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Abstract
For N ∈ N≥2 and α ∈ R such that 0 < α ≤

√
N − 1, the continued fraction map

Tα : [α, α+1]→ [α, α+1) is defined as Tα(x) := N/x−d(x), where d : [α, α+1]→ N
is defined by d(x) := bN/x− αc. A maximal open interval (a, b) ⊂ Iα is called a
gap of Iα if for almost every x ∈ Iα there is an n0(x) ∈ N such that xn /∈ (a, b)
for all n ≥ n0. In this paper, all conditions are given in which Iα is gapless. For
α =

√
N − 1 it is shown that the number of gaps is a finite, monotonically non-

decreasing and unbounded function of N .

1. Introduction

Recently, H. Nakada and the authors of the present paper studied N -expansions
with finitely many digits in [1]. These N -expansions are continued fraction expan-
sions, introduced in [2] (see [3]), and defined as follows.

Definition 1. ForN ∈ N≥2 and α ∈ R such that 0 < α ≤
√
N−1, let Iα := [α, α+1]

and I−α := [α, α+ 1). We define the N -expansion map Tα : Iα → I−α as

Tα(x) :=
N

x
− d(x), (1)

where d : Iα → N is defined by

d(x) :=

⌊
N

x
− α

⌋
, if either x ∈ (α, α+ 1] or both x = α and

N

α
− α 6∈ Z.
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So as to avoid having cylinders consisting of one point, we also have

d(α) =

⌊
N

α
− α

⌋
− 1, if

N

α
− α ∈ Z.

For a fixed α ∈ (0,
√
N − 1] and x ∈ Iα, we define

dn = dn(x) := d(Tn−1α (x)) for n ∈ N.

Throughout this paper, we assume that N ∈ N≥2. We will write αi for T iα(α)

and βi for T iα(α+ 1), with i ∈ N; we also often write β for α+ 1. Applying (1), for
every x ∈ Iα we obtain a continued fraction expansion of the form

x = T 0
α(x) =

N

d1 + Tα(x)
=

N

d1 +
N

d2 +
N

d3 +
. . .

.

Throughout this paper, we will write x = [d1, d2, d3, . . .]N,α to represent the above
equation. For reasons of legibility, we will usually omit suffixes such as ‘(N)’,
‘(N,α)’ or ‘(N, d)’. We will call the numbers di, with i ∈ N, the partial quotients or
digits of this N -continued fraction expansion of x. Since 0 6∈ Iα, this expansion is
infinite for every x ∈ Iα. We write xn := Tnα (x), with n ∈ N∪{0}. The sequence xn,
n = 0, 1, 2, . . ., is called the orbit of x under Tα. When x = [d1, d2, d3, . . .] and there
are smallest h, k ∈ N such that dh+i = dh+nk+i for all n ∈ N and i ∈ {0, . . . , k− 1},
we call the expansion eventually periodic with period length |x| = k and denote the
periodic part as dh, . . . , dh+k−1. If h = 1, we write x = [d1, . . . , dk]. In this latter
case, x is called a periodic point with a purely periodic expansion and periodic orbit.

Let N ∈ N≥2 and α ∈ (0,
√
N − 1]. Then in each cylinder set ∆i := {x ∈

Iα; d(x) = i} of rank 1, with dmin ≤ i ≤ dmax, where dmax := d(α) is the largest
partial quotient1 and dmin := d(α+ 1) the smallest one, the map Tα obviously has
one fixed point fi. From now on, we will write simply ‘cylinder set’ for ‘cylinder set
of rank 1’. It is easy to see that

fi = fi(N) :=

√
4N + i2 − i

2
, for dmin ≤ i ≤ dmax.

Note that N/α−α ∈ Z if and only if for some d ≥ 2 we have that d+ 1 = max{di}
for any α0 < α, i.e., ∆d+1 6= ∅ for α0 < α, and α = fd+1. Moreover, we can write
fi = [i]. Note that fixed points are periodic points with period length 1.

Given N , we let αmax =
√
N − 1 be the largest value of α we consider, so as

to avoid 0 being a partial quotient as well. Since T ′α(x) = −N/x2 and because
1Note that the number of occurring digits is finite for α > 0.



INTEGERS: 23 (2023) 3

0 < α ≤
√
N − 1, we have |T ′α(x)| > 1 on I−α . From this, it follows that the fixed

points act as repellers and that the maps Tα are expanding when 0 < α ≤
√
N − 1.

As in the previous paper (see [1]), we are interested in subsets of Iα that we will
call gaps, defined as follows.

Definition 2. A maximal open interval (a, b) ⊂ Iα is called a gap of2 Iα if for
almost every3 x ∈ Iα there is an n0(x) ∈ N such that xn /∈ (a, b) for all n ≥ n0.

Figure 1 is an example of an interval Iα having two gaps. In this case, we have
N = 100 and α ≈ 8.983. It appears that in this example the boundaries of the gaps
are the first two images of α and β, respectively, under Tα. In Theorem 5, we show
that the boundaries between gaps and non-gaps are always images of α and β.

α α+ 1f1β2 β1 α1 α2f2 p2

d = 2 d = 1

gap gap

Figure 1: An interval Iα with two gaps. Here N = 100 and α ≈ 8.983

Each pair of consecutive cylinder sets (∆i,∆i−1) is separated by a discontinuity
point pi(N,α) of Tα, satisfying N/pi − i = α, so pi = N/(α + i). In Figure 1,
α is such that α3 = p2, implying α ≈ 8.983. A cylinder set ∆i is called full if
Tα(∆i) = I−α (or Tα(∆d) = Iα in case d = d(α) and Tα(α) = β). When a cylinder
set is not full, it contains either α (in which case Tα(α) < α+ 1) or α+ 1 (in which
case Tα(α + 1) > α), and is called incomplete. On account of our definition of Tα,
cylinder sets will always be an interval, and never consist of one single point. An
interval Iα together with its cylinder sets, associated fixed points and discontinuity
points, is called an arrangement of Iα, depending on N . An arrangement is called
full when its cylinder sets are all full. Finally, a cylinder set is called gapless if it
has empty intersection with any gap.

In [1], some results are obtained that can quite easily be extended to a complete
overview of gaplessness; we write d := d(α).

Theorem 1. Let Iα = ∆d ∪∆d−1. Then Iα is gapless if and only if α1 ≥ fd−1 and
β1 ≤ fd.

Proof. The condition for gaplessness is proved in [1, Theorem 5]. So let Iα =

∆d ∪∆d−1 and suppose α1 < fd−1. Since Tα is expanding and α1 < fd−1, we find
2We will usually omit the addition ‘of Iα’.
3Here we use ‘for almost all x’ (and not ‘for all x’) because we want to exclude fixed points

and pre-images of fixed points, i.e., points that Tα maps to a fixed point, which may never leave
an interval (a, b). All ‘for all’ statements in this paper are with respect to Lebesgue measure.
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that fd−1 < α2. For the same reason, we have that (β1, α3) ⊂ [α, α1]. Consequently,
Tnα (∆d) ⊂ Iα \ (α1, α2) for n ≥ 1, with fd−1 ∈ (α1, α2). Now let x ∈ Iα \ {fd−1}.
Then there is a smallest non-negative integer n0 (possibly 0) such that Tn0

α (x) ∈ ∆d.
Since Tnα (∆d) ⊂ Iα \ (α1, α2) for n ≥ 1, it follows that Tnα (x) 6∈ (α1, α2) for n ≥ n0.
We conclude that (α1, α2) is a gap containing fd−1. The reasoning is completely
similar in case β1 > fd.

Theorem 2. Let Iα = ∆d∪ . . .∪∆d−m, with m ∈ {2, 3}. Then Iα is gapless if and
only if α1 ≥ fd−1 or β1 ≤ fd−m+1.

Proof. The condition for gaplessness is proved in [1, Theorem 6]. We consider
here the case m = 2; the case m = 3 is proved in a similar way. So let Iα =

∆d∪∆d−1∪∆d−2, and suppose that α1 < fd−1 < β1. Then Tα((pd, α1]) = [α2, α+1)

and Tα([β1, pd−1)) = (α, β2] (*). Let a = max{α1, β2} and b = min{α2, β1} and
let x ∈ Iα \ {fd−1}. Then there exists a smallest n0 (possibly 0) depending on x,
for which Tn0

α (x) ∈ Iα \ (a, b). But then it follows from (*) that we have Tnα (x) ∈
Iα \ (a, b) for all n ≥ n0, i.e., Tnα (x) 6∈ (a, b).

In [1], the following two results were obtained (see [1, Theorems 7 and 4]).

Theorem 3. Let N ∈ N≥2 and Iα = ∆d ∪∆d−1 ∪∆d−2 ∪∆d−3. Then there is a
gap in Iα if and only if N = 2k2 + 2k − i, with k > 1 and i ∈ {1, 2, 3}. Moreover,
if there is a gap in Iα, the gap contains fd−1 and fd−2, while ∆d and ∆d−3 are
gapless.

Theorem 4. Let Iα consist of five cylinders or more. Then Iα has no gaps.

Knowing all about gaplessness, we want to start a thorough investigation of the
occurrence of gaps. We will make a lot of use of the graphs of Tα, which are drawn in
the square4 ΥN,α := Iα × I−α . This square is divided into rectangular sets of points
2i := {(x, y) ∈ Υα : d(x) = i}. We identify these two-dimensional fundamental
regions 2i with the one-dimensional cylinder sets ∆i we already use. It is obvious
that the graph of Tα has one fixed point Fi := (fi, fi) in each 2i. We will denote the
dividing line between 2i and 2i−1 by `i, which is the line segment {pi}× [α, α+ 1),
where pi is the discontinuity point between ∆i and ∆i−1. Depending on the fullness
of a cylinder set ∆i, we will call the concerning branch of the graph of Tα in 2i

complete or incomplete. Finally, we will use the word ‘arrangement’ in a similar
way for Υα together with its cylinder sets, fixed points and dividing lines as for Iα.
Figure 2 shows the two-dimensional version of Figure 1. In grey, we have drawn
the domain for cobweb plots of points outside the gaps of Iα, which we will call the
roadmap for Iα or ΥN,α.

Our approach sometimes requires a shift of focus from gaps to gapless intervals
of Iα, the union of which is called the attractor of Iα, denoted by Aα. The maximal

4We have ΥN,α := Iα × Iα in case N/α− α ∈ Z.
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F1

F2

22 21

β2 β1 α1 α2p2

Figure 2: The square Υ100,α with its roadmap, where α is such that α3 = p2

intervals constituting Aα are called the components of Aα. If 2 ≤ N ≤ 8, we
obviously have Iα = Aα, in which case there is only one component. In the proof of
the following theorem, it becomes clear why a shift of focus to components is useful
for the investigation of gaps.

Theorem 5. All endpoints of gaps of Iα are points in the orbits of α and β.

Proof. Due to Theorem 4, we can confine ourselves to cases with two, three of four
cylinder sets. From the proof of Theorem 3 in [1] it follows that the only possible
gap in arrangements with four cylinder sets is either (α1, α2) or (β2, β1). Now let
I = ∆d ∪ ∆d−1 ∪ ∆d−2; the case Iα = ∆d ∪ ∆d−1 is dealt with similarly (and is
easier). Referring to the proof of Theorem 2, we assume that α1 < fd−1 < β1. Due
to the expansiveness of Tα, the orbits of all points save fd−1 will pass through ∆d

or ∆d−2.
First, we will show what happens with orbits passing through ∆d. We have

Tα(∆d)\∆d = (pd, α1] and T 2
α(∆d)\(∆d∪(pd, α1]) = [α2, β). For the next iteration,

we distinguish three cases. First, α2 < pd−1, in which case ∆d−2 is gapless and
T 2
α(∆d) \ (∆d ∪ (pd, α1]∪∆d−2) = [α2, pd−1], the image of which is [α, α3]. Second,
pd−1 ≤ α2 ≤ fd−2, in which case T 2

α(∆d) \ (∆d ∪ (pd, α1]∪∆d−2) = ∅. If this is the
case, the orbits of all points except fd−1 and fd pass through (pd, α1] and ∆d−2,
and we have to investigate what happens with orbits passing through ∆d−2. Third,
α2 > fd−2. Then T 2

α(∆d) \ (∆d ∪ (pd, α1]) = [α2, β].
We now will show what happens with orbits passing through ∆d−2. We have

Tα(∆d−2) \∆d−2 = [β1, pd−1] and T 2
α(∆d−2) \ (∆d−2 ∪ [β1, pd−1]) = [α, β2]. For the

next iteration, we distinguish three cases. First, β2 > pd, in which case ∆d is gapless
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and T 2
α(∆d−2) \ (∆d−2 ∪ [β1, pd−1] ∪ ∆d) = (pd, β2], the image of which is [β3, β).

Second, fd ≤ β2 ≤ pd, in which case T 2
α(∆d−2) \ (∆d−2 ∪ [β1, pd−1] ∪ ∆d) = ∅. If

this is the case, all orbits except the fixed points pass through [β1, pd−1] and ∆d.
Third, β2 < fd. Then T 2

α(∆d−2) \ (∆d−2 ∪ [β1, pd−1]) = [α, β2].
We conclude that all orbits except the fixed points will eventually pass through

∆d, ∆d−2, [α, α3], [α2, β], [β3, β) and [α, β2]. The establishment of the actual
attractor Aα will then depend on the position of the images of these last four
intervals, all having points in the orbits of images of α and β as endpoints. These
intervals will expand under Tα up to the point that an image contains a discontinuity
point p ∈ {pd, pd−1}. Since we just saw that the image of an interval with p as left
endpoint has β as right endpoint and an interval with p as right endpoint has α as
left endpoint, all orbits except the fixed points will eventually only be in intervals
with images of α and β as endpoints. This finishes the proof of Theorem 5.

When studying gaps and attractors, we are mainly interested in the characteristic
part of continued fraction expansions and their orbits, defined as follows.

Definition 3. Let x = [d1, d2, d3, . . .]N,α be the N -expansion of x. The charac-
teristic part of this expansion, CPE in short, is xn = Tnα (x) = [dn+1, dn+2, . . .]N,α,
where n ∈ N ∪ {0} is the smallest number such that xn ∈ Aα.

Investigating gaps and attractors involves determining not only the orbits of α
and β, but also comparing them with certain purely periodic orbits. The reason for
this is that if one of the points of a periodic orbit is in a gap, all of its points are.
In view of the previous theorems on gaplessness, we can confine our investigation
of gaps to arrangements with two and three cylinders. For these arrangements we
will find a formula for the number of gaps G(N,α). In this paper we will confine
ourselves to the cases where α = αmax. In a forthcoming paper, we will consider
arrangements with two cylinders where α < αmax.

2. Gaps in Iα when α = αmax

Throughout the rest of this paper, we take α =
√
N − 1. Applying Theorems 1

and 2, it is easily found that all arrangements for N ∈ {2, 3, 4, 5, 6, 7, 8} are gapless.
Nonetheless, our approach involves that we consider the cases N ∈ {4, 5, 6, 7, 8} as
well. Note that in case N = 4, we have a full arrangement. For N ≥ 5, we have

d = dmax =

⌊
N√
N − 1

− (
√
N − 1)

⌋
=

⌊
2
√
N − 1√
N − 1

⌋
= 2

and
dmin =

⌊
N√
N
− (
√
N − 1)

⌋
= 1.
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This means that we are solely dealing with arrangements Iα = ∆2 ∪∆1, the right
one of which is full, yielding β1 = α. Therefore, referring to the proof of Theorem 5,
we know that, β excluded, the endpoints of all intervals contained in Aα are images
of α only.

The main goal of this paper is proving the following theorem, stating that in
arrangements where α = αmax, the number of gaps is an unbounded, stepwise,
monotonically non-decreasing function of N .

Theorem 6. Let N ∈ N≥4. Set α :=
√
N − 1 and αi := T iα(α), for i ≥ 1. Define

a := 2, 1, 1 and b := 2, 2 as strings of partial quotients so as to recursively define
the N -expansions cn as follows. First, c0 := [1, 2], c1 := [1], c2 := [2], c3 := [a]

and c4 := [a, b]. For n ≥ 5, if cn−1 = [j, k], then cn = [j, k, j, `], with j a string of
partial quotients and {k, `} = {a, b}. Let m ∈ N be such that

α|ci| < α2i−1 for i ∈ {2, . . . ,m} and α|cm+1| > α2m .

Let GN be the collection of gaps of Iα. Then every gap G ∈ GN contains exactly
one point from one of the orbits in

⋃m
i=1{ci}. Conversely, each of the points of the

orbits5 in
⋃m
i=1{ci} is contained in some (unique) G ∈ GN . The number of gaps

G(N) = |GN | is therefore
∑m
i=1 |ci|, which can be expressed more explicitly as

G(N) =


2m+1 − 1

3
, when m is odd;

2m+1 − 2

3
, when m is even.

In particular, G is a finite, monotonically non-decreasing and unbounded function
of N .

Our approach of the proof of Theorem 6 is based on extending a property of fixed
points to periodic points, or rather considering the fixed points as special cases of
periodic points. This property is that if an interval J ⊂ Iα contains a periodic
point, the interval expands along its orbit. We will use this for a classification of
attractors according to the number of disjoint intervals they consist of. We define

C0 := {4} and Cn := {N ∈ N≥5 | ci /∈ Aα for 0 ≤ i < n, and cn ∈ Aα }. (2)

We claim that for each class Cn there is a unique periodic point cn such that all
gaps of Iα contain exactly one orbit point of ∪n−1i=1 ci. We call this point cn the
characteristic point of Cn. For the orbit points of cn, we will use the notation
c′n = Tα(cn), . . . , c′′′n = T 3

α(cn) and c
(i)
n = T

(i)
α (cn) for i ≥ 4. We will shortly

introduce some equations and inequalities as tools for our proof. Then we will
5Note that for N = 2, . . . , 8 the sets GN and

⋃m
i=1{ci} are empty.
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explain our approach for the determination of the attractors for 4 ≤ N ≤ 532,
divided into five classes, corresponding with the following values: N = 4; 5 ≤ N ≤ 8;
9 ≤ N ≤ 32; 33 ≤ N ≤ 132 and 133 ≤ N ≤ 532, with characteristic points
c0 through c4, respectively. Finally, we will generalize our approach and prove
Theorem 6 by induction.

Since the composition of the attractors depends completely on the expansiveness
of Tα, and all expansions take place in ∆1 or ∆2, we provide some useful tools
for estimating expansion factors of intervals. As a start, let interval M ⊂ Iα be
any interval not containing p2, with endpoints j and k, where j < k, or having p2
as an endpoint. Then the expansion factor g(M) under one iteration of Tα is the
geometric mean of |T ′α(j)| and |T ′α(k)|, which we can write as follows6:

|Tα(M)| =
√
|T ′α(j)| · |T ′α(k)| · |M | = k − j

kj
N =

N

jk
· |M |,

so that
g((j, k)) =

N

jk
. (3)

For M ⊂ [f2, p2], we define g`(M) as the multiplication factor under two iterations
of Tα. We find:

g`(M) =
N2

(N − 2j)(N − 2k)
. (4)

Taking j and k as small as possible and as large as possible, respectively, i.e., taking
limits in Equation (4) of both j and k to f2 and p2, respectively, we find a lower
and an upper bound for g`.

(
√
N + 1 + 1)4

N2
< g`(M) <

(
√
N + 1)4

(N − 1)2
. (5)

For M ⊂ (p2, f1], we define g2(M) as the multiplication factor under two iterations
of Tα. We find:

g2(M) =
N2

(N − j)(N − k)
. (6)

Taking j and k as small as possible and as large as possible, respectively, in Equation
(6), i.e., taking limits to p2 and f1, respectively, we find a lower and an upper bound
for g2. (

1 +
1√
N

)2

< g2(M) <

(
1 +

1√
N

+
1

N

)2

. (7)

ForM ⊂ (p2, f1], we define gr(M) as the multiplication factor under three iterations
of Tα, provided that T 2

α(M) ⊂ ∆2, i.e., k ≤ N/(N/(p2 + 1) + 1) = (N2 + N
√
N +

6This formula is not limited to α = αmax.
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N)/(N
√
N + 2N +

√
N + 1). We find:

gr(M) =
N3

((N + 1)j −N) ((N + 1)k −N)
. (8)

Taking j and k as large as possible and as small as possible, respectively, in Equation
(8), i.e., taking limits to N/(N/(p2 + 1) + 1) and p2, respectively, we find a lower
and an upper bound for gr.

(
√
N + 1)4

N2
< gr(M) <

(
√
N + 1)4

(N − 1)2
. (9)

Remark 1. Note that all bounds are decreasing functions of N , reflecting the
decrease of expansiveness of Tα on Iα as N increases.

Remark 2. For N increasing, with N ≥ 33, the gaps containing the fixed points
increase and all disjoint maximal subsets of Aα are images of the maximal subset
of Aα containing p2. As a consequence, the upper bounds approximate the actual
factors generally (much) better than the lower bounds do.

Remark 3. Note that in the double inequalities (5), (7) and (9) only one side is
optimal/sharp. The other bounds are chosen so as to ease computations, and are
sufficient for this purpose; see also Remark 4. Moreover, the upper bound we use
for g` is equal to the upper bound we use for gr. Finally, the lower bound we use
for gr is actually (T ′α(p2))2. The lower bound for g` is larger than that, but for our
purposes it is useful to always use the lower bound of gr only.

Remark 4. If for x ∈ (p2, f1) such that x2 < p2 (implying p2 < x < N/(N/(p2 +

1) + 1)) we take Jr = (p2, x] and J` = [2p2 − x, p2] (implying |J`| = |Jr|), we have

g2(Jr) =
N +

√
N

N − x
,

and since g((j, k)) = N/(jk) (see Equation (3)), we find

g(J`) =
(
√
N + 1)2

2N − x(
√
N + 1)

. (10)

It is not hard to show that g(J`) > g2(Jr), where the difference between the two
factors is comparatively small. With some intricate but otherwise basic computa-
tions7 it can be found that for x = α1 the factor g(J`) is then only

2(
√
N − 1)

N2 −N
√
N − 2

√
N
· 100

percent larger than g2(Jr); for N ≥ 35 this percentage is even smaller than 1.
7For almost all computations in this paper we made use of Wolfram’s Mathematica.
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We will now continue with the preparation of the proof of Theorem 6. First, we
note that by definition of Aα, for x ∈ Iα and interval J ⊂ Aα, we have x ∈ Aα if
and only if there is an integer n – equal to 0 if x ∈ J – such that x ∈ Tnα (J). If
J contains p2, say J = J` ∪ Jr, where p2 is the right endpoint of J` and the left
endpoint of Jr, the two subsets expand with different expansion factors. Note that
both Tα(J`) and T 2

α(Jr) have α as left endpoint, so expansion of J after multiple
iterations of Tα depends on the expansion of the larger one of Tα(J`) and T 2

α(Jr)

or, equivalently, on the expansion of J ′ = Tα(J`)∪T 2
α(Jr). Now let M be an integer

with either M = 0 or M> 0 such that p2 ∈ T M
α (J ′) and p2 /∈ T iα(J ′) for 0 ≤ i < M.

We define

E(J) =
max{|T M +1

α (J`)|, |T M +2
α (Jr)|}

max{|J`|, |Jr|}
.

Then E(J) > 2 is clearly a sufficient condition for J to expand after M+1 or M+2

iterations of Tα. In the rest of this paper we will always use J , J`, Jr, J ′ and M in
the previous sense.

Remark 5. Although E(J) > 2 is not a very sharp condition for the growth of J
under Tα, it is useful for the determination of the classes C2, C3 and C4 (see (2)).
Once we have done that, we are able to focus on the induction step of the proof of
Theorem 6.

We will show that for all N in C2, C3 and C4, the characteristic points of the
related arrangements are c2, c3 and c4, respectively. Although this approach (with
minor adaptations) is also valid for C0 and C1, we grant these classes only two
observations. First, although all arrangements for 4 ≤ N ≤ 8 are gapless, the
fullness of the arrangement for N = 4 makes an important difference: the periodic
points c0 = [1, 2] and c′0 = [2, 1] exist in Iα only if N = 4. Secondly, only for
4 ≤ N ≤ 8 the periodic point c1 is not contained in a gap. This is mainly why C0

consists of N = 4 only and C1 consists of 5 ≤ N ≤ 8.
For all N ≥ 9 the interval (α1, α2) is a gap; see Figure 3. As a consequence,

the attractor Aα consists of two components. Moreover, in CPEs the sequence 2, 1

is always followed by the digit 1, implying that, apart from c2 = f2 (with period
length 1), periodic point c3 = [2, 1, 1] has the smallest period length.

Next assuming that N ≥ 9, we investigate the expansion of open intervals J ⊂
(Iα\(α1, α2)). If c2 = [2] ∈ J`, there is an n such that ∆2 ⊂ Tnα (J). Since Tα(∆2) =

∆2 ∪ (p2, α1], we find that J expands to Iα \ (α1, α2). If c2 /∈ J ′ and p2 ∈ Tα(J ′),
then (p2, α1] ⊂ Tα(J ′). Since Tα((p2, α1]) = [α2, β) and Tα([α2, β)) = (α, α3], we
find that c2 is contained in an image of J only if α3 ≥ c2, which is equivalent to
α3 ≥ α4. Disregarding that N ∈ N, we solve α3 = α4 and find N = 32.9777 · · · .
Note that in this case, we would have α3 = α4 = c2 = f2, so we could have also
solved α3 = f2. If p2 /∈ Tα(J ′), then M ≥ 3, yielding E(J) > (1 + 1/

√
N)6, which

is larger than 2 for N ≤ 66 and amply larger than 2 for N = 32. We conclude that
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F2

F1

N = 9
α βp2

F2

F1

N = 32
α βp2

Figure 3: Arrangements for N = 9 and N = 32

any interval J ⊂ (Iα \ (α1, α2)) expands to containing c2 for 9 ≤ N ≤ 32 and that
for N ≥ 33 there is a gap (α3, α4), so C2 = {9, . . . , 32}.

Remark 6. It is not hard to find that the length of the gap (α1, α2), existing for
all N ≥ 9, is

1− N

N
√
N − 3N + 4

√
N − 2

.

This is an increasing function of N , with limit 1 if N → ∞, implying |∆2| → 0 if
N → ∞. As a consequence, all other gaps will eventually become infinitely small.
In particular, the length of the gap (α3, α4), existing for all N ≥ 33, is given by

N3 − 8N2
√
N + 16N2 − 20N

√
N + 16N − 8

√
N + 4

N3
√
N − 5N3 + 12N2

√
N − 18N2 + 20N

√
N − 16N + 8

√
N − 4

,

which has a maximum of approximately 0.0566 for N = 104, after which it decreases
to 0 for N →∞.

In the following, the next straightforward results will become increasingly useful.

Lemma 1. Let x = [d1, . . . , dk, 1, . . .] and x′ = [d1, . . . , dk, 2, . . .]. Then x < x′ if
and only if k is odd.

The proof of Lemma 1 follows immediately from the inequality |x− x′| < 1 and
the equivalence of a < b and c/a > c/b for positive numbers a, b and c. From this
lemma the next two corollaries follow almost immediately.

Corollary 1. Let c0, c1, c2 . . . be the sequence of periodic points as defined in The-
orem 6. Then k > ` ≥ 1 if and only if ck < c`.

Corollary 2. Let cn be a periodic point as defined in Theorem 6. Then for n ≥ 1

the number cn is the smallest of all points in the orbit of cn.
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As of N = 33, we have (α1, α2) and (α3, α4) as gaps. As a consequence, for
N ≥ 33 each attractor has a component containing p2 that is bounded on both
sides by a gap; we will denote this interval by P2. For C3 – yet to be determined
– the attractor Aα consists of three components, each one containing one of the
points in the orbit of the characteristic point c3 = [2, 1, 1]. We will see that this is
typical for odd n, whereas for even n the rightmost component does not contain an
orbit point of cn. The class C2 = {9, . . . , 32}, for example, has two components,
but the single orbit point c2 = f2 is in the left-hand component only.

As N increases, the maximum number of consecutive digits 2 in CPEs becomes
more limited. It decreases from 21, for N = 33, to 3 for N ≥ 69. We note that
for N ≥ 69, we have α6 > p2, implying that all CPEs consist of sequences 1, 1, 2

and 2, 2, while every sequence 1, 2, 2 is followed by 2, 1, 1. Some more observations
are useful. In order to find the largest N in C2, we could have confined ourselves
to checking for which N we have f2 = c2 ∈ T 2

α((p2, α1]) = (α0, α3] and finding
that this is the case for N ≤ 32. Where we assumed J ′ (see page 9) to be such
that p2 /∈ Tα(J ′), we found expansion factors larger than 2 involved for N ≤ 32,
excluding any gaps but the one containing c2. We will apply these considerations
for N ≥ 33 as follows: we take J = [α4, c

′
3) (similar to taking J = (c2, α1] in C2)

and find that c3 ∈ Tα(J`) if and only if α5 ≥ c3, which is equivalent to α5 ≥ α8.
Once more disregarding that N -expansions involve positive integers for N , we solve
α5 = c3 = α8 (with ‘solution’ N = 132.876 · · · ) and find that for 33 ≤ N ≤ 132 we
have α5 > α8, while for N ≥ 133 we have α5 < α8; see Figure 4, where we have
only drawn the bottom left parts of the arrangements for visual reasons.

F2
N = 121

α α4 p2

F2 N = 144

α α4 p2

Figure 4: Two arrangements, one with c3 ∈ Aα, one with c3 /∈ Aα
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In the left arrangement of Figure 4 we have drawn the orbit of c3 with dashed
line segments and the orbit of c4 with dotted line segments. The dark grey stripes
illustrate the expansion of an interval [x, p2], with c(4)4 < x < p2. This is to visualize
our approach as follows: if the expansion under Tα of an interval K = [x, p2] ⊂ J`
that contains c(4)4 is such that J` ⊂ Tnα (K) for some positive integer n, only for
33 ≤ N ≤ 132 we have c3 ∈ Tα(J`). If c4 /∈ K, such as illustrated with the small
dark grey stroke left of p2 in the left arrangement of Figure 4, we rule out gaps
other than [α3, α4] and [α1, α2] by computing n ∈ N such that p2 ∈ Tnα (K). We
find n ≥ 2|c4| = 10, involving an expansion factor larger than (1 + 1/

√
N)16, which

is amply larger than 2 for 33 ≤ 132. We conclude that C3 = {33, . . . , 132}. Note
that, for visual reasons, in Figure 4 only the images of K up to its seventh expansion
are drawn.

Before we investigate the cases N ≥ 133, we make some generalizing remarks.
Only if N = 4, we have {c0 = [2, 1], c′0 = [1, 2]} ∩ Iα 6= ∅. This means that for
N ≥ 5 all CPEs have a limited number of consecutive sequences 1, 2. Then, as
of N = 9, all CPEs also have a limited number of consecutive digits 1 and, as of
N = 33, also a limited number of consecutive digits 2. It follows immediately that
for N ≥ 33 the periodic point in Aα with shortest period length is c3 = [2, 1, 1].
We already noted that in CPEs with N ≥ 69 digit 1 only occurs in pairs and each
pair is followed by either one or three digits 2. If now, for N ≥ 133, the number of
consecutive sequences 2, 1, 1 is also limited, it follows that every CPE has a sequence
2, 1, 1, 2, 2. This implies that there is a set of N ≥ 133 for which the periodic point
with shortest period length is c4 = [2, 1, 1, 2, 2]; in the right arrangement of Figure
4, where N = 144, we have added the orbit of c4.

Assuming that N ≥ 133, we know that [α5, α8], [α3, α4], [α9, α6], [α1, α2] and
[α7, α10] are gaps, which implies that all attractors have at least six components.
To determine C4, we take J = (c

(4)
4 , α9] (similar to taking J = (c2, α1] in C2

and J = [α4, c
′
3) in C3) and find that c4 ∈ T 2

α(Jr) if and only if α11 ≥ c4, which is
equivalent to α11 ≥ α16. Once more disregarding thatN -expansions involve positive
integers for N , we solve α11 = c4 = α16 (with ‘solution’ N = 532.497 · · · ) and find
that for 133 ≤ N ≤ 532 we have α11 > α16, while for N ≥ 533 we have α11 < α16;
see Figure 5. The existence of more than five gaps for 133 ≤ N ≤ 532 is ruled
out as follows: if an interval K = (p2, x] ⊂ Jr containing c(9)5 expands such that
Jr ⊂ Tnα (K) for some positive integer n, then c4 ∈ T 2

α(Jr) only for 133 ≤ N ≤ 532.
If c5 /∈ K, then p2 ∈ Tnα (K) only if n ≥ 2|c5| = 22, involving an expansion factor
larger than (1+1/

√
N)32, which is amply larger than 2 for 133 ≤ 532. We conclude

that C4 = {133, . . . , 532}. Note that in C4, the orbit of c4 has one point in all
components except the rightmost one, which is because c(4)4 is the pre-image of c4.

We will now commence the induction part of our proof, in which we will also
show that for n ∈ N the orbit of cn has one point in each component of Cn in
case n is odd, and one point in each component except the rightmost one in case
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F2
N = 400

c
(9)
5

F2
N = 625

Figure 5: The arrangements, not to scale, for N = 400, where α11 > α16, and
N = 625, where α11 < α16

n is even. First we observe that from Theorem 5 it follows that for N ≥ 33 we
have P2 = [αi, αj ], for certain i, j ∈ N. Moreover, P2 is an image of the leftmost
component K` of Aα, i.e., the component with α as left endpoint. Note that in
terms of J , J`, Jr, J ′ (see page 9) we have J = P2, J` = [αi, p2], Jr = (p2, αj ] and
J ′ = K`. Let x0 ∈ K` be in the orbit of a periodic point with the smallest length
possible. Then there is an n ∈ N such that x∗0 := Tnα (x0) ∈ P2 and T iα(x0) /∈ P2

for 0 ≤ i < n. Then either x∗0 ∈ [αi, p2] or x∗0 ∈ (p2, αj ]. In the first case, we have
Tα(x∗0) ∈ K` and Tα(x∗0) = x0, since the orbit is the shortest possible; in the second
case, we have T 2

α(x∗0) = x0. Note that x0 is the root of the equation Tn+1
α (x) = x

or Tn+2
α (x) = x, with x ∈ K`. Solving these is complicated8, and we will avoid this

by solving equations of the form αn = αm instead, as we did for C3 and C4. For
33 ≤ N ≤ 132 we have x0 = c3 and x∗0 = c′3, while for 133 ≤ N ≤ 532 we have
x0 = c4 and x∗0 = c

(4)
4 . We will show that x0, similarly defined for larger N , is a

characteristic point for N ≥ 533 as well.
So, let N ≥ 533 and C = {N1, . . . , Nk} be the class of all N such that P2 =

8Heuristically, the existence of these shortest periodic orbits for large N can be understood as
follows: we could start with any x somewhere in the middle of the leftmost component K`. After
n iterations of Tα the orbit of x has moved along with the images of K`. Depending on whether
Tnα (x) ∈ [αi, p2] or Tnα (x) ∈ (p2, αj ], we find that either Tn+1

α (x) ∈ K` or Tn+2
α (x) ∈ K`. If

neither is equal to x, we choose some x′ slightly left or right from x to perform the same procedure
so as to find that the image after n+ 1 or n+ 2 iterations of Tα on x′ yields an image in K` closer
to x′ than the image of x in K` is to x. It will then be clear what digits should be used to draw
up the equation Tn+1

α (x) = x or Tn+2
α (x) = x, with x ∈ K`.
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[αi, αj ]; referring to Remark 1, we can take Ni+1 = Ni + 1 for i ∈ {1, . . . , k − 1}.
Let a := 2, 1, 1 and b := 2, 2. Let s be a string of partial quotients beginning with
a. First, suppose that x0 = [s, b] is the periodic point with smallest possible period
length in Aα. Then x∗0 = x

(|x0|−1)
0 ∈ (αi, p2), and x0 is in the component of Aα

with α as left endpoint. Let C ′ = {Nk+1, . . . , Nt} be the class of all N such that
each orbit point of x0 is contained in a gap. Let M = (x∗0, p2). Then

Tα(M) = (α, x0), . . . , T |x0|
α (M) = (α|x0|−1, x

∗
0), T |x0|+1

α (M) = (x0, α|x0|) . . . ,

where M expands along the orbit of x0. Note that p2 ∈ T 2|x0|
α (M) and p2 /∈ T iα(M)

for 0 ≤ i < 2|x0|. This means that two possible expansions exist for points in M :
[s, b, s, b . . .] and [s, b, s, a, . . .]. For the periodic point with smallest possible period
length in A′α (the attractor in C ′) only [s, b, s, a] qualifies, since [s, b, s, b] = [s, b] =

x0 does not.
Next, suppose that x0 = [s, a] is the periodic point with smallest possible period

length in Aα. Then x∗0 = x
(|x0|−2)
0 ∈ (p2, αj), and x0 is in the component of Aα

with α as left endpoint. Let C ′ = {Nk+1, . . . , Np} be the class of all N such that
each orbit point of x0 is contained in a gap. Let M = (p2, x

∗
0). Then

T 2
α(M) = (α, x0), . . . , T |x0|

α (M) = (x∗0, α|x0|−2), T |x0|+2
α (M) = (α|x0|, x0) . . . ,

where M expands along the orbit of x0. Note that p2 ∈ T 2|x0|
α (M) and p2 /∈ T iα(M)

for 0 ≤ i < 2|x0|. This means that two possible expansions exist for points in M :
[s, a, s, a . . .] and [s, a, s, b, . . .]. For the periodic point with smallest possible period
length in A′α (the attractor in C ′) only [s, a, s, b] qualifies, since [s, a, s, a] = [j, a] =

x0 does not.
We have thus obtained the following lemma.

Lemma 2. Let N ≥ 33 and let Cn be the class with P2 = [αi, αj ], where P2 is the
component containing p2. Let c∗n be the orbit point of cn in P2.

If n is odd, then c∗n ∈ (p2, αj ], c∗n+1 ∈ [αi, p2) and P2 = [αi, αi+|cn+1|] for
N ∈ Cn+1.

If n is even, then c∗n ∈ [αi, p2], c∗n+1 ∈ [p2, αj) and P2 = [αj+|cn+1|, αj ] for
N ∈ Cn+1.

The only thing left to prove Theorem 6 is finding an explicit formula for |cn|.
Note that by definition, we have |cn+1| = 2|cn|+ (−1)n for n ∈ N, so

|cn| = 2(2|cn−2|+ (−1)n−2) + (−1)n−1 = 4|cn−2|+ (−1)n−2.

Applying induction, we obtain the following.

Lemma 3. Let cn be a periodic point as defined in Theorem 6, with n ≥ 1. If n is
even, then |cn| = 2n−1

3 ; if n is odd, then |cn| = 2n+1
3 .
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Proof. What follows is the final step of the proof of Theorem 6. First, there are no
gaps in Iα for 4 ≤ N ≤ 8. For 9 ≤ N ≤ 32, there is only one gap in Iα, containing
c1. This satisfies the formula for the number of gaps for odd m, G(N) = 2m+1−1

3 ,
according to which G(N) = 22−1

3 = 1 if 9 ≤ N ≤ 32. For 33 ≤ N ≤ 132, there
are two gaps in Iα, one containing c1, the other c2. This satisfies the formula
for the number of gaps in Iα for even m, G(N) = 2m+1−2

3 , according to which
G(N) = 23−2

3 = 2 if 33 ≤ N ≤ 132. Finally, for 133 ≤ N ≤ 532, there are five gaps
in Iα, one containing c1, one containing c2, and the other three gaps each containing
one point of the orbit of c3 = [2, 1, 1]. This satisfies the formula for the number of
gaps in Iα for odd m, according to which G(N) = 24−1

3 = 5 for 133 ≤ N ≤ 532.
As for the induction step for N ≥ 533, we note that the specific composition of

CPEs for N ≥ 69 with nothing but blocks of sequences 2, 2 and 2, 1, 1 allows us to
apply the inequalities (5) and (9). Regarding Remark 1, we know that forN ∈ Cm+1

the expansiveness of Tα is such that P2 has no images under Tα containing c∗i for
3 ≤ i ≤ m. Since the difference between the number of components and the number
of gaps equals 1, we see that for the number of gaps G we have G(N) = |cm+1| if m
is odd, since in that case every component of Aα except the rightmost one contains
a point in the orbit of cm+1; if m is even, we have G(N) = |cm+1| − 1, since in
that case every component of Aα contains a point in the orbit of cm+1. Applying
Lemma 3, we indeed find the formula for G(N):

G(N) =


2m+1 − 1

3
, when m is odd;

2m+1 − 2

3
, when m is even.

As we noted before (see Remark 2), the function (
√
N +1)4/(N −1)2 provides a

good indication of the expansion factors of iterations of Tα related to the sequences
2, 2 and 2, 1, 1. As to this approximating factor we note that each class Cn+1 involves
a factor twice as large as Cn. While for all N in C2 = {9, . . . , 32} and for N = 33 as
well we have (

√
N+1)4/(N−1)2 > 2, for all N in C3 \{33} = {34, . . . , 132} and for

N = 133 as well we have ((
√
N + 1)4/(N − 1)2)2 > 2, and for all N in C4 \ {133} =

{134, . . . , 532} and for N = 533 as well we have ((
√
N + 1)4/(N − 1)2)4 > 2.

It seems that the equation(
(
√
N + 1)4

(N − 1)2

)2n−2

= 2, implyingN = N(n) :=

(
2

1

2n−2+1 + 1

2
1

2n−2+1 − 1

)2

, withn ∈ N≥2,

provides very good indications for the boundary values of N between two classes Cn
and Cn+1 - once more disregarding that N ∈ N. In Table 1 the number of gaps in
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Iα for 4 ≤ N ≤ 34 919 576 is shown. Indeed, it is striking how well N(n) approaches
the maximum value for each class. We also note that the ratio |Cn+1|/|Cn| very
rapidly approaches 4 as n increases. It is 4.0012515 · · · for n = 5, for example,
already 4 for n ∈ {3, 6, 7, 10}, 3.9999804 for n = 8 and 4.0000004 · · · for n = 11.

n |Cn| up to N = . . . bN(n)c # gaps condition
1 4 8 not defined 0 α1 > α2

2 24 32 33 1 α3 > α4

3 100 132 133 2 α5 > α8

4 400 532 533 5 α11 > α16

5 1598 2 130 2 131 10 α21 > α32

6 6394 8 524 8 525 21 α43 > α64

7 25 576 34 100 34 101 42 α85 > α128

8 102 304 136 404 136 405 85 α171 > α256

9 409 214 545 618 545 619 170 α341 > α512

10 1 636 855 2 182 473 2 182 474 341 α683 > α1 024

11 6 547 420 8 729 893 8.729894 682 α1 365 > α2 048

12 26 189 683 34 919 576 34 919 577 1 365 α2 731 > α4 096

≥ 13 not computed not computed 139 678 308 ≥ 2 730 α2 731 < α4 096

Table 1: The relation between the number of gaps and N

Above, in Remark 6, we observed that as N tends to infinity, the ‘first’ gap
(i.e., (α1, α2)) tends to ‘swallow up’ Iα. At the same time Theorem 6 states that
the number of gaps grows also to infinity as N tends to infinity. So we have the
remarkable fact that although the length of Iα \ (α1, α2) tends to zero as N →∞,
it will be punctuated by an increasing number of ever smaller gaps.

Acknowledgement. We are very grateful to Pjotr Buys for making very useful
simulations that give insight in the distribution of gaps in Iα for α ∈ (0,

√
N − 1].

These will be especially useful in a forthcoming paper about gaps in Iα for α < αmax.
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