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According to Table 3, NRI and WavenetNRI outperformed all other baselines,
and NRI performed slightly better than WavenetNRI on simulation datasets in
both recall and precision of group mitre ΔGW . While on pedestrian datasets,
GD-GAN [5] outperformed all other methods in both measures. The proposed
WavenetNRI could outperform the original NRI [7] and ATTR [16] as the two
classification-based baselines.

Concerning the impact of the population size (comparing Simulation I and
Simulation II ), we observed that by increasing the number of particles in simula-
tion datasets, both precision and recall were decreased for all methods, except for
NRI [7]. The same behavior was observed regarding the probability of non-group
interactions (comparing Simulation I and Simulation III ).

Furthermore, we calculated the average pairwise Euclidean distance between
the group and non-group members of the two datasets. Our investigation of
the differences between these two types of datasets showed that in the pedes-
trian datasets, the pairwise average Euclidean distances between group members
(0.950 m) were much lower than those from different groups (4.698 m), i.e., the
pedestrians were closer to their group members than other groups. While in the
group-interaction simulation datasets, the differences between the Euclidean dis-
tances of the same groups (1.039 m) and that of different groups (1.725 m) were
not significant.

Thus, distinguishing between group members and non-group members is
more challenging in the simulation datasets compared with pedestrian datasets.
Moreover, the fact that baselines do not generalize to simulation datasets sug-
gests that available research might not be applicable to real-world scenarios
where there is a chance for cross-group interactions.

Table 3. Experimental results of recall (R) and precision (P) based on Group Mitre
ΔGW . The best average values of recall and precision are highlighted with bold text.

Simulation I Simulation II Simulation III zara01 ETH Hotel

R P R P R P R P R P R P

ATTR [16] 0.579
±0.017

0.481
±0.020

0.512
±0.009

0.388
±0.015

0.511
±0.006

0.386
±0.005

0.889
±0.076

0.879
±0.077

0.745
±0.067

0.746
±0.087

0.833
±0.072

0.841
±0.068

S-SVM [13] 0.664
±0.075

0.600
±0.067

0.529
±0.039

0.413
±0.017

0.459
±0.037

0.382
±0.030

0.893
±0.026

0.906
±0.033

0.887
±0.027

0.911
±0.021

0.925
±0.024

0.927
±0.030

GD-GAN [5] 0.531
±0.003

0.430
±0.004

0.514
±0.003

0.383
±0.004

0.512
±0.003

0.383
±0.004

0.949
±0.046

0.934
±0.051

0.931
±0.037

0.950
±0.028

0.925
±0.084

0.944
±0.058

NRI [7] 0.995
±0.002

0.994
±0.003

0.997
±0.002

0.994
±0.002

0.998
±0.001

0.996
±0.001

0.801
±0.096

0.737
±0.108

0.663
±0.083

0.669
±0.080

0.577
±0.122

0.565
±0.122

Wavenet-
NRI

0.990
±0.010

0.988
±0.013

0.985
±0.005

0.970
±0.010

0.986
±0.004

0.972
±0.007

0.893
±0.090

0.900
±0.107

0.793
±0.078

0.815
±0.079

0.748
±0.106

0.790
±0.086

5.6 Ablation Study

Our proposed approach applied two changes to the original NRI (i.e., adding
symmetric edge features and symmetric edge updating process and the GD-
RCC block). In this section, we explored the effects of these changes by per-
forming an ablation study. To test the impact of the symmetric edge features
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and symmetric edge updating process, the same 1D convolutional as the original
NRI with the symmetric edge features and the symmetric edge updating process
was applied. This model is called “NRI-Symmetric”. To test the effects of the
GD-RCC block, “Wavenet-GD-RCC” was designed, which used the GD-RCC
block with the same edge features and edge updating process as the original
NRI. We compared the performance of these two methods with the proposed
WavenetNRI and the original NRI on the simulation and pedestrian datasets.
The results of both experiments are listed in Table 4. According to the results
listed in Table 4, the Wavenet-GD-RCC performed slightly better than NRI,
while the performance of NRI-Symmetric was lower than NRI. Therefore, the
GD-RCC block could slightly improve the performance of NRI on the group-
interaction datasets, and the symmetric edges and symmetric edge updating
process negatively affected the original NRI. Additionally, the NRI-Symmetric
performed better than the NRI, and Wavenet-GD-RCC performed similarly to
NRI on the pedestrian data sets. Therefore, the symmetric edge features with the
symmetric edge updating process could improve the performance of NRI on the
pedestrian data sets, and the GD-RCC block did not significantly affect NRI’s
performance. Thus, the results were consistent per dataset type but not overall.
We also noticed that either change could add value to one dataset category. As
discussed earlier, the complexity of the simulation datasets in the behavior and
interactions of the group members and non-group members might explain the
inconsistent performance in these two types of datasets.

Table 4. Ablation study results of recall (R) and precision (P) based on Group Mitre
ΔGW . The best average values of recall and precision are highlighted with bold text.

Simulation I Simulation II Simulation III zara01 ETH Hotel

R P R P R P R P R P R P

NRI [7] 0.995
±0.002

0.994
±0.003

0.997
±0.002

0.994
±0.002

0.998
±0.001

0.996
±0.001

0.801
±0.096

0.737
±0.108

0.663
±0.083

0.669
±0.080

0.577
±0.122

0.565
±0.122

NRI-
Symmetric

0.990
±0.004

0.987
±0.006

0.981
±0.007

0.964
±0.013

0.981
±0.007

0.961
±0.009

0.851
±0.093

0.813
±0.091

0.679
±0.094

0.686
±0.096

0.708
±0.121

0.739
±0.115

Wavenet-
GD-RCC

0.998
±0.002

0.997
±0.001

0.999
±0.001

0.997
±0.002

0.998
±0.001

0.997
±0.001

0.719
±0.138

0.625
±0.165

0.542
±0.146

0.530
±0.147

0.566
±0.169

0.554
±0.163

Wavenet
NRI

0.990
±0.010

0.988
±0.013

0.985
±0.005

0.970
±0.010

0.986
±0.004

0.972
±0.007

0.893
±0.090

0.900
±0.107

0.793
±0.078

0.815
±0.079

0.748
±0.106

0.790
±0.086

6 Discussion and Conclusions

The present study explored the application of GNN by extending the NRI
model [7] for group detection in two directions: (1) by applying symmetric
edge features with symmetric edge updating processes and (2) by replacing the
1D convolution layer with a GD-RCC block, as proposed by Wavenet [11]. We
compared the performance of WavenetNRI with other baselines on the three
group-interaction simulation datasets and three pedestrian datasets. NRI and
WavenetNRI outperformed all other baselines on the group-interaction simu-
lation datasets. Although the pedestrian datasets were captured in real-world
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setups, the simulation datasets were better reflecting complex group interactions
with larger groups, which stresses the importance of the obtained results. On the
pedestrian datasets, although our proposed method did not compete against the
clustering-based baselines, i.e., GD-GAN [5] and S-SVM [13], it outperformed
classification-based methods, i.e., ATTR [16] and the original NRI [7]. Yet, base-
line methods did not generalize very well to the simulation datasets. We further
evaluated the effects of our changes to the original NRI in the ablation study.
We found that on the group-interaction data sets, the GD-RCC block slightly
improved the performance of NRI. Simultaneously, the symmetric edge features
with symmetric edge updating processes negatively affected the performance of
NRI. On the pedestrian data sets, the symmetric edge features with symmetric
edge updating processes improved the performance of NRI, while the GD-RCC
block had no significant effect on NRI.

Our analysis demonstrates that WavenetNRI is highly effective at predicting
pairwise interactions, which ultimately reflect the group memberships of agents
in an interacting environment. One drawback of the proposed method is its
dependency on ground truth data. Unsupervised methods such as GD-GAN are
preferable if ground truth is not available for a particular study. Many real-
world communities, such as sports clubs and schoolyards, can be understood as
a dynamic interacting system, where applying a trained WavenetNRI model can
be helpful in predicting group memberships within the system.

The current study can be improved by investigating how to adapt the
proposed neural network design more efficiently to different datasets using
meta-learning. Additionally, it is worth studying how to extend the proposed
classification-based method to a supervised clustering task. And finally, design-
ing a fully supervised model by adding a final layer to classify nodes into the
group they belong to could be investigated in the future.
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