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A B S T R A C T

Data driven probabilistic methodologies have found increasing use the last decade and provide a platform for the
remaining useful life (RUL) prediction of composite structures utilizing health-monitoring data. Of particular
interest is the RUL prediction of composite structures that either underperform or outperform due to unexpected
phenomena that might occur during their service life. These composite structures are referred as outliers and the
prediction of their RUL is a challenge. This study addresses this challenge by proposing a new data-driven model;
the Adaptive Non-Homogenous Hidden Semi Markov Model (ANHHSMM), which is an extension of the
NHHSMM. The ANHHSMM uses diagnostic measures, which are estimated based on the training and testing
data, and it adapts the trained parameters of the NHHSMM. The training data set consists of acoustic emission
data collected from open-hole carbon–epoxy specimens, subjected to fatigue loading, while the testing data set
consists of acoustic emission data collected from specimens, subjected to fatigue and in-situ impact loading,
which can be considered as an unseen event for the training process. ANHHSMM provides better predictions in
comparison to the NHHSMM for all the cases, demonstrating its capability to adapt to unexpected phenomena
and integrate unforeseen data to the prognostics course.

1 Introduction

The field of prognostics aims at supplying reliable predictions for
the future state of a system based on up-to-date information by in-
corporating monitoring data, machine learning algorithms, the physics
of the systems’ degradation and reliability analysis. The engineers
target at converting these predictions to information and make deci-
sions on the future use of the system, where one main output could be
the remaining useful life (RUL) of the system [1].

RUL predictions can be divided into model-based and data-driven
approaches [2]. Model-based approaches assume that a physical model
(physics- or phenomenological-based), which is able to describe the
degradation process, is available. These approaches are of preference
when limited monitoring data is available and they have been proven
effective for engineering systems when the degradation process is well
understood. The main advantage of the model-based approaches is, that
upon the development of the physical model, it can be applied for
different systems, which are governed by the same degradation process.
The key issue for the successful implementation of the model-based

approach is how to improve the accuracy by incorporating future un-
certainties into the physical models’ parameters. On the other hand,
data-driven approaches use monitoring data collected at current and
previous usage states and they are preferable when a physical model of
the degradation process is not available but sufficient data have been
collected. These approaches are based on probabilistic models that
learn trends from the available data. Due to increased automation,
progress in sensing technologies, faster sampling rates for data collec-
tion and advances in computing power, sufficient amount of data can be
extracted and thus data-driven approaches are getting popular nowa-
days.

Recently, prognostics of composite structures has become a dyna-
mically rising field of research. The main target is to estimate the re-
maining useful life in real-time of the composite structure while it is in
service. The degradation process of a composite structure is a nonlinear
and time-varying dynamic process of stochastic nature. In that case, the
model-based approach cannot be easily implemented because the de-
gradation process involves many parameters, complex and computa-
tionally intensive calculations [3]. In addition, even when the physical
degradation model is known the RUL prediction might be difficult to
obtain, since the degradation state of the composite structure may not
be directly observable or the health monitoring data may be affected by
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noise and disturbances [4].
Composite structures usually operate in non-uniform environments

and altering operational conditions e.g. loads, whereby data are chan-
ging. The composite structure’s life is heavily influenced by the way it is
operated, maintained, the environmental and operation conditions,
which are not always the designed ones, because unexpected phe-
nomena can be occurred during the structure’s lifetime. For the latter,
let’s consider an example from the aviation industry. Foreign objects
impacts, such as bird-strikes, hail, tool drops etc., may occur anytime
during the lifetime of the aircraft. These events fail into category of
accidental (unexpected) phenomena that may create damage, which
may have not been anticipated into the design phase. The implication of
such an unexpected event to the integrity of the structural component
could be severe and a common practice, as long as the operators record
the event, is to interrupt the aircraft operation and initiate inspection
and repair actions resulting to unplanned costs. In this case, the role of a
RUL prediction approach would be to assess the effect of the un-
expected event and to provide an updated prediction.

However, the current state-of-the-art RUL prediction approaches
may not be suitable for the following reasons; a model-based approach
will not be able to take into account these unexpected phenomena,
since it is not realistic to involve any physical model that is able to
describe all the possible phenomena. On the other hand the ‘classic’
data-driven approaches have a strong limitation, because they are able
to predict degradation processes efficiently, only when the testing data
are extracted under the same conditions as the training data. For the
case of the foreign object impact, the RUL predictions of the structural
composite component of the aircraft will be accurate only if the training
data contains data related to the impact. In other words, a data-driven
approach may not provide accurate RUL predictions for the testing
composite structure if the composite structures, used for training, have
not experienced that unexpected phenomenon. However, it is im-
practical to create a training data set that covers all the possible testing
scenarios and includes all the unexpected phenomena. Therefore, there
is a need to develop algorithms with real-time adapting capabilities.

This study proposes a new data-driven prognostic approach, which
is capable of real-time learning and adapting the estimated model
parameters based on the availability of real-time data. In that way, the
proposed approach will be able to overcome the aforementioned lim-
itations and it will predict the RUL of the testing composite structure
independently on the nature of the potential unexpected phenomenon.
To the best knowledge of the authors, there is no literature available for
adaptive prognostics for composite structures.

A preliminary version of the proposed data-driven prognostic ap-
proach was presented in the Annual Conference of Prognostics and
Health Management-PHM 2018, which took place in Philadelphia, USA
in 2018. We highlighted the need to develop an adaptive approach and
we demonstrated this idea for composite open-hole quasi-isotropic
specimens that were subjected only to fatigue loading. During the fa-
tigue tests, acoustic emission technique was employed to record the
acoustic activity and provide health monitoring data. After proper
processing, this data was used to train the model. The data from the
structure with the shorter life was excluded from the training and kept
as a test set. As the RUL predictions were promising, that was a clear
indication to improve and develop a more generalized version.

In the present paper, similar fatigue tests were executed on open-
hole quasi-isotropic specimens and in addition, in order to simulate an
unexpected phenomenon, in-situ impact took place during the fatigue
loading. A detailed description of the experimental procedure is given
in Section 4. Furthermore, the paper details the adaptive model, where
emphasis is given to the structure of each element, the adaptation
process and its assumptions. In this direction, aiming to demonstrate
the applicability of the proposed adaptive approach, the adaptive ap-
proach is benchmarked against the NHHSMM for three test cases; a left
outlier, a right outlier and an inlier.

2. Adaptive RUL approaches

A few adaptive prognostic approaches have been proposed in the
literature the last 15 years. Orchard et al. [5] utilized two different
approaches for outer feedback correction loops in particle filters algo-
rithms. These loops incorporate information for the short term predic-
tion error in order to improve the performance of the overall prognostic
framework. However, important initialization parameters, such as the
number of prediction steps (k) and the variance vector of the kernel
noise [p q]T, have to predefined. Both approaches were tested using
data from an artificial fault test in a critical component of rotorcraft
transmission system. Results show that outer feedback correction loops
improves the precision and accuracy of the predicted RUL.

Sbarufatti et al. [6] proposed a method for batteries’ prognostics,
which is a combination of particle filters and radial basis function
neural networks (RBFNNs). This approach could be considered adaptive
as the RBFNNs are trained online. To be more specific, the neural
networks parameters are identified online by the particle filters as soon
as new observations of the battery terminal voltage become available.
The RBFNNs algorithm seems to be able to provide satisfactory prog-
nostic predictions over normal and aging scenarios. However, before
RBFNNs use, the dataset has to be significantly corrupted by adding
artificial noise. In general, the choice of the noise variances is not an
easy task since too small values may hamper a proper exploration of the
state-space, and at the same time too large values don’t guarantee an
efficient state estimation.

Furthermore, in Khan et al, an adaptive degradation prognostic
approach, utilizing particle filters with a neural network degradation
model, was proposed in order to estimate the RUL of turbofan jet en-
gines [7]. The RUL predictions were generated using two different al-
gorithms for benchmarking the results; the nominal RBHNNs with
particle filters and the similarity based prognostics. The RUL predic-
tions for both algorithms are characterized by volatility, but more im-
portantly the similarity based approach does not support the prediction
of RUL confidence intervals which is an essential output for the relia-
bility of the algorithm. Furthermore, the proposed prognostic approach
requires the initialization of the random walk step size (σa). The σa
selection is not a straight forward choice, since a large value of it will
give fast convergence but high fluctuations whereas a small value will
produce a smoother but a slower convergence of the parameter esti-
mation process, and at the same time is an important selection re-
garding the final prognostics. As a result, the selection of σa is driven
from the case-study.

Si et al. utilized a Wiener-process-based model with a recursive filter
algorithm for RUL predictions [8]. A state space model updates the drift
coefficients, which are defined as random variables, and an expectation
maximization (EM) algorithm re-estimates all the unknown parameters
as soon as new data is available. The proposed model is applied to es-
timate the RUL of gyros in an inertial navigation system. The proposed
model of Si at all excels in most of the cases that are presented in [9]
and [10]. However, Wiener models assume that the degradation process
of the studied system and the operation time are linearly connected,
which is not always the case.

The main contribution of the present study involves the develop-
ment of a new adaptive data-driven RUL prediction model, the
Adaptive Non-Homogenous Hidden Semi Markov model (ANHHSMM),
which is an extension of the Non-Homogeneous Hidden Semi Markov
model (NHHSMM). NHHSMM is the most generic version of Hidden
Markov models (HMMs). Although HMMs were initially introduced and
studied in the late 1960s and early 1970s [11] they became popular
recently. Peng and Dong highlighted that HMMs have a rich mathe-
matical structure and can form a solid theoretical foundation for use in
engineering applications [12]. An added benefit of employing HMMs is
the ease of model interpretation in comparison with pure ‘black-box’
modeling methods such as artificial neural networks that are often
employed in advanced prognostic models [12]. However, HMMs’ main
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disadvantage is that they assume an exponentially distributed state
duration (sojourn time), which is not always the case. HSMM, relaxes
this assumption allowing the unconstrained modeling of sojourn times.
HSMMs have been utilized successfully for prognostic RUL predictions
in condition monitoring of machines [12–14]. In HMMs and HSMMs,
there is the limitation that the state transitions are not dependent on the
age of the engineering system or on the sojourn time in the current
state. The work of Moghaddass and Zuo extended the HSMMs to
NHHSMMs in order to overcome this limitation [15]. According to
NHHSMM, state transitions are a dynamic procedure, which depends on
the current hidden state, the time spent in this state (sojourn time), the
total age of the engineering asset or any combination of these para-
meters. A similar work from Peng and Dong also extended the HSMMs
to NHHSMMs using an iteration algorithm [12]. This algorithm uses the
transition matrix obtained from the HSMM in order to create a new one,
which includes aging factors. Three different types of aging factors, i.e.
constant, multiple and exponential form, are presented by Pend and
Dong. The work of Moghaddass and Zuo doesn’t include any kind of
limitations regarding the dependency between the state transitions and
the aging parameter. Therefore, it can be characterized as the most
generic one until now in the literature of Markov models. Based on the
aforementioned the NHHSMM excels in many aspects, e.g. NHHSMM is
a data-driven approach and NHHSMM doesn’t have any sojourn time
limitation, in comparison with the other available prognostic models. In
addition, two studies of Loutas et al. compare the NHHSMM with gra-
dient boosted trees (GBTs) and Bayesian feed-forward neural networks
(BNN), [16] and [17] respectively. In the first paper, the authors pre-
dicted the RUL of in-service reciprocating compressors using tempera-
ture as health indicator data measured in Head End and Crank End
discharge valves. In the second paper, the authors predict the RUL of
composite structures subjected to fatigue loading utilizing acoustic
emission measurements as health indicator data. According to the
benchmark between the NHHSMM and GBTs and BNN, the NHHSMM
performs better using several metrics and it gives more coherent pre-
dictions for both studies. Thus an adaptive extension of the NHHSMM
seems to be very promising.

3 Adaptation theory

As already mentioned in introduction there is a need for developing
adaptive probabilistic data-driven approaches, which will be able to
adapt the estimated model’s parameters using real time testing data.
Fig. 1 summarizes the adaptive approach, which consists of two parts;
the training and testing process. The training process contains the
training data and the stochastic model, NHHSMM, while the testing
process uses the training process’ output θ*, the testing data and a
dynamic diagnostic measure i.e. the Most Likely State (MLS). MLS is the

adaptation’s backbone element since this measure is the ‘trigger’ of the
adaptation approach and the main indicator of any possible unexpected
event. After the adaptation, prognostics of the testing composite
structure can be calculated. The aim of this new probabilistic model is
to provide more accurate RUL prediction, which may face uncertainties
during their operation life that were not encountered during the
training process.

3.1. Non homogenous hidden semi Markov model

This subsection reviews the fundamentals of the NHHSMM. The
reader can refer to Moghadass and Zuo [15] and Eleftheroglou and
Loutas [18] for a more detailed description. The NHHSMM consists of a
bi-dimensional stochastic process. The first process forms a finite Semi
Markov chain, which is not directly observed, and the second process,
conditioned on the first one, forms a sequence of independent random
data variables. In order to describe the aforementioned bi-dimensional
stochastic process the model’s parameters θ have to be estimated.

The estimation process of θ parameters consists of the initialization
and training procedure. The purpose of the initialization procedure is to
identify a set of parameters ζ, with computational efficiency, which will
associate the composite’s degradation and its training data.
Accordingly, the purpose of the training procedure is to estimate
parameters θ={Γ,Β}. Γ parameters characterize the transition rate
distribution between the hidden states (degradation process), while Β
parameters deal with the correlation between the hidden states and
training data (observation process). This correlation is represented in a
nonparametric and discrete form via a matrix called emission matrix.
The purpose of the training procedure is to estimate the parameters θ
based on the selected parameters ζ. The complete model M is defined
when ζ and θ are known, M = {ζ,θ}.

The initialization procedure is obtained by defining the following
ζ = {N,Ω,λ,V} parameters:

• Number of hidden states (Ν). N refers to the number of discrete
levels of degradation. However, hidden states are not quantitatively
but just qualitatively correlated with the degradation process. The
main assumption in this paper is that the composite starts to operate
on its perfect functioning state, hidden state 1, until its total failure
i.e. state N. The final state N is not hidden but self-announcing and
always corresponds to the failure state. As a result, the last ob-
servation of the available training data should be unique dictating a
common failure threshold in the training data.

• Transition between the hidden states (Ω). This parameter defines the
connectivity between the N selected hidden states and it can be soft
(gradual transition to neighbour hidden state), hard (sudden tran-
sition from any hidden state to failure state N) and multistep
(transition to an intermediate state between the current hidden state
and the failure state). Fig. 2 illustrates the three possible types of
transition. The degradation process, which always increases during
the lifetime of any composite, dictates that the possible transitions
are left to right only.

• Transition rate function (λ). This parameter is the main describer of
the degradation process since each transition is going to follow this
λ rate function. The transition process depends on the involved

Fig. 1. Flowchart of the ANHHSMM. Fig. 2. Soft (I), hard (II) and multistep (III) types of transition.
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hidden states (Markovian property), the sojourn time of the current
hidden state, the total operation time (aging) and any other com-
bination between the aforementioned parameters. Commonly used
distributions for the λ function are the Weibull, Gaussian and
Exponential failure rates [19]. In this study the Weibull failure rate
is used since it is the most generic one and the most commonly used
distribution to represent degradation [20].

• Discrete monitoring indicator space (Z = {z1,z2,…,zV}). The selec-
tion of this parameter is crucial for the observation process since
emission matrix has N (number of hidden states) rows and V
(number of discrete monitoring values) columns. The entry in the
element (i,j) of the emission matrix represents the probability that zj
CM value is observed when the composite is in hidden state i.

Thus, the initialization topology can be described as ζ = {N,Ω,λ,V}.
With regards to the training procedure, parameters θ = {Γ,Β} are
obtained via the maximum likelihood estimation. Moghadass and Zuo
[15] proposed a method for defining the Maximum Likelihood Esti-
mator (MLE) θ* of the model parameter θ. The MLE utilization leads to
maximize the likelihood function L(θ,y(1:K)) Eq. (1), where y(k) is the k-
th degradation history, K is the number of available degradation his-
tories.
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Setting initial values for Γ, Β and solving the aforementioned opti-
mization problem Eq. (1), the parameter estimation process is obtained
and diagnostics can be estimated for the testing composite structure.

3.2. Diagnostics

Finding a feature sensitive to the degradation process which exhibits
monotonic behaviour has always been an interesting and challenging
topic for real time applications [21]. Most Likely State (MLS) is a di-
agnostic feature that is capable to monitor the overall health status of a
composite since it is sensitive to the degradation process and char-
acterized by monotonicity [18]. MLS can be determined via Eq. (2).

∗ = = ∗MLS t y M Q i y M( | , ) argmax Pr( | , )t
i

t t1: 1: (2)

This measure maximizes the probability = ∗Q i y MPr( | , )t t1: of being at
the hidden state i at the time point t given the availability of testing CM
data up to time t. With M* = {ζ, θ*} the estimated complete model is
denoted.

3.3. Adaptation process

In addition to the NHHSMM’s assumptions, presented by
Moghaddass and Zuo [14], extra assumptions should be considered for
the development of the ANHHSMM:

• The emission matrix does not depend on time because it correlates
CM values and hidden states. Furthermore, the observations range
remains the same since the last observation, as already mentioned
(Assumption 1), should be unique dictating a common failure
threshold in the training and testing data. As a result, we assume
that the emission matrix remains the same during the adaptation
process, that means B** = B*.

• The scale and shape parameters of the Weibull failure rate dis-
tribution describe the degradation process Γ. The shape parameter
can be interpreted as a value that indicates when the failure rate
remains constant, decreases or increases over time. On the other

hand, the scale parameter shifts the distribution along the abscissa
scale. Assuming that the studied composites have the same volume
of damage at the end of their lifetime, the scale Weibull parameter
adapts only, enabling the sojourn time of each hidden state to shift
in time. In order to quantify this shift the aforementioned dynamic
diagnostic measure MLS is used. During the testing process the MLS
is estimated enabling observation of the transition time from the
current hidden state i to any new hidden state j. Therefore, the so-
journ time of the i hidden state can be defined (Mean_Γi,j**).
However, the pdf of sojourn time, at hidden state i, is estimated
based on the NHHSMM’s Γ* parameters (Mean_Γi,j*) and a com-
parison between these two sojourn times (Mean_Γi,j**, Mean_Γi,j*) is
achieved. Since the target of the ANHHSMM is to estimate more
accurately the RUL of the testing composite the scale Γ* parameters
are dynamically adapted in order to have mean sojourn time the
value which the MLS has defined. This adaptation is determined via
introducing the Eq. (3) [22].

∗ ∗ =
∗ ∗

+ ∗
Scale i j

Mean i j
Gamma Shape i j

_Γ ,
_Γ ,

(1 1/ _Γ , ) (3)

• The ratios between the training and testing sojourn times of hidden
state i and i + 1 should be constant. To demonstrate this last as-
sumption, which dynamical updates the sojourn times of the future
hidden states based on the current and past hidden states’ sojourn
time adaptation, the following flowcharts and pseudo code are
presented (Figs. 3 and 4).

The following pseudo code adapts dynamically the sojourn time of
each hidden state when the composite just transited from the hidden
state i to i + 1.
For s = 1 to N
If s < i + 1 then
Mean Γs,s+1

**=Ts,s+1

=+
+ ∗ ∗

+ ∗
RFs s

mean s s
mean s s

, 1
Γ , 1
Γ , 1

Else
Rescaling_Factor = mean(RF)
meanΓs,s+1

** = Rescaling_Factor × meanΓs,s+1*
End

End

Based on the aforementioned three assumptions the dynamic
adaptation process, which is the key element of the ANHHSMM, re-
ceives as inputs the extracted testing CM data and the estimated modeĺs
parameters θ*. Τhe flowchart of the adaptation process is presented in
Fig. 5.

3.4. Prognostics

Prognostic measures can be defined based on the θ** parameters and
the testing CM data. In other words, conditional to the testing CM data
and the complete adaptive model M** = {ζ, θ**}, prognostics tries to
estimate the probability of being in hidden states 1,…, N−1 at a spe-
cific time points in future using the conditional reliability function. The
conditional reliability function, > =∗∗MR(t|y , L t , )1:t pp

> > ∗∗MPr(L t|y , L t , )1:t pp , represents the probability that the studied
composite continues to operate after a time t, less than life-time L
(L > t), further than the current time tp given that the composite has
not failed yet (L > tp), the testing data y1:tp and the complete model
M**. In this study the mean and confidence intervals of RUL are pro-
posed as prognostic measures. These measures were calculated via the

Fig. 3. Sojourn times per hidden state based on the NHHSMM Γ* parameters.
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cumulative distribution function (CDF) of RUL [19]. The CDF of RUL is
defined at any time point via the conditional reliability according to the
following equation:

⩽ ∗ ∗ = − + ∗ ∗RUL t y M R t t y MPr( | , ) 1 ( | , )t t p t1: 1:p p p (4)

4 Case study

To demonstrate the adaptability and the efficiency of the proposed

approach, open-hole carbon/epoxy specimens were subjected to in-situ
impact and constant amplitude fatigue loading up to failure. The
training data set consists of health monitoring data collected from
specimens, which were subjected only to fatigue loading, while the
testing data set consists of health monitoring data collected from spe-
cimens which were subjected to fatigue and in-situ impact loading. The
impact loading was introduced only to the testing process aiming to
influence the fatigue life and produce outlier cases. In that case, the in-
situ impact can be considered as an unexpected phenomenon and un-
seen event regarding the training process. The objective is to verify that
the ANHHSMM is able to predict more accurately the RUL than the
NHHSMM, when the testing composite specimens are outliers and to
predict the RUL at least with the same level of accuracy when the
composite specimen doesn’t exhibit extreme behaviour.

4.1. Experimental set-up

Fig. 6 presents the experimental set-up. The set-up consists of a
100 kN MTS fatigue controller and bench machine, an impact canon, an
acoustic emission system and two cameras for digital image correlation
measurements. An AMSY-6 Vallen Systeme GmbH, 8-channel AE system
with the sampling rate of 2 MHz, was employed to record the acoustic
emission signals generated from the damage process during the fatigue
and the in-situ impact tests. One broadband single-crystal piezoelectric
transducer was attached using a clamping device, at the side of speci-
mens between the rigid grip (lower) of the fatigue machine side and of
the safety aluminium cylinder. Ultrasound gel was applied between the
surfaces of the sensor and the specimen to ensure good acoustical
coupling. A standard pencil lead break procedure was used to check the
connection between the specimen and the sensor prior to the fatigue
test and the threshold was set to 50 dB.

It should be mentioned that for the analysis presented in this paper,
the acoustic emission data is considered only.

Fig. 4. Sojourn times per hidden state based on the MLS diagnostic measure
when the composite just transited from the hidden state i to i + 1.

Fig. 5. Dynamic adaptation process flowchart.

Fig. 6. The experimental set-up.
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A laminate with [0/45/90/-45]2s lay-up and average thickness of
2.28 mm was manufactured using the autoclave process. The material
used for this study is a unidirectional Prepreg tape Hexply® F6376C-
HTS(12 K)-5-35%. Eleven specimens, with the following geometrical
details; dimensions [400 mm × 45 mm] and a central hole of 10 mm
diameter, were tested at 90% of the static tensile strength (S = 36 kN)
with R = 0.1 and f = 10 Hz. The in-situ impact was occurred at the
hole, as this location experiences the highest stresses, aiming to max-
imize the effect of impact on the damage accumulation process. The
selected energy was E = 6 J (impact velocity 20 m/s) for all the cases
and it can be categorized as high speed low energy impact.
Furthermore, during the impact, the specimens were under tension
equal to the mean fatigue load (16,2 kN). The time of impact was
limited to the period between the start of the fatigue test and until
damage could be observed by visual inspection.

Table 1 presents the lifetime of the training and testing specimens
and when the impact occurred. Specimens 9–11 are the testing speci-
mens for which the impact occurred at 5000, 8200 and 2200 s of their
fatigue life respectively. The testing data consists of two outliers, one
left (specimen 10) and one right (specimen 11), and one inlier (spe-
cimen 9).

4.2. Health monitoring data

It is often desirable to monitor features with a monotonic trend in
order to correlate measurements with damage detection [23]. AE hits
are recorded in a non-periodic random manner and the process of
monotonic feature extraction is not a straightforward one. In our pre-
vious studies windowed cumulative AE features such as RA and am-
plitude [23] calculated in periodic intervals of constant duration were
used respectively, [18] and [23]. However, in this current study it was
not possible to identify any AE feature with monotonic trend. There-
fore, we propose as health indicator the cumulative energy feature. The
AE degradation histories for eleven specimens are shown in Fig. 7 while

the testing specimens are presented using a dash line.
The NHHSMM model requires the last observation to be unique for

all the training data in order to define a common end-of-life threshold
[15]. However, as Fig. 7 presents, it is hard to find such as a threshold
using the cumulative AE energy observation histories. The threshold
should be drawn using as reference the specimen04, for which the
threshold corresponds almost to 50% of the lifetime in all the other
specimens, resulting to an unrepresentative training data set. The only
way to tackle this issue is to normalize each cumulative energy history
with the maximum energy value, as Fig. 8 showcases. However, by
normalizing the feature with the maximum value, hinders the real-time
prediction of the RUL of the testing specimens, because prior knowl-
edge of the maximum AE energy could not be obtained. The normalized
cumulative AE energy observation histories of Specimens 1 to 8 will be
used as inputs for the parameter estimation process.

Regarding the testing process the remaining three observation his-
tories, will be used to verify the adaptability of the proposed prob-
abilistic methodology.

4.3. Parameter estimation process

The proposed parameter estimation process requires the initializa-
tion of parameters ζ = {N,Ω,λ,V}. The initialization parameters are
defined as N = 4; The Bayesian Information Criterion (BIC) and Akaike
Information Criterion (AIC) were employed to estimate the optimum
number of hidden states), Ω: soft transitions, λ: Weibull failure rate and
V = 10; the modified Mann-Kendal criterion was employed to estimate
the optimum number of clusters. For further details about the calcula-
tion of the initialization parameters, the reader is referred to the work
of [15] and [18]. The goal of that process is to estimate the observation
process (B) and degradation process (Γ) parameters (θ = {Γ,Β}),
therefore, the adaptation/parameter estimation process requires initial
estimations for all the unknown θ parameters.

For the transition distributions the initial value of 50 is assumed for
all the scale parameters (α) and the initial value of 1 is assumed for all
shape parameters (β). The selection of these initial values is based on
the training data set’s lifetimes. In our case the mean value of our
training data set failure time, see Table 1, is 74,250 s and the mean
Weibull value of each hidden state, except the final one, setting the
scale parameter equal to 27,305 and the shape parameter equal to 4 is
24,749 s. As a result utilizing these initialization parameter the assumed
failure time is 3 × 24749 + 1 = 74278 s which is pretty close to the
mean training data set failure time (74250 s). In case of setting totally
different scale and shape initial values the parameter estimation pro-
cess’ output will be the same for the estimated values but the compu-
tational time will increase and become less efficient.

For the emission matrix (B) the discrete uniform distribution is
utilized, whereby a finite number of values are equally likely to be
observed. The selection of the discrete uniform distribution it makes
sense since we don’t know how the hidden states are connected with the

Table 1
Lifetime and impact times of training and testing specimens.

Specimens Impact time (s) Lifetime (s)

1 – 81,000
2 – 57,500
3 – 60,000
4 – 49,000
5 – 68,000
6 – 76,000
7 – 95,500
8 – 107,000
9 5000 52,500
10 8200 38,000
11 2200 130,500

Fig. 7. Cumulative AE energy observation histories.

Fig. 8. Normalized cumulative AE energy observation histories.
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AE data. To be more specific, the initial value of (1/(V-1)) is assumed
for all entries except those in the last row and the last column, which
are related to the observable failure state, B(4,10) = 1. The threshold of
0.0001 is considered as the stopping criterion for the log-likelihood
function improvement (equation (1)). The final estimated θ*={Γ*,Β*}
parameters are presented in Tables 2 and 3.

5. Estimated values

5.1. Adaptation process

The suggested adaptation process receives as inputs the testing AE
data and the estimated parameters θ*. In this case-study the adaptation
process will be applied three times, once per observation sequence; left
outlier (specimen10), right outlier (specimen11) and inlier case (spe-
cimen09). Fig. 9 presents the MLS estimations as calculated from Eq. (2)
at each time point for each specimen.

Only the left outlier will be presented hereafter in details, since the
adaptation process for the other two cases is exactly the same. Fig. 9
reflects that specimen10 is an outlier since the sojourn time of the
hidden state 1 based on MLS is just 12,000 s and based on the NHHSMM
is 29,376 units. Similar results were obtained for the sojourn time of the
hidden state 2 since MLS sojourn time is 12,000 s and NHHSMM so-
journ time is 24,335 s. Utilizing the NHHSMM estimated parameters θ*,
the testing AE data and the MLS estimations the ANHHSMM can be
defined and dynamically adapt the parameters θ* to θ**, following the
process which described in subsection 2.3. In Fig. 10 the outcome
(Weibull pdfs) of the ANHHSMM (dashed lines) is presented and

compared with the NHHSMM’s estimated parameters.
Based on Fig. 10 the ANHHSMM Weibull pdfs are shifted to the left

side as it was desired since specimen10 is the left outlier, while the
NHHSMM Weibull pdfs don’t manage to capture the swift properly. In
this direction the ANHHSMM prognostic estimations are expected to be
more accurate, comparing with the NHHSMM estimations since the
mean sojourn time values are getting shorter.

Figs. 11 and 12 present the adaptation output for the right outlier
(Specimen11) and the inlier case (Specimen09) respectively. Based on
Fig. 11 the ANHHSMM Weibull pdfs are shifted to the right side as it is
desired since Specimen11 is a right outlier, while for the inlier case the
Weibull pdfs are not shifted significantly as Fig. 12 presents.

5.2. Validation of the adaptive methodology

Following the aforementioned adaptive framework, a four-state
(N = 4) model, allowing only soft state transitions, was developed and
θ*, θ** parameters were estimated according to the training and testing
AE data accordingly. Through equation (7), the conditional RUL CDF is
calculated at each time point utilizing all the testing AE data up to that
time point. The mean RUL and the 2.5% and 97.5% percentiles that
define a 95% CI are also highlighted. Figs. 13–15 present the prognostic
results of the ANHHSMM for the left, right outlier and the inlier case
respectively. As already mentioned previously, each testing AE ob-
servation sequence was unseen, that is, they did not participate in the
training process. For example of the left outlier, the minimum failure
time of this training data set is 49,000 s, while the left outlier's failure
time is 38,000 s, see Table 1.

The ANHHSMM provides clearly better prognostics in comparison
with the NHHSMM for the left outlier (Specimen10) and the inlier case
(Specimen09), since the mean ANHHSMM RUL predictions are able to

Table 2
NHHSMM Weibull (Γ) parameters.

Scale Parameters Estimated value Shape Parameters Estimated value

α(1,2) 33,149 β(1,2) 2
α(2,3) 27,441 β(2,3) 2.44
α(3,4) 22,727 β(3,4) 1.85

Table 3
NHHSMM emission matrix (B) parameters.

Fig. 9. MLS diagnostic estimations of Specimen09-11.

Fig. 10. Sojourn time Weibull distributions utilizing the Γ* and Γ** parameters
of left outlier’s case (specimen10).

Fig. 11. Sojourn time Weibull distributions utilizing the Γ* and Γ** parameters
of right outlier’s case.

N. Eleftheroglou, et al. Composite Structures 245 (2020) 112386

7



approach more satisfactorily the actual RUL predictions. Furthermore,
it can identify at the very early stage the right outlier since the initial
RUL predictions are closer to the actual ones, than the NHHSMM’s RUL
predictions, see Fig. 15. However, the NHHSMM provides more accu-
rate RUL predictions towards the end of life for the right outlier. One of
the reason could be that the fatigue life of right outlier is relatively close
to the maximum failure time of this training data set.

The outstanding performance of the ANHHSMM demonstrates that
the proposed adaptive framework has succeed its objective; the mean
ANHHSMM RUL predictions are satisfactorily close to the real RUL
predictions and the confidence intervals contain the real RUL curve
during the entire lifetime of the testing specimens. Furthermore, the
ANHHSMM can identify at a very early stage an outlier and adapt the
RUL predictions in an efficient and accurate way since it succeeds the
initial RUL predictions to be closer to the actual values than the
NHHSMM’s RUL predictions.

6. Conclusions

In this paper, a new adaptive probabilistic data-driven metho-
dology, that predicts more accurately the RUL than the state-of-the-art
NHHSMM was developed. Open-hole carbon/epoxy specimens were
subjected to constant amplitude fatigue loading up to failure while in-
situ impact took place in order to demonstrate unexpected phenomena.
AE technique was employed in order to collect health monitoring data,
design health indicators and create observation histories. Eight ob-
servation histories were used for training purposes, for which the
training specimens were subjected only to fatigue loading. Three ob-
servations histories were used for testing the proposed adaptive meth-
odology. These observations were obtained by three different speci-
mens, which were subjected to fatigue and in-situ impact, and create a
left, a right outlier and an inlier case respectively to the training his-
tories. The results demonstrate that the ANHHSMM provides better
prognostics than the state-of-the-art NHHSMM. As a result, adapting the
NHHSMM’s parameters using the MLS diagnostic measures has the
potential to predict the RUL of outlier and inlier cases more efficiently
and accurately.

Nevertheless, the applicability of the methodology should be further
explored and future work should focus on the improvement of
ANHHSMM’s capabilities and the relaxation of the assumptions as
presented in Section 2. In particular, relaxing the third assumption, that
dictates the ratios between the training and testing sojourn times of
hidden states i and i + 1 should be constant, is of a great importance.
This assumption holds for cases that one unexpected phenomenon oc-
curs and it alters the sojourn times proportionally. However, this as-
sumption is not valid for cases where this phenomenon is severe enough
to force the model to overpass a hidden state and move to the next one,
i.e. from hidden state i to i + 2 or when multiple unexpected phe-
nomena occur over the lifetime of the system where the ratio cannot be
constant anymore.
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