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Abstract

Increasing global food demand, accompanied by the limited
number of expert growers, brings the need for more sustain-
able and efficient horticulture. The controlled environment of
greenhouses enable data collection and precise control. For
optimally controlling the greenhouse climate, a grower not
only looks at crop production, but rather aims at maximising
the profit. However this is a complex, long term optimisation
task. In this paper, Constraint Programming (CP) is applied to
task of optimal greenhouse economic control, by leveraging a
learned greenhouse climate model through a CP embedding.
In collaboration with an industrial partner, we demonstrate
how to model the greenhouse climate with an LSTM model,
embed this LSTM into a CP optimisation framework, and op-
timise the expected profit of the grower. This data-to-decision
pipeline is being integrated into a decision support system for
multiple greenhouses in the Netherlands.

Introduction
Global food demand is facing growing challenges, includ-
ing the rapid increase of world population, climate change,
and limited availability of grower expertise. Sustainable so-
lutions in agri- and horticulture are needed to meet the fu-
ture demands. Data-driven greenhouses (van Straten and van
Henten 2010; Iddio et al. 2020) can play an important role in
such solutions: they support higher productivity, prolonged
cultivation periods, and growing crops closer to their con-
sumption location. Moreover, data-driven cultivation, while
helping to meet the increasing global food demands, can also
help lower the impact of greenhouses on the climate.

While the benefits of data-driven greenhouses are obvi-
ous, they have not been readily adopted by practitioners who
still largely rely on their own experience to optimise crop
yield. Decision support systems (DSS) in greenhouses fo-
cus on short-term decisions that impact the greenhouse’s cli-
mate. For instance, opening the windows or increasing the
heating tube’s temperature. Growers, however, make such
decisions based on long-term economic objectives and to op-
timise eventual profit discounting the costs.

What is missing currently is a DSS that understands long-
term economic consequences of short-term climate deci-
sions in a greenhouse (van Straten and van Henten 2010;

Copyright © 2023, Association for the Advancement of Artificial
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van Straten, Challa, and Buwalda 2000). Providing such a
system is especially relevant for current times of uncertainty
regarding energy and gas prices as a grower’s experience
alone might not suffice to make the best decisions.

This work introduces a DSS for greenhouses that opti-
mises long-term economic profit through short-term actions
impacting the climate in a greenhouse. The main challenge
in developing such a system is that the effects of actions are
delayed and have to be predicted in order to plan future ac-
tions. The DSS has to predict the impact of particular actions
on greenhouse climate and crop growth. Greenhouse cli-
mate and crop growth models are an active area of research
and existing (equation-based) models could, theoretically,
be used within a DSS. However climate models are compu-
tationally complex and parameter sensitive, which prevents
them from being used within a real-time decision making
system. To overcome this issue, we replace mathematical
climate models with those learned from data through ma-
chine learning. Crop growth models can be similarly com-
plex, but in our study an existing simple model was used.

Integrating machine learning (ML) models into decision-
making systems, also referred to as decision-focussed learn-
ing, is the main technical challenge we address. The ex-
isting work on such integration focuses on using ML to
guide search in decision-making systems (Bengio, Lodi, and
Prouvost 2021; Dai et al. 2017) or frames ML as a con-
straint satisfaction problem (Demirović et al. 2022; Hu et al.
2020; Verhaeghe et al. 2020; Goyal, Dumancic, and Bloc-
keel 2022). Our problem is different: our decision-making
system needs to use ML models to predict the impact of its
decisions on the greenhouse climate and crop growth.

In summary, our contributions are as follows:

• We introduce a DSS that integrates short-term decisions
and long-term economic effects;

• We describe the underlying technical framework that en-
codes a machine learning model, namely a Long Short-
Term Memory (LSTM) neural network, into a decision-
making system, based on constraint programming (CP);

• We report a case study demonstrating the benefit of
the approach for greenhouse economic optimisation, and
outline the lessons learnt while developing the system.

This work is being integrated into a live DSS for multiple
greenhouses in the Netherlands.

The Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI-23)

15731



Background and Related Work
Greenhouses are closed systems that provide a way for
growers to cultivate crops that would normally not grow in a
certain region or season (Nemali 2022). The crops are pro-
tected from extreme weather conditions and their production
is optimised through various techniques, like artificial LED
lighting and CO2 injection (Morrow 2008; Rodriguez et al.
2015). Looking more in-depth at the operation of green-
houses, we arrive at energy and mass balances that model
the current state of the greenhouse climate and crop and are
influenced by both outside weather and actions inside the
greenhouse (Rodriguez et al. 2015). Much research seeks
to find these physical relations within the climate and crop
(Vanthoor 2011; Stanghellini 1987; Jones et al. 1991). While
these mathematical models approach reality more closely,
they can be complex and often need many parameters to
work, making their implementation impractical and difficult
(Lopez-Cruz et al. 2013).

Machine learning models can cover the complex dynam-
ics of the greenhouse and crop without many parameter set-
tings or calibrations. However an adverse consequence of
using machine learning models is that they work as a black
box and do not provide useful knowledge on what happens
in the greenhouse, which is especially troublesome in the
case of extreme situations that occur outside of the domain
on which such models were trained (Katzin, van Henten, and
van Mourik 2022). Nevertheless, machine learning models
are increasingly being used within the field of horticulture,
especially in the form of time-serial deep neural networks
(Ali and Hassanein 2020; Jung et al. 2020). More recent
work also applies these to crop growth prediction (Lee et al.
2020; Alhnaity et al. 2020).

A particularly useful method for solving complex real-
world problems, and not yet found in the literature regarding
the greenhouse optimal control problem, is CP. As discussed
in Wallace (1996), the most important features of CP are
declarative problem modelling, propagation of the effects
of decisions, and efficient search for feasible solutions. We
deem CP useful because it provides a high-level approach
of modelling our optimisation problem without manually
having to implement any search heuristics. Lombardi, Mi-
lano, and Bartolini (2017) suggest the concept of combining
learned relations between variables from data and embed-
ding these relations into an optimisation model, called Em-
pirical Model Learning (EML). In an earlier study, the same
authors explore this approach by embedding a trained Neu-
ral Network (NN) into a CP algorithm, for a “temperature
aware workload allocation problem”, with promising results
(Bartolini et al. 2011). The literature holds no embedding of
LSTMs in CP, whereas the successes of both LSTMs and CP
could prove to be a powerful combination.

Methodology and Implementation
Figure 1 provides a sketch of our framework. The cen-
tral component of our framework is the machine-learned
greenhouse model which is impacted by the outside
weather O, retrieved from weather forecast, and pos-
sible actions A, such as turning on artificial lighting

Figure 1: Overview of the CP model and its relevant pa-
rameters and decision variables. The outside weather (O)
is retrieved from a weather forecast, the greenhouse actions
(A) must be decided, so that the inside climate (I) and crop
growth (G) can be predicted through the embedded models,
finally leading to an economic result (E) that is used in the
optimisation process for the growers

and opening the windows. The greenhouse model pre-
dicts the inside weather (I) which determines the crop
growth (G). The profit is impacted by two things: crop
growth at time tn and the costs resulting from the se-
lected actions. The problem to be solved is summarised as:
Given A set of actions A;

Time span T = {t1, t2, ..., tn};
Outside weather conditions O;
Inside climate I;
Crop growth G;
A climate model C;
A crop growth model P ; and
An economic model E

Find A sequence of actions {a1, a2, ..., an}
which maximises the profit at tn under E

In the remainder of the section, we outline our implemen-
tation. We explain how the entire framework is encoded in
CP, which includes the machine learning model of the cli-
mate, a mathematical crop model, and an economic model,
together with possible actions and their impact.

Greenhouse Climate Model
The greenhouse climate is modelled with an LSTM. We
chose LSTM as the problem is an instance of multi-stage
prediction: the climate in a greenhouse at time t depends
on the outside weather, inside climate, and the actions per-
formed at time t − 1 (Figure 2). We consider the outside
weather to be known in advance.

The main factors of the inside climate that influence the
crop growth are (PAR-)light, temperature, humidity deficit,
and CO2 (Challa 1990). Different representations of humid-
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Figure 2: Multi-stage prediction in the context of greenhouse
decision making. Input of each timestep is inside climate,
forecasted outside weather, and decided actions of previous
timestep(s). Output is inside climate for the next timestep.
In this simplified example, the chosen time lag is 1 timestep.
A more common use case has multiple timesteps of input.

ity exist, but we used humidity deficit because it indicates
how much transpiration can occur in the crop. The impor-
tant factors of the outside climate include radiation, temper-
ature, and absolute humidity. CO2 was omitted as feature,
because the outside CO2 level remains virtually constant.
We used absolute humidity, as even at 100% relative humid-
ity outside, moisture inside the greenhouse can be reduced
by ventilation because of temperature differences (van Weel,
Geelen, and Voogt 2018). Additionally wind speed plays an
important role, as there is an interplay between the inside
and outside climate through the windows.

Put together, the LSTM modelling in inside climate is
trained on the following features: 1. Outside weather: ra-
diation, temperature, absolute humidity, and wind speed.
2. Greenhouse actions: heating undertube, heating grow-
tube, leeside ventilation, windside ventilation, LED light-
ing, SON-T lighting, and shading screen. 3. Inside climate:
PAR-light, temperature, humidity deficit, and CO2.

The LSTM is trained offline on the actual greenhouse
data and the trained model is embedded in the overall CP
framework. We implemented the LSTM in Python, using the
Keras library (Chollet et al. 2015).

Crop Growth Prediction
We adopted the crop model of our industrial partner that
is an adaptation of the Lintul-3 model (Shibu et al. 2010).
This model calculates the fresh-weight crop growth in grams
by combining the temperature, CO2 and light components
that were predicted by the LSTM climate model. While the
model is relatively basic and short-term, it demonstrates the
usage of a crop model in the application. More sophisticated
models can be incorporated.

Embedding LSTM in CP
Achieving an efficient encoding of an LSTM into a CP
model is not a straight-forward task. The main challenge lies
in the conceptual difference between neural networks and
constraint models. NNs are functions with well-defined in-
puts and outputs, which allows their efficient execution. On
the other hand, constraint models are declarative: they state
variables and the relationships between their values, without

explicit input and output roles. The benefit of the declarative
models is that variables can easily be switched from inputs to
outputs without changing the model. Functions can be easily
turned into relations, but not necessarily efficiently.

At its core, the LSTM cells perform various matrix op-
erations realising the gate and state functions. We imple-
mented the CP equivalent of these operations to represent
LSTM cells, with general gate and state functions. The cell
and hidden states are updated using a time lag l. At t = 0,
these vectors c0 and h0, representing the initial cell and hid-
den states, are initialised with zeros. For each t in l, vectors
ct and ht are computed by using the vectors of the previ-
ous timestep ct−1 and hh−1 in the before-mentioned LSTM
functions. Important to note here is that in a CP approach,
we cannot simply create vectors c and h and update these.
We need to create vectors for each timestep, such that the
solver can find each of the intermediate values. Just as in a
regular LSTM, the hidden state vector of the last timestep
represents the output of the LSTM.

Additionally, functions were implemented to handle the
scaling of features, as well as capping values between a min-
imum and maximum value. This capping of values is used
in the activation functions to ensure that the resulting values
do not exceed the domain, as this would make the problem
unsatisfiable. These kind of considerations are important in
connecting CP and ML in practice.

Since we want to be able to change the unit size and thus
complexity in the LSTM, we need an additional dense layer
that maps the LSTM output to the desired dimensionality of
our model output, in our specific case the four inside cli-
mate targets. The output of our LSTM layer is a vector hl

of LSTM unit size u. The computation of the dense layer is
then σd(hl ·Wd+bd), where σd is the linear capped function,
Wd are the weights of the dense layer and bd the bias.

Put together, the CP model constrains all unknown inside
climate variables to be equal to the computed values by the
LSTM and dense layer, using the outside weather, actions in
the greenhouse, and inside climate of the last l timesteps. A
simplified formulation of this constraint is:

Xi(t)
i∈I

= dense(lstm(Xn(t
′),

n∈N
t−l≤t′<t

WL, bL),Wd, bd) ∀t ∈ l..T,

where X is the complete input array, I the inside climate
features, WL and bL the trained LSTM weights and biases;
N represents all features (inside, actions, and outside), l the
chosen time lag, and T the total amount of timesteps taken
into account. We used MiniZinc to create the CP model and
the LSTM embedding (Nethercote et al. 2007).

Embedding Lintul-3 Model in CP
An adaptation of the Lintul-3 crop model was implemented
in MiniZinc using a function that computes a temperature,
CO2, and PAR-light component (see Algorithm 1). An ad-
ditional input variable LAI is used that represents the Leaf
Area Index (an indication of the leaf-size). Some of the co-
efficients in the function we obtained through trial-and-error
using domain knowledge.
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Algorithm 1: Simplified MiniZinc code of the adapted
Lintul-3 model, where t is temperature, c the CO2 level, l
the PAR-light, and a the Leaf Area Index. Both the function
result and included variables are floating numbers.

1 function: lintul(t, c, l, a) =
2 % temperature
3 if 6 ≤ t ≤ 14 then (t-6)/8
4 elseif 14 < t ≤ 28 then 1.0
5 elseif 28 < t < 40 then (40-t)/12
6 else 0.0
7 *
8 % co2
9 (1.0 - exp(-0.004 * (1.2 if l ≤ 500 else

2.0) * c))
10 *
11 % par-light
12 (0.0036 * l) * (1.0 - exp(-0.7 * a)) *

(1.5 if l ≤ 500 else 0.9) * 12;

Economic Model
The profit at the end of the optimisation process – the quan-
tity of interest to the grower – is calculated by subtracting
the costs of actions needed to operate a smart greenhouse
from the earnings of the crop. This forms the objective func-
tion for the CP model. Each action is associated with a cost
and the crop growth is associated with a tomato price. Rea-
sonable assumptions of these costs and prices were made
using historical data, all normalised to one m2 greenhouse
area. For heating, we computed the amount of gas needed
to heat the tubes and linked this to a gas price. For lighting,
depending on the intensity and efficiency of the used light-
ing system, an energy cost could be computed and linked
to an energy price. Operating the windows and screens re-
quires so little energy, that these costs were neglected. The
used tomato price is based on historical prices and the month
of prediction, because it is highly dependent on the time of
year in which the produced tomatoes are sold.

Complete CP Model
Below is the complete CP model including constraints that
show how the greenhouse and crop models are used together.
An LAI of 3.5 was used (this fits the tomato variety); Q rep-
resents price; and N the full set of features: outside weather
(O), greenhouse actions (A), and inside climate (I).

Table 1 specifies the CP model. The objective is:
maximize ep, and the search guidance to the solver is:
integer search(UA(t)) ∀t ∈ [l, T ]. The complete
variable input array Xn is:

Xn(t) =

{
Kn(t), if n ∈ O

Kn(t) ++ Un(t), otherwise
∀n ∈ N.

The JaCoP solver (Kuchcinski and Szymanek 2013) was
used to run the CP model because it supports real numbers
and has implemented the exponential function, which is used
in the activation functions of the machine learning models.
The solver performs a sequential search on greenhouse ac-

Constants
T total amount timesteps
k known amount timesteps
Ko(t) t = 1, . . . , T ∀o ∈ O known outside weather
Ka(t) t = 1, . . . , k ∀a ∈ A known actions
Ki(t) t = 1, . . . , k ∀i ∈ I known inside climate

Decision variables
Ua(t) t = k+1,...,T ∀a ∈ A unknown actions
Ui(t) t = k+1,...,T ∀i ∈ I unknown inside climate
g crop growth
ec, er, ep costs, revenue, profit

Constraints
Xi(t) = lstm i ∈ I ∀t ∈ [l, T ] neural constraint
g =

∑T
t=l lintul(UI , 3.5) crop model

ec =
∑

∀a∈A
∀t∈l..T

Ua(t) ·Qa economic costs

er = g ·Qg economic revenue
ep = er − ec economic profit

Table 1: CP model

tions, using value randomisation and restarts if no new solu-
tions are found in the search-tree.

Lessons Learned
Instantiating functional dependencies As noted, CP is
a declarative technology that models dependency between
variables through relations. We have found it important to
explicitly annotate functional dependencies between vari-
ables when possible, i.e., between inputs and outputs of an
LSTM. While the MiniZinc compiler is able to derive this
functional dependence for small models, in larger models
this is not always the case. The benefit of such explicit in-
stantiation is that the solver can simply calculate the value of
functionally dependent variables instead of deducing it with
expensive techniques, which yields faster solving times.

Functions vs predicates We have found it important to
carefully choose between functions and predicates when in-
troducing helper functions, e.g., that encapsulate the crop
growth model. MiniZinc supports introduction of helper
functions in two ways, namely through predicates and func-
tions. Predicates reify the result of a computation with a
new variable through constraints, while functions perform
the computation directly and return the result. Predicates
therefore introduce additional variables and require compu-
tationally more expensive procedures. All LSTM computa-
tion within our CP model benefits from using functions over
predicates because the computation needs to be performed in
a sequential manner – all computation in time step t needs
to be executed before the computation in time step t+ 1.

Domain bounds MiniZinc actively tries to bound the vari-
able domains during solving. Tighter bounds typically result
in faster solving times (Stuckey, Marriott, and Tack 2020).
Often, the bounds of certain variables can be deduced ahead
of solving time through domain knowledge. For instance,
the hidden state in an LSTM holds values between -1.0 and
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1.0, because of the tanh activation function. Similarly, the
bounds of the cell state can be derived using its equation
ct = ft ⊙ ct−1 + it ⊙ c′t and the corresponding activation
functions. We incorporate such bounds wherever possible.

Search order The search order over variables is essential
in solving CP problems that involves time-based decision
variables, as is the case with multi-stage prediction. Since
the inside climate at a certain timestep depends on a multi-
tude of variables from previous timesteps, it helps the solver
to know which variables to decide first, before moving on to
the next. We implemented this using priority search (Feydy
et al. 2017), letting the solver decide the actions in ascending
time order, starting with the first unknown value (l + 1).

Empirical Study
We evaluate our system on a real-world use-case in a tomato
greenhouse. As the system performance depends on the per-
formance of all its components, we evaluate each component
separately. Lastly, we demonstrate the benefit of the DSS by
comparing it to decisions made by an experienced grower.

Tomato Greenhouse Dataset
The dataset used to train the greenhouse climate model and
initialise the CP model is retrieved from a Venlo-style green-
house department located in the Netherlands. This depart-
ment covers an area of 150m2 and includes LED and SON-T
lighting, under- and growtubes (heating), a shading screen,
and lee- and windowside ventilation. It contains sensors for
each of these actions, as well as the outside weather (ra-
diation, temperature, absolute humidity, wind speed) and
the inside climate (PAR-light, temperature, humidity deficit,
CO2). We retrieved a dataset from a tomato variety Merlice
cultivation in the 10 month period 25/11/2020 – 20/9/2021.
We used the period 28/12/2020 – 4/8/2021 for training, and
a summer period 5/8/2021 – 7/8/2021 for prediction.

LSTM Prediction
We validated the LSTM greenhouse model by doing an in-
side climate prediction in summer. Light, temperature, hu-
midity deficit, and CO2 are predicted in a multi-stage man-
ner and compared to the real inside climate in the given pe-
riod. The hyper-parameters that followed from a grid search
and were used in this experiment are a batch size of 512, a
lag of 6 timesteps (6 hours), and 4 LSTM units. Early stop-
ping was used, which means that the amount of epochs de-
pends on the accuracy on the validation set. The experiment
was run 5 times and the result was averaged.

Figure 3 shows that the model is able to predict the tem-
perature and humidity deficit quite well in all five runs, but it
has some trouble with predicting the inside PAR light, which
can be explained by clouds or other shadows being cast on
the PAR-sensors. CO2, however, is the hardest target feature
for the model to predict. Firstly, this department is missing a
CO2 injection sensor. Also, CO2 levels recorded by the sen-
sor are more fluctuating than that of the other climate vari-
ables. Further, how much CO2 is in the air depends on crop
processes, which is not a direct input feature.

Figure 3: LSTM climate prediction, lag of 6 timesteps,
5/8/2021 00:00 – 7/8/2021 23:00, with an RMSE of 0.0650.

Figure 4: Validation of the greenhouse LSTM model em-
bedded in CP. LSTM-in-CP climate prediction, lag of 6
timesteps, 5/8/2021 00:00 – 7/8/2021 23:00, RMSE 0.0665.

LSTM-in-CP Validation

We now validate the CP model of LSTM. The decision vari-
ables of the model, impacting the greenhouse climate, were
set manually. This way, the LSTM within the CP model
should behave similarly as a regular LSTM. We use the same
setup as in the previous experiment.

In Figure 4 we see the LSTM prediction of each of the
inside climate variables within CP for a prediction period of
3 days, with an RMSE of 0.0665. The figure shows similar
results as the ‘regular’ LSTM predictions in Figure 3 with a
similar RMSE value as well, indicating that the embedded
LSTM in CP is behaving as expected.

Yield
(g/m)

Revenue
(C/m)

Costs
(C/m)

Profit
(C/m)

Grower 256.89 0.30 0.01 0.29
DSS 385.31 0.45 0.05 0.40

Table 2: Economic results of the DSS in the period 5/8/2021
00:00 to 5/8/2021 23:00 (one day); timeout 11 hours.
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Figure 5: Results of the retrieved outside weather (col 1), greenhouse actions decided by the system (cols 2 & 3), and predicted
inside climate (col 4) in the period 5/8/2021 00:00-23:00, timeout 11 hours. These actions and climate are compared to that of
the grower. Dark lines represent the result of running the DSS; bright lines represent the grower’s decisions and climate.

Comparing Grower and Decision Support System

As the final experiment, we compare the developed system
to an experienced grower. We analyse the decisions made
by the system and the grower, and the resulting economic
outcomes, over the one-day period 5/8/2021. We expect to
see the system at least match the grower’s profit, and ideally
surpass it. Additionally, we also inspect the resources used
and the production achieved by both actors, which offers an
interesting look into different behaviours.

To obtain the economic outcomes of the grower, we fix
the values of the action variables to match the grower’s de-
cisions. It is important to note that the climate following
the grower’s decisions is also a prediction; it is not the ac-
tual climate as the LSTM does not have a 100% prediction
accuracy. We give our model a timeout of 11 hours to de-
cide on the actions, to give the DSS enough time to surpass
the grower’s performance. Running the experiment multiple
times and averaging the result was not possible in this case,
as the resulting intermediate solutions may have very differ-
ent values for the decision variables due to randomisation.

The resulting decisions and predictions can be seen in
Figure 5, the economic results in Table 2. Compared to the
grower, the system decides to make more use of the shad-
ing screen and lower both the undertube heating and leeside
window ventilation, while still reaching a similar tempera-
ture; the lighting systems are used more, directly leading to
more crop growth. The system thus sees the added benefit
of turning the lights on compared to their costs. In the re-
sulting economic values, we can see that indeed the system
has higher costs, but has a payback of this in the revenue.
The system thus has an increased profit with respect to the
grower’s decisions. What we can conclude from this exper-
iment, is that given enough time or a small enough search
space, the system is able to find better solutions. This shows
the potential of such a system. For deployment, however, the
runtime is too long and the prediction period too short to be
used in practice, motivating our ongoing technical work.

Outlook and Deployment

This paper presents a data-driven optimisation approach for
medium-term economic optimisation of greenhouse control.
Greenhouse control, and horticulture in general, are an im-
portant application area for AI because of the potential for
higher productivity and better crop yields with lower use of
resources. From a grower’s perspective, this would lead to
a higher revenue and lower cost of operation. When their
profitability is uncertain, for example during an energy cri-
sis, growers could benefit from decision support that takes
into account these economic trade-offs. While an initial ver-
sion of this system is already implemented and connected to
live greenhouse data feeds, additional steps are in progress
for its full deployment.

The current DSS is able to find a better solution than that
of a grower given enough time or with a small enough search
space. The next step in addressing the problem complexity is
initialising the system with a reasonable solution taken from
grower decisions in similar weather conditions, enabling a
reduction of the domains. Additional constraints using do-
main knowledge can reduce the search space even further.

When the solving time is acceptable, further steps in-
clude increasing the accuracy of the predictions and perfor-
mance of the overall system. The simple crop model will
be improved either through an LSTM embedding similar
to the greenhouse model, or by implementing a more ex-
tensive state-of-the-art crop model in CP. When sufficiently
accurate, the decision support system can be connected to
the greenhouse action actuators, leading towards full au-
tonomous cultivation.
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