrain.

2.1.2. Jasmin-CGN corpus

The Jasmin-CGN corpus is an extension of the CGN corpus
[18]. It consists of read speech and Human-Machine Interaction
(HMI) speech spoken by native Dutch speakers (children: 7-11
years, teenagers: 12-16 years, older adults: above 65 years) and
non-native Dutch speakers (children: 7-16 years, adults: 18-60
years) with a wide range of native languages (children: 7-16
years, adults: 18-60 years).

The training set from Jasmin-CGN contains 36.12 hours of
speech data, and is denoted by Jtrain. The Jtrain is divided
into 26.73 hours read speech and 9.39 hours HMI speech. The
training data has 14.1 hours of non-native speech (10.42 hours
read data and 3.69 hours HMI data) and 22.02 hours of native
speech (16.31 hours read data and 5.70 hours HMI data). We
defined four test sets with the number of female and male speak-
ers identical in all test-sets. These test sets are the same as used
in our recent work [19]:

• RD: Native Dutch read speech data: 1.45 hours.

• RNN : Non-native Dutch read speech data: 1.63 hours.

• HD: Native Dutch HMI speech data: 0.68 hours.

• HNN : Non-native Dutch HMI data: 0.36 hours.

2.2. Baseline state-of-the-art ASR system for Dutch

The baseline ASR model is a hybrid DNN-HMM system with
TDNNF architecture as in Figure 1. The training is done using
the Kaldi tool-kit [20] and the parameters are similar as in [5].
The AM consists of 12 TDNNF layers of dimension 1024, and
was trained with the lattice-free maximum mutual information
(LF-MMI) criterion for 4 epochs. 100-dimensional i-vectors
were appended to the high resolution MFCC input features for
speaker adaptation purpose. Context-dependent phone align-
ment labels used for training the AM were obtained by using a
GMM-HMM trained beforehand with the same training data as
that for the TDNNF. The LM trained is a tri-gram model. The
baseline model was trained with Ctrain data as mentioned in
Section 2.1.1.

2.3. Data augmentation techniques

The three different data augmentation techniques investigated
in the paper are discussed next.

Figure 1: The TDNNF-architecture.

2.3.1. Speed Perturbation

Speed Perturbation re-scales the speed of the speech recordings
in the time domain with a perturbation factor that changes both
the audio duration and the spectral envelope [21]. The perturba-
tion factors we applied were {0.9, 1, 1.1}. The standard Kaldi
speed perturbation script [22] is used.

2.3.2. Volume Perturbation

Similar to speed perturbation, volume perturbation [21] re-
scales the volume of the audio segments. The same rescaling
factors as used for speed perturbation are applied for volume
perturbation, {0.9, 1, 1.1}. We used the standard Kaldi script
that modifies the wav.scp to perturb the volume [23].

2.3.3. Pitch Shift

The pitch shift technique allows the original pitch of a sound to
be raised or lowered [24]. In our work, which uses the librosa
function librosa.effects.pitch shift where the pitches of au-
dio snippets are shifted by {±2} semitones [25]. A semitone
corresponds to multiplying the number of Hertz (Hz) by 2

1
2 .

2.4. Transfer Learning

Two transfer learning techniques were investigated and com-
pared. Later, these are also compared with the standard training
method (referred to as in-domain training).

2.4.1. Fine-tuning

Fine-tuning takes the initial baseline model trained on Ctrain,
and then trains the new model with a target data set (see Sec-
tion 2.5). Layer transfer was employed during training, where
the parameters of the layers are transferred from the baseline
to be the initial values of the new model. The model is trained
for four epochs, which is the same as the number of epochs
used in the baseline. During fine-tuning, the baseline Gaussian
Mixture Model (GMM), i-vector extractor, tree, and TDNNF
architecture are used, while the target training data and a fused
tri-gram language model in which the words and their combina-
tions from both Jamin-CGN and CGN are used, as Jasmin-CGN
contains phones and words unseen in CGN.

2.4.2. Multi-task Learning

During multi-task learning, the system model is trained for mul-
tiple tasks using shared information, which allows the model to
exploit similarities and differences between the two tasks to cre-
ate a model that is better able to generalise than models trained
on a single task. Multitask learning starts from scratch by learn-
ing from CGN and Jasmin-CGN in parallel.
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Figure 2 shows how multi-task learning is implemented in
the AM in our TDNNF-architecture. During multi-task learn-
ing, the model is trained for recognition of the speech in CGN
and recognition of the speech in Jasmin-CGN. The acoustic fea-
tures and the acoustic model are shared except for the last hid-
den layer of the neural network in the AM. The features include
100-dimensional i-vectors extracted from the global i-vector ex-
tractor trained on both CGN and Jasmin-CGN and appended to
the MFCC features. The AM is the TDNNF model and the LM
is the fused tri-gram model in which the text and words from
both Jamin-CGN and CGN are used.

Figure 2: Multi-task learning as implemented in the TDNNF-
architecture for acoustic modeling.

2.5. Experimental Setup and Evaluation

In our experiments only the native Dutch speech CGN Ctrain

data was used to train the initial baseline model. Thereafter, to
investigate the influence of adding the Jasmin-CGN data and the
different types of augmented data on the training procedures,
the Jasmin-CGN data and the augmented data were added to
the training procedures in five ways:

• a) the original Jtrain speech data;

• b) a) + speed perturbed speech from Jtrain;

• c) a) + volume perturbed speech from Jtrain;

• d) a) + pitch shifted speech from Jtrain;

• e) a) + b) + c) + d)

Both the native and non-native accented speech from Jasmin-
CGN is used for speech, volume and pitch shift augmentation.
Thereafter the training is carried out in three ways as below for
each of the above five data combinations:

• In-domain training: The model is trained on the CGN
Ctrain and the Jasmin-CGN and the augmented data si-
multaneously [i.e., data a) to e)].

• Fine-tuning: The baseline model trained on Ctrain is
fine-tuned with the Jasmin-CGN data and the augmented
data [i.e., data a) to e)].

• Multi-Task Learning: The model is trained on the CGN
Ctrain and the Jasmin-CGN and the augmented data si-
multaneously [i.e., data a) to e)]. The last hidden layer
and output layer are independent per data set.

All 15 models are evaluated on the four defined test sets of
Jasmin-CGN in terms of the word error rate (WER). We also
use bias to measure the fairness of the system. Here, Bias is
defined as the absolute difference in WER between the non-
native Dutch speakers and the native Dutch speakers, e.g. B =
|WERNN −WERD|, and is calculated for read speech (BR)
and HMI (BH ) speech separately.

3. Experimental Results
This Section shows the results for the baseline and three training
methods with the five different data augmented training sets.

3.1. Baseline results

Table 1 shows the recognition results in WER for the native and
non-native accented speech and the bias against the non-native
accented speech, for read and HMI speech separately. Row 1
of Table 1 shows the recognition and bias results of the baseline
model, which was only trained on the CGN native speech, for
read speech and conversational speech. Not surprisingly, read
speech is better recognised than conversational speech. At the
same time, the bias against non-native listeners is about twice
as large for read speech compared to that for conversational
speech. While the recognition performance for read and HMI
speech for the non-native accented speech was relatively simi-
lar, this was not the case for the native speech: the larger bias in
read speech is primarily due to a much better recognition result
for native read speech compared to native HMI speech.

3.2. Data augmentation and transfer learning results

As shown in Table 1 for in-domain training the results on adding
Jasmin-CGN and the perturbed data with different augmenta-
tion techniques, decreases the WER and bias significantly as
compared to the baseline. Within the in-domain experiments,
we observe that the different data augmentation techniques
when applied alone give only little improvement in recogni-
tion performance for both the native and non-native speakers
(and a small deterioration when only volume perturbed data
is applied). Applying all three data augmentation techniques,
however, leads to a reduction in WER and the lowest WER for
both the native and the non-native speaker groups for both read
speech and HMI speech. The lowest bias for HMI is obtained
when using all three data augmentation techniques, while for
read speech the lowest bias was observed when volume per-
turbed data was added, but this is due to an increase in WER for
the native speech which was larger than the increase in WER for
the non-native accented speech. In general, read speech is better
recognised that HMI speech, which is true for all speaker groups
irrespective of the data augmentation techniques applied.

When fine-tuning is applied we observe a similar trend as
for in-domain training. That is, different results are observed
when different data augmentation techniques are applied alone
(with an increase in WER when only volume perturbed data
is applied ) with the best recognition results obtained when all
three data augmentation techniques are applied for both native
and non-native speakers and both read and HMI speech. Also,
with fine-tuning, the smallest bias for read speech was observed
when only the Jasmin data was used, but again at the cost of
high WERs for both speaker groups and both types of speech.
For HMI speech, the smallest bias was observed when all aug-
mented data was added during fine-tuning.

For multi-task training, the smallest bias for read speech
is also the smallest bias overall, which is obtained with
pitch-shifted Jasmin-CGN data. The smallest bias in HMI
speech comes from training with speed-perturbed Jasmin-CGN.
Among the techniques employed, fine-tuning and multi-task
learning reduce the bias more than simply including the target
non-native speech as in-domain data. By observing the best
performance of each method, we can conclude that data aug-
mentation contributed to the reduction of both WER and bias,
and among all the data augmentation techniques adopted, pitch
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Table 1: WERs(%) on the read and HMI native/non-native speech of the Jasmin-CGN data for the models trained with different training
methods (in-domain, fine-tuning, and multi-task) and different types of augmented speech data. SP refers to speed perturbation; VP
refers to volume perturbation; PS refers to pitch shift. Column-wise, the lowest WER and bias are denoted in bold.

Method Datasets Word Error Rate (WER %) Bias

RD RNN HD HNN BR BH

Baseline Ctrain 20.80 48.04 30.90 44.57 27.24 13.67

in-domain Ctrain, Jtrain 17.97 31.65 28.8 37.95 13.68 9.15
Ctrain, Jtrain + SP 17.55 30.13 29.47 36.65 12.58 7.18
Ctrain, Jtrain + V P 20.49 32.54 29.9 37.65 12.05 7.75
Ctrain, Jtrain + PS 17.26 30.04 28.59 36.33 12.78 7.74
Ctrain, Jtrain + SP + V P + PS 16.82 30.04 27.95 34.66 13.22 6.71

fine-tune Jtrain 15.61 31.09 45.24 53.73 15.48 8.48
Jtrain + SP 15.31 30.89 45.1 52.81 15.58 7.71
Jtrain + V P 15.66 31.45 46.46 53.96 15.79 7.5
Jtrain + PS 13.85 30.3 47.06 54.55 16.45 7.49
Jtrain + SP + V P + PS 12.64 29.91 43.79 50.1 17.27 6.31

multi-task Ctrain, Jtrain 21.11 34.8 29.05 35.98 13.69 6.93
Ctrain, Jtrain + SP 20.03 34.05 28.67 35.37 14.02 6.7
Ctrain, Jtrain + V P 20.84 33.73 29.01 35.86 12.89 6.85
Ctrain, Jtrain + PS 18.79 27.88 28.29 35.06 9.09 6.77
Ctrain, Jtrain + SP + V P + PS 17.05 27.87 28.03 34.99 10.82 6.96

shift is proven the most effective in most cases.
Furthermore, importantly, the lowest bias does not neces-

sarily correspond to the lowest WER: for read speech, the model
with the lowest bias has fairly good WERs (but not the low-
est WERs), while for HMI speech, the WERs of the model
with the lowest bias are relatively high. Looking at the WERs
across different methods, we can see that multi-task learning
shows the lowest bias for most datasets compared to in-domain
training and fine-tuning. Multi-task learning maintains the bal-
ance between the WER and the bias the best among the meth-
ods adopted, but at the cost of slightly higher WERs on native
speakers compared with fine-tuning. Overall, multi-task learn-
ing with pitch-shifted data seem to be the best choice if we aim
to reduce the bias without causing performance degradation on
native speakers. In all experiments we observed better WERs
for read speech than for HMI speech. On the one hand, this is
because of the typically clearer articulation of read speech com-
pared to the more spontaneous HMI speech. On the other hand,
we had less HMI than read speech data available.

4. General Discussion and Conclusions
In this paper, we have shown that bias against non-native speak-
ers can be reduced substantially using a combination of different
techniques. The results show that the application of data aug-
mentation techniques reduces bias against non-native-accented
speech of HMI speech more than it reduces the bias for read
speech. This suggests that the recognition accuracy of the ASR
system is more sensitive to the change HMI speech data. Speech
of native adults is recognised better than that of non-native
adults, but augmented non-native speech data makes the model
fit the non-native side more, hence a performance degrade on
native speech recognition in some cases.

Among the data augmentation techniques adopted, pitch
shift contributed the most to the overall reduction in bias. A
possible explanation could be that, compared to speaking vol-
ume and speaking speed, the pitch difference between native

and non-native speakers is bigger and gives more variation to
the speech data within a dataset. Another noticeable finding ob-
served from the table is that combining all data augmentation
techniques does not necessarily lead to better performance in
terms of bias reduction, as sometimes training with only one
set of augmented data has lower bias. As for the effect of
transfer learning, the results show that the application of fine-
tuning makes the model work better for read speech type of data
than the HMI data. One possible reason could be that the read
speech is more in quantity than HMI speech. Hence, on fine-
tuning, the model is biased to read speech than the HMI speech.
Hence, fine-tuning also requires that the data requirements are
matched. On the other hand, multi-task learning has managed to
avoid this kind of performance degradation. Furthermore, mul-
titask learning enforces more fairness across native/non-native
speaker groups than fine-tuning. Possible future work like mak-
ing the hidden layers more task-specific could be beneficial
when speech characteristics are very different.

In our recent work with E2E models we used voice con-
version and speed perturbation based augmentation methods
to reduce bias against non-native speech [19]. Although our
previous work on quantifying bias against non-native accented
Dutch showed better recognition performance of the TDNNF-
HMM models compared to the E2E models, comparing the re-
sults on reducing bias in E2E [19] with those reported here, we
observe that adding Jasmin data to the training data, reduces
the WERs for E2E more than the hybrid models for in-domain
training and fine-tuning with the respective augmentation tech-
niques. Specifically, for the fine-tuning experiment with Jtrain,
the E2E model achieved a WER of 5.00% on RD , 20.42% on
RNN , 21.27% on HD , and 35.26% on HNN . Thus, the E2E
models show stronger modeling potential, although at the ex-
pense of a usually higher bias than that of the hybrid model.
To further study bias reduction for E2E and hybrid models, we
plan to perform a detailed evaluation of the two using similar
augmentation techniques.
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