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Abstract
In problems with missing data, the data are often considered to be missing at random. This assumption
can not be checked from the data. We need to assess the sensitivity of study conclusions to violations
of non-identifiable assumptions. This thesis performs Bayesian sensitivity analysis for a missing data
model with life time outcomes and covariate information. The outcome distribution is modelled through
a Cox model, with a beta process prior on the cumulative hazard function. We run experiments in
a simulation study to test the performance of the model in scenarios with simulated data of several
sample sizes. We show the validity of the model in the context of Bayesian sensitivity analysis, and
propose extensions.
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1
Introduction

Causal questions are at the heart of science. In many applications data are missing, and we need to
make assumptions about the missingness to be able to draw conclusions about causality. An important
assumption is the assumption that the probability that a value is missing is the same for all data points
within groups defined by covariate information present in the observed data, i.e. data are missing at
random (MAR). Here a problem arises: the MAR assumption can not be checked from the observed
data and, moreover, it is quite a strong assumption, and in many applications actually implausible to
hold. If the data are not missing at random, but are assumed to be MAR, the study conclusions will
paint a distorted picture.

A way to mitigate this problem, is to perform a sensitivity analysis. This is done by modelling devi-
ations from MAR, and investigating the sensitivity of some conclusion about causality to varying mag-
nitudes of deviation from MAR. Often, domain experts have prior knowledge about the nature and
magnitude of deviations from MAR. It seems natural to account for this prior knowledge by carrying out
a sensitivity analysis within the Bayesian paradigm: Bayesian sensitivity analysis (BSA).

Robins, Rotnitzky & Scharfstein (2000) proposed a way to model deviations fromMAR in [28], which
was applied in the setting of BSA by Scharfstein, Daniels & Robins (2003) and Eggen, Van der Pas &
Van der Vaart (2023) [30, 10], who investigated the situation where covariate information is ignored.
This thesis extends the approach of these works to a setting with lifetime outcomes, taking into account
covariate information by means of a Cox model.

We seek a flexible model for the observed data, and we therefore use nonparametric Bayesian
methods. More specifically, a Dirichlet process prior is put on the distribution of the covariates, and a
beta process prior is put on the baseline cumulative hazard function in the Cox model. Following [30,
10], the missingness mechanism is modelled in a parametric way, to preserve interpretability of the
parameters. In order to draw samples from the posterior, a Gibbs sampling scheme was implemented.
A variety of experiments is then conducted in a simulation study, to gauge the usefulness of our model
for BSA.

The report is organised in the following way: Chapter 2 discusses concepts and techniques from
various areas of statistics that are used in the remaining chapters. An introduction into the topic of
Bayesian sensitivity analysis is given in chapter 3, along with examples from the literature. Chapter
4 contains technical details on the statistical model, posterior sampling scheme, and experimental
setup of the simulation study. The results of the simulation study are reported in chapter 5. Chapter 6
concludes this thesis with a discussion of the simulation study.
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2
Statistical Preliminaries

This chapter aims to provide the reader with necessary background on concepts from statistics that
are used or referenced in the remainder of the thesis. Section 2.1 details the framework of causal
inference and missing data. Section 2.2 details techniques that are needed for the computation of
posterior distributions. An introduction to some subjects from nonparametric Bayesian inference is
given in section 2.3, before concluding the chapter with a description of survival analysis1 in section
2.4.

2.1. Causal Inference & Missing Data
Many applications of statistics require the estimation of the causal effect of some action on a certain
outcome. A common example is the setting of medical treatment: does treatment 𝑋 have a (positive)
causal effect on 𝑌? We first use this example to introduce the potential outcomes framework in section
2.1.1. In section 2.1.2 we frame causal inference as a missing data problem.

2.1.1. Potential Outcomes
Consider the setting of medical treatment administration. We take a sample of individuals from a pop-
ulation, and we are interested in the causal effect of some treatment on an outcome (e.g. some cell
count in blood, life expectancy). Pertaining to every individual are the following random variables:

𝐴 = treatment indicator,
𝑌0 = outcome if not treated,
𝑌1 = outcome if treated,
𝑌 = observed outcome,
𝑍 = measured covariates,

where 𝐴 = 1 if the individual is given treatment and 𝐴 = 0 if the individual is not given treatment. 𝑌1 and
𝑌0 are called potential outcomes, and usually only one of the two is measured for every individual, since
it is impossible to simultaneously both treat and not treat an individual. It is possible to model multiple
treatment arms, in which case 𝐴 could take values in {0, 1, … , 𝑘}, and we would model corresponding
potential outcomes 𝑌0, 𝑌1, … , 𝑌𝑘. This extension is outside the scope of this text.

We are interested in the difference between the distributions of 𝑌1 and 𝑌0, and therefore we define
the average causal effect (ACE) by

𝔼𝑌1 − 𝔼𝑌0.
Typically, only (𝐴, 𝑌, 𝑍) are observed, and thus, in order to estimate the ACE, we need assumptions
linking the observed data to the potential outcomes. We make the following assumptions:
1with a strong emphasis on nonparametric Bayesian methods
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4 2. Statistical Preliminaries

𝑌 = 𝑌𝐴, Consistency (C),
𝑌𝑎⊥⊥ 𝐴|𝑍, ∀𝑎, Conditional exchangeability (CE),

Pr(𝐴 = 𝑎|𝑍) > 0, ∀𝑎, Positivity (P).

Let’s discuss the interpretation of these assumptions. The consistency assumption (C) states that the
observed outcome 𝑌 is equal to the potential outcome associated with the treatment indicator 𝐴, yield-
ing the expression 𝑌 = 𝐴𝑌1 + (1 − 𝐴)𝑌0. The positivity assumption (P) restricts the propensity score
𝑓(𝑍) = Pr(𝐴 = 1|𝑍) to (0, 1): for every value of 𝑍, the probability of (not) receiving treatment must be
non-zero, i.e. there is no individual for whom it is impossible to (not) receive treatment. The conditional
exchangeability2 assumption (CE) states that within levels of the covariate 𝑍, observation of any of the
potential outcomes does not provide any additional information about the treatment assignment, and
vice versa.

The following theorem shows that under the three discussed assumptions, the ACE can be obtained
from the distribution of the observed data (𝐴, 𝑌, 𝑍).

Theorem 2.1. If (C), (CE), and (P) hold, we have 𝔼𝑌1 − 𝔼𝑌0 = 𝔼𝑍 (𝔼(𝑌|𝐴 = 1, 𝑍) − 𝔼(𝑌|𝐴 = 0, 𝑍)) .

Proof. We first show 𝑌𝑎|𝑍 ∼ 𝑌|𝐴 = 𝑎, 𝑍:

Pr(𝑌 ∈ 𝐵|𝐴 = 𝑎, 𝑍) (P)= Pr(𝑌 ∈ 𝐵, 𝐴 = 𝑎|𝑍)
Pr(𝐴 = 𝑎|𝑍)

(C)= Pr(𝑌𝑎 ∈ 𝐵, 𝐴 = 𝑎|𝑍)
Pr(𝐴 = 𝑎|𝑍)

(CE)= Pr(𝑌𝑎 ∈ 𝐵|𝑍)Pr(𝐴 = 𝑎|𝑍)
Pr(𝐴 = 𝑎|𝑍) = Pr(𝑌𝑎 ∈ 𝐵|𝑍).

It follows from the towering property that 𝔼𝑌𝑎 = 𝔼𝑍𝔼(𝑌𝑎|𝑍) = 𝔼𝑍𝔼(𝑌|𝐴 = 𝑎, 𝑍).

2.1.2. Missing Data
The causal inference setup can be viewed as an instance of a missing data problem. Indeed, for some
individuals the variable 𝑌0 is missing, while for others 𝑌1 is not observed, resulting in the popular char-
acterisation of causal inference as ”missing data twice”. In the context of missing data, 𝐴 is interpreted
as the mechanism that determines whether a data point is observed (𝐴 = 1) or not (𝐴 = 0). As men-
tioned in the previous section, 𝐴 could be allowed to take values in {0, 1, … , 𝑘}, which in the missing
data context models multiple reasons why a data point is (not) missing, but we restrict our attention to
a binary 𝐴. We are now only interested in estimating 𝔼𝑌1 (half the ACE), and will usually suppress the
superscript of the potential outcome of interest, writing 𝑌 instead of 𝑌1. In the context of missing data,
a more common name for the (CE) assumption from the previous section, is missing at random (MAR)
(Rubin, 1976) [29]:

𝑌⊥⊥ 𝐴|𝑍.

2.2. Bayesian Computation
This section briefly reviews the main ideas of Markov Chain Monte Carlo methods in section 2.2.1,
and looks at two important examples of such methods: the Metropolis-Hastings (MH) algorithm (2.2.2)
and Gibbs sampling (2.2.3). Throughout this section, we will adhere to the Bayesian setting detailed in
section 1.3 of [14], and in [33]. In particular, we assume a dominated model {𝑃𝜃 ∶ 𝜃 ∈ Θ}.

2.2.1. Markov Chain Monte Carlo
A well-known expression of the posterior distribution is given by Bayes’ formula:

Π(𝐵|𝑋) = ∫𝐵 𝑝𝜃(𝑋)𝑑Π(𝜃)
∫ 𝑝𝜃(𝑋)𝑑Π(𝜃)

. (2.1)

2alternative names: unconfoundedness, no unmeasured confounding, ignorability



2.2. Bayesian Computation 5

Usually, the integral in the denominator of 2.1 is intractable, and thus a nice analytical expression for the
posterior distribution only rarely exists. If we want to compute properties of the posterior distribution
(e.g. mean, mode, credible region), we need methods to approximate the posterior. Markov Chain
Monte Carlo (MCMC) methods form a class of algorithms that are up to this task.

The idea of MCMC is to simulate (dependent) values from a Markov chain that has as its stationary
distribution the posterior distribution of interest. We change notation for convenience, and denote the
underlying sample space as 𝔜 with elements 𝑦 rather than Θ with elements 𝜃. We consider a time
homogeneous Markov chain {𝑌𝑛 ∶ 𝑛 ∈ ℕ∪{0}} with state space (𝔜,Y ) and transition kernel 𝑄 given by

𝑄(𝑦, 𝐵) = ∫
𝐵
𝑞(𝑦, 𝑧)𝑑𝜈(𝑧) = Pr(𝑌𝑛+1 ∈ 𝐵|𝑌𝑛 = 𝑦), (2.2)

with 𝑦 ∈ 𝔜, 𝐵 ∈ Y , and 𝑞 a transition density with respect to a 𝜎-finite measure 𝜈 on (𝔜,Y ). Let the
stationary distribution3 of the Markov chain be denoted by Π, i.e. for all measurable 𝐵 ∈ Y we have

∫
𝔜
𝑄(𝑦, 𝐵)𝑑Π(𝑦) = Π(𝐵).

In this chapter we assume that Π allows a density 𝜋 with respect to 𝜈. If we could simulate independent
values from the Markov chain, the law of large numbers states that the sample average tends to the
true mean of the stationary distribution almost surely -but we can only simulate dependent values.
Fortunately, the ergodic theorem extends the law of large numbers to samples of dependent values,
if the Markov chain is well connected in the following sense: for some measure 𝜓 on (𝔜,Y ), and for
every 𝐵 ∈ Y with 𝜓(𝐵) > 0 we must have that

• for any 𝑦 ∈ 𝔜, at some point in time 𝐵 can be reached from 𝑦 with positive probability4, and
• if one departs from any 𝑦 ∈ 𝐵, the number of returns to 𝐵 is infinite almost surely5.

If the Markov chain satisfies these two conditions, it is called ergodic. In practice, we additionally
require a Markov chain to not periodically cycle between subsets of 𝔜. The reason for this, roughly
speaking, is that not all individual 𝑌𝑛 are necessarily drawn from the stationary distribution, and we
want to prevent the chain from periodically revisiting ”problematic” areas that distort the picture of the
stationary distribution. Another practice in using MCMC samplers to generate draws from a posterior
distribution, is the discardment of the first𝑚 values 𝑌0, … , 𝑌𝑚, which is called the burn-in. The ergodicity
of the chain motivates this practice, since only the first 𝑁 values of the chain are simulated, and typically
𝑌𝑚+1, … , 𝑌𝑁 give a better representation of the stationary distribution than all 𝑌0, … , 𝑌𝑁. Let’s look at two
well-known MCMC algorithms in the following sections.

2.2.2. Metropolis-Hastings
Often the target density 𝜋 is known up to a multiplicative constant, say we know �̃� = 𝑐𝜋, but 𝑐 ≠ 0 is
unknown. The MH algorithm [26, 15] uses a proposal density 𝑞 in conjunction with �̃� to create a Markov
chain with 𝜋 as its stationary distribution. We define the MH acceptance probability as follows:

𝛼(𝑦, 𝑧) = 𝜋(𝑧)𝑞(𝑧, 𝑦)
𝜋(𝑦)𝑞(𝑦, 𝑧) ∧ 1. (2.3)

It is clear from 2.3 that it suffices to know �̃�, and furthermore that a symmetric 𝑞 vanishes from the
expression. Algorithm 1 gives the MH algorithm.

In words, Algorithm 1 achieves the following: First a number of iterations 𝑁 is chosen. Then the first
value of the Markov chain, 𝑌0, is generated. Next, the algorithm iteratively samples an element from the
proposal density 𝑞, and an element from the standard uniform distribution. If the uniformly distributed
sample is smaller than the acceptance probability given by 2.3, the sample from the proposal density
is the next value of the Markov Chain, otherwise the next value of the Markov Chain is set equal to the
current value. The important question then remains: How do we choose 𝑞?

A popular choice of 𝑞 is a symmetric density centred around the first argument of 𝑞. This version of
MH is called random walk MH. We could for instance choose 𝑞(𝑦, ⋅) = 𝜙(⋅; 𝑦, 𝜎2), the normal density
centred around 𝑦 with variance 𝜎2 (a tuning parameter).
3which we will assume to exist
4the chain is 𝜓-irreducible
5if the chain additionally is 𝜓-irreducible, this requirement makes the chain Harris recurrent



6 2. Statistical Preliminaries

Algorithm 1 Metropolis-Hastings
Given: 𝑁
Initialise: 𝑌0
for 𝑛 = 1,… ,𝑁 do

Sample 𝑍𝑛 ∼ 𝑞(𝑌𝑛−1, ⋅)
Sample 𝑈𝑛 ∼ Unif(0, 1)
if 𝑈𝑛 < 𝛼(𝑌𝑛−1, 𝑍𝑛) then

𝑌𝑛 ≔ 𝑍𝑛
else

𝑌𝑛 ≔ 𝑌𝑛−1

2.2.3. Gibbs Sampler
In many cases the sample space has a ”nice” product structure 𝔜 = 𝔜1 ×⋯×𝔜𝑀. The Gibbs sampler
exploits this structure by sampling from each of the full conditional distributions with densities

𝜋𝑚(𝑦𝑚|𝑦1, … , 𝑦𝑚−1, 𝑦𝑚+1, … , 𝑦𝑀) =
𝜋(𝑦1, … , 𝑦𝑀)

∫ 𝜋(𝑦1, … , 𝑦𝑀)𝑑𝜇𝑚(𝑦𝑚)
, (2.4)

where 𝜋 is a density with respect to the product measure 𝜇1 × ⋯ × 𝜇𝑀 on 𝔜. The Gibbs sampler
iteratively generates new samples 𝑦𝑚 from the conditional densities 𝜋1, … , 𝜋𝑀, conditional on the𝑀−1
most recent samples of the other components of (𝑦1, … , 𝑦𝑚−1, 𝑦𝑚+1, … , 𝑦𝑀), as is shown in Algorithm 2.

Algorithm 2 Gibbs Sampler
Given: 𝑁
Initialise: 𝑌0 = (𝑌0,1, … , 𝑌0,𝑀)
for 𝑛 = 1,… ,𝑁 do

for 𝑚 = 1,… ,𝑀 do
Sample 𝑌𝑛,𝑚 ∼ 𝜋𝑚(⋅|{𝑌𝑛,𝑖 , 𝑖 < 𝑚 ≠ 1}, {𝑌𝑛−1,𝑖 , 𝑖 > 𝑚 ≠ 𝑀})

The Gibbs sampler is attractive in many problems with missing data. Suppose the full data consist
of (𝑋obs, 𝑋miss) and we only observe 𝑋obs. Let’s say a model for the full data is given by 𝑝𝜃(𝑥obs, 𝑥miss),
and the model parameter is equipped with a prior density 𝜋(𝜃). The posterior density 𝜋(𝜃|𝑥obs) is
then proportional to the product of 𝜋(𝜃) and the marginal density of 𝑋obs given 𝜃, the latter of which is
obtained by integrating out 𝑋miss:

∫𝑝𝜃(𝑥obs, 𝑥miss)𝑑𝜇(𝑥miss).

If this integral can’t be evaluated analytically, it needs to be approximated numerically, which can come
at a great computational cost. There is a cheaper way of marginalising out 𝑋miss: we can generate
samples from 𝜋(𝜃, 𝑥miss|𝑥obs) ∝ 𝑝𝜃(𝑥obs, 𝑥miss)𝜋(𝜃) using a Gibbs sampler, and simply throw away the
values of 𝑋miss.

2.3. Nonparametric Bayesian Inference
This section discusses some background on concepts from the field of Bayesian nonparametric infer-
ence. Nonparametric Bayesian methods can be used to model data in a flexible way, without needing
to specify a parameter of fixed size. Rather, these methods allow the model ”parameter” to grow with
the size of the data. We will specify priors in terms of stochastic processes, which will allow us to place
a prior directly on an abstract space (e.g. a space of probability measures), rather than on a real-valued
parameter. This text will follow closely the notation and ideas exhibited in [14], but many details will
be left out. Throughout this section we will assume an underlying probability space (Ω,A ,Pr) that is
sufficiently rich6.

6For details on the ”richness” requirements, we refer to [14], in particular appendix J.
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2.3.1. Dirichlet Process
We want to place a prior on a space of probability measures. To understand what this means, we
need some ingredients. Let (𝔛,X ) be a Polish space, and let𝔐 = 𝔐(𝔛) be the collection of all Borel
probability measures on (𝔛,X ). Now we choose M to be the smallest 𝜎-field on𝔐 such that all maps
𝑀 ↦ 𝑀(𝐴) from 𝔐 to ℝ are measurable, ∀𝐴 ∈ X . Then we can give the definition of a random
measure:

Definition 2.2 (Randommeasure). Ameasurable map 𝑃 from a probability space into (𝔐,M ) is called
a random measure.

Now we can place a prior Π on (𝔐,M ), so that 𝑃 ∼ Π. A particular prior of interest is the Dirichlet
process distribution, first introduced by Ferguson (1973) in [11]:

Definition 2.3 (Dirichlet process; Def. 4.1 in [14]). A random measure 𝑃 on (𝔛,X ), i.e. a probability
measure on (𝔐,M ), is said to possess a Dirichlet process distribution DP(𝛼) with base measure 𝛼, if
for every finite measurable partition 𝐴1, … , 𝐴𝑘 of 𝔛,

(𝑃(𝐴1), … , 𝑃(𝐴𝑘)) ∼ Dir(𝑘; 𝛼(𝐴1), … , 𝛼(𝐴𝑘)). (2.5)

It might be intuitively helpful to parameterise the base measure 𝛼 by two components: |𝛼| and �̄�.
We call |𝛼| = 𝛼(𝔛) the prior precision of the centre measure �̄� = 𝛼/|𝛼|. The centre measure is the
probability measure obtained through normalisation of the base measure. The prior precision can be
interpreted as the concentration of a DP(𝛼) realisation around the centre measure �̄�. The Dirichlet
process is discrete in nature: a DP(𝛼) realisation is an almost surely discrete measure [11], even if
the base measure is absolutely continuous. This makes the Dirichlet process an unsuitable prior for
density estimation.

The moments of a Dirichlet process can be expressed in terms of the base measure:

Proposition 2.4 (Moments; Prop. 4.3 in [14]). If 𝑃 ∼ DP(𝛼), then for any measurable functions 𝜓 and
𝜙 for which the expression on the right-hand side is meaningful,

𝔼(𝑃𝜓) = ∫𝜓𝑑�̄�, (2.6)

var(𝑃𝜓) = ∫(𝜓 − ∫𝜓𝑑�̄�)2𝑑�̄�
1 + |𝛼| , (2.7)

cov(𝑃𝜓, 𝑃𝜙) = ∫𝜓𝜙𝑑�̄� − ∫𝜓𝑑�̄� ∫𝜙𝑑�̄�
1 + |𝛼| . (2.8)

The following theorem shows that the Dirichlet process prior is a conjugate prior:

Theorem 2.5 (Conjugacy; Thm. 4.6 in [14]). The DP(𝛼 + ∑𝑛𝑖=1 𝛿𝑋𝑖) is a version of the posterior distri-
bution given an i.i.d.sample 𝑋1, … , 𝑋𝑛 from the DP(𝛼)7.

Theorem 2.5 gives an updating rule for the base measure of the Dirichlet process parameterised
by 𝛼. The updating rule for the alternative parameterisation (|𝛼|, �̄�) might be more intuitive:

|𝛼| ↦ |𝛼| + 𝑛, (2.9)

�̄� ↦ |𝛼|
|𝛼| + 𝑛 �̄� +

𝑛
|𝛼| + 𝑛ℙ𝑛 , (2.10)

where ℙ𝑛 =
1
𝑛 ∑

𝑛
𝑖=1 𝛿𝑋𝑖 is the empirical distribution. Equation 2.10 shows that the posterior centre

measure is a convex combination of the prior centre measure and the empirical distribution function,
where the weights are determined by the prior precision and the sample size. In light of this observation,
|𝛼| is sometimes called the prior sample size, and |𝛼| + 𝑛 is called the posterior sample size. If 𝑛 gets
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Figure 2.1: Realisation of a DP(𝛼 + ∑20𝑖=1 𝛿𝑋𝑖 ). �̄� = Exp(1)
Prior precision = 20, data 𝑋1 , … , 𝑋20

i.i.d.∼ Unif(3, 4).
Figure 2.2: Realisation of a DP(𝛼 + ∑200𝑖=1 𝛿𝑋𝑖 ). �̄� = Exp(1)

Prior precision = 20, data 𝑋1 , … , 𝑋200
i.i.d.∼ Unif(3, 4).

very large compared to |𝛼|, the data start to dominate the posterior distribution, as illustrated in Figures
2.1 and 2.2.

Since almost every realisation 𝑃 of a Dirichlet process is a random discrete probability measure, it
is possible to express 𝑃 as the sum of countably many weights at the locations 𝜃𝑗 where 𝑃 is supported:

𝑃 =
∞

∑
𝑗=1
𝑊𝑗𝛿𝜃𝑗 , (2.11)

where the weights 𝑊𝑗 sum to 1. One way to find the correct weights, is through a technique called
stick-breaking. Stick-breaking works as follows. Since we want to construct a probability measure, the
weights of the distribution should sum to 1, so we start with a stick of length 1. We generate a random
variable 0 ≤ 𝑉1 ≤ 1, break 𝑉1 off the stick, leaving a stick of length 1 − 𝑉1, and we assign weight 𝑉1
to point 𝜃1. Next, we generate a random variable 0 ≤ 𝑉2 ≤ 1, break 𝑉2 off the stick, leaving a stick of
length (1 − 𝑉2)(1 − 𝑉1), and we assign weight 𝑉2(1 − 𝑉1) to point 𝜃2. Continuing this process yields
weights

𝑊𝑗 = 𝑉𝑗
𝑗−1

∏
𝑙=1
(1 − 𝑉𝑙). (2.12)

Under mild conditions8 these weights𝑊𝑗 sum to 1. In [32] Sethuraman (1994) showed that, in order to
obtain a realisation from the Dirichlet process, the 𝑉𝑗 should be realisations of a beta distribution:

Theorem 2.6 (Stick-breaking representation; Thm. 4.12 in [14]). If 𝜃1, 𝜃2, …
i.i.d.∼ �̄�, and 𝑉1, 𝑉2, …

i.i.d.∼
Be(1, |𝛼|) are independent random variables and𝑊𝑗 = 𝑉𝑗∏

𝑗−1
𝑙=1 (1 − 𝑉𝑙), then ∑

∞
𝑗=1𝑊𝑗𝛿𝜃𝑗 ∼ DP(𝛼).

The stick-breaking representation of the Dirichlet process inspires a simple algorithm for sampling
realisations of a Dirichlet process: [8] gives an algorithm that generates realisations of a Dirichlet pro-
cess posterior by combining Thm. 2.5 and Thm. 2.6:

Remark. Algorithm 3 approximates the infinite sum from Thm. 2.6 by a sum of 𝐽 terms, so 𝐽 should be
chosen fairly large to obtain a good approximation. Furthermore, it is often convenient to pass �̄� and
|𝛼| to the algorithm separately.

2.3.2. Completely Random Measures
In section 2.3.1 the random measure was introduced, which allows us to place a prior on a space
of probability measures. One type of random measure that is of particular interest is the completely
random measure, introduced by Kingman (1967) in [18]:

7Meaning 𝑋1 , … , 𝑋𝑛
ind∼ 𝑃, where 𝑃 follows a Dirichlet process prior.

8specified in Lemma 3.4 of [14]
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Algorithm 3 Dirichlet Process Posterior
Given: 𝛼, 𝐽 ∈ ℕ, ℙ𝑛
Sample 𝑉1, … , 𝑉𝐽

i.i.d.∼ Be(1, |𝛼| + 𝑛)
for 𝑗 = 1,… , 𝐽 do

Sample 𝑈 ∼ Unif[0, 1]
if 𝑈 < |𝛼|

|𝛼|+𝑛 then
Sample 𝜃𝑗 ∼ �̄�

else
Sample 𝜃𝑗 ∼ ℙ𝑛

𝑊𝑗 ≔ 𝑉𝑗∏
𝑗−1
𝑙=1 (1 − 𝑉𝑙)

Definition 2.7 (Completely random measure; Def. J.5 in [14]). A measurable map Φ ∶ Ω → (𝔐∞,M∞)
is a completely random measure (CRM) on 𝔛 if the random variables Φ(𝐴1), … ,Φ(𝐴𝑘) are mutually
independent, for any disjoint sets 𝐴1, … , 𝐴𝑘 ∈ X .

CRMs are often used in nonparametric Bayesian inference as (ingredients for) priors. A fundamental
example of a completely random measure is the Poisson process.

Definition 2.8 (Poisson process; Def. J.1 in [14]). A Poisson random subset (PRS) of 𝔛 is a map Π from
Ω into the collection of subsets of 𝔛 of at most countably many elements such that 𝑁(𝐴) ≔ card(Π∩𝐴)
is a random variable for every 𝐴 ∈ X and 𝑁(𝐴𝑖)

ind∼ Pois(𝜇(𝐴𝑖)), for every finite collection of disjoint
sets 𝐴1, … , 𝐴𝑘 ∈ X and a measure 𝜇 on (𝔛,X ), called the intensity measure. The stochastic process
𝑁 = {𝑁(𝐴) ∶ 𝐴 ∈ X } is called a Poisson process on 𝔛 with intensity measure 𝜇. The corresponding
counting measure on the points Π is called a Poisson random measure.

One can think of the Poisson process in the following way: The PRS Π randomly places points in
the space 𝔛, and the Poisson random measure 𝑁 counts for a certain set 𝐴 the size of the overlap with
Π. The PRS ”is realised” in such a way that said counts are Poisson distributed, and independent for
disjoint sets in 𝔛, showing that the Poisson process is a CRM by definition.

Although the distribution of an individual random variable 𝑁(𝐴) in the Poisson process with intensity
measure 𝜇 is clear from def. 2.8, it will be helpful to characterise it in terms of its Laplace transform9:

𝔼(𝑒−𝜃 ∫𝑓𝑑𝑁) = exp ( − ∫(1 − 𝑒−𝜃𝑓(𝑥)) 𝑑𝜇(𝑥)), (2.13)

for some measurable 𝑓 ∶ 𝔛 → ℝ and 𝜃 > 0. For 𝑓 = 1𝐴 the right hand side of 2.13 reduces to
exp(𝜇(𝐴)(𝑒−𝜃−1)), which we recognise as themoment generating function (MGF)𝑀𝑋(−𝜃) of a random
variable 𝑋 ∼ Pois(𝜇(𝐴)), which is indeed the distribution of 𝑁(𝐴). This characterisation, in conjunction
with the following result, will be instrumental in characterising other CRMs.

Proposition 2.9 (CRM decomposition). Any CRM Φ can, under reasonable conditions10, be repre-
sented in a unique way as

Φ =∑
𝑗
Φ({𝑎𝑗})𝛿𝑎𝑗 + 𝛽 +Ψ, (2.14)

with 𝑎1, 𝑎2, ⋯ ∈ 𝔛 fixed, 𝛽 a deterministic 𝜎-finite Borel measure on 𝔛, and a CRM

Ψ(𝐴) = ∑
(𝑥,𝑠)∈Π𝑐 ,𝑥∈𝐴

𝑠 = ∬1𝐴(𝑥)𝑠 𝑁𝑐(𝑑𝑥, 𝑑𝑠), (2.15)

where Π𝑐 is a PRS on 𝔛 × (0,∞] and 𝑁𝑐 is the accompanying Poisson random measure associated
with a Poisson process, with intensity measure 𝜈𝑐 such that 𝜈𝑐({𝑥} × (0,∞]) = 0 ∀𝑥 ∈ 𝔛, which is
independent of the Φ({𝑎1}), Φ({𝑎2}), … .
9this result is due to a version of the Lévy-Khinchine formula, which is often formulated in terms of characteristic functions (Fourier
transform)

10for details, consult [14] prop. J.6
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In slightly different words, this result states that any CRM can be decomposed into

• a part with atoms at fixed locations, with random masses,

• a deterministic part,

• a part with atoms at random locations, with random masses, given by a Poisson process.

Let’s look at Ψ from equation 2.15. It has no deterministic part and no fixed atoms. Application of 2.13
for a nonnegative measurable 𝑓 ∶ 𝔛 → ℝ yields

𝔼(𝑒−𝜃 ∫𝑓𝑑Ψ) = exp ( −∬(1 − 𝑒−𝜃𝑠𝑓(𝑥)) 𝜈𝑐(𝑑𝑥, 𝑑𝑠))

= exp(∬((
∞

∑
𝑗=0

(−𝜃𝑠𝑓(𝑥))𝑗
𝑗! ) − 1) 𝜈𝑐(𝑑𝑥, 𝑑𝑠))

= exp(
∞

∑
𝑗=1

(−𝜃)𝑗
𝑗! ∬𝑠𝑗𝑓𝑗(𝑥) 𝜈𝑐(𝑑𝑥, 𝑑𝑠)). (2.16)

The expression in 2.16 is instrumental in characterising CRMs, and moreover it inspires a method
of simulating a CRM: Ψ is portrayed as a discrete measure with weights 𝑠 at countably many locations
𝑥. From prop. 2.9 we know that (𝑥, 𝑠) are the points of a Poisson process, and thus we can simulate a
CRM Ψ with intensity measure 𝜈(𝑑𝑥, 𝑑𝑠) by simulating an appropriate Poisson process on 𝔛×ℝ+. We
write the intensity measure as 𝜈(𝑑𝑥, 𝑑𝑠) = 𝜌𝑥(𝑑𝑠)𝛼(𝑑𝑥), where 𝛼 is a probability measure on 𝔛 and 𝜌𝑥
is a transition kernel on 𝔛 × ℝ+. In practice we can only generate finitely many locations, so we first
draw a sufficiently large number of locations 𝑋1, … , 𝑋𝑘

i.i.d.∼ 𝛼. Secondly, we generate 𝑉1, … , 𝑉𝑘 from a
standard homogeneous Poisson process on ℝ+. Finally, we obtain the weights 𝑆𝑖 at the locations 𝑋𝑖
by transforming the 𝑉𝑖 in the following way. Define the transform 𝐿𝑥(𝑠) = 𝜌𝑥((𝑠,∞)), then the weights
are given by the inverse of the transform as 𝑆𝑖 = 𝐿−1𝑋𝑖 (𝑉𝑖). We then obtain the (approximation of the)
CRM Ψ(𝐴) = ∑𝑘𝑖=1 𝑆𝑖𝛿𝑋𝑖(𝐴).

In this text, CRMs will mostly be used as priors in the context of survival analysis, and therefore
the remainder of this section considers the case where 𝔛 = ℝ+. Let Φ be a CRM on ℝ+ that is finite
on finite intervals. In this case we can write the distribution function 𝑋(𝑡) = Φ((0, 𝑡]). Then 𝑋 is an
independent increment process.

Definition 2.10 (Independent increment process). Let {𝑋(𝑡) ∶ 𝑡 ∈ ℝ+} be a stochastic process. If the
sample paths of 𝑋 are non-decreasing and right-continuous, and the increments over disjoint intervals
are independent, then 𝑋 is called an independent increment process (IIP).

Since any CRM can be decomposed as in 2.14, we can write the IIP 𝑋 in the following way:

𝑋(𝑡) = ∑
𝑗∶𝑎𝑗≤𝑡

Δ𝑋(𝑎𝑗) + 𝛽(𝑡) + ∫
(0,𝑡]

∫
(0,∞)

𝑠 𝑁𝑐(𝑑𝑥, 𝑑𝑠), (2.17)

where the Δ𝑋(𝑎𝑗) are the fixed jumps at the fixed atoms of Φ, and 𝛽(𝑡) is a c.d.f. on ℝ+. In this text we
are not interested in CRMs with a deterministic part, so we set 𝛽 ≡ 0. Let’s remind ourselves that we
are Bayesians. We might specify a prior for 𝑋 that has no fixed atoms. In this case one can sample
from the prior by simulating an appropriate Poisson process. If the prior on 𝑋 has fixed atoms, then
these need to be dealt with separately. The latter is also true for the posterior of 𝑋. Regardless of
whether the prior on 𝑋 contains atoms or not, the data will determine fixed atoms and bring about fixed
jumps in the posterior of 𝑋. Let’s look at two suitable priors for IIPs: the gamma process and the beta
process.

Example 2.11 (Gamma process). ACRMΦ onℝ+ with intensitymeasure 𝜈(𝑑𝑥, 𝑑𝑠) = 𝑠−1𝑒−𝑏𝑠 𝑑𝑠 𝑑𝛼(𝑥),
with 𝛼 a 𝜎-finite measure on ℝ+, is called a gamma process. If we set 𝑏 = 1 we obtain the standard
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gamma process. Using 2.16 we can determine the distribution of the Φ(𝐴):

𝔼(𝑒−𝜃 ∫𝑓𝑑Φ) = exp(
∞

∑
𝑗=1

(−𝜃)𝑗
𝑗! ∫

∞

0
𝑠𝑗−1𝑒−𝑠 𝑑𝑠∫𝑓𝑗(𝑥) 𝑑𝛼(𝑥))

= exp(
∞

∑
𝑗=1

(−𝜃)𝑗
𝑗! (𝑗 − 1)!∫𝑓𝑗(𝑥) 𝑑𝛼(𝑥))

= exp(∫
∞

∑
𝑗=1

(−𝜃𝑓(𝑥))𝑗
𝑗 𝑑𝛼(𝑥))

= exp( − ∫ log(1 + 𝜃𝑓(𝑥)) 𝑑𝛼(𝑥))

𝑓=1𝐴= (1 + 𝜃)−𝛼(𝐴),

which we recognise as the MGF 𝑀𝑌(−𝜃) of a random variable 𝑌 ∼ Ga(𝛼(𝐴), 1), thus we conclude that
the individual Φ(𝐴) follow gamma distributions.

Remark. If we normalise a CRM, we obtain a random probability measureΦ/Φ(𝔛), which is aptly called
a normalised completely randommeasure (NCRM).We previously encountered an NCRM: the Dirichlet
process can be obtained by normalising a gamma process. The Dirichlet process itself, however, is not
a CRM, because for any partition 𝐴1, … , 𝐴𝑘 of 𝔛 the 𝑃(𝐴1), … , 𝑃(𝐴𝑘) follow a Dirichlet distribution and
must therefore sum to 1, which implies that the individual 𝑃(𝐴) are negatively correlated and thus not
independent.

Example 2.12 (Beta process). A CRM Φ on ℝ+ with intensity measure 𝜈(𝑑𝑥, 𝑑𝑠) = Γ(𝑎+𝑏)
Γ(𝑎)Γ(𝑏)𝑠

𝑎−2(1 −
𝑠)𝑏−11(0,1)(𝑠) 𝑑𝑥 𝑑𝑠, with 𝑎, 𝑏 > 0, is called the standard beta process. The jump sizes follow beta
distributions, and are limited to (0, 1), making the beta process an appealing prior in the context of
survival analysis. A more general version of the beta process will be introduced in section 2.4.2.

2.4. Survival Analysis
This section provides the necessary background on survival analysis. First a general introduction is
given in section 2.4.1. Then the focus shifts towards the application of nonparametric Bayesian meth-
ods in survival analysis: the Beta Process prior is introduced in section 2.4.2, and section 2.4.3 dis-
cusses the nonparametric Bayesian version of the Cox model. The main resources for this section are
[14] (chapter 13) and [1].

2.4.1. Introduction
Survival analysis is the field of statistics that is concernedwith studying the distribution of life times. A life
time is the time between an initiating event (e.g. birth, installation of a component, admission to rehab)
and a terminal event (e.g. death, failure of a component, relapse). The latter event is generally referred
to as the event of interest. Since survival times are usually nonnegative, we consider the distribution
of a random variable 𝑇 on (0,∞), given by its cumulative distribution function 𝐹. An interesting feature
of survival data, is that often at the moment of data collection the event of interest has not occurred for
a number of data subjects. This phenomenon is called right censoring.

Definition 2.13 (Right censoring). Let 𝐶 be a censoring variable. �̃� is observed if �̃� ≤ 𝐶, and if �̃� > 𝐶,
𝐶 is observed. Put differently, we observe the pair 𝑇 = min(�̃�, 𝐶) and Δ = 1{�̃� ≤ 𝐶}. An observation
with Δ = 0 is called (right) censored.

In the remainder of this chapter independent right censoring is assumed, thus we consider data
of the form 𝐷𝑛 = {(Δ1, 𝑇1), … , (Δ𝑛 , 𝑇𝑛). We are generally more interested in the probability that a data
subject is still alive by a certain time 𝑡, rather than the probability that a death has occurred by that
time. For this reason we consider the survival distribution 𝑆(𝑡) = 1 − 𝐹(𝑡), 𝑡 ≥ 0. Closely linked to the
survival distribution is the concept of hazard.
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Definition 2.14 (Cumulative hazard function). The cumulative hazard function (c.h.f.) corresponding
to a survival distribution 𝐹 is given by

𝐻(𝑡) = ∫
(0,𝑡]

𝑑𝐹
1 − 𝐹−, (2.18)

where 𝐹− denotes the left limit of 𝐹.

If 𝐹 is absolutely continuous, then so is 𝐻, in which case 𝐻 admits a density given by

ℎ(𝑡) = 𝑓(𝑡)
1 − 𝐹(𝑡) = lim

𝛿↓0
1
𝛿 Pr(𝑡 ≤ 𝑇 ≤ 𝑡 + 𝛿|𝑇 ≥ 𝑡), (2.19)

where 𝑓 is the density of the survival time. ℎ is often called the hazard rate, and the right hand side of
the preceding display motivates the interpretation of ℎ(𝑡) as the ”instantaneous rate of failure at time 𝑡,
given survival up to time 𝑡”.

The c.h.f. can be obtained from the survival distribution via the following product integral:

𝑆(𝑡) =∏
(0,𝑡]
(1 − 𝑑𝐻) = 𝑒−𝐻𝑐(𝑡) ∏

𝑢∈(0,𝑡]
(1 − Δ𝐻(𝑢)), (2.20)

where 𝐻𝑐 denotes the continuous part of 𝐻, and we write Δ𝐻(𝑢) = 𝐻(𝑢) − 𝐻(𝑢−) for a jump of 𝐻 at 𝑢.
In the special case where 𝐻 = 𝐻𝑐, the product integral reduces to 𝑆 = 𝑒−𝐻. Since 𝐻 might make jumps
at certain locations, we define the function 𝐴 = − log 𝑆, which is closely related to the function 𝐻. In
order to construct estimators for 𝐻 and 𝑆, it is useful to capture the data 𝐷𝑛 in two counting processes.

Definition 2.15 (Observed failures & subjects at risk). Let the counting processes 𝑁 = {𝑁(𝑡) ∶ 𝑡 ≥ 0}
and 𝑌 = {𝑌(𝑡) ∶ 𝑡 ≥ 0}, the number of observed failures and the number of subjects at risk, respectively,
be defined by

𝑁(𝑡) =
𝑛

∑
𝑖=1
𝑁𝑖(𝑡) =

𝑛

∑
𝑖=1

1{𝑇𝑖 ≤ 𝑡}Δ𝑖 =
𝑛

∑
𝑖=1

1{�̃�𝑖 ≤ 𝑡, �̃�𝑖 ≤ 𝐶𝑖}, (2.21)

𝑌(𝑡) =
𝑛

∑
𝑖=1
𝑌𝑖(𝑡) =

𝑛

∑
𝑖=1

1{𝑇𝑖 ≥ 𝑡} =
𝑛

∑
𝑖=1

1{�̃�𝑖 ≥ 𝑡, 𝐶𝑖 ≥ 𝑡}. (2.22)

The processes𝑁 and 𝑌 are related through the c.h.f. 𝐻 in the following way: Since 𝑌 is the number of
subjects at risk, and 𝐻 is the function that expresses the risk, one would intuitively expect the increase
in the number of observed failures, i.e. materialised risk in a small time interval, 𝑑𝑁, to be equal
to 𝑌𝑑𝐻. This is indeed the case, in the sense that 𝑁(𝑡) − ∫𝑡0 𝑌(𝑠)𝑑𝐻(𝑠) is a martingale. It follows that
∫𝑡0 1{𝑌(𝑠) > 0}(𝑌(𝑠))−1𝑑𝑁(𝑠)−𝐻(𝑡) is a martingale, which motivates the following classical estimators:

Definition 2.16 (Classical estimators). The Nelson-Aalen (NA) estimator for the cumulative hazard
function is given by

�̂�(𝑡) = ∫
(0,𝑡]

1{𝑌 > 0}𝑑𝑁𝑌 .

The Kaplan-Meier (KM) estimator for the survival distribution is given by

�̂�(𝑡) =∏
(0,𝑡]

(1 − 1{𝑌 > 0}𝑑𝑁𝑌 ).

The latter estimator makes intuitive sense: Survival up to time 𝑡 is equivalent with not dying in any
of the subintervals (𝑡𝑖−1, 𝑡𝑖] for any arbitrary partition 0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑘 = 𝑡 of (0, 𝑡]. Since the
conditional probability of dying in (𝑡𝑖−1, 𝑡𝑖] given survival past 𝑡𝑖−1 can be estimated by the number of
deaths in the interval, Δ𝑁(𝑡𝑖−1, 𝑡𝑖], divided by the number at risk at the beginning of the interval, 𝑌(𝑡𝑖−1),
the resulting product (over arbitrarily small intervals) of survival probabilities is recognised as the KM
estimator.
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2.4.2. Beta Process Prior
The data 𝐷𝑛 are generated by drawing �̃�𝑖

i.i.d.∼ 𝐹 and 𝐶𝑖
i.i.d.∼ 𝐺, for 𝑖 = 1,… , 𝑛. Then there are two options

per data point: either Δ𝑖 = 1, meaning the event of interest has occurred at time 𝑇𝑖, or Δ𝑖 = 0, which
means survival up to 𝑇𝑖 = 𝐶𝑖. Following [20], the likelihood of all observations can be formulated in
terms of the counting processes from 2.15:

∏
𝑡∈ℝ+

𝑑𝐻(𝑡)𝑑𝑁(𝑡)(1 − 𝑑𝐻(𝑡))𝑌(𝑡)−𝑑𝑁(𝑡). (2.23)

[14, p. 400] points out that the likelihood in 2.23 has an intuitive interpretation as the continuous ex-
ecution of binomial experiments: the number of subjects at risk 𝑌(𝑡) can be seen as the number of
independent experiments at time 𝑡, and the number of observed failures 𝑁(𝑡) can be seen as the num-
ber of successes. Then 𝑑𝐻(𝑡) can be understood as the probability of success at time 𝑡. Since the
beta distribution is a conjugate prior to the binomial distribution, it would be nice if we could put a prior
on 𝐻, such that the increments of 𝐻 are independent and follow beta distributions. We encountered
such an object in section 2.3.2: the beta process. A more general definition is given here.

Definition 2.17 (Beta process; Def. 13.3 in [14]). Let 𝑐 ∶ [0,∞) → [0,∞) be a measurable function,
and let Λ = Λ𝑐 + Λ𝑑 be a cumulative hazard function. A beta process with parameters (𝑐, Λ), denoted
BP(𝑐, Λ), is an independent increment process with intensity measure 𝜈 = 𝜈𝑐 + 𝜈𝑑 on (0,∞) × (0, 1),
given by

𝜈𝑐(𝑑𝑥, 𝑑𝑠) = 𝑐(𝑥)𝑠−1(1 − 𝑠)𝑐(𝑥)−1𝑑Λ𝑐(𝑥)𝑑𝑠,
𝜈𝑑({𝑥}, ⋅) = Be(𝑐(𝑥)ΔΛ(𝑥), 𝑐(𝑥)(1 − ΔΛ(𝑥))).

If Λ is absolutely continuous with respect to the Lebesgue measure, it admits a hazard rate 𝜆 and the
intensity measure of the beta process reduces to

𝜈(𝑑𝑥, 𝑑𝑠) = 𝑐(𝑥)𝑠−1(1 − 𝑠)𝑐(𝑥)−1𝜆(𝑥)𝑑𝑥𝑑𝑠.

If 𝐻(𝑡) ∼ BP(𝑐, Λ), the mean and variance are given by

𝔼[𝐻(𝑡)] = Λ(𝑡),

var[𝐻(𝑡)] = ∫
(0,𝑡]

1 − ΔΛ
𝑐 + 1 𝑑Λ. (2.24)

The concentration function 𝑐 has an interpretation that is similar in spirit to the interpretation of the prior
precision for the Dirichlet process: it reflects the prior belief in Λ. This can be seen from 2.24: if 𝑐(𝑡) is
large on an interval (𝜏1, 𝜏2), then the variance around the mean Λ(𝑡) is small on that interval, meaning
the prior function Λ is followed more closely.

In section 2.3.2 we discussed that a CRM without fixed atoms can be simulated by simulating an
appropriate Poisson process. Lee & Kim (2004) [20] proposed an efficient algorithm to do this for a
beta process. The algorithm is shown in Algorithm 4.

Algorithm 4 Beta Process
Given: 𝑐, Λ, 𝜀, 𝜏
𝜇 ≔ 1

𝜀 ∫
𝜏
0 𝑐𝑑Λ

Sample 𝑀 ∼ Pois(𝜇)
for 𝑖 = 1,… ,𝑀 do

Sample from 𝜋(𝜃𝑖) ∝ 𝑐(𝜃)𝑑Λ(𝜃)1{0 ≤ 𝜃 ≤ 𝜏}
for 𝑖 = 1,… ,𝑀 do

Sample 𝑠𝑖 ∼ Be(𝜀, 𝑐(𝜃(𝑖)))
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2.4.3. Cox Model
In section 2.4.1 we considered the case where the data 𝐷𝑛 are of the form (Δ1, 𝑇1), … , (Δ𝑛 , 𝑇𝑛). Some-
times there is additional data available on one or two categorical covariates, like sex or age cohort. In
this case the data can be separately analysed per group defined by (combinations of) the covariate(s).
Usually, data is available on more than two covariates, and some of these covariates might be nu-
meric. The data 𝐷𝑛 are then of the form (Δ1, 𝑇1, 𝑍1), … , (Δ𝑛 , 𝑇𝑛 , 𝑍𝑛). In this case it is no longer feasible to
group the data and perform separate analyses, and we need to resort to some kind of regression model.

TheCoxmodel, introduced by Cox (1972) in [6], is a semiparametric regression model that assumes
that the hazard rate of an individual characterised by a covariate vector 𝑧 ∈ ℝ𝑝 is proportional to some
baseline hazard rate. The model is therefore often called the proportional hazards model.

Definition 2.18 (Cox model: proportional hazards). Let 𝑧 ∈ ℝ𝑝, and let ℎ0(𝑡) be a baseline hazard
rate. Then the Cox model postulates that, for some 𝛽 ∈ ℝ𝑝, we have

ℎ(𝑡|𝑧) = 𝑒𝛽⊤𝑧ℎ0(𝑡). (2.25)

A consequence of the assumption of proportional hazards, is that one can calculate the hazard ratio
between two individuals characterised by covariate vectors 𝑧1 and 𝑧2:

ℎ(𝑡|𝑧1)
ℎ(𝑡|𝑧2)

= exp(𝛽⊤𝑧1)ℎ0(𝑡)
exp(𝛽⊤𝑧2)ℎ0(𝑡)

= 𝑒𝛽⊤(𝑧1−𝑧2).

In particular, if 𝑧1 and 𝑧2 are equal in all coordinates, except the 𝑗th coordinate, such that 𝑧2𝑗 = 𝑧1𝑗 +1,
then the hazard ratio becomes 𝑒𝛽𝑗 , which is called the relative risk of the 𝑗th covariate. If all we are
interested in, is determining relative risks, then we need not specify ℎ0.

In this thesis we are interested in Bayesian inference, and we would like to use the Cox model in
conjunction with a nonparametric (beta process) prior on the baseline c.h.f. 𝐻. As a consequence, 𝐻0
does not admit a density ℎ0, so we need to adapt the proportionality assumption from def. 2.18. A
possibility is to make the conditional cumulative hazard functions 𝐻(𝑡|𝑍) proportional to 𝐻0, but since
𝐻0 can make jumps, this might result in an 𝐻(𝑡|𝑍) that makes jumps of size larger than 1, whereas
a c.h.f. can not make jumps larger than 1. This problem could be remedied by scaling the jumps of
𝐻0 by the smallest factor 𝑒−𝛽

⊤𝑍, but this seems cumbersome. Instead the proportionality assumption
of the Cox model in nonparametric Bayesian settings is usually adjusted to mean that the functions
𝐴(𝑡|𝑍) = − log(𝑆(𝑡|𝑍)) are proportional:

𝐴(𝑡|𝑍) = 𝐴(𝑡)𝑒𝛽⊤𝑍 . (2.26)

In the following we use this definition of proportional hazards to replace the one in def. 2.18. We
now place a BP prior on 𝐻0, and an independent prior on 𝛽. Since prior information about 𝛽 is often
unavailable, a uniform improper prior, 𝜋(𝛽) ∝ 1, seems like a decent choice [14, p. 426]. Now that
priors are specified, we obtain expressions for the marginal posteriors of 𝐻 and 𝛽 in theorems 2.19 and
2.20. To improve readability of the remainder of this section, we introduce some notation:

𝐷𝑛(𝑡) = {𝑖 ∶ 𝑇𝑖 = 𝑡, Δ𝑖 = 1, 𝑖 = 1,… , 𝑛},
𝑅𝑛(𝑡) = {𝑖 ∶ 𝑡 ≤ 𝑇𝑖 , 𝑖 = 1,… , 𝑛},
𝑅+𝑛 (𝑡) = 𝑅𝑛(𝑡)\𝐷𝑛(𝑡),

𝑅𝑛(𝑡, 𝛽) = ∑
𝑗∈𝑅𝑛(𝑡)

exp(𝛽⊤𝑍𝑗),

𝑅+𝑛 (𝑡, 𝛽) = ∑
𝑗∈𝑅+𝑛 (𝑡)

exp(𝛽⊤𝑍𝑗).

Theorem 2.19 (𝐻 posterior in Cox model; Thm. 13.32 & Ex. 13.34 in [14]). If 𝐻 follows a beta process
prior with parameters (𝑐, Λ), where Λ has a density 𝜆, then the posterior of 𝐻 given 𝛽 and the data 𝐷𝑛
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is an independent increment process with intensity measure

𝜈𝑐𝐻|𝐷𝑛 ,𝛽(𝑑𝑡, 𝑑𝑠) = 𝑐(𝑡)𝑠
−1(1 − 𝑠)𝑅𝑛(𝑡,𝛽)+𝑐(𝑡)−1𝜆(𝑡)𝑑𝑡𝑑𝑠,

𝜈𝑑𝐻|𝐷𝑛 ,𝛽({𝑡}, 𝑑𝑠) ∝ 𝑠
−1 ∏

𝑖∈𝐷𝑛(𝑡)
[1 − (1 − 𝑠)exp(𝛽⊤𝑍𝑖)](1 − 𝑠)𝑅+𝑛 (𝑡,𝛽)+𝑐(𝑡)−1.

The intensity measure of the posterior of 𝐻|𝛽, 𝐷𝑛 is the sum of a continuous11 intensity measure
𝜈𝑐𝐻|𝐷𝑛 ,𝛽 and a discrete intensity measure 𝜈

𝑑
𝐻|𝐷𝑛 ,𝛽. It is worth noting that 𝜈

𝑐
𝐻|𝐷𝑛 ,𝛽 is the intensity measure

of a beta process with parameters 𝑅𝑛(𝑡, 𝛽) + 𝑐(𝑡), and
𝑐(𝑡)

𝑅𝑛(𝑡,𝛽)+𝑐(𝑡)
Λ(𝑡). 𝜈𝑑𝐻|𝐷𝑛 ,𝛽 is the intensity measure

of a process with jumps at fixed locations -the locations determined by the uncensored data points.
The jump sizes of 𝜈𝑑𝐻|𝐷𝑛 ,𝛽 however, do not follow beta distributions. Therefore the posterior of 𝐻 given
𝛽 and the data 𝐷𝑛 is not a beta process. Fortunately, we can deal with both the continuous and the
discrete intensity measures separately.

Algorithm 5 𝐻 Posterior: Beta Process
Given: 𝑐, Λ, 𝜀, 𝜏, 𝛽, 𝐷𝑛
𝜇 ≔ 1

𝜀 ∫
𝜏
0 𝑐𝑑Λ

Sample 𝑀 ∼ Pois(𝜇)
for 𝑖 = 1,… ,𝑀 do

Sample from 𝜋(𝜃𝑖) ∝ 𝑐(𝜃)𝑑Λ(𝜃)1{0 ≤ 𝜃 ≤ 𝜏}
for 𝑖 = 1,… ,𝑀 do

Sample 𝑠𝑖 ∼ Be(𝜀, 𝑅𝑛(𝜃(𝑖), 𝛽) + 𝑐(𝜃(𝑖)))

Algorithm 6 𝐻 Posterior: Fixed Jumps
Given: 𝑁, 𝛽, 𝐷𝑛
Initialise: 𝑈0 = (𝑈0,1, … , 𝑈0,𝑘𝑑)
for 𝑛 = 1,… ,𝑁 do

for 𝑖 = 1,… , 𝑘𝑑 do
𝑉𝑖 ≔ − log(1 − 𝑢𝑛−1,𝑖)
Sample 𝑌𝑖 ∼ Geom(1 − 𝑒−𝑉𝑖)
for 𝑗 = 1,… , 𝑘𝑖 do

Sample from 𝜋(𝑤𝑖𝑗) ∝ exp(−𝑒𝛽⊤𝑛 𝑧𝑖(𝑗)𝑉𝑖𝑤𝑖𝑗)1{0 < 𝑤𝑖𝑗 < 1}
Sample 𝑉𝑖 ∼ Ga(𝑘𝑖 + 1, 𝑐(𝑡𝑖) + 𝑅+𝑛 (𝑡𝑖 , 𝛽𝑛) + 𝑦𝑖 + ∑

𝑘𝑖
𝑗=1𝑊𝑖𝑗𝑒𝛽

⊤𝑛 𝑧𝑖(𝑗))
𝑈𝑛,𝑖 = 1 − 𝑒−𝑉𝑖

(𝑢1, … , 𝑢𝑘𝑑) ≔ (𝑈𝑁,1, … , 𝑈𝑁,𝑘𝑑)

Modification of Algorithm 4 to simulate the jumps of the beta process with intensity measure 𝜈𝑐𝐻|𝐷𝑛 ,𝛽
yields Algorithm 5. The algorithm generates jump locations 𝜃(1) < ⋯ < 𝜃(𝑀), forming the set T𝑐 =
∪𝑀𝑖=1{𝜃𝑖}, and corresponding jump sizes 𝑠1, … , 𝑠𝑀. In [19] Laud, Damien & Smith (1998) proposed
an MCMC algorithm to simulate the jumps at fixed locations of an IIP with intensity measure 𝜈𝑑𝐻|𝐷𝑛 ,𝛽
(Algorithm 6). We denote the set of distinct uncensored observations by T𝑑, with size card(T𝑑) = 𝑘𝑑
and elements 𝑡𝑑1 < ⋯ < 𝑡𝑑𝑘𝑑 . Algorithm 6 then generates jump sizes 𝑢1, … , 𝑢𝑘𝑑 , taking into account the
number of uncensored ties 𝑘𝑖 for 𝑖 = 1,… , 𝑘𝑑. Once these two parts are simulated, we can write the
marginal posterior of the baseline c.h.f. as the sum of the sample paths of the two parts as

𝐻(𝑡) =
𝑀

∑
𝑖=1
𝑠𝑖1[0,𝑡](𝜃(𝑖)) +

𝑘𝑑

∑
𝑗=1
𝑢𝑗1[0,𝑡](𝑡𝑑𝑗 ) = ∑

𝑡𝑐∈T𝑐

Δ𝐻(𝑡𝑐)1[0,𝑡](𝑡𝑐) + ∑
𝑡𝑑∈T𝑑

Δ𝐻(𝑡𝑑)1[0,𝑡](𝑡𝑑), (2.27)

which can be used to find the marginal posterior of 𝛽:
11This should not be confused with ”having a continuous sample path”: An IIP with continuous intensity measure does not
generally have a continuous sample path.
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Theorem 2.20 (𝛽 posterior in Cox model). Consider the same setting as in theorem 2.19. The posterior
of 𝛽 given 𝐻 and the data 𝐷𝑛 is proportional to

𝜋(𝛽) ∏
𝑡𝑑∈T𝑑

((1 − Δ𝐻(𝑡𝑑))𝑅+𝑛 (𝑡𝑑 ,𝛽) ∏
𝑗∈𝐷𝑛(𝑡𝑑)

(1 − (1 − Δ𝐻(𝑡𝑑))exp(𝛽⊤𝑍𝑗))) ∏
𝑡𝑐∈T𝑐

(1 − Δ𝐻(𝑡𝑐))𝑅𝑛(𝑡𝑐 ,𝛽). (2.28)

Proof. The proof is a clarification12 of the result in [20]. The assumption in 2.26 allows us to express
the survival function 𝑆(𝑡|𝑍) in two ways, that are necessarily equivalent:

𝑆(𝑡|𝑍) = (∏
(0,𝑡]
(1 − 𝑑𝐻(⋅|𝑍))) = (∏

(0,𝑡]
(1 − 𝑑𝐻))

exp(𝛽⊤𝑍)

,

implying 𝑑𝐻(𝑡|𝑍) = 1 − (1 − 𝑑𝐻(𝑡))exp(𝛽⊤𝑍) for all 𝑡. Now we can write the (partial) likelihood of 𝛽 in
the following way:

𝐿(𝛽|𝐻, 𝐷𝑛) =
𝑛

∏
𝑖=1

∏
𝑡∈[0,𝜏]

𝑑𝐻(𝑡|𝑍𝑖)𝑑𝑁𝑖(𝑡)(1 − 𝑑𝐻(𝑡|𝑍𝑖))𝑌𝑖(𝑡)−𝑑𝑁𝑖(𝑡)

=
𝑛

∏
𝑖=1

∏
𝑡∈[0,𝜏]

(1 − (1 − 𝑑𝐻(𝑡))exp(𝛽⊤𝑍))𝑑𝑁𝑖(𝑡)(1 − 𝑑𝐻(𝑡))exp(𝛽⊤𝑍)(𝑌𝑖(𝑡)−𝑑𝑁𝑖(𝑡)).

This expression of the likelihood in terms of the counting processes 𝑌𝑖(𝑡) and 𝑁𝑖(𝑡) can cause
confusion in the case of uncensored ties in the data. We want to allow each distinct observation to have
its subject-specific hazard. The product integral can be eliminated from the expression by observing
that 𝑑𝐻(𝑡) > 0 ⟺ 𝑡 ∈ T𝑐 ∪ T𝑑. Furthermore we know that 𝑑𝑁𝑖(𝑡) > 0 ⟺ 𝑡 ∈ T𝑑 ⟺ 𝐷𝑛(𝑡) ≠ ∅, so
we obtain

𝐿(𝛽|𝐻, 𝐷𝑛) = ∏
𝑡∈T𝑐∪T𝑑

( ∏
𝑗∈𝐷𝑛(𝑡)

(1 − (1 − Δ𝐻(𝑡))exp(𝛽⊤𝑍𝑗)) ∏
𝑘∈𝑅+𝑛 (𝑡)

(1 − Δ𝐻(𝑡))exp(𝛽⊤𝑍𝑘))

= ∏
𝑡𝑑∈T𝑑

( ∏
𝑗∈𝐷𝑛(𝑡𝑑)

(1 − (1 − Δ𝐻(𝑡𝑑))exp(𝛽⊤𝑍𝑗)) ∏
𝑘∈𝑅+𝑛 (𝑡𝑑)

(1 − Δ𝐻(𝑡𝑑))exp(𝛽⊤𝑍𝑘))

⋅ ∏
𝑡𝑐∈T𝑐

∏
𝑙∈𝑅𝑛(𝑡𝑐)

(1 − Δ𝐻(𝑡𝑐))exp(𝛽⊤𝑍𝑙),

and the result follows.

Since the expression in eq. 2.28 is proportional to the posterior of 𝛽 given 𝐻 and 𝐷𝑛, the MH
algorithm (Alg. 1) can be used to sample from the posterior, by substituting the expression into eq.
2.3.

12correction of the result: [20] appears to have a misplaced bracket



3
Bayesian Sensitivity Analysis

This chapter explains the practice of Bayesian sensitivity analysis, and illustrates it with examples
from the literature. Section 3.1 introduces the concept of sensitivity analysis, motivates its usage in
missing data problems, and places it in the Bayesian framework. Sections 3.2 and 3.3 describe the two
prevalent modelling approaches in Bayesian sensitivity analysis, the unmeasured confounder approach
and the selection bias approach, respectively. The chapter concludes with some ideas for interesting
research directions in the field of Bayesian sensitivity analysis in section 3.4.

3.1. Bayesian Sensitivity Analysis for Missing Data
In studies with missing data, we need to make assumptions that are non-identifiable from the observed
data, to draw valid inferences. The assumption investigated in this thesis is missing at random (MAR;
conditional exchangeability (CE) in the context of causal inference), introduced in section 2.1. Depend-
ing on the context, we will use MAR and CE interchangeably. Since the MAR assumption can not be
checked from the observed data, it is sensible to test how sensitive inferences regarding the outcome
of interest drawn under the MAR assumption are to deviations from MAR (i.e. missing not at random
(MNAR)). This practice is called sensitivity analysis.

In sensitivity analysis, a sensitivity model for the data is specified. This model, usually governed
by a sensitivity parameter 𝛼, expresses how the missing data are believed to be missing. The special
case where 𝛼 = 0 corresponds to the MAR assumption, and 𝛼 ≠ 0 constitutes MNAR. The data are
then analysed by varying 𝛼 over a plausible range of values, usually determined with the help of expert
opinions [30]. Every study has some quantity of interest, and sensitivity analysis gauges the changes
in this quantity as 𝛼 is being varied.

Bayesian sensitivity analysis (BSA) is exactly what it says on the tin: a Bayesian approach to sen-
sitivity analysis. The main idea of the Bayesian paradigm is to equip model parameters with priors,
and adjust the prior beliefs about these parameters by computing posterior distributions given the ob-
served data. In this way, domain experts can express their beliefs about plausible values of 𝛼 in a prior
on 𝛼, instead of just a range of values. This approach has two great advantages when compared to
alternative approaches to sensitivity analysis. First of all, knowledge of domain experts can be very
naturally incorporated in the statistical model through the specification of priors [30]. Secondly, BSA
yields posterior distributions, and not just point estimates of quantities of interest. These posteriors
form a summary of the analysis [30, 10].

Within the field of BSA, there are many model elements that can be varied. An example is the
scale on which outcomes and covariates are measured (e.g. binary, continuous). Another example
is the way distributions are modelled. If it is well-known that a variable follows a certain parametric
distribution, a choice can be made for a parametric model. If little is known about distributional forms of
a variable, or if flexibility is required, it might be desirable to model certain aspects nonparametrically
(or semiparametrically). In BSA, as in other areas of causal inference, the choice is often made for

17
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flexible nonparametric Bayesian methods [27].

3.2. Unmeasured Confounder Approach
The unmeasured confounder approach was first used in 1959 in [5] and has been applied in many
forms ever since. The approach assumes there is an unmeasured confounder 𝑈, such that 𝑌𝑎⊥⊥ 𝐴|𝑍
fails, but 𝑌𝑎⊥⊥ 𝐴|𝑈, 𝑍 is true. One then proceeds to model (𝑌, 𝑈)|𝐴, 𝑍, possibly by using the factorisation
𝑃(𝑌, 𝑈|𝐴, 𝑍) = 𝑃(𝑌|𝐴, 𝑈, 𝑍)𝑃(𝑈|𝐴, 𝑍) [21], which gives a model for 𝑌|𝐴, 𝑍 after marginalising out the
latent confounder 𝑈. If priors are specified for 𝑃(𝑌|𝐴, 𝑈, 𝑍) and 𝑃(𝑈|𝐴, 𝑍), a posterior is obtained for
𝔼𝑌𝑎 = 𝔼𝑈,𝑍𝔼(𝑌𝑎|𝑈, 𝑍) = 𝔼𝑈,𝑍𝔼(𝑌|𝐴 = 𝑎, 𝑈, 𝑍) by Thm. 2.1. Robins, Rotnitzky & Scharfstein (2000)
argue in [28] that one should take the unmeasured confounder approach if there exists a known con-
crete confounder 𝑈 that, for some reason, was not measured, and ”there exists reasonable historical
knowledge about the magnitude of assocation of 𝑈 with both the outcome (conditional on treatment
and measured confounders) and the treatment (conditional on measured confounders)”. They state
that the selection bias approach (discussed in section 3.3) is preferable if either the nature of 𝑈, or the
magnitude of assocation of 𝑈 with 𝐴 and 𝑌 is unknown, because they believe domain experts can more
easily form opinions about the association between 𝑌𝑎 and 𝐴, than about the scale (continuous/dis-
crete) and dimensionality of 𝑈, and the magnitude of association of 𝑈 with 𝐴 and 𝑌. In the following we
describe some applications of the unmeasured confounder approach in the literature.

In [23] 𝐴, 𝑈, and 𝑌 are modelled as binary random variables, and 𝑍 is a vector of measured covari-
ates. They model the distributions as follows:

Pr(𝑌 = 1|𝐴, 𝑈, 𝑍) = Ψ(𝛽0 + 𝛽1𝐴 + 𝛼𝑈 + 𝜂⊤𝑍), (3.1)
Pr(𝑈 = 1|𝐴, 𝑍) = Ψ(𝛾0 + 𝛾1𝐴 + 𝜉⊤𝑍), (3.2)

with Ψ(𝑥) = (1 + 𝑒−𝑥)−1. The model is non-identifiable from the observed data (𝐴, 𝑌, 𝑍), and the
assumptions about unmeasured confounding are captured by the parameters 𝛼, 𝛾0, 𝛾1, and 𝜉. The
prior beliefs about these parameters are then specified in a prior 𝜋(𝛼, 𝛾0, 𝛾1, 𝜉) = 𝜋(𝛼)𝜋((𝛾0, 𝛾1))𝜋(𝜉).
For all parameters zero-centred Gaussian priors were chosen. Then aGibbs sampler was implemented
to sample from the posterior of (𝛼, 𝛽0, 𝛽1, 𝛾0, 𝛾1, 𝜂, 𝜉, 𝑈|𝐴, 𝑌, 𝑍), and integrate out the latent variable 𝑈,
as described in section 2.2.3.

Other papers take very similar approaches: In [22] an almost identical modelling approach is taken,
but with zero-centred uniform priors on the sensitivity parameters. [25] again uses the same logistic
regression model, but extends the model to distinguish between confounding and non-confounding
covariates. The latter work follows an idea from [17] that measured confounders could be informative
about unmeasured confounders: They view measured and unmeasured confounders as exchange-
able, which reduces the difficulty of prior specification for individual bias parameters.

A slightly different approach is taken by [2, 7], who model the dependence of 𝐴 on 𝑈 and 𝑍, rather
than the dependence of 𝑈 on 𝐴 and 𝑍:

𝑌|𝐴, 𝑈, 𝑍 ∼ Nor(𝛽𝐴 + 𝛼𝑈 + 𝜂⊤𝑍, 𝜎2),
𝐴|𝑈, 𝑍 ∼ Ber(Φ(𝛾𝑈 + 𝜉⊤𝑍)),

𝑈 ∼ Ber(𝑝),

where Φ denotes the standard normal c.d.f. . [7] extend the model by modelling the response surface
in a nonparametric way using Bayesian additive regression trees (BART).

𝑌|𝐴, 𝑈, 𝑍 ∼ Nor(𝜇(𝐴, 𝑍) + 𝛼1𝑈, 𝜎2),
𝐴|𝑈, 𝑍 ∼ Ber(Φ(𝛼2𝑈 + 𝛽⊤𝑍)),

𝜇(𝐴, 𝑍), 𝜎2|𝐴, 𝑍 ∼ BART(𝐴, 𝑍),
𝑈 ∼ Ber(𝑝).
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BART, first introduced in [3], is an ensemble of regression trees. If BART is used for regression of 𝑌
on 𝑋, then each of the regression trees partitions the space of the 𝑋, and predicts a value �̂� for each
element of the partition. For all the trees these �̂� are added together, to obtain a mean function 𝜇. Then
for data (𝑋1, 𝑌1), … , (𝑋𝑛 , 𝑌𝑛) the 𝑌𝑖 are independently normally distributed withmean 𝜇(𝑋𝑖) and a common
variance 𝜎2, which is also learned by BART. BART is a Bayesian method, because all parameters that
govern the construction of the trees, as well as the common variance 𝜎2, are equipped with priors.

Another big difference between [2, 7] and [23], is that the former do not place priors on the sensitivity
parameter (𝛼1, 𝛼2). Gibbs sampling is again used to sample from the posterior, but this is done for a
range of combinations of 𝛼1 and 𝛼2, resulting in a sort of ”hybrid” BSA.

3.3. Selection Bias Approach
The selection bias approach is based on the observation that a violation of 𝑌𝑎⊥⊥ 𝐴|𝑍 implies that the
distribution of 𝐴|, 𝑌𝑎 , 𝑍 is not free of 𝑌𝑎. The approach was first suggested by Robins et al. (2000) in
[28], who provided two advantages in comparison to the unmeasured confounder approach. Firstly, the
selection bias approach uses fewer sensitivity parameters, and is therefore computationally cheaper.
Secondly, the choices regarding scale and dimensionality of 𝑈 are avoided.

We illustrate the selection bias approach, and focus on just the one potential outcome 𝑌1, sup-
pressing the superscript for ease of notation. We denote the full data by (𝐴, 𝑌, 𝑍), and the observed
data by (𝐴, 𝐴𝑌, 𝑍)1. The law of the observed data can be identified with (1) the law of the covariates
𝑍, L(𝑍) = 𝑃𝑍, (2) the propensity score 𝑓(𝑍) = Pr(𝐴 = 1|𝑍), and (3) the law of the observed outcome
of interest, L(𝑌|𝐴 = 1, 𝑍) = 𝑃1(𝑌|𝑍). The aim of BSA is to assess sensitivity of study conclusions to
deviations from MAR, by modelling the missing outcome of interest as MNAR rather than MAR. Saying
data are MNAR is equivalent to saying 𝑃1(𝑌|𝑍) is different from the law of the missing outcome of in-
terest, 𝑃0(𝑌|𝑍). The selection bias approach models 𝑃0(𝑌|𝑍) by specifying a sensitivity function 𝑞(𝑥, 𝑦)
and assuming the following relationship holds

𝑑𝑃0(𝑌|𝑍) ∝ 𝑒−𝑞(𝑌,𝑍)𝑑𝑃1(𝑌|𝑍). (3.3)

The relationship in equation 3.3 requires 𝑃0 and 𝑃1 to have the same support -an again non-identifiable
assumption. Using 3.3 we find an expression for L(𝑌|𝑍):

𝑃(𝑌 ∈ 𝐵|𝑍) = 𝑓(𝑍)𝑃1(𝑌 ∈ 𝐵|𝑍) + (1 − 𝑓(𝑍))𝑃0(𝑌 ∈ 𝐵|𝑍)

= ∫
𝐵
(𝑓(𝑍) + (1 − 𝑓(𝑍)) 𝑒−𝑞(𝑦,𝑍)

∫ 𝑒−𝑞(𝑦,𝑍)𝑑𝑃1(𝑦|𝑍)
) 𝑑𝑃1(𝑦|𝑍). (3.4)

Equation 3.4 shows that the functional of interest, 𝔼𝑌 = 𝜇, can be estimated if we have estimators
for 𝑃1, 𝑓, and 𝑃𝑍, and if we know the sensitivity function 𝑞. We could therefore specify priors for these
elements. This is the first of two possible parameterisations for this model. The following lemma from
[28] motivates the other possible parameterisation.

Lemma 3.1. Let (𝔜,Y ) be a Polish space. Given a measurable function 𝑔 ∶ 𝔜 → [0, 1], a number
𝑝 ∈ (0, 1), and a probability distribution 𝑃1 on 𝔜, there exists a law for a random vector (𝐴, 𝑌) with
values in {0, 1} × 𝔜 such that

Pr(𝐴 = 1|𝑌) = 𝑔(𝑌), (3.5)
Pr(𝐴 = 1) = 𝑝, (3.6)
𝑌|𝐴 = 1 ∼ 𝑃1, (3.7)

if and only if

∫ 1
𝑔𝑑𝑃1 =

1
𝑝 . (3.8)

1the analysis can be extended to include the other potential outcome 𝑌0 by instead applying the approach ”twice” to the observed
data (𝐴, 𝐴𝑌1 , (1 − 𝐴)𝑌0 , 𝑍)
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Moreover, this law is unique and satisfies

Pr(𝑌 ∈ 𝐵) = 𝑝∫
𝐵

1
𝑔𝑑𝑃1, (3.9)

Pr(𝑌 ∈ 𝐵|𝐴 = 0) = 𝑝
1 − 𝑝 ∫𝐵

1
𝑔𝑑𝑃1, (3.10)

for any 𝐵 ∈ Y .

If we apply lemma 3.1 conditionally on 𝑍, we obtain the following:

Corollary 3.2. If for some measurable function 𝑔 ∶ 𝔜 × ℨ → [0, 1] we have that

∫ 1
𝑔(𝑦, 𝑧)𝑑𝑃1(𝑦|𝑧) =

1
𝑓(𝑧) , ∀𝑧 ∈ ℨ, (3.11)

then
Pr(𝐴 = 1|𝑌 = 𝑦, 𝑍 = 𝑧) = 𝑔(𝑦, 𝑧). (3.12)

This result allows us to model the probability of being observed given 𝑌 and 𝑍 as follows

Pr(𝐴 = 1|𝑌, 𝑍) = Ψ(𝜂(𝑍) + 𝑞(𝑌, 𝑍)), (3.13)

where Ψ(𝑥) = (1+𝑒−𝑥)−1 is the logistic function. The function 𝑞 in 3.13 is the same sensitivity function
as in 3.3, and in fact lemma 3.1 shows the two equations to be equivalent. The function 𝜂(𝑍) can be
solved from 3.11, and it is interpreted as the intercept of the logistic regression of 𝐴 on 𝑌 given 𝑍. In light
of all this, the second strategy for specifying priors is by putting independent priors on 𝑃 (i.e. L(𝑌|𝑍)),
𝜂, 𝑞, and 𝑃𝑍. We will refer to this as the second parameterisation. Let’s look at some examples of this
approach in the literature.

[30, 10] apply the selection bias approach to a missing data problem without covariates. In the ab-
sence of covariates, the MAR assumption is calledmissing completely at random (MCAR). Both papers
consider outcomes 𝑌 inℝ+, modelling CD4 counts of HIV patients, and both papers specify a sensitivity
function 𝑞(𝑦) = 𝛼 log(𝑦). [10] investigate both parameterisations. For the first parameterisation, they
specify the hierarchy

𝑌|𝐴 = 1 ∼ DP(𝑎),
𝐴|𝑓 ∼ Ber(𝑓),
𝑓 ∼ Be(𝛽1, 𝛽2).

The distribution of 𝑌 is then given by 𝑃 = 𝑓𝑃1+(1−𝑓)𝑃0. In the second parameterisation, the hierarchy
becomes

𝐴|𝑌 ∼ Ber(Ψ(𝜂 + 𝑞𝛼(𝑌))),
𝑌 ∼ DP(𝑎),
𝜂 ∼ Unif(𝑢1, 𝑢2).

For both parameterisations a prior on 𝑞 is specified by placing a prior on 𝛼. In the first parameterisation
the posterior computation is easy, because the posterior distribution of 𝑃 is again a Dirichlet process.
In the second parameterisation, a Gibbs sampler is used to sample from the posterior, and relation 3.3
is used to sample the missing outcomes.

An important result from [10], is that the second parameterisation is in some sense favourable over
the first, because in the second parameterisation the posterior of 𝑞 might differ from the prior, whereas
in the first parameterisation the posterior of 𝑞 is equal to the prior on 𝑞. This indicates, that the second
parameterisation allows the posterior of 𝑞 -and therefore the posterior of the functional of interest 𝜇- to
learn from the data, which instills the hope that part of the non-identifiable sensitivity parameter 𝛼 can
be learned from the data.
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Another example that takes a similar modelling approach is [12]. They consider a class of models
that they call ”logistic selection with mixtures of exponential families” (logistic-mEF models). Notably,
BART and DP mixtures belong to this class. An example of a hierarchy that they use is

𝑌𝑎|𝐴 = 𝑎, 𝑍 ∼ Nor(𝜇𝑎(𝑍), 𝜎2),
𝜇𝑎(𝑍), 𝜎2|𝐴 = 𝑎, 𝑍 ∼ BART(𝑍|𝐴 = 𝑎),

𝐴|𝑌𝑎 , 𝑍 ∼ Ber(Ψ(𝜂𝑎(𝑍) + 𝑞𝑎(𝑌𝑎))).

Similar to the approach of [2, 7], no prior is specified on 𝑞, and again 𝛼 is varied over a range of plausible
values.

3.4. Directions for Research in Bayesian Sensitivity Analysis
Of the two discussed approaches to BSA, the selection bias approach offers the most opportunities
for research, because the approach appears to still be less widely adopted than the unmeasured con-
founder approach. The approach of [30, 10] can be extended to the case that includes covariates. As
[10] already note, this could be done by modelling the dependence of 𝑌 on 𝑍 through a dependent
Dirichlet process, or through BART (similar to [12], but with a prior on 𝑞). Another option is to investi-
gate survival outcomes with covariates -possibly in combination with independent right censoring. In
this setting covariate-dependence can be introduced through the Cox model. Neither of the two ap-
proaches to BSA has many (if any) occurences in the literature. In [24] the unmeasured confounder
approach is applied to the setting of mediation analysis. They specify fully parametric survival mod-
els. Their method could be applied to the missing data (or causal inference) and improved by using
nonparametric Bayesian methods.





4
Methods

This chapter describes and motivates the methods used. First the statistical model is specified in sec-
tion 4.1. Secondly, section 4.2 describes the steps of a Gibbs sampler to sample from the posterior
distribution. Section 4.3 describes a way to extend the model and Gibbs sampler to handle indepen-
dently right censored data. The chapter is concluded with a section that outlines the experiments of
the simulation study.

4.1. Model
A Bayesian sensitivity analysis (BSA) is carried out to assess sensitivity of study conclusions under
the MAR assumption, to violations of said assumption. To this end, the missing data are modelled as
MNAR using equation 3.13 (or 3.3), following the second parameterisation discussed in section 3.3. We
consider a model with life times 𝑇 ∈ ℝ+, and for simplicity we consider the case without right censoring.
The full data are of the form 𝐷𝑛 = {(Δ1, 𝑇1, 𝑍1), … , (Δ𝑛 , 𝑇𝑛 , 𝑍𝑛)}, where Δ𝑖 indicates whether the 𝑖-th life
time 𝑇𝑖 is observed1 or not (Δ𝑖 = 1, respectively Δ𝑖 = 0). 𝑍𝑖 is the covariate characterising the 𝑖-th
observation, and is for simplicity chosen to take its value in (0, 1). The life times given the covariates
are modelled through their c.h.f. through the Bayesian version of the Cox model, given by (2.26). The
latter relation is used to find the conditional c.d.f. of 𝑇:

𝐴(𝑡|𝑍) = 𝐴(𝑡)𝑒𝛽⊤𝑍 ⟺ 𝑆(𝑡|𝑍) = 𝑆(𝑡)exp(𝛽⊤𝑍)

⟺ 𝐹(𝑡|𝛽, 𝐻, 𝑍) = 1 − (∏
(0,𝑡]
(1 − 𝑑𝐻))

exp(𝛽⊤𝑍)
.

A BP(𝑐, Λ) prior is placed on the baseline c.h.f. 𝐻, and an independent improper uniform prior is placed
on the regression coefficient 𝛽, following the choice in [14, p. 426]. The law of the covariates, 𝑃𝑍, follows
a DP(𝑎) prior. The functions 𝑞 and 𝜂 in the sensitivity model are indexed by parameters 𝛼 respectively
𝛾, i.e. 𝑞 = 𝑞𝛼 and 𝜂 = 𝜂𝛾. These parameters are equipped with independent priors. The following
Bayesian hierarchy summarises the generation of the full data:

• 𝑃𝑍 ∼ DP(𝑎)⊥⊥ 𝛼⊥⊥ 𝛽⊥⊥ 𝛾,

• 𝑍𝑖|𝑃𝑍
i.i.d.∼ 𝑃𝑍 , 𝑖 = 1,… , 𝑛,

• 𝐻 ∼ BP(𝑐, Λ),

• 𝐹(𝑡𝑖|𝛽, 𝐻, 𝑍𝑖) = 1 − (∏(0,𝑡](1 − 𝑑𝐻))
exp(𝛽⊤𝑍𝑖)

, 𝑖 = 1,… , 𝑛,
• Δ𝑖|𝛼, 𝛾, 𝑇𝑖 , 𝑍𝑖 ∼ Ber(Ψ(𝜂𝛾(𝑍𝑖) + 𝑞𝛼(𝑇𝑖 , 𝑍𝑖))), 𝑖 = 1,… , 𝑛,

with Ψ(𝑥) = (1 + 𝑒−𝑥)−1. Since the covariates are restricted to (0, 1), the standard uniform distribution
is chosen as base measure 𝑎, so �̄� = Unif(0, 1) and the prior precision |𝑎| = 1, to allow the data to
1Δ takes the role of 𝐴 from chapter 3, because 𝐴 is used here to denote the negative logarithm of the survival distribution.
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determine the posterior. The covariates might not be uniformly distributed in reality, but for increasing
sample sizes the effect of the choice of base measure 𝑎 vanishes. For a similar reason, the concentra-
tion function 𝑐 is chosen equal to 1, to reflect that the prior belief in Λ = 𝑡 (corresponding to a constant
hazard rate 𝜆 = 1) is the same for all 𝑡, and to allow the data to determine most of the posterior of 𝐻.

Given the full data, a strategy for sampling from the posterior can be formulated using the theory
from chapter 2, as is done in the following section. In our case, however, the data are not fully observed.
Only the data 𝑋𝑛 = {(Δ1, Δ1𝑇1, 𝑍1), … , (Δ𝑛 , Δ𝑛𝑇𝑛 , 𝑍𝑛)} are observed2. To remedy this, we use theory from
chapter 3 to augment the observed data by sampling values 𝑇miss from the distribution of the missing
data L(𝑇|Δ = 0, 𝑍). The posterior quantities of interest are

• The sensitivity parameter 𝛼

• The functional of interest 𝜇 = 𝔼𝑇

It will be interesting to investigate if (part of) the sensitivity parameter can be learned from the observed
data, and if the posterior of the functional of interest will concentrate around its ”true” value for increasing
sample sizes.

4.2. Sampling from Posterior
Similar to [30, 10], we use a Gibbs sampling scheme to sample from the posterior distribution of (𝛼,𝛽,𝛾,
𝐻,𝑃𝑍, 𝑇miss) given the data. This section describes the successive sampling steps of the algorithm.
Each step generates a sample from a full conditional distribution. Most steps rely on theory and algo-
rithms discussed in chapters 2 and 3. Details on implementation can be found in appendix B.

4.2.1. Dirichlet process
Since a priori 𝑃𝑍 ∼ DP(𝑎), and we observe values 𝑍1, … , 𝑍𝑛, the posterior distribution of 𝑃𝑍 given the
data is a DP(𝑎 + ∑𝑛𝑖=1 𝛿𝑍𝑖). We sample from the posterior distribution using an adaptation of Algorithm
3. 𝑃𝑍|𝑍1, … , 𝑍𝑛 plays an important role in the computation of the functional of interest 𝜇.

4.2.2. Imputation missing data
As stated in the previous section, we need full data for simulation from the posterior distribution. The
missing values 𝑇miss are distributed according to 𝑃0(𝑡|𝛽, 𝐻, 𝑍). Assuming the sensitivity model is true,
we can sample from this distribution using the following relationship:

𝑑𝑃0(𝑡|𝛽, 𝐻, 𝑍) ∝
𝑒−𝑞(𝑡,𝑍)

1 + 𝑒−𝜂(𝑍)−𝑞(𝑡,𝑍)𝑑𝐹(𝑡|𝛽, 𝐻, 𝑍). (4.1)

Since at every iteration we draw a sample3 from the marginal posterior of 𝐻 that jumps at finitely many
locations, we can see that 𝐹(𝑡|𝛽, 𝐻, 𝑍) is the c.d.f. associated with a discrete measure. Therefore
𝑑𝐹(𝑡|𝛽, 𝐻, 𝑍) can be written as the sum of weights at certain locations. The locations are given by 𝐻,
and the weights are the jumps Δ𝐹(𝑡|𝛽, 𝐻, 𝑍) at said locations, given by

Δ𝐹(𝑡|𝛽, 𝐻, 𝑍) = Δ𝐻(𝑡|𝛽, 𝑍)( ∏
𝑢∈(0,𝑡)

(1 − Δ𝐻(𝑢)))
exp(𝛽⊤𝑍)

= (1 − (1 − Δ𝐻(𝑡))exp(𝛽⊤𝑍))( ∏
𝑢∈(0,𝑡)

(1 − Δ𝐻(𝑢)))
exp(𝛽⊤𝑍)

.

Then 𝑃0(𝑡|𝛽, 𝐻, 𝑍) is just a re-weighting of 𝑑𝐹(𝑡|𝛽, 𝐻, 𝑍), and thus also a discrete measure.

4.2.3. Cumulative hazard function
We specified a BP(𝑐, Λ) prior on the baseline c.h.f. 𝐻. It follows from theorem 2.19 that the posterior
of 𝐻 given 𝛽 and the full data is an IIP with known intensity measure 𝜈𝐻|𝐷𝑛 ,𝛽 = 𝜈𝑐𝐻|𝐷𝑛 ,𝛽 + 𝜈

𝑑
𝐻|𝐷𝑛 ,𝛽.

2by convention we say we observe 𝑇𝑖 = 0 if Δ𝑖 = 0, but in reality no value is observed for said 𝑇𝑖
3which is an approximation
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Since in the previous step we imputed the 𝑇miss to complete the observed data, we carry on as if we
actually observed the full data. We sample from the beta process with intensity measure 𝜈𝑐𝐻|𝐷𝑛 ,𝛽 using
algorithm 5. An adaptation of algorithm 6 is used to sample from the IIP with intensity measure 𝜈𝑑𝐻|𝐷𝑛 ,𝛽.
The algorithm simulates jumps at fixed locations -the uncensored 𝑇 values. In most applications, these
locations are indeed fixed, but in our context the locations may vary per iteration, because the sampled
𝑇miss may very well be different every iteration. Since the model does not allow for right censoring, all
values 𝑇𝑖 -including the imputed 𝑇miss- are considered uncensored.

4.2.4. Metropolis-Hastings steps
We sample from the full conditional distributions of (𝛼, 𝛾) and 𝛽 using MH steps. The likelihood of (𝛼, 𝛾)
given the full data is the likelihood of a logistic regression, given by

𝑛

∏
𝑖=1

( 1
1 + exp(−𝜂𝛾(𝑍𝑖) − 𝑞𝛼(𝑇𝑖 , 𝑍𝑖))

)
Δ𝑖
( 1
1 + exp(𝜂𝛾(𝑍𝑖) + 𝑞𝛼(𝑇𝑖 , 𝑍𝑖))

)
1−Δ𝑖

.

The likelihood of 𝛽 given 𝐻 and the full data is given by theorem 2.20. For both MH steps we use a
Gaussian proposal kernel with a variance that is tuned to achieve an acceptance rate4 of between 1

4
and 1

3 . During the first 99 iterations of the Gibbs sampler multiple MH steps are simulated (linearly
decreasing from 100 to 2), to achieve a quicker burn-in. When multiple MH steps are taken during one
iteration of the Gibbs sampler, only the last sample is used and the rest are discarded. Starting from
the hundreth iteration of the Gibbs sampler, only one MH step is taken per iteration (per full conditional
distribution).

4.2.5. Computation functional of interest
At every iteration an approximation of the functional of interest 𝜇 is computed. This is done by evaluating
the integral

𝜇 ≈ ∬𝑡 𝑑𝐹(𝑡|𝛽, 𝐻, 𝑍)𝑑𝑃𝑍 , (4.2)

writing 𝑃𝑍 instead of 𝑃𝑍|𝑍1, … , 𝑍𝑛. The double integral in 4.2 is easy to evaluate, since both integrals
are with respect to discrete measures. For every given 𝑍 ∈ supp(𝑃𝑍), the weights Δ𝐹(𝑡|𝛽, 𝐻, 𝑍) at
𝑡 ∶ Δ𝐻(𝑡) > 0 are given by𝑊𝑡|𝑍. Denoting the weights of 𝑃𝑍 by𝑊𝑍 we can write the integral as

𝜇 ≈ ∑
𝑍 ∈ supp(𝑃𝑍)

𝑊𝑍 ( ∑
𝑡∶Δ𝐻(𝑡)>0

𝑊𝑡|𝑍 ⋅ 𝑡).

4.3. Extension to independent right censoring
The current model and sampling algorithm can be modified to be applicable to data with simultaneously
both ”ordinary” missingness and independent right censoring. Let the observed data be of the form 𝑋𝑛 =
{(Δ𝑚1 , Δ𝑚1 Δ𝑐1, Δ𝑚1 𝑇1, 𝑍1), … , (Δ𝑚𝑛 , Δ𝑚𝑛 Δ𝑐𝑛 , Δ𝑚𝑛 𝑇𝑛 , 𝑍𝑛)}, where Δ𝑚 is the missingness indicator, 𝑇 = min(�̃�, 𝐶)
with 𝐶 some independent censoring variable, and Δ𝑐 is the right censoring indicator (Δ𝑐 = 0 means the
value is right censored). Then almost all steps of the Gibbs sampler remain unchanged, since the beta
process prior on 𝐻 is compatible with independently right censored data, and the right censored data
occur in the posteriors of 𝐻 and 𝛽 in a natural way.

A change needs to be made only with regard to the MH steps to sample from the full conditional
of (𝛼, 𝛾) (or, more generally, (𝑞, 𝜂)). The sensitivity function 𝑞 is not designed to handle right censored
data, as a right censored observation 𝑇 underestimates the true value �̃�. This can be remedied by
adding an extra step to the Gibbs sampler. In the added step, the data are augmented by replacing the
observed5 right censored values (where 𝑇 = 𝐶) by samples from the distribution of 𝑇|𝛽, 𝐻, 𝑍 conditional
on the event {𝑇 ≥ 𝐶}. Even if 𝐶 is larger than all other observed uncensored life times, the distribution
of 𝑇|𝛽, 𝐻, 𝑍 still has support to the right of 𝐶 by virtue of the beta process part of the posterior of 𝐻.
4according to [13] an acceptance rate of 0.234 is optimal, but this is result is mainly interesting for high-dimensional targets: a
slightly higher acceptance rate seems fine in practice for low-dimensional targets.

5we assume that missing data are never independently right censored. If a value is missing, it is imputed according to section
4.2.2
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4.4. Experimental Design
This section outlines the experiments that are conducted with the aforementioned sampling strategy.
First the simulation of data sets is described, then the various experiments are detailed.

4.4.1. Data generation
We run experiments on simulated data. Data sets 𝐷𝑛 = {(Δ1, 𝑇1, 𝑍1), … , Δ𝑛 , 𝑇𝑛 , 𝑍𝑛)} of sizes 𝑛 = 100,
𝑛 = 1000, and 𝑛 = 10000 are simulated under the assumption that the sensitivity model is true. The
data sets are generated in the following way. We choose ”true” values 𝛼0 = 1.5, 𝛽0 = 1, 𝛾0 = 2, 𝜆0 = 1.
Then we sample 𝑛 i.i.d. realisations of

𝑍 ∼ Unif(0, 1),
𝑇|𝑍 ∼ Exp(𝜆0𝑒𝛽0𝑍),

Δ|𝑇, 𝑍 ∼ Ber(Ψ(𝜂𝛾0(𝑍) + 𝑞𝛼0(𝑇, 𝑍))),

with Ψ(𝑥) = (1 + 𝑒−𝑥)−1. The distribution of 𝑇|𝑍 is in accordance with the Cox model. The true value
of the functional of interest is then

𝜇0 = 𝔼𝑍𝔼(𝑇|𝑍) = 𝔼𝑍(𝜆−10 𝑒−𝛽0𝑍) = ∫
1

0
𝑒−𝑧𝑑𝑧 = 1 − 1𝑒 ≈ 0.63.

For Experiments 1-3 the same data sets are used, with 𝜂𝛾(𝑍) = 𝛾⊤𝑍 and 𝑞𝛼(𝑇, 𝑍) = 𝛼𝑇. This choice of
𝑞𝛼, in light of the logistic regression formulation, means that a unit increase in the value of 𝑇 implies an
increase of 𝛼 in the log-odds of being observed. 𝜂𝛾 has a similar interpretation. The data for Experiment
4 are simulated slightly differently: first of all, a nonlinear sensitivity function 𝑞𝛼(𝑇, 𝑍) = 𝛼𝑇1(0.5,1](𝑍) is
used, and secondly, 𝛾0 = 0.5 to ensure enough data will end up missing (Δ = 0). Thus the 𝑍𝑖 and 𝑇𝑖|𝑍𝑖
are the same for all experiments, but different Δ𝑖|𝑇𝑖 , 𝑍𝑖 are simulated for Experiment 4.

When the data sets are used in any of the experiments described in the following sections, all data
points where Δ = 0 are considered missing, so instead of 𝐷𝑛, observed data 𝑋𝑛 = {(Δ1, Δ1𝑇1, 𝑍1), … ,
(Δ𝑛 , Δ𝑛𝑇𝑛 , 𝑍𝑛)} are used.

4.4.2. Experiments
Four experiments are carried out to test the model and the performance of the Gibbs sampling scheme.
Unless mentioned otherwise

• the experiments are carried out on the data sets 𝑋𝑛 for 𝑛 = 100, 𝑛 = 1000, and 𝑛 = 10000, and

• the initial values of the Gibbs sampler are chosen to be the prior means.

In all experiments the posterior distributions of 𝛼 and 𝜇 are the main objects of interest.
In Experiment 1 the sensitivity parameter is equipped with a normal prior, 𝛼 ∼ Nor(𝛼0, 0.5). When

the model is used for BSA, a domain expert would usually express their beliefs about selection bias in
the form of such a prior. This experiment tests the case where the domain expert correctly specifies
the prior, meaning that the prior mean is equal to the true value 𝛼0. Similarly we specified a prior for
𝛾 ∼ Nor(𝛾0, 0.5).

In Experiment 2 the sensitivity parameter is fixed to the true value, 𝛼 = 𝛼0. In this case the model
is identifiable and thus the posteriors are expected to converge to point masses (at the true values) for
increasing sample size, as was shown for the missing data model without covariates in [10].

Experiment 3 tests the performance of the model if the prior on 𝛼 is misspecified. It can not always
be expected that a domain expert correctly specifies the magnitude of selection bias. An important
reason is that the sensitivity model is usually not true. This experiment assesses the ability of the
posterior sensitivity function 𝑞 to learn from the data. To this end the prior for 𝛼 from Experiment 1 is
changed to 𝛼 ∼ Nor(0.5, 0.5).

Experiment 4 repeats the first experiment with a different sensitivity function: 𝑞𝛼(𝑇, 𝑍) = 𝛼𝑇1(0.5,1](𝑍).
This 𝑞 introduces an interaction between 𝑇 and 𝑍, in that the log-odds of being observed are increased
by 𝛼𝑇 if 𝑍 > 0.5.
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Results

5.1. Generated Data
The data sets were generated according to the hierarchy in section 4.4.1. Some descriptive statistics for
the data sets are shown in Table 5.2. For Experiments 1-3 the data were generated with 𝑞(𝑡, 𝑧) = 𝛼𝑡.
The table shows that larger values for 𝑇 are more likely to be observed, which is indeed the case
because 𝛼0 is positive. For Experiment 4 the data were generated with 𝑞(𝑡, 𝑧) = 𝛼𝑡1(0.5,1](𝑧). The
table shows a smaller average value for observed 𝑇 than for missing 𝑇. This again makes sense,
since the cases where 𝑍 > 0.5 have a heightened chance of being observed, and since 𝛽0 = 1 higher
values for 𝑍 imply a larger rate parameter for the exponential distribution. The expected value of the
exponential distribution is the inverse of the rate parameter, so this implies that mainly smaller 𝑇 values
have a heightened probability of being observed.

Statistics 𝐷𝑛 𝑛 = 100 𝑛 = 1000 𝑛 = 10000
Mean 𝑇 0.546 0.629 0.638
Mean 𝑇|Δ = 1 Exp. 1-3 0.576 0.679 0.690
Mean 𝑇|Δ = 0 Exp. 1-3 0.431 0.352 0.371
Number observed Exp. 1-3 79 844 8393
Mean 𝑇|Δ = 1 Exp. 4 0.538 0.579 0.620
Mean 𝑇|Δ = 0 Exp. 4 0.570 0.763 0.692
Number observed Exp. 4 76 732 7463

Table 5.1: Descriptive statistics for the generated data sets

5.2. Posterior Distributions
In all four experiments, the Gibbs sampler was run for 5000 iterations, which appears to be enough
for convergence. We chose a burn-in period of 500 iterations, and thus the first 500 samples were
discarded.

The results of Experiment 1 are summarised in Figure 5.2. For increasing 𝑛, the variance of the
marginal posteriors decrease, but they are not always exactly concentrated around the true values. The
marginal posteriors of 𝛼 and 𝛾 appear correlated, as can be seen in Figure 5.1. Similarly, it can be seen
that, for all sample sizes, if the posterior mode of 𝛼 is slightly lower than 𝛼0 = 1.5, then the posterior
mode of 𝛾 is slightly higher than 𝛾0 -and vice versa. Despite this fact, it appears that the functional of
interest can be recovered pretty accurately: for all sample sizes the posterior concentrates around the
sample mean of 𝑇 in the full data 𝐷𝑛.

In Experiment 2 the sensitivity parameter is fixed 𝛼 = 𝛼0. It can be seen from Figure 5.3 that with
this fixed value for 𝛼 the posterior of 𝛾 does concentrate around the true value 𝛾0. No difference can
be seen in the ability of the sampler to learn the correct functional of interest: for all sample sizes the
posterior of 𝜇 looks the same in the first two experiments, with roughly the same 90% credible intervals
(Table 5.2).

27
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Figure 5.1: Posterior distribution of (𝛼, 𝛾) in Experiment 1. Same correlated behaviour is seen for all sample sizes -also in
Experiments 3 and 4.

The results of Experiment 3 are shown in Figure 5.4. The misspecification of the prior on 𝛼 is
seen in the posterior of 𝛼 for small 𝑛, but for increasing 𝑛 the posterior resembles the one from the
first experiment. The same dependence between the posteriors of 𝛼 and 𝛾 is seen here. Even with a
misspecified prior on 𝛼 the functional of interest can be recovered accurately: Table 5.2 shows a slightly
larger 90% credible interval for 𝑛 = 100 in comparison with the other experiments, but for 𝑛 = 1000
and 𝑛 = 10000 this effect vanishes.

The results of Experiment 4 are shown in Figure 5.5. Though very similar to the results of the
first experiment, it appears the Gibbs sampler learns the wrong value for 𝛽 for 𝑛 = 1000, causing an
underestimation of the posterior of the functional of interest. For all sample sizes the posterior of the
sensitivity parameter 𝛼 concentrates around 𝛼0.

90% credible interval 𝜇 𝑛 = 100 𝑛 = 1000 𝑛 = 10000
Exp. 1: prior on 𝛼 [0.470, 0.692] [0.583, 0.660] [0.628, 0.653]
Exp. 2: fixed 𝛼 = 𝛼0 [0.464, 0.664] [0.593, 0.665] [0.627, 0.650]
Exp. 3: misspecified prior [0.487, 0.724] [0.588, 0.663] [0.628, 0.653]
Exp. 4: nonlinear 𝑞 [0.475, 0.686] [0.550, 0.629] [0.625, 0.654]

Table 5.2: 90% credible intervals of the posterior of the functional of interest for all four experiments
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Figure 5.2: Marginal posteriors of 𝛼, 𝛽, 𝛾, and 𝜇 in Experiment 1. The black dashed lines indicate the sample means of 𝑇 of
the full data.
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Figure 5.3: Marginal posteriors of 𝛼, 𝛽, 𝛾, and 𝜇 in Experiment 2. The black dashed lines indicate the sample means of 𝑇 of
the full data.
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Figure 5.4: Marginal posteriors of 𝛼, 𝛽, 𝛾, and 𝜇 in Experiment 3. The black dashed lines indicate the sample means of 𝑇 of
the full data.
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Figure 5.5: Marginal posteriors of 𝛼, 𝛽, 𝛾, and 𝜇 in Experiment 4. The black dashed lines indicate the sample means of 𝑇 of
the full data.
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Discussion

The results give confidence in the use of the studied model for Bayesian sensitivity analysis (BSA).
The model is applicable to survival data with missing data, but without independent right censoring. A
description was provided on how the current model can be extended so it can be applied to survival
data with simultaneously both ”ordinarily” missing data1 and independent right censoring. It seems that
the functional of interest 𝜇 can be accurately learned from the observed data. For large sample sizes
the role of the prior on the sensitivity function 𝑞 is shown to become less important. If the prior on
the sensitivity function is misspecified, this results in a larger variance in the posterior of the functional
of interest for smaller sample sizes, but this effect diminishes for increasing sample sizes. Another
interesting result, is the fact the the 90% credible intervals of 𝜇 do not differ in length whether a(n
incorrect) prior is specified for 𝛼, or whether 𝛼 is fixed at its true value. It seems that we can conclude
that our model can find the correct posterior (concentrated around the true values) for 𝛼 and 𝜇 if the
functional form of 𝑞 is correctly specified. It is unclear from our results if in the case of a misspecified
functional form of 𝑞 the posterior of the functional of interest still concentrates around the true value.
This is a topic for future research. In a similar vein, it can’t be expected that the functional form of 𝜂
can be correctly specified. Future research into this model might put a more flexible prior on 𝜂, such
as a Gaussian process prior. If a Gaussian process prior is chosen for 𝜂 the model should be adjusted
by choosing Ψ = Φ (the probit link function), and applying MCMC algorithm proposed in [4].

In light of the findings of [10] in the case without covariates, our results are somewhat surprising.
We would expect a prior on a non-identifiable sensitivity parameter to have quite a noticeable effect
on the posterior of the functional of interest. Furthermore, we would expect the credible intervals to
be smaller if the sensitivity parameter is fixed at its true value. The reason the current model performs
better than expected when compared to the case with no covariates, could be attributed to the additional
information that is present in the covariates. Indeed if 𝛼 = 𝛼0, the posterior of 𝛾 concentrates around 𝛾0,
indicating that a large part of the missingness can be learned from 𝑍. This needs to be tested in future
research by reducing the amount of information in the covariates. This can be done by considering a
less informative binary covariate, or leaving the covariates out of the model altogether, and investigating
if similar results arise.

The dependence in the posteriors of 𝛼 and 𝛾 paints a slightly distorted picture, but fortunately
this effect does not seem to hamper the ability of the sampler to learn 𝜇. Following [10] the depen-
dence in the (𝛼, 𝛾) posterior could be remedied by centering the sensitivity function. If the sensitiv-
ity function takes the form 𝑞𝛼 = 𝛼𝑔(𝑡, 𝑧), then it might be properly centered by adjusting it so that
𝑞𝛼 = 𝛼(𝑔(𝑡, 𝑧) − 𝔼𝑃0[𝑔(𝑡, 𝑧)]).

Although the tests in this thesis were carried out with a one-dimensional covariate, the current model
can be applied to data with high-dimensional covariate vectors 𝑍 ∈ ℝ𝑝. For large 𝑝, the MH steps for
sampling from the full conditional distributions of 𝛽 and 𝛾might suffer in efficiency. This can be remedied
by either

• applying dimensionality reduction techniques, such as principal components analysis, to 𝑍, or
1which can be seen as a harsh form of informative right censoring
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• using a more sophisticated MCMC sampler.

An example is Hamiltonian MCMC [9], which is an adjustment of the MH algorithm that interprets the
negative log target density as the potential energy of a particle, and generates new proposals by sim-
ulating the Hamiltonian dynamics of said particle. Another option is the No U-turn Sampler [16], which
is an extension of Hamiltonian MCMC that automatically stops the simulation of the dynamics as soon
as the simulated path starts to turn back on itself (for efficiency reasons). Both samplers show good
performance on high-dimensional targets. Both samplers require the negative log target densities to
be differentiable, which is the case for the present choice of (𝑞, 𝜂), and partial likelihood of 𝛽.

This thesis carried out BSA to deviations from the MAR assumption. As was alluded to, the assump-
tion of independent right censoring is another non-identifiable assumption that arises often in survival
analysis. If this assumption is violated, we speak of informative right censoring. The current model
might be extended to perform BSA to deviations from the independent right censoring assumption, by
building on works like [31], who propose a censoring bias function 𝑞.



A
Probability Distributions

This section serves as a reference on probability distributions used in the main text.

Bernoulli Distribution
A random variable 𝑋 follows a Bernoulli distribution, 𝑋 ∼ Ber(𝜃), if its p.m.f. is given by

𝑝(𝑥) = 𝜃𝑥(1 − 𝜃)1−𝑥1{0,1}(𝑥),

where 𝜃 ∈ (0, 1). The mean and variance of 𝑋 are given by

𝔼[𝑋] = 𝜃,
var[𝑋] = 𝜃(1 − 𝜃).

Beta Distribution
A random variable 𝑋 follows a beta distribution, 𝑋 ∼ Be(𝛼, 𝛽), if its p.d.f. is given by

𝑝(𝑥) = Γ(𝛼 + 𝛽)
Γ(𝛼)Γ(𝛽)𝑥

𝛼−1(1 − 𝑥)𝛽−11(0,1)(𝑥),

where Γ(𝛼) denotes the Gamma function given by Γ(𝛼) = ∫∞0 𝑡𝛼−1𝑒−𝑡𝑑𝑡, and 𝛼, 𝛽 > 0. The mean and
variance of 𝑋 are given by

𝔼[𝑋] = 𝛼
𝛼 + 𝛽 ,

var[𝑋] = 𝛼𝛽
(𝛼 + 𝛽)2(𝛼 + 𝛽 + 1) .

Dirichlet Distribution
A random variable 𝑋 = (𝑋1, … , 𝑋𝑘) follows a Dirichlet distribution, 𝑋 ∼ Dir(𝑘; 𝛼), if its p.d.f. is given by

𝑝(𝑥) = Γ(𝛼1 +⋯+ 𝛼𝑘)
Γ(𝛼1)…Γ(𝛼𝑘)

𝑘

∏
𝑖=1

𝑥𝛼𝑖−1𝑖 1𝕊𝑘(𝑥),

with 𝑘 ∈ ℕ\{1}, 𝛼 = (𝛼1, … , 𝛼𝑘) > 0, where Γ(𝛼) denotes the Gamma function given by Γ(𝛼) =
∫∞0 𝑡𝛼−1𝑒−𝑡𝑑𝑡, and where 𝕊𝑘 denotes the 𝑘-dimensional unit simplex, given by

𝕊𝑘 = {𝑠 = (𝑠1, … , 𝑠𝑘) ∶ 𝑠𝑗 ≥ 0, 𝑗 ∈ {1, … , 𝑘},
𝑘

∑
𝑗=1
𝑠𝑗 = 1}.
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Exponential Distribution
A random variable 𝑋 follows an exponential distribution, 𝑋 ∼ Exp(𝜆), if its p.d.f. is given by

𝑝(𝑥) = 𝜆𝑒𝜆𝑥1ℝ+(𝑥),
where 𝜆 > 0. The mean and variance of 𝑋 are given by

𝔼[𝑋] = 1
𝜆 ,

var[𝑋] = 1
𝜆2 .

Gamma Distribution
A random variable 𝑋 follows a gamma distribution, 𝑋 ∼ Ga(𝛼, 𝛽), if its p.d.f. is given by

𝑝(𝑥) = 𝛽𝛼
Γ(𝛼)𝑥

𝛼−1𝑒−𝛽𝑥1ℝ+(𝑥),

where Γ(𝛼) denotes the Gamma function given by Γ(𝛼) = ∫∞0 𝑡𝛼−1𝑒−𝑡𝑑𝑡, and 𝛼, 𝛽 > 0. The mean and
variance of 𝑋 are given by

𝔼[𝑋] = 𝛼
𝛽 ,

var[𝑋] = 𝛼
𝛽2 .

Geometric Distribution
A random variable 𝑋 follows a Geometric distribution, 𝑋 ∼ (𝜃), if its p.m.f. is given by

𝑝(𝑥) = (1 − 𝜃)𝑥−1𝜃1ℕ(𝑥),
where 𝜃 ∈ (0, 1). The mean and variance of 𝑋 are given by

𝔼[𝑋] = 1
𝜃 ,

var[𝑋] = 1 − 𝜃
𝜃2 .

Poisson Distribution
A random variable 𝑋 follows a Poisson distribution, 𝑋 ∼ Pois(𝜆), if its p.m.f. is given by

𝑝(𝑥) = 𝜆𝑥𝑒−𝜆
𝑥! 1ℕ0(𝑥),

where 𝜆 > 0. The mean and variance of 𝑋 are given by 𝔼[𝑋] = var[𝑋] = 𝜆.

Uniform Distribution
A random variable 𝑋 follows a Uniform distribution, 𝑋 ∼ Unif(𝑎, 𝑏), if its p.d.f. is given by

𝑝(𝑥) =
1(𝑎,𝑏)(𝑥)
𝑏 − 𝑎 ,

where −∞ < 𝑎 < 𝑏 < ∞. The mean and variance of 𝑋 are given by

𝔼[𝑋] = 1
2(𝑎 + 𝑏),

var[𝑋] = 1
12(𝑏 − 𝑎)

2.
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Python Code

This appendix contains the python code for the implementation of the Gibbs sampling scheme in 4.2.

# -*- coding: utf-8 -*-
”””
Created on Fri Dec 23 12:26:00 2022

@author: chris
”””
#%% Imports

import numpy as np
import numpy.random as rnd
import math
import time
import pandas as pd
import datetime as dt

#%% Functions

def sortData(Delta,T,Z):
sortKey = T.argsort()
Delta_sorted = Delta[sortKey]
T_sorted = T[sortKey]
Z_sorted = Z[sortKey]

return Delta_sorted,T_sorted,Z_sorted

def expBetaZ(beta,Z):
inproduct = beta@np.transpose(Z)
terms = np.exp(inproduct)

return terms

def q(t,z,alpha):
n = z.shape[0]
indicator = np.reshape(np.where(z>0.5,1,0),(n))
return alpha*t*indicator # alpha*np.log(t)

def eta(z,gamma):
# selection bias in Z
return gamma@np.transpose(z)

def DP(Z_emp,prior_precision=1,J=10000):

#initialise some auxilliary variables, and weights, locations, generate Beta r.v.'s for
stickbreaking

37
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n,p = Z_emp.shape[0], Z_emp.shape[1]
B = rnd.beta(1, prior_precision + n, J)
locations = np.zeros((J,p))
B_ = np.ones(J) - B
weights = np.zeros(J)

# centre measure: Nor(mu,Sigma)
#mu = np.zeros(p)
#Sigma = np.eye(p)

# stickbreaking procedure
for j in range(J):

U = rnd.uniform(0,1)
if U < (prior_precision / (prior_precision + n)):

locations[j] = rnd.uniform(0,1,p) # rnd.multivariate_normal(mu,Sigma)
else:

index = rnd.choice(n)
locations[j] = Z_emp[index]

weights[j] = B[j]*np.product(B_[0:j])

weights = weights/np.sum(weights)

# reduces size of arrays weights,locations
groupedLocations, indices = np.unique(locations,return_inverse=True,axis=0)
summedWeights = np.zeros(groupedLocations.shape[0])
for i in range(groupedLocations.shape[0]):

filteredIndices = np.where(indices==i)
summedWeights[i] = np.sum(weights[filteredIndices])

weights,locations = summedWeights,groupedLocations

weights = weights/np.sum(weights)

return (weights,locations)

def R_n(locations,T,eBetaZ,plus=False):
# locations and T,Z should be sorted
# plus is a boolean that selects either R_n (plus=False) or R_nPLus (plus=True)
array = np.array([np.sum(eBetaZ[i:]) for i in range(eBetaZ.size)]) # = R_n(T)
indices = np.array([-1])
bigger_than_T = 0
if locations.size > 0:

if plus:
indices = np.array([np.argmax(T>i) for i in locations])
bigger_than_T = np.argmax(locations>=T[-1])

else:
indices = np.array([np.argmax(T>=i) for i in locations])
bigger_than_T = np.argmax(locations>T[-1])

R_n = array[indices]
if (bigger_than_T != 0):

R_n[bigger_than_T:] = 0

return R_n

def concentration(t,k=1,b=0.5):
# concentration function, parameter of a Beta Process
array = k*np.exp(-b*t)

return k # array

def BP(T,expBetaZ,eps=0.01,tau=6,k=1,b=0.5,a=1):
# generating beta process with c(t)=k*e^{-b*t}, dA0(t) = a dt on [0,tau]
# using Lee-Kim algorithm with epsilon.

mu = a*k*tau/eps # (1-math.exp(-b*tau))*k*a/(eps*b)
M = rnd.poisson(mu)
jumpLocations = rnd.uniform(0,1,M)*tau # -np.log(1 -(1-math.exp(-b*tau))*rnd.uniform(0,1,

M))/b
jumpLocations = np.sort(jumpLocations)
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R_n_ = R_n(jumpLocations,T,expBetaZ)
jumpSizes = rnd.beta(eps,R_n_ + concentration(jumpLocations,k,b))
nearOne = rnd.uniform(1-eps,1,M)
jumpSizes = np.where(jumpSizes<1,jumpSizes,nearOne)

return (jumpSizes,jumpLocations)

def fixedJumps(T,eBetaZ,numIter=250):
# MCMC loop for generating the discrete part of the posterior of the
# cumulative hazard posterior in a Cox model.
# The jumps occur at locations determined by the (completed/imputed) data.
# T might have ties!

jumpLocations,counts = np.unique(T,return_counts=True)
cumCounts = np.append(np.zeros(1),np.cumsum(counts))
numJumps = jumpLocations.size
jumpSizes_init = rnd.uniform(0,0.1,numJumps)
jumpSizes = jumpSizes_init
R_nPlus = R_n(jumpLocations,T,eBetaZ,plus=True)

for i in range(numIter):

v = -np.log(1 - jumpSizes)
y = rnd.geometric(1 - np.exp(-v))

vTies = np.repeat(v,counts)
const = -eBetaZ*vTies
w = (np.log(1 + (np.exp(const) - 1)*rnd.uniform(0,1,T.size)))/const

w_expBetaZ = w*eBetaZ
summed_w_expBetaZ = np.zeros(jumpLocations.size)
for i in range(jumpLocations.size):

firstIndex = int(cumCounts[i])
secondIndex = int(cumCounts[i+1]-1)
summed_w_expBetaZ[i] = np.sum(w_expBetaZ[firstIndex:secondIndex])

scaleGamma = 1/(concentration(jumpLocations) + R_nPlus + y + summed_w_expBetaZ)
scaleGamma = np.where(scaleGamma > 0, scaleGamma,1)
v = rnd.gamma(counts+1,scaleGamma)
jumpSizes = 1 - np.exp(-v)

# the following lines are a remedy to a very rare occurrence
# in simulations, where jumps of size 1 are generated
nearOne = rnd.uniform(1-0.01,1,numJumps)
jumpSizes = np.where(jumpSizes<1,jumpSizes,nearOne)

return (jumpSizes,jumpLocations,counts,jumpSizes_init)

def PgivenZ(H,expBetaZ):

# extract jump sizes and locations from H
jumpSizesC,jumpLocationsC,jumpSizesD,jumpLocationsD = H[0],H[1],H[2],H[3]
jumpSizes = np.append(jumpSizesC,jumpSizesD)
locations = np.append(jumpLocationsC,jumpLocationsD)

#sort jump sizes and locations
sortKey = np.argsort(locations)
jumpSizes,locations = jumpSizes[sortKey],locations[sortKey]
jumpSizes[-1] = 1

oneMinusJumps = 1 - jumpSizes
cumprod = np.cumprod(oneMinusJumps)
S_base = cumprod
N_jumps = locations.size
weights = np.zeros((expBetaZ.size,N_jumps))
for i in range(expBetaZ.size):

S = S_base**(expBetaZ[i])
F = 1 - S
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F_weights = np.diff(F)
weights[i] = np.append(F[0],F_weights)

return (weights,locations)

def alt_logLikelihood_beta(beta,T,Z,H):
print(beta)
eBetaZ = expBetaZ(beta,Z)
pGivenZ = PgivenZ(H,eBetaZ)
weights,locations = pGivenZ[0],pGivenZ[1]
indices = np.array([np.argwhere(locations==t) for t in T])

fetchedWeights = np.zeros(Z.size)
for i in range(Z.size):

fetchedWeights[i] = weights[i,indices[i]]

logL_beta = np.sum(np.log(fetchedWeights))
print(logL_beta)

return logL_beta

def P0givenZ(H,alpha,beta,gamma,Z_miss):
# make P0(t|Z) using relationship
# dP0(t|Z) \propto exp(-q)/(1+exp(-eta - q)) * dP(t|Z)

eBetaZ = expBetaZ(beta,Z_miss)
weights,locations = PgivenZ(H,eBetaZ)
for i in range(Z_miss.shape[0]):

numerator = np.exp(-q(locations,Z_miss[i],alpha))
denominator = (1 + np.exp(-eta(Z_miss[i],gamma) - q(locations,Z_miss[i],alpha)))
scaleFactors = numerator/denominator
scaledWeights = weights[i]*scaleFactors
sumScaledWeights = np.sum(scaledWeights)
weights[i] = scaledWeights/sumScaledWeights

return weights,locations

def SampleMissingT(H,alpha,beta,gamma,Z_miss):
# sample missing T using P0(t|Z)

weights,locations = P0givenZ(H,alpha,beta,gamma,Z_miss)
T_imputed = np.zeros(Z_miss.shape[0])

for i in range(Z_miss.shape[0]):
T_imputed[i] = rnd.choice(locations,p=weights[i])

return T_imputed

def logPrior_beta(beta):

# specify prior mean mu
mu = np.array([1])

#specify prior precision SigmaInverse
sigma2 = 0.25
SigmaInverse = np.eye(beta.size)/sigma2

expression = -(np.transpose(beta - mu)@SigmaInverse@(beta - mu))/2

return expression

def logPrior_alpha_gamma(x,alphaFixed=False):

# specify prior mean mu for all parameters
if not alphaFixed:

mu_alpha = np.array([1.5]) # 1.5 / 0.5
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mu_gamma = np.array([2])
if alphaFixed:

mu = mu_gamma
else:

mu = np.hstack((mu_alpha,mu_gamma))

# specify prior precision SigmaInverse for all parameters
sigma2 = 0.5
SigmaInverse = np.eye(x.size)/sigma2

#expression = -(np.transpose(x - mu)@SigmaInverse@(x - mu))/2
lower_gamma, upper_gamma = -3,7
if not alphaFixed:

alpha,gamma = x[0],x[1]
logPrior_alpha = -(alpha - mu_alpha[0])**2 / sigma2

else:
gamma = x[0]

if (gamma < upper_gamma) and (gamma > lower_gamma):
logPrior_gamma = 0

else:
logPrior_gamma = -1e50

expression = logPrior_gamma
if not alphaFixed:

expression += logPrior_alpha

return expression

def logLikelihood_beta(beta,T,Z,H):

jumpSizesC,jumpLocationsC,jumpSizesD_unique,jumpLocationsD_unique,counts = H[0],H[1],H[2]
,H[3],H[4]

eBetaZ = expBetaZ(beta,Z)

#print(beta)

# resize array with fixed jump sizes
jumpSizesD = np.repeat(jumpSizesD_unique,counts)
#jumpLocationsD = np.repeat(jumpLocationsD_unique,counts)

# calculate R_n and R_nPlus
R_n_ = R_n(jumpLocationsC,T,eBetaZ)
R_nPlus = R_n(jumpLocationsD_unique,T,eBetaZ,plus=True)

# calculate likelihood elements
logL_betaC = np.sum(R_n_*np.log(1 - jumpSizesC))
logL_betaD = np.sum(np.log(1 - (1 - jumpSizesD)**eBetaZ)) + np.sum(R_nPlus*np.log(1 -

jumpSizesD_unique))

return logL_betaC + logL_betaD

def logLikelihood_alpha_gamma(x,Delta,T,Z,alphaFixed=False,fixed_alpha=0):

# unpack arguments
if alphaFixed:

alpha = fixed_alpha
gamma = x

else:
alpha,gamma = x[0],x[1:]

argument = eta(Z,gamma) + q(T,Z,alpha)
logL_alpha_gamma = np.sum(-Delta*np.log(1+np.exp(-argument)) - (1 - Delta)*np.log(1+np.

exp(argument)))

return logL_alpha_gamma

def MH_alpha_gamma(previous,Delta,T,Z,recyclables=False,alphaFixed=False,fixed_alpha=0):
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# Implements the Metropolis-Hastings algorithm to sample from the
# posterior of (alpha,gamma)|full (completed) data

# proposal kernel
sigma2 = 1 # 0.1K: 1; 1K: 0.2 ; 10K: 0.01 (0.08)
Sigma = sigma2*np.eye(previous.size)
proposal = rnd.multivariate_normal(previous,Sigma)

# calculate acceptance probability, use recyclables from previous iteration
if type(recyclables)=='tuple':

logPrior_previous = recyclables[0]
logLikelihood_previous = recyclables[1]

else:
logPrior_previous = logPrior_alpha_gamma(previous,alphaFixed)
logLikelihood_previous = logLikelihood_alpha_gamma(previous,Delta,T,Z,alphaFixed,

fixed_alpha)

logPrior_proposal = logPrior_alpha_gamma(proposal,alphaFixed)
logLikelihood_proposal = logLikelihood_alpha_gamma(proposal,Delta,T,Z,alphaFixed,

fixed_alpha)

logAcceptance = logPrior_proposal - logPrior_previous + logLikelihood_proposal -
logLikelihood_previous

accepted = (math.log(rnd.uniform(0,1)) < logAcceptance)

if accepted:
return proposal, accepted, (logPrior_proposal,logLikelihood_proposal)

else:
return previous, accepted, (logPrior_previous,logLikelihood_previous)

def MH_beta(previous,Delta,T,Z,H,recyclables=False):
# Implements the Metropolis-Hastings algorithm to sample from the
# posterior of beta|H,full (completed) data

# proposal kernel
sigma2 = 0.4 # 0.1K: 0.4 ; 1K: 0.05 ; 10K: 0.005
Sigma = sigma2*np.eye(previous.size)
proposal = rnd.multivariate_normal(previous,Sigma)

# calculate acceptance probability, use recyclables from previous iteration
if type(recyclables)=='tuple':

logPrior_previous = recyclables[0]
else:

logPrior_previous = logPrior_beta(previous)

logLikelihood_previous = logLikelihood_beta(previous,T,Z,H)
logPrior_proposal = logPrior_beta(proposal)
logLikelihood_proposal = logLikelihood_beta(proposal,T,Z,H)

logAcceptance = logLikelihood_proposal - logLikelihood_previous # + logPrior_proposal -
logPrior_previous

#acceptance = math.exp(logAcceptance)
accepted = (math.log(rnd.uniform(0,1)) < logAcceptance)

if accepted:
return proposal, accepted, (logPrior_proposal,)

else:
return previous, accepted, (logPrior_previous,)

def integralT(Pz,H,beta):

weightsZ,locationsZ = Pz[0],Pz[1]
eBetaZ = expBetaZ(beta,locationsZ)
weightsT,locationsT = PgivenZ(H,eBetaZ)
inproduct = weightsT@locationsT
ET = weightsZ@inproduct

return ET
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#%% Main

def main():

rnd.seed(1)

#enter & initialise parameters
numIter = 5000 # 5000
MH_iter = 100 # 100
alpha_0 = 1.5 # 1.5 / 0.5
beta_0 = np.array([1])
gamma_0 = np.array([2])
alphaFixed = False
resultsFile = ”results_n100_Z1d_exponential_qNonlinear_Par2.csv”
dataFile = ”fullData_n100_Z1d_exponential_qNonlinear_Par2.csv”

#load & process data
df = pd.read_csv(dataFile)
data = df.to_numpy()
n,p = data.shape[0],data.shape[1]-3
Delta,T_full,Z = data[:,1],data[:,2],data[:,3:]
Z = np.reshape(Z,(n,p))

observed = np.where(Delta==1)
missing = np.where(Delta==0)
Delta_obs = Delta[observed]
Delta_miss = Delta[missing]
T_obs = T_full[observed]
T_miss = T_full[missing]
Z_obs = Z[observed]
Z_miss = Z[missing]
N_miss = T_miss.size

ET_0 = np.mean(T_obs)

#run Gibbs sampling scheme:

# initialise lists to track parameter values

alphaList = [alpha_0]
betaList = [beta_0]
gammaList = [gamma_0]

if alphaFixed:
sampleMH_alpha_gamma = gammaList[0]

else:
sampleMH_alpha_gamma = np.hstack((np.array([alphaList[0]]),gammaList[0]))

sampleMH_beta = betaList[0]

recyclables_alpha_gamma = False
recyclables_beta = False

ET = [ET_0]
N_acceptedMH_alpha_gamma = 0
N_acceptedMH_beta = 0
N_MH_alpha_gamma = 0
N_MH_beta = 0

# start timer
tic = time.perf_counter()

for i in range(numIter):

# 1. Sample Pz|Z ~ DP(a + n*Z_emp)
Pz = DP(Z)

# 2. Sample missing T from P0(t|Z)
if i==0:

T_imp = rnd.choice(T_obs,N_miss) # first imputation of missing T from empirical
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distribution given by T_obs
else:

if alphaFixed:
T_imp = SampleMissingT(H,alpha_0,betaList[i],gammaList[i],Z_miss)

else:
T_imp = SampleMissingT(H,alphaList[i],betaList[i],gammaList[i],Z_miss)

Delta = np.append(Delta_obs,Delta_miss)
T = np.append(T_obs,T_imp)
Z = np.append(Z_obs,Z_miss,axis=0)
Delta, T, Z = sortData(Delta,T,Z)
eBetaZ = expBetaZ(betaList[i],Z)

# 3. Sample H|beta,data
jumpSizesC,jumpLocationsC = BP(T,eBetaZ)
jumpSizesD,jumpLocationsD,counts,jumpSizes_initD = fixedJumps(T,eBetaZ)
H = (jumpSizesC,jumpLocationsC,jumpSizesD,jumpLocationsD,counts)

# 4. Sample (alpha,beta,gamma) with MH steps
for j in range(max(MH_iter - i, 1)):

sampleMH_alpha_gamma,accepted_alpha_gamma,recyclables_alpha_gamma =
MH_alpha_gamma(
sampleMH_alpha_gamma, Delta, T, Z,
False,alphaFixed,alpha_0)

N_acceptedMH_alpha_gamma += accepted_alpha_gamma
N_MH_alpha_gamma += 1

if not alphaFixed:
alphaList.append(sampleMH_alpha_gamma[0])

gammaList.append(sampleMH_alpha_gamma[-p:])

for k in range(max(MH_iter - i, 1)):
#print(”iteration ” + str(k))
sampleMH_beta,accepted_beta,recyclables_beta = MH_beta(sampleMH_beta,Delta,T,Z,H,

recyclables_beta)
N_acceptedMH_beta += accepted_beta
N_MH_beta += 1

betaList.append(sampleMH_beta)

# 5. Compute ET (functional of interest)
ET.append(integralT(Pz,H,betaList[i+1]))

# print progress
if ((i+1)%100 == 0):

print(str(i+1) + ” completed.”)
toc = time.perf_counter()
print(”Time elapsed: ” + str(dt.timedelta(seconds=round(toc-tic))))
print(”Avg. MH acceptance ratio (alpha,gamma): ” + str(round(

N_acceptedMH_alpha_gamma /
N_MH_alpha_gamma,3)))

print(”Avg. MH acceptance ratio beta: ” + str(round(N_acceptedMH_beta / N_MH_beta
,3)))

# save data to csv
if not alphaFixed:

alpha = np.array(alphaList)
alpha = np.reshape(alpha,(i+2,1))

beta = np.array(betaList)
beta = np.reshape(beta,(i+2,1))
gamma = np.array(gammaList)
gamma = np.reshape(gamma,(i+2,1))
ETarray = np.array(ET)
ETarray = np.reshape(ETarray,(i+2,1))
if alphaFixed:

results = np.hstack((beta,gamma,ETarray))
else:

results = np.hstack((alpha,beta,gamma,ETarray))
pd.DataFrame(results).to_csv(resultsFile)
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if __name__ == '__main__':
main()

else:
print(”File is not run as main script”)
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