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A B S T R A C T   

Pedestrian detection remains a critical problem in various domains, such as computer vision, surveillance, and 
autonomous driving. In particular, accurate and instant detection of pedestrians in low-light conditions and 
reduced visibility is of utmost importance for autonomous vehicles to prevent accidents and save lives. This 
paper aims to comprehensively survey various pedestrian detection approaches, baselines, and datasets that 
specifically target low-light conditions. The survey discusses the challenges faced in detecting pedestrians at 
night and explores state-of-the-art methodologies proposed in recent years to address this issue. These meth-
odologies encompass a diverse range, including deep learning-based, feature-based, and hybrid approaches, 
which have shown promising results in enhancing pedestrian detection performance under challenging lighting 
conditions. Furthermore, the paper highlights current research directions in the field and identifies potential 
solutions that merit further investigation by researchers. By thoroughly examining pedestrian detection tech-
niques in low-light conditions, this survey seeks to contribute to the advancement of safer and more reliable 
autonomous driving systems and other applications related to pedestrian safety. Accordingly, most of the current 
approaches in the field use deep learning-based image fusion methodologies (i.e., early, halfway, and late fusion) 
for accurate and reliable pedestrian detection. Moreover, the majority of the works in the field (approximately 
48%) have been evaluated on the KAIST dataset, while the real-world video feeds recorded by authors have been 
used in less than 6 % of the works.   

1. Introduction 

Automatic identification and localization of pedestrians in images or 
video frames captured by visual sensors have become increasingly vital 
in computer vision. Pedestrian detection has use cases in various fields, 
such as autonomous vehicles [1,2], surveillance systems [3–5], and ro-
botics [6–8]. This task can be challenging to resolve in real-world sce-
narios, as there are different factors to consider for accurate 
performance. Accordingly, various illumination conditions, dissimilar 
pedestrian appearances and poses, occlusion, camouflage, and cluttered 
backgrounds can bring about issues for pedestrian detection systems [9]. 
Regarding the introduced challenges, low illumination is the leading 
problem compared to others, as it has a natural or environment-related 
cause and cannot be prevented or naturally handled. It can be due to the 
time of the day, geographical location of where the scene is captured, 
weather conditions, etc. For instance, in some Scandinavian countries, 
especially during winter, the sunrise to sunset time can be less than ten 
hours, and the pedestrian detection systems need to be adapted to the 

challenging scenarios. 
Although some approaches have used Light Detection And Ranging 

(LiDAR) sensors, which are accurate remote sensing technologies that 
use laser light for distance measurement and obstacle avoidance, such 
sensors do not provide rich information from the surroundings [10]. 
There are many recently introduced pedestrian detection approaches 
such as [11,12,13–16] that cover the task in a wide range of scenarios. 
However, few recent works focus on detecting pedestrians at night and 
in low visibility conditions. In low-illumination scenarios, it is much 
more difficult for autonomous vehicles equipped only with vision sen-
sors to detect moving objects on the road and prevent incidents. Fig. 1 
depicts how challenging the pedestrian detection task is compared to the 
same ordinary task during the daytime. The mentioned fact has resulted 
in an increase in demand for developing computer vision algorithms that 
can work under various illumination conditions. 

Accordingly, this survey gives a deep review of 130 state-of-the-art 
low-light condition pedestrian detection algorithms. The research 
questions that the present work has aimed to answer are: 
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• RQ1 Which datasets and baselines are mainly employed in low-light 
pedestrian detection tasks?  

• RQ2 What are the current deep learning-based algorithmic trends in 
low-illumination pedestrian detection?  

• RQ3 Regarding the state-of-the-art solutions, what are the currently 
existing and unresolved challenges in practical large-scale applica-
tions, such as fully autonomous vehicles? 

To answer these questions, the paper in hand contributes to the body 
of knowledge in the field by providing contributions listed below:  

• A survey of more than a hundred papers in the field of nighttime 
pedestrian detection,  

• Review and classification of well-known baselines and datasets used 
for this purpose,  

• Categorization of the state-of-the-art approaches in nighttime 
pedestrian detection regarding their architectural variations,  

• Identification of the current trends and future methodologies in the 
field, 

The rest of the paper is organized as follows: Section 2 reviews the 
currently available surveys in pedestrian detection in low-light condi-
tions. Section 3 introduces the existing baselines and datasets employed 
by available approaches (RQ1). In Section 4, a set of recently introduced 
nighttime pedestrian detection approaches are introduced. Some dis-
cussions on the revealed trends and future insights in the field are pre-
sented in Section 5 (RQ2, RQ3). Finally, the paper concludes in Section 
6. 

2. Related surveys 

Given the significant importance of the pedestrian detection chore in 
cutting-edge domains such as autonomous vehicles, an extensive 
collection of surveys has been publicly available. These surveys delve 
into various aspects, including methodological approaches, target 
environmental contexts, evaluation procedures, and pre-defined pre-
sumptions. This section offers a concise study of these existing reviews 
and identifies the unexplored factors within them. This identification of 
gaps underscores the unique contribution that the manuscript in hand 
aims to provide in this field. 

Chen et al. [17] analyzed various object detection methodologies 
along with robust feature extractors employed in the fields of vehicle 
and pedestrian detection. They also employed extensive experiments on 

the KITTI vision benchmark [18] as a well-known street dataset to assess 
the performance of the studied algorithms in terms of accuracy, infer-
ence time, memory consumption, model size, and the number of 
Floating-Point Operations per Second (FLOPS). It is important to note 
that their research primarily focuses on the algorithmic perspective 
within practical frameworks, addressing the algorithms' efficiency 
across diverse scenarios. Hou et al. [19] studied pixel-level image fusion 
strategies for vision-based pedestrian detection that works in all day-
time/nighttime conditions and discussed efficient strategies of 
combining such methods with Convolutional Neural Network (CNN)- 
based fusion architectures. The primary aim of their research is to 
discuss a pixel-level fusion of strategies adopted from various ap-
proaches that result in better performance for multi-spectral pedestrian 
detection tasks. Accordingly, their approach does not cover the future 
guidelines and possible strategies for such tasks. Authors in [20] studied 
deep learning-based methodologies employed in pedestrian detection 
tasks and provided informative discussions on how effective they are 
compared to other traditional algorithms. Although the mentioned 
survey also covers nighttime pedestrian detection, the comparison 
among various methodologies was mainly established on different 
datasets with low-quality and multi-spectral instances. Other works such 
as [21,22] surveyed approaches that targeted occlusion and scale vari-
ance challenges in pedestrian detection. They discussed solutions 
introduced in various papers that show acceptable performance in 
diverse conditions with occlusion, deformation, clutter, and scale 
difficulties. 

Considering the introduced survey works, the present survey aims to 
provide specificities to set it apart from other available works, particu-
larly regarding target scenarios and practical application use cases. In 
contrast with the previous works, the survey in hand is exclusively 
dedicated to nocturnal pedestrian detection, shedding light on the 
distinctive challenges tackled under low-light conditions introduced by 
state-of-the-art works. To the best of our knowledge, this work is the first 
study to focus entirely on the detection of pedestrians in low- 
illumination conditions (nighttime, in particular). To identify pedes-
trian detection approaches at nighttime that produce substantial results 
and feature novel architectures, the authors began by gathering and 
screening highly read and cited works from prominent venues over 
recent years. The sources included Google Scholar,1 as well as well- 

Fig. 1. Challenges of detecting pedestrians at night (image taken from 2019 Traffic Safety conference nighttime visibility report by Texas A&M Trans-
portation Institute). 

1 https://scholar.google.com/, accessed on 10 April 2024 
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established Computer Science bibliography databases, namely Scopus2 

and DBLP.3 From the publications referenced in these sources, particular 
attention was given to those directly related to the ones targeted for 
challenging low-illumination conditions, and further checks were per-
formed to ensure their alignment with the domain. Following an in- 
depth exploration of the papers, they were systematically categorized 
based on their primary methodological solutions in addressing night-
time pedestrian detection challenges. Fig. 2 depicts the distribution of 
papers collected, studied, and analyzed in the current survey in the 
range of 2016 to 2024. 

3. Benchmarking datasets 

Evaluation and development of pedestrian detection algorithms 
highly depend on providing proper data with annotated images/videos 
containing pedestrian instances. Such datasets should be well-annotated 
and cover diverse samples of pedestrian shots captured in real-world 
scenarios with various poses, occlusion levels, appearances, etc. to be 
considered appropriate for accurate training, testing, and validation 
stages. In this regard, this section collects various standard datasets for 
pedestrian detection at night that can be used for training and evalua-
tion along with facilitating benchmark creation. 

3.1. Ohio State University (OSU) Dataset4 [23] 

As one of the first pedestrian datasets, this thermal database provides 
a total number of 1.9k thermal frames with a resolution of 360× 240, 
which were captured on campus and street. The OSU comprises three 
different classes of objects, including persons, cars, and poles. A total of 
984 people were annotated in this dataset. 

3.2. Laboratoire d'Interprétation et de Traitement d'Images et Vidéo 
(LITIV)5 [24] 

The dataset has nine video sequences, each containing people in an 
indoor hall with various zoom settings. The main challenges in these 
video sequences are the strong occlusions of objects and cluttered 
backgrounds. 

3.3. CVC-09 Dataset6 [25] 

As another well-known dataset, CVC-09 is acquired during the day 
and night with 11k frames. The dataset contains training and testing 
sets, where the day and night sequences contain 5, 990 and 5,081 
frames, respectively. 

3.4. Laboratorio de Sistemas Inteligentes Far-Infrared (LSI-FIR) Dataset7 

[26] 

This dataset is composed of classification and detection portions and 
contains grayscale images collected in different temperatures with 
varying illumination. The classification part has 16,152 positive sam-
ples (i.e., pedestrian) and 65,440 negative samples (i.e., background), 
while the detection part includes 15,224 images, categorized into 6,159 
train and 9,065 test instances. 

3.5. Thermal Infrared Video (TIV)8 [27] 

The dataset contains video sequences with 63,782 annotated frames 
for visual processing tasks, such as detection, counting, group motion 
estimation, and single-view and multiple-view tracking. Three out of 

Fig. 2. Distributions of the papers surveyed in the current research work that only focus on pedestrian detection at low-light scenarios from 2016 to 2024 (Total: 
130 papers). 

2 https://www.dblp.org/, accessed on 10 April 2024  
3 
https://www.scopus.com, accessed on 10 April 2024  

4 https://vcipl-okstate.org/pbvs/bench/Data/01/download. 

html 

5 https://www.polymtl.ca/litiv/en/codes-and-datasets  
6 http://adas.cvc.uab.es/elektra/enigma-portfolio/item-1/  
7 
https://www.kaggle.com/datasets/muhammeddalkran/ 

lsi-far-infrared-pedestrian-dataset/code  
8 http://csr.bu.edu/BU-TIV/ 
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sixteen sequences are mainly used for pedestrian detection, while other 
classes like car, runner, bicycle, and motorcycle are marked in this 
dataset. 

3.6. Korea Advanced Institute of Science and Technology (KAIST)9 [28] 

It is one of the first multi-spectral pedestrian datasets with 95k 
aligned color-thermal image pairs and 103k dense annotation of sam-
ples. Data was captured from various traffic scenarios in the daytime and 
nighttime for autonomous driving applications. Annotations were 
manually added, resulting in three primary categories (person, people, 
and cyclist), and three occlusion levels (no-occlusion, partial-occlusion, 
and heavy occlusion). 

3.7. Night-Time Pedestrian Dataset (NTPD) Dataset [29] 

It contains a set of pedestrian images recorded by an active night 
vision system. The dataset contains 1,998 positive and 8, 730 negative 
in the training set and 2,370 positive and 9, 000 negative samples in the 
testing set. 

3.8. CVC-14 Dataset10 [30] 

An extended version of the CVC-09 dataset, titled CVC-14, was 
introduced later to facilitate the challenges of automated driving. It 
contains video sequences of grayscale visible and thermal pairs corre-
sponding to daytime and nighttime, where the daytime and the night-
time shares are 4, 401 and 4, 117 instances, respectively. 

3.9. Keimyung University (KMU) Dataset11 [31] 

As a dataset captured using a FIR camera mounted on a vehicle 
driving in the summer nights for pedestrian detection, it contains three 
types of videos regarding the driving speed (20-30 km/h). It also covers 
pedestrians with different activities and poses, such as walking, running, 
and crossing the road. KMU has 4,474 positive and 3, 405 negative 
frames in the training set and 5,045 frames in the testing set. 

3.10. UTokyo12 [32] 

This multi-spectral dataset contains RGB, NIR, MIR, and FIR images 
collected in a university for object detection in automated driving, 
including person, car, and bike. It contains 7,512 images, where 3,740 
was taken during the daytime and the rest at nighttime. 

3.11. CAMEL13 [33] 

The dataset provides visible-infrared video sequences for multiple 
object detection and tracking, where 43k visible-infrared image pairs are 
annotated with four different object classes, including person, bike, 
vehicle, and motorcycle. CAMEL covers various real-world scenes, 
occluded targets, and different illumination conditions. 

3.12. NightOwls14 [34] 

This dataset targets the research on pedestrian detection at night and 

contains videos recorded in seven cities across Germany, the 
Netherlands, and the United Kingdom. It contains 279k frames with 42k 
pedestrians that have been manually labeled. Three primary labels (i.e., 
far, medium, and near) have been assigned to the pedestrians to cate-
gorize them based on the distance they had from the vehicle during data 
acquisition. Additionally, frame brightness levels (low, medium, and 
high) and pedestrian pose (frontal and sideways) are other classification 
metrics employed in NightOwls. 

3.13. South China University of Technology (SCUT) Dataset15 [35] 

A large-scale nighttime pedestrian dataset proposed by Xu et al. to 
motivate more attempts toward the task of on-road FIR pedestrian 
detection. The dataset contains approximately 11 hours-long image se-
quences with 211k annotated frames and a total of 477k bounding boxes 
for 7k unique pedestrians. SCUT groups pedestrians into three subsets, 
including near-scale (i.e., ∼ 80 pixels), medium-scale (i.e., ∼ 30 to ∼ 80 
pixels), and far-scale (i.e., less than 30 pixels) subset based on the range 
of imaging distances. 

3.14. YU FIR [36] 

This seasonal temperature-based pedestrian detection dataset is 
captured on campus and urban traffic roads. The temperature was 
calibrated from − 40∘C to 150∘C and used as the thermal infrared data 
for pedestrian detection. YU FIR contains a total of 2,802 frames with 
1, 803 and 575 positive images in the training set and test set, 
respectively. 

3.15. Forward Looking InfraRed (FLIR) Dataset16 [37] 

This multi-spectral dataset was collected for Advanced Driver 
Assistance Systems (ADAS) during daytime and nighttime. It contains 
visible-thermal image pairs, some of which are not aligned, and the rest 
contain 5k multi-spectral pairs for training and testing. This version 
contains three frequent object categories, including persons, bicycles, 
and cars. 

3.16. Zachodniopomorski Uniwersytet Technologiczny (ZUT) Dataset17 

[38] 

It is a thermal dataset recorded in four European countries during 
diverse weather conditions, including sunny, foggy, heavy rain, light 
rain, and cloudy. The dataset contains 110k frames with 80k pedestrian 
annotations and provides synchronized Controller Area Network (CAN 
bus) data, including brake pedal status, driving speed, and outside 
temperature for ADAS. 

3.17. Low Light Visible Image Person (LLVIP) Dataset18 [39] 

The dataset is recorded by a binocular camera containing visible 
light and Infrared (IR) sensors. Targeting low-illumination surveillance 
tasks, the dataset contains 15k pairs of visible-infrared images. The 
annotations of IR and visible-light images are the same due to the similar 
resolution and Field-of-View (FoV) of the cameras. 

9 https://github.com/SoonminHwang/rgbt-ped-detection  
10 http://adas.cvc.uab.es/elektra/enigma-portfolio/ 

cvc-14-visible-fir-day-night-pedestrian-sequence-dataset/  
11 https://cvpr.kmu.ac.kr/KMU-SPC.html  
12 http://www.mi.t.u-tokyo.ac. 

jp/projects/mil_multispectral/  
13 https://camel.ece.gatech.edu/  
14 https://www.nightowls-dataset.org/ 

15 https://github.com/SCUT-CV/SCUT_FIR_Pedestrian_Dataset  
16 https://www.flir.com/oem/adas/adas-dataset-form/  
17 https://ieee-dataport.org/open-access/zut-fir-adas  
18 

https://github.com/bupt-ai-cz/LLVIP/ 
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3.18. C3I Thermal Automotive Dataset19 [40] 

The dataset was acquired in various environmental (i.e., roadside, 
industrial town, alley, and downtown) and weather (i.e., cloudy, foggy, 
windy, and sunny weather) conditions during daytime, evening, and 
nighttime. It comprises video sets with 39,770 frames, of which 17,740 
frames are recorded in daytime, 12,640 in evening time, and 9,390 
frames at nighttime. The frames are annotated in six object classes: 
person, car, bike, bicycle, bus, and pole. 

To provide a comprehensive introduction to the datasets at hand for 
nighttime pedestrian detection, Fig. 3 depicts some of their instances. 
Additionally, Table 1 provides an in-depth description, facilitating a 
deeper understanding of their attributes and characteristics. It should be 
noted that these datasets have been curated in a way that encompasses a 
wide range of scenarios, including various lighting conditions, diverse 
pedestrian poses, occlusions, and complicated backgrounds. Such di-
versities ensure that provided data can serve as valuable resources for 
evaluating algorithms under real-world conditions. 

4. State of the art 

When considering the pedestrian detection methodologies for 
nighttime and low-illumination conditions, one of the primary archi-
tectures that come to mind for designing such frameworks is to include 
an offline training procedure that utilizes a dedicated pedestrian images 
dataset to train a classification model. In this regard, the model learns 
hidden patterns and characteristics specific to pedestrians in darker 
environments, enabling it to distinguish them from other objects or 
background elements. Although the mentioned architecture can be very 
beneficial, it should be noted that learning-based methodologies are not 
always used for this task. Fig. 4 shows these typical stages for pedestrian 
detection at night and how they are connected to each other. We can see 
the typical stages that form the foundation and serve as critical com-
ponents in identifying pedestrians, irrespective of the specific method-
ology employed. Whether the framework employs handcrafted features, 
machine learning models, or a mixture of both, it typically encompasses 
standard stages, including Region of Interest (ROI) selection (i.e., iden-
tifying potential pedestrian regions within an image), visual feature 
extraction (i.e., capturing relevant information from the selected ROIs), 
pedestrian classification (i.e., using the features to classify the detected 
regions as pedestrians or non-pedestrians), and position calculation (i.e., 
determining the precise location of the detected pedestrians). 

In this survey, nighttime pedestrian detection approaches based on 
the underlying techniques and methodologies employed have been 

Fig. 3. Instances of some datasets introduced for nighttime pedestrian detection. It should be noted that the collected image or video sequences were captured using 
various sensors. 

19 https://ieee-dataport. 

org/documents/c3i-thermal-automotive-dataset/ 
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Table 1 
Various datasets collected for pedestrian detection at night, sorted based on their publication year. Accordingly, dataset instances are collected using various sensors in 
different spectral ranges, i.e., Near-Infrared (NIR), Middle-Infrared (MIR), and Far-Infrared (FIR).   

Metadata Data Sensor 

Dataset Published #Videos #Frames #Pedestrians Resolution Frame-rate* Bit depth RGB NIR MIR FIR 

C3I [40] 2022 6 ∼39k – 640× 480 30 8  ✓ ✓ ✓ 
LLVIP [39] 2021 26 ∼33.6 k – 1080× 720 1 24 ✓ ✓ ✓ ✓ 
ZUT [38] 2020 – ∼110k ∼80k 640× 480 30 16  ✓ ✓ ✓ 
FLIR [37] 2020 – ∼10.2 k ∼28.1 k 640× 512 24 16    ✓ 
YU FIR [36] 2018 – ∼2.8 k ∼9.3 k 640× 480 30 14    ✓ 
SCUT [35] 2018 21 ∼211k ∼477k 720× 576 25 8    ✓ 
NightOwls [34] 2018 40 ∼279k ∼42k 1024× 640 15 – ✓    
CAMEL [33] 2018 26 ∼43k ∼80k 336× 256 30 24 ✓ ✓ ✓  
UTokyo [32] 2017 – ∼7.5 k ∼2k 640× 480 1 – ✓ ✓ ✓ ✓ 
KMU [31] 2016 23 ∼12.9 k – 640× 480 30 24    ✓ 
CVC-14 [178] 2016 4 ∼8.5 k ∼9.3 k 640× 512 10 – ✓   ✓ 
NTPD [29] 2015 – ∼22k – 64× 128 – –  ✓ ✓ ✓ 
KAIST [28] 2015 12 ∼95k ∼103k 640× 480 20 8 ✓ ✓ ✓ ✓ 
TIV [27] 2014 16 ∼63.7 k – 512× 512 30 16  ✓ ✓ ✓ 
LSI-FIR [26] 2013 13 ∼15.2 k ∼16.1 k 164× 129 – 14    ✓ 
CVC-09 [177] 2013 2 ∼11k ∼14k 640× 480 – –    ✓ 
LITIV [24] 2012 9 ∼6.3 k – 320× 240 30 8 ✓ ✓ ✓ ✓ 
OSU [23] 2005 10 ∼1.9 k 984 360× 240 30 8  ✓ ✓ ✓ 

*presented in frames per second (fps).  

Fig. 4. The overall diagram of nighttime pedestrian detection methodologies.  

Fig. 5. The primary classification of different nighttime pedestrian detection methodologies considered in this survey.  
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categorized into three distinct groups, including handcrafted features, 
deep learning, and hybrid methods. To understand the diverse strate-
gies, along with their set of advantages and limitations, this section 
provides an in-depth study of the state-of-the-art works classifiable in 
the mentioned three categories. Fig. 5 depicts the classification strategy 
considered for different nighttime pedestrian detection methodologies 
in the current survey. 

4.1. Handcrafted features approaches 

Handcrafted features contain manual design and selection of 
particular visual features from the input image/frame. Extracting in-
formation using such features has the advantage of simplicity, trans-
parency, explainability, and the ability to provide consistent results 
across similar scenarios. They generally require lower computational 
costs and can still work well when there is no access to annotated data. 
However, they can have adaptability problems regarding their domain 
expertise and may reach a performance ceiling, making them difficult to 
be improved over a certain point. Considering these trade-offs, hand-
crafted features can still be found in many pedestrian detection frame-
works under challenging illumination scenarios. 

Regarding the intrinsic characteristics of handcrafted features, the 
majority of approaches in this category require employing thermal data. 
As one of the first works in this category, Davis et al. [23] used a com-
bination of generalized person template derived from Contour Saliency 
Map (CSM) and background subtraction to identify pedestrians' loca-
tions in thermal frames. Then, an AdaBoost classifier could validate the 
candidate regions, which adaptively adjusts the filters from the gradient 
information of training instances. While the template-based method 
brings about a quick screening procedure, it is considered a challenging 
methodology to detect groups of people in the scene. Similarly, Now-
osielski et al. [41] presented a HAAR and Adaboost-based night-vision 
framework to identify humans in thermal images. The proposed algo-
rithm processed all frames independently and without the aggregation 
mechanism, which increases the false positive rate due to incorrect 
recognition of the region as a person. An approach titled Thermal 
Infrared Radiometric Cumulative Channel Feature (TIR-ACF) intro-
duced in [36] employs a thermal normalization methodology to factor in 
the maximum human body temperature for pedestrian detection. 
However, the experimental environment of this normalization strategy 
only includes a specific temperature range of small distant targets. As a 
more complicated methodology, Jeong et al. [31] presented an 
approach based on a Cascade Random Forest (CaRF) classifier, low- 
dimensional Haar-like features, and Oriented Center-Symmetric Local 
Binary Patterns (OCS-LBPs) for detecting sudden pedestrian crossing in 
thermal images. As the thermal temperature of the road is similar to or 
slightly higher than the pedestrians during summer nights, the con-
centration of this approach is on pedestrian samples in the summer 
season which leads to high prediction accuracy. Kim et al. [42] designed 
a pedestrian detector using a multi-level cascade learning algorithm and 

Histogram of Oriented Gradients (HOG) features. They used a 
smartphone-based thermal camera to capture human images of indoor 
environments to validate their work. Additionally, the 2D thermal image 
is mapped into a 3D space through an inverse perspective trans-
formation method [43] to estimate the distance of the pedestrian 
detected from the camera. 

Infrared images are another source of valuable information for 
pedestrian detection tasks at night. Zhou et al. [44] designed a pedes-
trian extraction algorithm for IR images. They build a global model 
using the weighted HLID and texture weighted Histogram of Local In-
tensity Difference (HLID) and texture weighted HOG algorithms to 
locate potential pedestrian regions. Then, using a head template based 
on the HAAR-like features and incorporating it into a local model for 
pedestrian head search, the global and head templates are combined to 
identify pedestrians. As another approach, Khalifa et al. [45] introduced 
a foreground detection framework that models the background's global 
motion between consecutive frames by applying the block-matching 
algorithms to the ROI to compensate for the camera motion. They use 
a Support Vector Machine (SVM) classifier to differentiate between the 
image's foreground and background. The evaluation results on the CVC- 
14 show that the proposed algorithm can capture the dynamic aspect 
between frames in a video stream. Shahzad et al. [46] suggested a new 
procedure for pedestrian detection, tracking, and head detection in IR 
systems using template matching, Kalman filter, and HAAR cascade 
classifiers, respectively. The authors confirmed that the template 
matching method performs better than the contour-based method for 
pedestrian detection, and pedestrian tracking using the Kalman filter has 
the highest error rate. Likewise, and based on visual saliency in IR im-
ages, Cai et al. [47] proposed a model to focus on ROI generation along 
with a HLID feature and an SVM classifier to make a final detection. 
Considering that the visual saliency-based method includes small pro-
cessing regions for candidate verification, the proposed algorithm 
demonstrates a fast execution time. 

To conclude, the approaches with handcrafted features can provide 
acceptable results in many cases. However, they generally suffer from 
their incapability to handle complex scenarios due to their low 
discriminative nature and seem to act less flexibly while adapting to new 
scenarios. 

4.2. Deep learning approaches 

Solutions based on deep learning leverage the potential of neural 
networks to learn and extract features from raw image data automati-
cally. In this regard, adaptability, versatility, generalization w.r.t. 
diverse scenarios, and high-performance results are among the expected 
outcomes of employing Deep Neural Networks (DNNs). They also have 
the capability to automatically learn features and reduce the require-
ment for manual feature engineering, along with integrating feature 
extraction and detection steps to have an end-to-end learning procedure. 
However, approaches in this category typically require large amounts of 

Fig. 6. Various image fusion strategies used in nighttime pedestrian detection approaches.  
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labeled data for training and powerful hardware due to their computa-
tionally intensive nature. Additionally, they lack straightforward 
explainability, leading to challenging interpretations of their decision- 
making process and, thus, fine-tuning to improve their performance. 

Many recent works for low-light pedestrian detection employ DNNs 
as an inevitable part of their algorithms. These methodologies have been 
divided into categories below in this survey regarding their use case: 

4.2.1. Image fusion methodologies 
Image fusion refers to extracting and fusing the most significant 

characteristics of raw images captured by multiple sensors to generate a 
single image with complementary information, a compelling description 
of the scene, etc. [48]. Considering the fusion stage, CNN fusion archi-
tectures can be divided into three primary strategies, namely, early 
fusion, halfway fusion, and late fusion. Fig. 6 depicts a brief overview of 
different fusion architectures used in the research works. 

4.2.1.1. Early fusion-based methods. In the context of nighttime pedes-
trian detection, it indicates integrating visual and thermal feature maps 
right after the first convolutional layer of a CNN. However, fusing IR and 
RGB images to generate a four-channel input before feeding the network 
is another approach that can execute low-level feature fusion at an early 
stage. As a recent work introduced in [49], a You Only Look Once 
(YOLO) v.3-based [50] multi-spectral pedestrian detector is introduced 
that can use RGB, thermal, and multi-spectral images. The mentioned 
approach merges the three channels of RGB and the single channel of 
thermal images to prepare a 4-channels input. The authors also evalu-
ated a YOLO-4 L [51] version to improve the detection accuracy of 
small-scale pedestrians on the scene. Evaluation results on various 
datasets demonstrated that the methodology outperforms other image 
types under all lighting conditions. 

4.2.1.2. Halfway fusion-based methods. As a widely explored fusion 
strategy in recent years, the fusion operation of input modalities hap-
pens at the middle stages of a network, after the fourth convolutional 
layer. As one of the halfway fusion works, Yang et al. [52] designed a 
Cascaded Information Enhancement Module (CIEM) and a Cross-modal 
Attention Feature Fusion Module (CAFFM) to enrich the pedestrian in-
formation and suppress the interference caused by background noise in 
the color and thermal modalities. While CIEM uses a spatial attention 
mechanism to weigh the features combined by the cascaded feature 
fusion block, CAFFM employs complementary features to construct global 
features. In [53], Channel-wise Attention Module (CAM) and Spatial- 
wise Attention Module (SAM) were integrated into a multi-layer 
fusion CNN, aiming to re-weigh cross-spectral features at channel- 
dimension and pixel-level, respectively. Although the SAM methodol-
ogy results in reduced detection speed, the performance of the approach 
is substantially improved. Zhang et al. [54] suggested a new halfway 
fusion strategy that applies cyclical fusion and refinement operations to 
achieve the consistency and complementary balance of multi-spectral 
features by controlling the number of loops. Based on the fact that the 
fused features are more discriminative than the mono-spectral ones, 
their main idea is to consecutively refine the spectral features with the 
fused ones and increase the overall feature quality. Hence, according to 
the analysis on the KAIST and FLIR dataset, the authors suggested that 
the number of loops should be tuned for any dataset. A cross-modal 
framework based on YOLO v5 detector introduced in [55] for multi- 
spectral pedestrian detection. In their study, the information comple-
mentarity of RGB-thermal streams was acquired by a Cross-modality 
Feature Complementary Module (CFCM) to reduce the target loss. 
They use an Attentionbased Feature Enhancement Fusion Module 
(AFEFM) to fuse different modalities' essential features and suppress the 
background noise while strengthening the semantic information. In 
another approach, and based on YOLO v5 lightweight network, Fu et al. 
[56] proposed an adaptive spatial and pixel-level feature fusion module, 

called ASPFF Net, to obtain fusion weights of spatial positions and pixel 
dimensions in two feature maps. The fusion weights are employed to re- 
calibrate the original feature maps of visible and IR images to acquire 
multi-scale fusion feature layers. The spatial and pixel attention mech-
anisms enable the ASPFF Net to focus on learning useful information and 
suppress redundant information to achieve a fast prediction speed of 35 
frames per second (fps) and lower Miss Rate (MR) on the night subset of 
the KAIST dataset. A Multi-Layer Fusion network based on Faster R-CNN 
(MLF-FRCNN) was proposed by [57], which employs Feature Pyramid 
Network (FPN) and Region Proposal Network (RPN) as two parallel 
feature extractors to deal with pedestrian samples with different scales. 
As a two-stage multi-spectral pedestrian detector, the MLF-FRCNN 
achieves a running time of 0.14 s per frame and the highest Average 
Precision (AP) in detecting various pedestrian scales. In [58], four var-
iants of fusion models have been designed at different stages, titled low- 
level (i.e., early fusion), middle-level (halfway fusion), high-level (late 
fusion), and confidence-level (score fusion). The first three approaches 
implement convolutional feature fusions, while the last corresponds to 
the combination of confidence scores from RGB and thermal CNN 
branches at the decision stage. The study reveals that the halfway fusion 
model achieves the lowest overall MR. 

In halfway fusion spatial attention-based mechanisms, the impor-
tance of each location in the feature map is calculated to highlight the 
areas with valuable information. Accordingly, Cao et al. [59] used 
Channel Switching and Spatial Attention (CSSA) in a lightweight fusion 
module to effectively fuse multi-modal inputs while ensuring low 
computational cost. During channel switching, the channel of each 
modality with insufficient features is replaced by the corresponding 
channel from another modality. Likewise, a bi-directional fusion strat-
egy called BAANet is introduced in [60] to ensemble the RGB-thermal 
features for multi-spectral pedestrian detectors. The strategy distills 
the high-quality features of two modalities and re-calibrates the repre-
sentations gradually. It contains intra- and inter-modality attention 
modules to improve spectra-specific features and adaptive selection of 
information from the most reliable modalities, respectively. In another 
similar work, Zhang et al. [61] introduced a two-stream CNN, titled 
Guided Attentive Feature Fusion (GAFF), to dynamically re-weigh and 
integrate multi-spectral pedestrian features under the guidance of the 
intra- and inter-modality attention mechanisms. The intra-modality 
attention module aims to enhance the visible or thermal features in 
pedestrian areas, while the inter-modality attention module selects the 
most reliable modality according to the feature quality, which requires 
costly annotation information. The authors' solution to this issue is to 
assign labels based on the prediction of pedestrian masks from the intra- 
modality attention module and then select the most relevant modality 
where the prediction mask is closer to the ground truth. Qingyun et al. 
[62] proposed a Crossmodality Fusion Transformer (CFT) module and 
embedded it to the YOLO v5 framework. The CFT learns long-range 
dependencies and focuses on global contextual information. In partic-
ular, by leveraging the self-attention mechanism, the network can 
simultaneously carry out intra-modal and inter-modal fusion and cap-
ture the latent interactions between visible and Thermal-Infrared (TIR) 
spectrums. 

Some works discuss the most common feature fusion strategies in 
CNNs: concatenation (i.e., stacking two feature maps at the exact spatial 
locations), summation (i.e., calculating the sum of two feature maps at 
the exact spatial locations), maximum (i.e., obtaining the maximum 
response of two feature maps at the exact spatial locations), and mean (i. 
e., calculating the mean value of two feature maps at the exact spatial 
location) [63]. Accordingly, Pei et al. [63] discussed the influence of 
these strategies in various CNN fusion architectures, including merged 
Visual-Optical (VIS) and IR images based on RetinaNet detector [64]. 
The results proved that the summation fusion strategy performs better 
than other methodologies. Ding et al. [65] employed a Network-In- 
Network (NIN) in Region- based Fully Convolutional Network (R-FCN) 
framework [66] to merge the image information of two sub-networks to 
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deal with large-scale and small-scale pedestrian instances. After the 
concatenation of Conv-VIS and Conv-IR, the small- and large-scale 
pedestrian candidates generated by RPN are merged with convolu-
tional layers in the middle of the architecture. Yun et al. [67] proposed 
inter- and intra-weighted cross-fusion networks (Infusion-Net), which 
use a High-Frequency Assistant (HFA) to integrate color and thermal 
features regarding the feature level gradually. In this procedure, the HFA 
block exchanges, purifies, and reinforces the object detection-relevant 
features based on Discrete Cosine Transform (DCT) and Residual 
Channel Attention Block (RCAB). Additionally, learnable inter- and 
intra-weight parameters provide optimal information utilization and 
feature reinforcement for each stream considering each fusion stage. Bao 
et al. [68] proposed a dual-YOLO method based on YOLO v7 [69] for 
integration of IR and visible images. They also designed attention fusion 
and fusion shuffle modules to alleviate the false detection rate caused by 
redundant feature information during the fusion process. 

Numerous anchor-free pipelines have recently been proposed for 
multi-spectral pedestrian detection, which speeds up model detection 
while avoiding the complex hyper-parameter settings of anchor boxes. 
Two feature fusion schemes based on a dual-branch CenterNet [70] 
anchor-free detector proposed by [71] for multi-spectral and multi-scale 
pedestrian detection. The first one is Scale-aware Permutated Attention 
(SPA) module, which combines local attention and global attention sub- 
modules, enhancing the quality of the feature fusion at different scales. 
The second is Adjacent Feature Aggregation (AFA), which aggregates 
features across different scales, considering spatial resolution and se-
mantic context. Likewise, Cao et al. [72] attempted to train a multi- 
spectral pedestrian detector without anchor boxes via a box-level seg-
mentation supervised learning framework and compute heat maps. 
Consequently, the network can be able to localize the pedestrians on 
small-size input images. 

In an innovative approach, Tang et al. [73] took illumination into 
account and designed a progressive image fusion network referred to as 
PIAFusion, which can adaptively maintain the intensity distribution of 
salient targets as well as retain texture information in the background. It 
uses an illumination-aware sub-network to estimate the illumination 
situations and exploits the illumination probability to construct 
illumination-aware loss. Afterward, the Cross-Modality Differential 
Aware Fusion (CMDAF) module and halfway fusion strategy merge 
meaningful information of IR and visible images under the guidance of 
illumination-aware loss. Likewise, Roszyk et al. [74] applied YOLO v4 
framework for fast and low-latency multi-spectral pedestrian detection 
in autonomous driving. Different fusion schemes, as well as different 
types of models, were investigated, among which feature-level fusion, 
namely YOLO v4-Middle, demonstrates the best trade-off between ac-
curacy and speed. Peng et al. [75] introduced Hierarchical Attentive 
Fusion Network (HAFNet) embedded with a Hierarchical Content- 
dependent Attentive Fusion (HCAF) module and a Multi-modality 
Feature Alignment (MFA) block to overcome the background noise 
and modality misalignment issue. The MFA exploits the correlation 
between the TIR and visible domains to fine-tune the pixel alignment of 
multi-spectral image pairs. Then, the HCAF utilizes top-level features to 
guide pixel-wise fusion across two streams, resulting in high-quality 
feature representation. Yadav et al. [76] built two uni-modal encoded- 
decoder feature networks for color and thermal individually using Faster 
Region-based CNN (Faster R-CNN) [77]. Further, they constructed 
middle-level CNN fusion architecture, which fused the extracted fea-
tures in the last convolution layer before feeding it to the decoder for 
providing the final predictions. Zhang et al. [78] presented a Cross- 
Modality Interactive Attention Network (CIAN) to encode the correla-
tions between two color and thermal spectrums and predict the positions 
and sizes of pedestrians on a contextual enhanced feature hierarchy. 
Regarding the halfway fusion strategy, CIAN has investigated three 
types of operations (i.e., Elementwise Sum, Elementwise Maximation, and 
Concatenation and Channel Reduction) for how to fuse feature maps. The 
fusion operation of the Concatenation and Channel Reduction shows 

better performance, which first concatenates the two feature maps, then 
applies a NIN to reduce the number of channels. To improve the 
detection accuracy in cases such as occluded objects, light changes, and 
cluttered backgrounds, Hu et al. [79] proposed a Dual-modal Multi-scale 
Feature Fusion Network (DMFFNet). In their work, MobileNetv3 [80] 
extracts multi-scale features of dual-modal images as input for MFA 
module, which processes the spatial information of input feature maps 
with different scales and establishes longer-distance channel de-
pendencies, thereby reducing background noise interference. Eventu-
ally, the Double Deep Feature Fusion (DDFF) module deeply combines 
the multi-scale features to maximize the correlation between the multi- 
scale features, which significantly enhances the representation of se-
mantic information and geometric detail. 

Cao et al. [81] modeled a Multi-spectral Channel Feature Fusion 
(MCFF) module based on YOLO v4 to fuse the multi-spectral features 
according to the different illumination conditions. The MCFF module 
first concatenates the features from visible and thermal modalities in the 
channel dimension, then uses learning weights to adapt aggregate 
features. 

Gated Fusion Units (GFU) [82] adjusts the contribution of the feature 
maps generated by each modality via the gating weighting mechanism. 
Instead of stacking selected features from each channel and adjusting 
their weights, and motivated by [82], Gated Fusion Double SSD (GFD- 
SSD) [83] developed two variations of GFU (i.e., gated fusion and mixed 
fusion) to fuse the feature maps generated by the two Single Shot Multi- 
Box Detector (SSD) [84] middle layers for multi-spectral pedestrian 
detection. Using GFUs on the feature pyramid structure, the authors also 
designed four mixed architectures of both stack fusion and gated fusion 
(i.e., Mixed Even, Mixed Odd, Mixed Early, and Mixed Late), depending on 
which layers are selected to use the GFUs. By comparing the experi-
mental results on the KAIST dataset, both the GFD-SSD and Mixed Early 
models are superior to the stack fusion. Redundant Information Sup-
pression Network (RISNet) [85] designed a mutual information mini-
mization module to alleviate the influence of cross-modality redundant 
information on the fusion of RGB-Infrared complementary information. 
Besides, the RISNet introduced a classification method of illumination 
conditions based on histogram statistics. Xie et al. [86] introduced a 
hallucination branch in order to map from the thermal to the visible 
spectrum by a three-branch feature extraction module and then fused 
feature maps from visible, thermal, and hallucination branches. The 
proposed method shows boosting in overall detection performance. 
Conventional multi-modal feature fusion methods rely only on local 
feature correlations, which degrades performance. According to the 
problem, Lee et al. [87] proposed an attention-based fusion model, 
named INSANet (INtra-INter Spectral Attention Network) to capture 
global intra- and inter-information and learn mutual spectral relation-
ships by intra- and inter-spectral attention blocks. 

4.2.1.3. Late fusion-based methods. Also known as decision-level fusion, 
is the high-level fusion technique in which the concatenation is con-
ducted after the last convolutional layer and before fully connected 
layers or merged the outputs of the two sub-networks such as the loca-
tion and category prediction. As a work in this category, MultiSpectral 
Pedestrian DEtection TRansformer (MS-DETR) is introduced by [88], 
which extracts multi-scale feature maps through two parallel modality- 
specific CNN backbones, aggregates them within the corresponding 
modality-specific transformer encoders, and fuses the features using a 
multi-modal transformer decoder. It also adopts a modality-balanced 
optimization strategy to measure further and balance the contribution 
of each modality at the instance level. Khalid et al. [89] proposed two 
fusion methods to detect people: In the first one, an encoder-decoder 
architecture was used for image-level fusion, which independently en-
codes visible and thermal frames and fed the combined frames into a 
decoder to produce a single fused image, inputting a Residual Network- 
152 (ResNet-152) architecture. The second one takes ResNet-152 for 
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feature-level fusion, which extracts features of visible and thermal im-
ages separately and concatenates them into a single feature vector as the 
input of the dense layer. Montenegro et al. [90] customized YOLO v5's 
architecture for low-light pedestrian detection, and also they have 
conducted experiments on multiple multi-spectral pedestrian datasets e. 
g., CVC-09, LSI-FIR, FLIR, CVC-14, NightOwls, and KAIST. By extensive 
evaluations made on different datasets, the best mean Average Precision 
(mAP) was obtained on LSI-FIR, followed by CVC-09 and CVC-14. Song 
et al. [91] designed a MultiSpectral Feature Fusion Network (MSFFN) 
that uses the extracted features of visible-channel and infrared-channel 
to obtain integrated features. The MSFFN strikes a favorable trade-off 
between accuracy and speed, especially on small-size input images. 
They extract multi-scale semantic features using two sub-networks, 
including Multiscale Feature Extraction of Visible images (MFEV) and 
Multiscale Feature Extraction of Infrared images (MFEI) and integrate 
them with an improved YOLO v3 framework. Selective Kernel Network 
(SKNet) [92] suggested a dynamic selection scheme to adaptively adjust 
receptive field size using selective kernel units with different kernel 
sizes. It uses a NIN-based fusion strategy to fuse RGB-IR image pairs. 
Park et al. [93] considered all detection probabilities from RGB, IR, and 
RGB-IR fusion channels in a unified three-branch model and designed a 
Channel Weighting Fusion (CWF) and an Accumulated Probability 
Fusion (APF) layers to fuse probabilities from different information 
streams at a proposal-level. A combination of an adaptive weight 
adjustment method with the YOLO v4 [94] is introduced by [95] to 
enrich the multi-spectral complementarity information for score fusion. 
Authors in [96] introduced Probabilistic Ensembling (ProbEn), a simple 
non-learning technique for late-fusion of multiple modalities derived 
from Bayes' first principle, i.e., conditional independence assumptions. 
Shaikh et al. [97] introduced a probabilistic decision-level fusion 
approach based on Naïve Bayes to address lighting and temperature 
changes in color and thermal images by fusion and modeling the 
detection results of available pedestrian detectors without requiring 
retraining. In particular, the use of Naïve Bayes for the late fusion 
strategy enables the network to work with non-registered image pairs as 
well as poorly registered image pairs. 

Zhuang et al. [98] examined the impacts of environmental variables 
on the efficiency of the pedestrian detector and proposed a lightweight 
Illumination and Temperature-aware Multispectral Network (IT-MN). 
The method is built on the SSD architecture with designing a late-fusion 
strategy and Fusion Weight Network (FWN) to compute the fusion 
weights. In addition, the default box generation is optimized by reducing 
the number of bounding boxes and choosing specific box aspect ratios to 
minimize the inference time. Inspired by YOLO v4, Double-Stream 
Multispectral Network (DSMN) [99] was designed to carry out pedes-
trian detection in challenging situations such as insufficient and 
confusing lighting. Their method extracts multi-spectral information 
provided by RGB and thermal images via two YOLO-based sub-networks. 
Also, it has an improved Illumination–Aware Network (i-IAN) module to 
estimate the lighting intensity of varied scenarios and allocate fusion 
weights to RGB-thermal sub-networks. Li et al. [100] explored various 
fusion schemes and pointed out their key adaptations. They also 
designed an Illumination-Aware Faster R-CNN (IAF R-CNN) framework 
to estimate the illumination value of the input image and incorporate 
color and thermal sub-networks via a gate function defined over the 
illumination value. In another work, Li et al. [101] introduced an 
Adaptive Soft-Gated Light Perception Fusion (ASG-LPF) to improve 
detection performance in varying lighting conditions, which uses a light 
perception module to distinguish the illumination levels in diverse 
driving scenarios. Takumi et al. [32] proposed a multi-spectral ensemble 
method based on YOLO v1 [102], which integrates detection results of 
the four single-spectral detection models into a single space as the final 
detection. As another approach, LG-FAPF [103] performed a cross- 
modal feature aggregation process guided by locality information to 
learn human-related multi-spectral features and used the obtained 
spatial locality maps of pedestrians as pixel-wise prediction confidence 

scores for the adaptive fusion of detection results under complex illu-
mination conditions. Considering Center and Scale Prediction Network 
(CSPNet) model, Wolpert et al. [104] proposed an anchor-free multi- 
spectral framework to investigate various fusion strategies. They also 
introduced a new data augmentation technique for multi-spectral im-
ages called Random Masking. Kim et al. [105] designed a Multispectral 
Chain-of-Thought Detection (MSCoTDet) framework, which integrates 
Large Language Models (LLMs) to understand the complementary in-
formation between IR-RGB modalities and facilitate cross-modal 
reasoning at the semantic level. The proposed framework can generate 
text descriptions of the pedestrian sample in each modality. Moreover, a 
Language-driven Multi-modal Fusion (LMF) method was introduced to 
fuse the vision-driven and language-driven detection. 

4.2.2. Knowledge transfer-based methodologies 
This section's approaches leverage insights from various domains 

based on knowledge acquired from diverse sources to facilitate night-
time pedestrian detection capabilities. It contains various categories 
with different methodologies, including transfer learning, supervised 
and unsupervised domain adaptation, knowledge distillation, and 
memory-network methods. 

4.2.2.1. Transfer learning methods. Transfer learning is reusing the 
knowledge obtained from pre-trained models for dissimilar but related 
tasks. In the context of nighttime pedestrian detection, and to fill in the 
gap of large-scale TIR dataset, Hu et al. [106] applied CycleGAN [107] 
to generate synthetic IR images from visible ones to expand the CVC-09 
dataset. They performed experiments using the YOLO v3 and Faster R- 
CNN models on the CVC-09 dataset, in which the Faster R-CNN has 
shown better performance in the transfer learning task. In another work 
by Vandersteegen et al. [108], a pre-trained YOLO v2 [109] was used to 
perform real-time visible-thermal pedestrian detection. Their method 
takes three image channels composed of a combination of four image 
channels (i.e., RGB and T) information as input and can work on 80 fps. 
They discussed the possibility of creating a number of channel combi-
nations as input channels of the YOLO v2 model and designed three 
models named YOLO-TGB, YOLO-RTB and YOLO-RGT. The YOLO-TGB, 
which only uses the combination of thermal, green, and blue image 
channels as input, performs better on the KAIST dataset than other 
proposed models. Geng et al. [110] replaced the loss function of YOLO 
v3 model with DIOU Loss [111] to accelerate the convergence speed of 
the network in IR image-based pedestrian detection. Although the loss 
function curve is more stable, the AP of the Diou-YOLO v3 is not 
satisfactory. 

4.2.2.2. Domain adaptation methods. The critical idea of employing the 
domain adaptation mechanism in multi-spectral pedestrian detection is 
to exploit learned knowledge acquired from the color domain in the 
thermal images. In this regard, Guo et al. [112] focused on image-level 
domain adaptation by using an image-to-image transformer as a data 
augmentation tool to convert color images to the thermal spectrum. To 
aid the joint training process of the domain adapter and the detector, the 
authors defined a detection loss that back-propagates its gradients to the 
image transformer to progressively refine synthetic thermal images. The 
proposed method provides promising results compared to the baseline 
on the KAIST benchmark. Kieu et al. [113] introduced a task- 
conditioned training method to help domain adaptation of YOLO v3 to 
the thermal spectrum. The primary detection network was augmented 
by adding an auxiliary classification task of day and nighttime thermal 
images. Additionally, learned representations of this auxiliary task were 
used to condition YOLO to perform better in the thermal imagery. Au-
thors in [114] addressed three top-down and one bottom-up domain 
adaptation techniques for pedestrian detection in the nighttime thermal 
images. They showed that bottom-up domain adaptation achieves better 
results in challenging illumination conditions. As another work by the 
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same authors [115], a new bottom-up domain adaptation strategy, 
known as layer-wise domain adaptation, is introduced. The main idea for 
this method is to adjust the RGB-trained detector to adapt to the thermal 
spectra gradually. Kristo et al. [116] attempted to improve the typical 
object detector performance for person detection at night in challenging 
weather conditions such as heavy rain, clear weather, and fog. The au-
thors retrained YOLO v3, SSD, Faster R-CNN, and Cascade R-CNN de-
tectors on a dataset of thermal images. They found that YOLO v3 is 
significantly faster than the others with a processing speed of 27,5 fps. 
The generalization ability of RPN has been analyzed by [117] for multi- 
spectral person detection by performing cross-dataset evaluations on 
several benchmark datasets such as Caltech [118], CityPersons [119], 
CVC-09, KAIST, OSU, and Tokyo semantic segmentation [120]. They 
showed that KAIST achieves better results in generalization tasks in both 
daytime and nighttime conditions. 

4.2.2.3. Unsupervised domain-adaptation methods. The objective of un-
supervised domain adaptation is to adapt the well-trained detectors on 
annotated visible images to the thermal target without any manual 
annotation effort. As a work in this category, Meta-UDA [121] per-
formed Unsupervised Domain Adaptation (UDA) thermal target detec-
tion using an online meta-learning strategy, resulting in a short and 
tractable computational graph. To mitigate the domain shift between 
the source and target domain, the Meta-UDA uses the adversarial feature 
alignment at both the image and instance levels, leading to slight 
improvement. In another work, Lyu et al. [122] used an iterative process 
to automatically generate the pseudo-training labels from visible and 
thermal modalities using two single-modality auxiliary detectors. They 
used the illumination knowledge of daytime and nighttime to assign the 
fusion priorities of labels for label fusion. Without using any manual 
training labels on the target dataset, the proposed method shows 
reasonable results on the night scenes of the KAIST dataset. Authors in 
[123] used transformers to tackle unlabeled data challenges in TIR im-
ages. They designed a Self-Supervised Thermal Network (SSTN) to learn 
feature representation and maximize the mutual data between visible 
and IR domains by contrastive learning to compensate for the shortage 
of labeled data. Later, a multi-scale encoder-decoder transformer system 
was employed for thermal object detection based on the learned feature 
representations. Inspired by pseudo-training labels, Lyu et al. [124] 
proposed an unsupervised transfer learning framework in multi-spectral 
pedestrian detection. Their overall framework is based on a two-step 
domain adaptation solution, in which the first stage generates inter-
mediate representations of color and thermal images to reduce the 
domain gap across the source and target domains. The pseudo labels of 
the target objects are fused via an illumination-aware label fusion 
mechanism. In the second stage, an iterative fine-tuning process is 
conducted to progressively converge the detector on the target domain. 
In another work, Cao et al. [125] introduced an auto-annotation 
framework to iteratively label pedestrian instances in visible and ther-
mal image channels by leveraging the complementary information of 
multi-modal data. They aim to automatically adapt a pedestrian detector 
pre-trained on the visible domain to a new multi-spectral domain 
without manual annotation. The predicted pedestrian labels on both 
image channels are merged via a label fusion scheme to generate the 
final multi-spectral pedestrian annotations. Then, the automatically 
generated labels are fed to a Two Stream Region Proposal Network (TS- 
RPN) detector to achieve unsupervised learning of complementary se-
mantic features. An unsupervised multi-spectral domain adaptation 
framework was proposed by Guan et al. [126] to generate pseudo- 
annotations in the source domain, which can be utilized to update the 
parameters of the model in the target domain according to the com-
plementary information in aligned visible-IR image pairs. Transfer 
knowledge from thermal to visible domain in unpaired settings and 
without requiring additional annotations has been performed in [127] 
by applying image-level and instance-level alignments based on the 

Faster R-CNN network using adversarial training. 

4.2.2.4. Knowledge distillation methods. The concept of the Knowledge 
Distillation (KD) is based on inheriting the knowledge learned from a 
large and complex pre-trained teacher model to a smaller and simpler 
student model through a supervised learning process [128,129,130]. 
Generally, the main objective of this method is to transfer the applicable 
and meaningful representations of data to speed up the inference time of 
the student model without a significant drop in accuracy [128]. Ac-
cording to the teacher-student scheme, Liu et al. [131] developed a 
knowledge distillation framework as a student network that only takes 
color images as input and generates distinguishing multi-spectral rep-
resentations, guided by a two-modalities teacher network. Moreover, 
Cross-modal Feature Learning (CFL) module based on a split-and- 
aggregation approach was incorporated into the teacher network to 
learn the standard and modality-specific characteristics between color 
and thermal image pairs. Hnewa et al. [128] employed Cross Modality 
Knowledge Distillation (CMKD) to enhance the performance of RGB- 
based pedestrian detection under adverse weather and low-light con-
ditions. Two different CMKD methods were developed to transfer the 
multi-modal information of a teacher detector to a student RGB-only 
detector. The former uses KD loss, while the latter integrates adversa-
rial training with knowledge distillation. Zhang et al. [130] proposed a 
Modality Distillation (MD) framework to transfer the knowledge from a 
high thermal resolution two-stream network with feature-level fusion to 
a low thermal resolution single-stream network with early fusion strat-
egy. In particular, two specific knowledge distillation modules are used 
in the MD framework. An attention transfer generates attention masks 
by GAFF from a two-stream teacher model, which is transferred to a 
single-stream student model through performing an early fusion. 
Finally, a semantic transfer resolves the problem of modality imbalance 
in feature distillation using a new Focal Mean Square Error (F-MSE) cost 
function. 

4.2.2.5. Memory-network methods. Memory Augmented Neural 
Network (MANN) can memorize and recall the prior information, such 
as visual appearance in the memory module, so the relevant data can be 
accessed by calculating the similarity [132]. In [133], a pedestrian 
detection process is introduced to improve the detector's performance in 
any modality. In the first stage, a multisensory-matching contrastive loss 
guides the pedestrian visual representation of two visible and thermal 
modalities to be similar. In the second, a Multi-Spectral Recalling (MSR) 
memory improves the visual representation of the single modality fea-
tures by recalling the visual appearance of multi-spectral modalities and 
memorizes the multi-spectral contexts through a multi-spectral recalling 
loss, which encoded more discriminative information from a single input 
modality. The Large-scale Pedestrian Recalling (LPR) based on key- 
value memory was proposed by [132], which memorizes visual infor-
mation of large-scale pedestrians to recall the relevant characteristics to 
cover inadequate small-scale pedestrian appearances. 

4.2.3. Image specification-based methodologies 
Another category focuses on methodologies in which image specifi-

cations play a crucial role. These methods can be divided into three 
primary strategies: image enhancement, image-to-image translation, and 
saliency maps methods. 

4.2.3.1. Image enhancement methods. TIR images are characterized by 
noisy details, blurred edges, low contrast, and low resolution, resulting 
in a performance drop caused by low discrimination. In this regard, low- 
light image enhancement techniques are considered to improve the vi-
sual quality of thermal images and simplify their challenges. In a work 
by Marnissi et al. [134], an enhancement method based on images' ar-
chitecture, title Thermal-Enhancement GAN (TE-GAN) is designed, 
which constituted of contrast augmentation, noise elimination, and edge 
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restoration. To enhance the clarity of the IR pedestrian targets with 
blurred edges, Sun et al. [135] adopted a super-resolution algorithm 
called Wide Activation Deep Super-Resolution (WDSR)-B [136]. They 
add the four-time down-sampling layer output to YOLO v3 trained by 
the enhanced IR images to acquire richer context information for small 
pedestrian targets. In another work, Marnissi et al. [137] combined 
Generative Adversarial Network (GAN) and Vision Transformer (ViT) 
for thermal image enhancement and introduced Thermal Enhancement 
Vision Generative Adversarial Network (TE-VGAN). TE-VGAN employs 
the U-Net architecture as an input image generator and two ViT models 
as global and local discriminators. The thermal loss feature is also 
introduced in their work to generate high-quality images. They inves-
tigated the effect of the thermal image enhancement method on the 
detection performance of different YOLO versions, resulting in a balance 
between contrast enhancement and noise reduction. 

DIVFusion [138] incorporates a low-light image enhancement task 
and a dual-modal fusion task in a unified framework to investigate the 
effect of lighting conditions on image fusion. In their method, firstly, a 
Scene-Illumination Disentangled Network (SIDNet) is devised to elimi-
nate the illumination degradation in nighttime visible images while 
maintaining informative features of source images. Then, a Texture- 
Contrast Enhancement Fusion Network (TCEFNet) is employed to 
aggregate complementary information and boost fused features' contrast 
and texture details. Finally, a color consistency loss is used to alleviate 
color distortion in enhancement and fusion processes. Li et al. [139] 
built Feature Attention Module (FAM) and Feature Transformation 
Module (FTM) to improve the efficiency of a pedestrian detector in 
darkness. FAM is designed to suppress the noisy representations, while 
FTM allows pedestrian examples under a low-light environment to 
generate more discriminate feature representations. An attention-based 
feature fusion module was designed in [140] to enhance pedestrian 
detection in low-illumination images. They used the brightness channel 
(i.e., V-channel) from the HSV image of the thermal image as an atten-
tion map to activate the unsupervised auto-encoder for obtaining more 
details about the pedestrian. In order to address the challenge of light 
compensation in low-light conditions, a Brightness Correction Process-
ing (BCP) algorithm is considered to guide self-attention map learning. 
Eventually, the image enhancement method was integrated into YOLO 
v4 detection model. They evaluated the proposed architecture on the 
LLVIP dataset. 

To highlight pedestrians in low-resolution and noisy IR images, an 
Attention-guided Encoder-Decoder Convolutional Neural Network 
(AED-CNN) [141] is devised. In AED-CNN, the encoder-decoder module 
generates multi-scale features, and a skip connection block is integrated 
into the decoder to fuse the feature maps from the encoder and decoder 
structure. By adding an attention module, the network effectively em-
phasizes informative features and suppresses background interference 
while re-weighting the multi-scale features generated by the encoder- 
decoder module. Patel et al. [142] introduced a computationally 
compact algorithm based on Depthwise Convolution (DC) with the aim 
of network parameters reduction. The proposed algorithm enhances the 
details of the thermal images using Adaptive Histogram Equalization 
(AHE) and extracts the salient features in these images by a new Con-
volutional Backbone Network (CBN), where depthwise convolution 
minimizes the computational complexity. YOLO-FIRI [143] is another 
method developed for pedestrian detection in IR images, which achieved 
outstanding results by making improvements on YOLO v5 structure. 
Firstly, by extending shallow CSPNet in the backbone network and 
incorporating an improved Select Kernel (SK) attention module in the 
residual block, it forces the model to focus on shallow and detailed in-
formation and learn the distinguishable features. Secondly, the detec-
tion accuracy of small and blurry pedestrians in IR images is increased 
by adding four-scale feature maps to the detection head. Finally, Den-
sefuse [144] is adopted as a data enhancement to fuse visible and 
infrared images to boost the features of IR images. 

4.2.3.2. Image-to-image translation methods. The goal of Image-to-Image 
(I2I) translation models is to learn the visual mapping between a source 
and target domain while preserving the essential features. Specifically, 
I2I has been widely used in image colorization, denoising, and synthesis 
[145]. In these approaches, thermal image colorization aims to translate 
from the temperature-channel domain into the RGB channel. PearlGAN 
presented in [146] to facilitate the translation of nighttime Thermal- 
Infrared (TIR) image into a daytime color one. By taking advantage of 
a top-down guided attention module and a corresponding attention loss, 
PearlGAN can produce hierarchical attention distribution and reduce 
local semantic ambiguity in IR images through context information. In 
addition, a structured gradient alignment loss was designed to enhance 
edge consistency during the translation. The colorization of thermal-IR 
images in pedestrian detection application is accomplished by [147], 
organized into three main modules: thermal image colorization, 
improvement of colorized images, and pedestrian detection. The color-
ized and improved images are fed to the detection head using a pre- 
trained YOLO v5 framework. 

To mitigate color distortion and edge blurring caused by translation 
from temperature spectrum to color spectrum, [148] considered a one- 
to-one mapping relationship and introduced an improved CycleGAN 
[107], called Gray Mask Attention-CycleGAN (GMA-CycleGAN). It first 
translates the TIR images to Grayscale Visible (GV) and then uses the 
original CycleGAN to obtain the translation from GV to Color Visible 
(CV). A mask attention module based on the thermal temperature mask 
and the color semantic mask has been designed without increasing 
training parameters to better differentiate between pedestrians and the 
background. Meanwhile, to make the texture and color of the translated 
image more realistic in the feature space, a perceptual loss was added to 
the original CycleGAN loss function. Devaguptapu et al. [149] proposed 
to borrow knowledge from the large-scale RGB dataset without the need 
for paired multi-modal training examples and used CycleGAN to 
implement an unpaired image-to-image translation framework. It can 
generate pseudo-RGB equivalents of a given thermal image and employs 
a multi-modal Faster R-CNN detector for pedestrian detection in thermal 
imagery. To transform the visible domain into the thermal domain, 
authors in [150] implemented a generative data augmentation method 
based on the Least-Squares GAN (LS-GAN) [151]. They also used the 
perceptual loss function to measure the similarity between authentic 
and synthesized images in pixel space. 

4.2.3.3. Saliency maps methods. The purpose of salient object detection 
is to highlight the most noticeable areas in the given image and distinct 
the prominent objects from their surroundings using the intensity of 
each pixel. Accordingly, in TIR images, the saliency maps can be used to 
detect temperature. Altay et al. [152] presented a two-branch archi-
tecture that can incorporate features of thermal images with their 
correlated saliency maps to acquire better representations of pedestrian 
regions. Instead of using color-thermal image pairs in the fusion 
network, Ghose et al. [153] suggested augmenting thermal images with 
their corresponding saliency maps, which produced by static methods 
and two deep saliency networks, Pixel-wise Contextual Attention 
Network (PiCANet) [154] and Recurrent Residual Refinement Network 
(RRRNet) [155]. Marnissi et al. [156] proposed a bi-spectral image 
fusion scheme, which was augmented with a corresponding saliency 
map using Visual Salient Transformer (VST) and also incorporated this 
fusion process into the YOLO v3 as base architecture for real-time ap-
plications. The proposed approach has shown its advantage in low 
computational cost, which allows faster inference time. Zhao et al. [157] 
put more emphasis on the temperature information in infrared images 
by constructing an IR-temperature transformation formula which can 
convert the IR images into corresponding temperature maps. It finally 
uses a trained temperature network for pedestrian detection. On the 
OSU and FLIR datasets, the transformed temperature maps boost the 
overall performance regardless of external influences. 
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4.2.4. Images discrepancy-based methodologies 
These methods target enhancing the accuracy and reliability of 

nighttime pedestrian detection by exploiting discrepancies within im-
ages and characteristics of different imaging sensors and analyzing 
variations in image quality and content. The modality discrepancy is 
alleviated by focusing on modality imbalance problem and position-shift 
problem. 

4.2.4.1. Modality imbalance problem. Scenes in which one sensor per-
forms considerably better than the others can lead to a bias in training 
toward one dominant input modality. For instance, uneven distribution 
of training data in multi-modal learning causes less contribution of the 
non-dominant input modality during network training and, therefore, 
limits the generalizability of the model. In this regard, Oksuz et al. [158] 
provided a comprehensive taxonomy of the imbalance problems in ob-
ject detection. They categorize these problems into four significant 
categories: class imbalance (i.e., inequality distribution of training data 
among different classes), scale imbalance (i.e., various scales of objects), 
spatial imbalance (i.e., spatial properties of the bounding boxes), and 
objective imbalance (i.e., minimization of multiple loss functions). Addi-
tionally, in multi-spectral pedestrian detection, the modality imbalance 
issue substantially impacts the algorithm performance, which can occur 
in two different ways, including the illumination modality imbalance 
problem and the feature modality imbalance problem [159]. Das et al. 
[160] proposed a training process with a regularization term i.e., Loga-
rithmic Sobolev Inequalities [161] to consider the features of both mo-
dalities equally during fusion. The proposed regularizer reduces the 
modality imbalance in the network by equally distributing the training 
data among the modalities. Li [162] trained YOLO v3 framework to 
detect pedestrians under insufficient illumination conditions. In their 
method, focal loss [64] was added to the loss function to overcome the 
imbalance issue of IR images. Zhou et al. [159] resolved the modality 
imbalance issue in multi-spectral images through the implementation of 
a single-stage Modality Balance Network (MB-Net), which included a 
Differential Modality Aware Fusion (DMAF) and an Illumination Aware 
Feature Alignment (IAFA) module to extract complementary informa-
tion and align the two modality features according to the lighting con-
ditions. Dasgupta et al. [163] developed Multi-modal Feature 
Embedding (MuFEm) module using Graph-Attention Network (GAT) 
[164] to deal with the imbalance issue between color image branch and 
thermal image branch. Also, the channel-wise attention block and four- 
directional IRNN (4Dir-IRNN) block [165] are incorporated in Spatio- 
Contextual Feature Aggregation (SCoFA) to improve fusion using 
spatial and contextual information of the pedestrian. The 4Dir-IRNN 
block consists of four Recurrent Neural Networks (RNNs), which 
compute context features in four directions. Kim et al. [166] addressed 
the problem of dataset bias in multi-spectral pedestrian detection and 
designed a Causal Mode Multiplexer (CMM) framework, which causal-
ities between multi-spectral inputs and predictions. They also made a 
new dataset to evaluate bias, which successfully removed the bias. The 
results show that the CMM approach is generalizable to the existing 
dataset. 

4.2.4.2. Position-shift problem. The physical properties of different 
cameras (e.g., Field-of-View (FoV), resolutions, wavelengths, etc.) can 
cause weakly aligned image pairs in multi-spectral data, where the po-
sitions of the objects are out of synchronization on different modalities. 
Some works tried to address the mentioned problem in multi-modal 
sensors using geometrical calibration and image alignment methods. 
The study by Zhang et al. [167] is the first work providing insights into 
the position shift problem between color and thermal images. They 
introduced an Aligned Region CNN (AR-CNN) detection framework to 
solve the weakly aligned image pairs. The AR-CNN firstly predicts the 
position shift and adaptively aligns the region feature maps of the two 
modalities through a Region Feature Alignment (RFA) module. Based on 

the aligned features, a confidence-aware fusion method is proposed to 
accomplish feature re-weighting, which selects the highly informative 
features while suppressing the useless ones. Moreover, a ROI jitter 
strategy is adopted to enhance the robustness of position shift patterns. 
Kim et al. [168] used adversarial learning to make each spectrum share 
its complementary information in a common feature space to compen-
sate for the lack of aligned multi-spectral pedestrian datasets. Kim et al. 
[169] have constructed uncertainty-aware multi-spectral pedestrian 
detection architecture to handle miscalibration (i.e., different FoV in 
color and thermal cameras) and modality discrepancy challenges. For 
the miscalibration issue, the Uncertainty-aware Feature Fusion (UFF) 
module was formulated to mitigate the impact of ambiguous Region of 
Interest (ROI). The modality discrepancy is alleviated through the 
Uncertainty-aware Cross-modal Guiding (UCG) module, which can 
encode more discriminative visual representations. Wanchaitanawong 
et al. [170] introduced a multi-modal Faster R-CNN robustly against 
significant misalignment between the two modalities. The key points are 
modal-wise regression for bounding-box regression of each modality to 
deal with the significant misalignment and multi-modal Intersection 
over Union (IoU) for mini-batch sampling that combines the IoU for both 
modalities. 

4.2.5. Generative methods 

4.2.5.1. Diffusion model-based methods. Yue et al. [171] proposed a 
model to explore objects with high color fidelity which is used by 
diffusion. They constructed multi-channel distribution by denoising the 
network with forward and reversed diffusion processes in a latent space. 
They also extracted multi-channel diffusion features by using a denois-
ing network and fed the extracted features to the multi-channel fusion 
module to generate three-channel fused images. Furthermore, intensity 
loss and multi-channel gradient loss were proposed to retain the in-
tensity and texture information. In order to multi-modal image fusion 
and leverage strong interpretable data of the GAN-based method, Zhao 
et al. [172] suggested a model of fusion algorithm based on the 
denoising diffusion probabilistic model (DDPM), which consists of the 
unconditional generation and a maximum likelihood sub-problems, and 
modeled in a hierarchical Bayesian manner with latent variables by the 
Expectation–Maximization (EM) approach. The proposed model 
demonstrated improvement in generating high-quality fused images 
with natural image generative priors and cross-modality information 
from source images. 

4.2.5.2. Structural re-parameterization-based methods. Residual Spatial 
Fusion Network (RSFNet) [173] adopts an asymmetric dual-encoder to 
learn the compensating features of RGB-Thermal modalities and uses the 
saliency map to yield the pseudo-labels to supervise the feature learning. 
Moreover, to capture more promising features, the Residual Spatial 
Fusion (RSF) module was developed with structural re- 
parameterization, which applies the spatial weights with the residual 
connection to control the cross-modality feature fusion and improves the 
performance of multi-branch structure fusion without additional infer-
ence cost. 

Wang et al. [174] investigated automatic driving perception under 
fog conditions and its accuracy and speed. Firstly, a new dataset was 
conducted. Then, a detection network for driving in fog based on 
improved YOLOv5 was presented. Structural re-parameterization 
modified ResNeXt model serves as the model's backbone and a new 
Feature Enhancement Module (FEM) was built. The results show 
improvement in fog multi-target detection in accuracy and speed. In 
order to slow detection speeds and high-cost challenges, Song et al. 
[175] introduced the YOLOv5-MS model, a YOLOv5-based solution for 
target detection. Leveraging re-parameterization, original backbone 
convolution replacement with RepvggBlock, and reducing convolu-
tional layer channels to enhance speed was applied. Also, the 
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incorporation of a bioinspired “squeeze and excitation” module was 
used. In order to achieve experimental results, lower costs and higher 
speed of detection demonstrated an effective pedestrian detection 
method. A robust, lightweight network (RSTDet-Lite) [176] was pro-
posed based on an improved version of YOLOv5-x for detecting pedes-
trians on rainy days, which is challenging. CBP-GNet approach, which 
incorporates a compact bilinear pooling algorithm, was designed. To 
improve the performance of the network, the CBAM attention mecha-
nism and the idea of structural re-parameterization were introduced. In 
this study a new dataset was created named RainDet3000 for experi-
mental evaluations, which result demonstrates performance improve-
ment in rainy days, compared with YOLOv5-x. In [177], a method was 
proposed in order to detect pedestrians under low-light conditions 
problems of small and dense objects problems in You Only Look Once X 
(YOLOX). The model structure was re-parameterized using the Re- 
parameterization Visual Geometry Group (RepVGG) approach. Also, 
larger-scale daylight and the smaller-scale nighttime dataset after low- 
illumination degrading were combined. The result shows effective 
technical support for the safety of automated driving at night. 

4.2.5.3. Variational autoencoder-based methods. To decrease dataset 
gathering and annotation costs, Nikolov et al. [178] proposed to 
augment the existing dataset to generate synthetic pedestrian data by 
training a variational autoencoder on a small subset of annotated pe-
destrians. In addition, the latent space of the autoencoder is interpolated 
to generate pedestrian variations and combine them to create new 
images. 

4.2.6. Multi-task methods 
Multi-task learning is a training paradigm that aims to learn multiple 

related tasks simultaneously, using shared feature representations 
[179]. A cross-task feature alignment method was proposed by [180] to 
tackle the misalignment of scale and channel of features from image 
relighting and pedestrian detection tasks by placing four feature align-
ment layers before the feature fusing and sharing step in cross-task 
learning. Meanwhile, a multi-scale feature-enhanced detection 
network expands the receptive field of the multi-scale feature extractor 
and thereby provides richer semantic information of fused features for 
the detection head. An illumination-aware weighting mechanism is 
presented by Guan et al. [181] to adaptively re-weight the detection 
results of day- and night-illumination sub-networks to learn multi- 
spectral human-related characteristics to perform pedestrian detection 
and semantic segmentation under various illumination conditions, 
simultaneously. Dai et al. [182] developed the Faster R-CNN detector 
using the ResNet-50 as a feature extractor for pedestrian detection and 
distance estimation using the NIR-based camera. An Automatic Region 
Proposal Network (ARPN) was designed by [183] to get bounding boxes. 
A pedestrian segmentation task is also added based on a Feature Pyra-
mid Network (FPN) [184] to obtain the confidence scores. To distinguish 
pedestrian examples from complex negative samples, Li et al. [185] 
added two sub-networks for jointly semantic segmentation and pedes-
trian detection tasks to the unified fusion network, which is denoted as 
MSDS-RCNN. The paper also studied the effects of training annotation 
noise by creating a sanitized version of KAIST ground-truth annotations 
so that the sanitized training annotations significantly reduce the 
inference error. Evaluations showed that the segmentation supervision 
benefits multi-spectral pedestrian detection. 

4.2.7. Other methods 
As for the final category, this subsection introduces works that 

cannot fit into the previous ones. Accordingly, the authors in [186] 
employed a region decomposition branch in Faster R-CNN architecture, 
which exploits the multi-region features, including head, body trunk, 
and legs, to solve the pedestrian occlusion problem in thermal images. 
The proposed architecture learns the high-level semantic features by 

combining the global and partial appearance features step by step. The 
Center and Scale Prediction Network (CSPNet) [187] has been applied in 
[188] to obtain three IR pedestrian detection models, namely daytime, 
nighttime, and full-time. The full-time model has a lower detection loss 
rate, while the nighttime model and the daytime model perform poorly 
in detecting small objects in the evening, respectively. Xu et al. [189] 
aggregated ground-area context information into the Faster R-CNN for 
pedestrian detection and shared the predicted ground horizon area to a 
Ground-Region Proposal Network (GRPN), which can only process the 
pixels on the proposed horizon region to minimize False Positive (FP) 
rate. Since the output of the FC layer is the position vector of pixels in the 
horizon region, the size of the GRPN model is largely increased and has a 
high computational cost. Dai et al. [190] compared and analyzed visible 
and IR images acquired by using visible-spectrum, Near-Infrared (NIR), 
Short-wave Infrared (SWIR), and Long-wave Infrared (LWIR) cameras. 
For the first time, they used a nine-layer CNN model with a self-learning 
SoftMax [191] to detect nighttime pedestrian samples in NIR images. In 
order to enhance the detection accuracy of multi-scale pedestrians in IR 
images, in [192], two regional proposal networks based on the Faster R- 
CNN architecture were designed to focus on near and far away pedes-
trians. Although the proposed multi-scale RPN has shown improvements 
in far-away pedestrian detection, it is not optimized to work in real time. 
Kalita et al. [193] have presented a real-time human detection system 
using YOLO v3, which achieved a speed of 17 millisecond per image on 
the KAIST thermal dataset. The brightness aware Faster Region-based 
CNN (Faster R-CNN) model [194] was proposed to perform the pedes-
trian prediction under low-light and day-light scenarios. In the first step, 
the model calculates the brightness of the input image based on the pixel 
intensity to predict the day or night scenario. In the second step, two 
separate thermal or color models are employed for pedestrian detection 
based on the first step output. It should be noted that the authors trained 
the FLIR dataset for the thermal model and the PASCAL VOC dataset for 
the color model. 

4.3. Hybrid approaches 

Hybrid methods combine elements of handcrafted features and deep 
learning, aiming to harness the strengths of each approach for improved 
nighttime pedestrian detection performance. Accordingly, they require 
significantly less computational resources than deep learning methods 
and overcome the poor generalization of handcrafted methods. How-
ever, the performance of such approaches is not properly optimized in 
terms of prediction accuracy or model running time. 

As a hybrid methodology for nighttime pedestrian detection, the 
study of Kim et al. [195] presented a method to detect pedestrians at 
night using a visible-light camera and Faster R-CNN model, which can 
handle the changes of the pedestrians' spatial position by fusing deep 
convolutional features in successive frames. To make the model robust 
against noise and illumination, the authors used Additive Random White 
Gaussian Noise (AWGN) and applied two pre-processing methods, i.e., 
pixel normalization and Histogram Equalization (HE) mean subtraction, 
to normalize the illumination and contrast levels of successive frames. 
Besides, a weighted summation of successive frame features was added 
to exploit temporal information about the pedestrian, which enhanced 
the accuracy of the pedestrian detector at nighttime. To find the optimal 
fusion stage in CNN, authors in [196] used RPN to merge the features of 
visual and IR images. After halfway feature fusion in RPN, they 
employed Boosted Decision Tree (BDT) classifier to improve pedestrian 
detection results and reduce the false positive rate. Tumas et al. [197] 
eliminated the sliding window technique and applied background sub-
traction to extract thermally active points as Region of Interest (ROI) for 
pedestrian detection in Far-Infrared (FIR) domain. The proposed tech-
nique accelerates the Histogram of Oriented Gradients (HOG) based 
pedestrian detector to run at 6 fps using only CPU performance. Nar-
ayanan et al. [198] developed a model for low-light pedestrian predic-
tion using HOG and YOLO v3 algorithm. They also experimented the 
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detection accuracy of HOG detector and SVM classifier in thermal im-
ages. Xu et al. [199] designed a framework for learning and transferring 
cross-domain feature representations for pedestrian detection that 
works based on two different networks. The first one, titled Region 
Reconstruction Network (RRN), is employed to learn a non-linear 
feature mapping and model the relations among the color and IR 
image pairs. Afterward, the cross-modality feature representations 
learned from RRN are transferred to a second network titled Multi-Scale 
Detection Network (MSDN), which operates only on RGB inputs and 
outputs the recognition results. Both RRN and MSDN networks have 
employed ACF [200] to generate pedestrian proposals. In this way, only 
color images are considered at the test phase, and no thermal data are 
needed, which significantly reduces the cost of thermal data annotation. 
In [201], Support Vector Regression (SVR) was adopted to learn the 
pedestrians probabilities, which performs well on small-scale pedes-
trians. Chen et al. [202] utilized a Total Variation (TV) minimization 
[203] method based on structure transfer to integrate TIR-RGB image 
pairs, preserving the infrared intensity distribution and the local 
appearance features. However, when the thermal radiation of the 
pedestrian and the background are the same, the performance of the 

detector is affected. 

5. Discussion 

This section discusses the state-of-the-art methodologies introduced 
in previous sections, as well as the current trends and future expecta-
tions of works targeting nighttime pedestrian detection. 

5.1. Employed methodologies trends 

Regarding categorizing the works introduced in Section 4, nighttime 
pedestrian detection approaches can be divided into handcrafted fea-
tures, deep learning, and hybrid methodologies. In this regard, Fig. 7 
shows the distribution of the surveyed paper regarding the primary 
categories they belong to. According to the figure, it can be seen that the 
majority of the works published in the last two years consider deep 
learning-based techniques the most reliable methodology to detect pe-
destrians in low-light conditions. In other words, recent approaches only 
focus on employing DNNs instead of handcrafted and hybrid ap-
proaches. The main reason may be attributed to automatic learning of 

Fig. 7. The trends of employing various approaches explained in this survey by state-of-the-art research works published in different years (2016–2024).  

Fig. 8. Distribution of the reviewed papers considering the sub-categories introduced in Section 4.  
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features in DNNs, which cover many possible conditions in which pe-
destrians are challenging to detect. Additionally, the works are 
becoming more practical, providing the possibility of being used in real 
applications, and making domain-specific applications based on hand-
crafted or hybrid methods is not a practical solution. 

Moreover, in a more detailed chart, Fig. 8 shows the distribution of 
papers surveyed regarding the introduced sub-categories. It can be seen 
that most of the papers have targeted image fusion techniques for 
nighttime pedestrian detection applications. Since thermal imaging (i.e., 
long wavelength IR) can capture the infrared radiation from objects and 
are sensitive to temperature changes, thermal images provide clearer 
contours information of pedestrians under insufficient lighting condi-
tions. However, the thermal IR modality lacks visual details such as 
texture, color, and precise edges of the objects, which can be captured by 
RGB sensors. In addition, the quality of visible images is significantly 
degraded under severe weather conditions, low resolution, and unfa-
vorable lighting. Considering the characteristics of both visible and 
thermal sensors, cross-spectral fusion has become a promising alterna-
tive solution for overcoming the limitations of an unimodal approach to 
adapt to the all-weather and all-day situations. By fusing complementary 
visual features from multiple modalities, pedestrian detectors can be 
enhanced in stability, reliability, and perceptibility. Despite the great 
progress made in multi-spectral pedestrian detection, a large gap still 
exists between the current artificial vision systems and human vision 
ability. Among them, halfway fusion covers most of the works, and late 
fusion is the second preferred approach in image fusion subcategory. 
Knowledge transfer and image specification methodologies are the 
following trendy solutions according to the stats in the figure. It can also 
be seen that generative models methodologies have not absorbed massive 
attention among the papers published in recent years in the domain due 
to their ability to generate and employ realistic scenes and enrich the 
training process in challenging scenarios. They can simulate how visual 
features in low-light conditions are aimed and essential synthetic data. 
Moreover, multi-task methodologies are also gaining attention due to 
their potential for simultaneous module execution, joint optimization, 
and advancements in hardware architectures. 

It should also be added that three types of deep learning-based ar-
chitectures have been dedicated to achieving multi-spectral pedestrian 
detection, which can be categorized into the conventional CNN-based, 
Auto-Encoder (AE)-based, and GAN-based architectures. End-to-end 
CNN-based methods, which cover ninety of the studied works (i.e., 
69.23%), employ feature extraction, feature fusion, and image recon-
struction processes through well-designed loss functions and network 
architectures. Conversely, the AE-based methods (17.69% of the papers) 

first train the encoder and decoder as the feature extractor and the image 
reconstructor, respectively. Then, the multi-image fusion process is 
accomplished according to the fusion rules. Finally, and in the GAN- 
based methods (i.e., 9.23% of the studied works), the architecture is 
suitable for unsupervised pedestrian detection, relying on the adversa-
rial mechanism between the generator and discriminator. The discrim-
inator forces the generator to make the target distribution in the fused 
images as close as possible to the source images. 

5.2. Dataset trends 

Regarding the datasets introduced in Section 3, the surveyed 
research works have been evaluated on various datasets. Thus, Fig. 9 
depicts the distribution of the utilized datasets by the reviewed papers. It 
can be seen that most of the papers (i.e., around half of them) have 
utilized KAIST dataset. The second and third datasets other research 
works use are FLIR and CVC-14, respectively. It should be mentioned 
that some of the research works (i.e., ∼ 5.3 percent) prefer to evaluate 
their in-house collected, mainly collected from real-world scenarios. As 
introduced in Section 4, the differences in the physical characteristics of 
sensors lead to the misalignment of image pairs and have limited 
applicability in real-life situations. Despite the increasing number of 
visible-IR datasets in recent years, accessing instances with strictly 
aligned multi-spectral images is still a challenging problem. The 
benchmark datasets reported in the scientific literature can only provide 
information under certain scenes, most of which are recorded by a sta-
tionary camera. Therefore, there is a lack of datasets that contain a 

Fig. 9. Distribution of the datasets available for evaluation of nighttime 
pedestrian detection in different works. 

Table 2 
Performance evaluation of state-of-the-art multi-spectral pedestrian detectors on 
KAIST test set, sorted based on their publication year. The superscripts X, V, K, P, 
1, 2, and 3 represent NVIDIA GPU models used for evaluation, including TitanX, 
Tesla V100, Tesla K40, Tesla P40, 1080Ti, 2080Ti, and 3090Ti, respectively.  

Method Published Family Backbone Speed (s/f) 

HAFNet [75] 2023 DL ResNet-50 0.0171 

Dual-YOLO [68] 2023 ” ELAN 0.0163 

DSMN [99] 2023 ” CSPDarknet-53 0.763 

Chan et al. [95] 2023 ” CSPDarknet-53 0.763 

YOLO-CMN [55] 2022 ” CSPDarknet-53 0.022 

Marnissi et al. [156] 2022 ” Darknet-53 0.019X 

RISNet [85] 2022 ” Custom CNN 0.1V 

BAANet [60] 2022 ” ResNet-50 0.071 

ProbEn [96] 2022 ” ResNet-50 + FPN 0.0252 

Zou et al. [71] 2022 ” ResNet-50 0.041 

MD [130] 2022 ” ResNet-18 0.0071 

DMFFNet [79] 2022 ” MobileNet v3 0.0212 

MSR [133] 2022 ” VGG-16 0.041 

LG-FAPF [103] 2022 ” VGG-16 0.14X 

GAFF [61] 2021 ” VGG-16 0.0091 

Kim et al. [169] 2021 ” VGG-16 0.111 

Ding et al. [92] 2021 ” VGG-16 0.071X 

IT-MN [98] 2021 ” MobileNet v2 0.03X 

MCFF [81] 2021 ” CSPDarknet-53 0.031P 

ASPFF Net [56] 2021 ” CSPDarknet-53 0.0281 

TC Det [113] 2020 ” Darknet-53 0.0331 

ResNet + FPN [63] 2020 ” ResNet-101 0.129X 

MB-Net [159] 2020 ” ResNet-50 0.071 

Ding et al. [65] 2020 ” VGG-16 0.222X 

CIAN [78] 2019 ” VGG-16 0.0661 

HMFFN [72] 2019 ” VGG-16 0.026X 

AR-CNN [167] 2019 ” VGG-16 0.121 

GFD-SSD [83] 2019 ” VGG-16 0.05121 

IAF R-CNN [100] 2019 ” VGG-16 0.21X 

IATDNN+ IASS [181] 2019 ” VGG-16 0.25X 

YOLO-TGB [108] 2018 ” Darknet-19 0.0121 

MSDS-RCNN [185] 2018 ” VGG-16 0.22X 

Park et al. [93] 2018 ” VGG-16 0.58X 

Halfway Fusion [58] 2016 ” VGG-16 0.43X 

CMT-CNN [199] 2017 Hybrid VGG-16+ACF 0.59K  
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sufficient variety of fine-grained annotated samples taken from a mov-
ing camera, as environments can change dynamically. 

5.3. Performance evaluations 

Considering the performance of the surveyed works, Table 2 ana-
lyzes the computational efficiency of the state-of-the-art methods on 
KAIST test set. It should be noted that they have been evaluated using 
dissimilar hardware mentioned in the caption of the table. According to 
the table, the MD [130] method takes only 0.007 seconds to process a 
single image. The main reason for such performance is due to the theory 
of knowledge distillation, which accelerates inference by transferring 

the knowledge learned from a high thermal-resolution model to a low 
one. Another interesting result is the GAFF [61] model, which requires 
only 0.009 seconds of inference time. The primary indication for such 
performance is that the GAFF only includes three convolution layers, so 
the total number of learnable parameters and the computational cost is 
low. There are some approaches with performances negligibly less than 
these approaches, including YOLO-TGB [108] with 0.012, Dual-YOLO 
[68] with 0.016, HAFNet [75] with 0.017, and Marnissi et al. [156] 
with 0.019 seconds to process a single image. On the other hand, CMT- 
CNN [199] as a hybrid approach is the most computationally intensive 
methodology, with 0.59 seconds to process a single image. The main 
reason that can be attributed to such low performance is the time- 

Table 3 
Miss Rate (MR) comparison of state-of-the-art multi-spectral pedestrian detectors in three subsets of the KAIST test set, i.e., all-day, day-time, and night-time, sorted 
based on their publication year. The best and second-best results are boldfaced and underlined, respectively. Note that the lower MR is better.  

Method Published Family Category Backbone All-Day Day-Time Night-Time 

INSANet [87] 2024 DL Halfway-Fusion VGG-16 5.50 6.29 4.20 
Beyond Fusion [86] 2024 ” ” ELAN 5.01 5.89 3.27 
HAFNet [75] 2023 ” ” ResNet-50 6.93 7.68 5.66 
Yang et al. [52] 2023 ” ” ResNet-101 10.71 13.09 8.45 
RISNet [85] 2022 ” ” Custom CNN 7.89 7.61 7.08 
DMFFNet [79] 2022 ” ” MobileNet v3 9.26 12.79 5.17 
Zou et al. [71] 2022 ” ” ResNet-50 7.77 9.41 2.00 
BAANet [60] 2022 ” ” ResNet-50 7.92 8.37 6.98 
YOLO-CMN [55] 2022 ” ” CSPDarknet-53 7.85 8.03 7.82 
ASPFF Net [56] 2021 ” ” CSPDarknet-53 11.64 14.14 6.73 
MCFF [81] 2021 ” ” CSPDarknet-53 4.91 6.23 2.90 

GAFF [61] 2021 ” ” ResNet-18 7.93 9.79 4.33 
ResNet-101 + FPN + Sum [63] 2020 ” ” ResNet-101 27.60 27.92 25.77 
CS-RCNN [53] 2020 ” ” ResNet-50 11.43 11.86 8.82 
CFR [54] 2020 ” ” VGG-16 6.13 7.68 3.19 
Yadav et al. [76] 2020 ” ” VGG-16 29.00 26.00 32.00 
Ding et al. [65] 2020 ” ” VGG-16 34 36 35 
GFD-SSD [83] 2019 ” ” VGG-16 28.00 25.80 30.03 
CIAN [78] 2019 ” ” VGG-16 27.71 30.74 21.07 
Halfway Fusion [58] 2016 ” ” VGG-16 36.99 36.84 35.49 
DSMN [99] 2023 DL Late-Fusion CSPDarknet-53 14.33 13.34 22.36 
MS-DETR [88] 2023 ” ” ResNet-50+ResNet-18 6.13 7.78 3.18 
ProbEn [96] 2022 ” ” ResNet-50+FPN 7.66 9.07 4.89 
LG-FAPF [103] 2022 ” ” VGG-16 5.12 5.83 3.69 
Ding et al. [92] 2021 ” ” VGG-16 32 34 34 
IT-MN [98] 2021 ” ” MobileNet v2 14.19 14.30 13.98 
IAF R-CNN [100] 2019 ” ” VGG-16 15.73 14.55 18.26 
Park et al. [93] 2018 ” ” VGG-16 31.36 31.79 30.82 
CMM [166] 2024 DL Modality-Imbalance VGG-16 8.54 9.60 5.93 
Das et al. [160] 2023 ” ” PVT 7.41 7.69 7.03 
Dasgupta et al. [163] 2022 ” ” ResNeXt-50 9.23 9.33 8.97 
MB-Net [159] 2020 ” ” ResNet-50 8.13 8.28 7.86 
Wanchaitanawong et al. [170] 2021 DL Position-Shift VGG-16 9.67 10.69 9.24 
Kim et al. [169] 2021 ” ” VGG-16 8.45 9.39 7.39 
AR-CNN [167] 2019 ” ” VGG-16 9.34 9.94 8.38 
Kim et al. [168] 2019 ” ” ResNet-50 42.89 42.42 43.65 
BU (VLT, T) [115] 2021 DL Domain-Adaptation Darknet-53 25.61 32.69 10.87 
TC-Det [113] 2020 ” ” Darknet-53 27.11 34.81 10.31 
VGG-16-two-stage [112] 2019 ” ” VGG-16 46.30 53.37 31.63 
Marnissi et al. [127] 2022 DL Unsupervised Domain-Adaptation ResNet-101 44.60 50.29 28.79 
UTL [124] 2022 ” ” VGG-16 19.98 22.17 15.78 
Feature-Map Fusion [122] 2021 ” ” VGG-16 23.09 24.55 17.74 
U-TS-RPN [125] 2019 ” ” VGG-16 36.42 37.15 33.00 
MSR [133] 2022 DL Memory-Network ResNet-101 10.32 13.28 6.23 
Kim et al. [132] 2021 ” ” VGG-16 19.16 24.70 8.26 
IATDNN+ IASS [181] 2019 DL Multi-Task VGG-16 26.37 27.29 24.41 
MSDS-RCNN [185] 2018 ” ” VGG-16 11.63 10.60 13.73 
MD [130] 2022 DL Knowledge-Distillation ResNet-18 8.03 9.85 4.84 
DCRL-PDN [131] 2021 ” ” VGG-16 25.89 27.01 23.82 
LS-GAN [150] 2021 DL I2I-Translation Darknet-53 25.62 31.86 12.92 
YOLO-TGB [108] 2018 DL Transfer-Learning Darknet-19 31.2 34.7 23.1 
Ghose et al. [153] 2019 DL Saliency-Maps VGG-16 – 30.4 21.0 
Song et al. [188] 2020 DL Other ResNet-50 – 12.23 4.56 
Chen et al. [202] 2021 Hybrid – Darknet-53 43.25 46.99 35.84 
Kim et al. [195] 2018 ” – VGG-16 45.36 41.30 55.82 
CMT-CNN [199] 2017 ” – VGG-16+ACF 49.55 47.30 54.78 
Choi et al. [201] 2016 ” – VGG-16+ACF 47.31 49.31 43.75  
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consuming process of using ACF proposals during the test. Comparing 
the elapsed times in a frame-based approach using similar hardware in 
the table implies the significance of design choices and optimization 
methodologies while employing/merging appropriate algorithms to 
achieve proper performance. Accordingly, minimizing the computa-
tional cost while keeping the hardware and speed trade-off in a 
reasonable range is directly related to the practicality of the designed 
system in real-world applications. A clear example can be found in GAFF 
[61] and Kim et al. [169], where using the same hardware and backbone 
on the same dataset samples lead to huge difference. Keeping the ar-
chitecture of GAFF as simple as possible to prioritize the performance 
over a generalized solution made it much faster than Kim et al.'s method 
that tackles miscalibration and modality discrepancy challenges, while 
the latter is primarily designed for sophisticated conditions. 

Moreover, Table 3 shows the detection accuracy in evaluating 
different approaches. The results are reported in terms of MR under 
Reasonable settings, and the approaches are classified according to the 
categories presented in Section 4. As shown in the Table, the MCFF [81] 
ranks first as a halfway-fusion strategy in overall performance on the 
KAIST by a large margin. The main reason for such performance is due to 
the MCFF transferring the fusion information from the bottom to the top 
at different stages. It can be observed that in the Reasonable nighttime 
criteria, the MCFF [81] obtains superior results than its daytime 
experiment. The reason is that the MCFF uses the illumination infor-
mation to learn the fusion weights. Similarly, LG-FAPF [103] as a late- 
fusion strategy performs remarkably better compared to the other de-
tectors. The primary reason for such performance is a locality-guided 
pixel-level fusion scheme that aggregates the human-related features 
in complementary modalities to integrate the prediction confidence 
scores in color and thermal channels. Among these methods, only four 
methodologies (i.e., CMT-CNN [199], Kim et al. [195], Choi et al. [201], 
and Chen et al. [202]) are hybrid approaches, which witnessed a sig-
nificant drop in MR. It can be concluded that the hybrid approaches are 
not highly applicable to around-the-clock applications, and specifica-
tions are required. 

As the final discussion, it is essential to note that by expanding the 
use of fully autonomous vehicles and robots, the challenges of correct 
and real-time detecting pedestrians under various scenarios are 
becoming inevitable. Accordingly, explainable and interpretable 
mechanisms to exploit why a system failed/succeeded in a scenario can 
bring about more public reliability and confidence among people, 
including pedestrians, for interacting with autonomous systems. Thus, 
tailoring the current methodologies with the field of Explainable AI 
(xAI) is another direction to be investigated by researchers. 

6. Conclusions 

The paper in hand provided a comprehensive survey of pedestrian 
detection approaches tailored to low-light conditions, addressing a 
crucial challenge in computer vision, surveillance, and autonomous 
driving. The accurate and reliable recognition and tracking of pedes-
trians under reduced visibility is of paramount importance for 
enhancing the safety of autonomous vehicles and preventing accidents. 
The survey has examined a wide array of methodologies, including deep 
learning-based, feature-based, and hybrid approaches, which have 
demonstrated promising results in improving pedestrian detection per-
formance in challenging lighting scenarios. By delving into the current 
landscape of low-light pedestrian detection, this work contributes to 
advancing more secure and dependable autonomous driving systems 
and other applications related to pedestrian safety. It has also identified 
ongoing research directions in the field and highlighted potential zones 
that warrant further research and investigation. The insights provided in 
this paper aim to inform and inspire future work, ultimately driving 
innovation and progress in the domain of pedestrian detection under 
adverse conditions. 
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Gevers, adapting pedestrian detection from synthetic to far infrared images, in: 
ICCV Workshops 3, 2013. 

[26] Daniel Olmeda, Cristiano Premebida, Urbano Nunes, Jose Maria Armingol, 
Arturo de la Escalera, Pedestrian detection in far infrared images, Integrat. Comp. 
Aided Eng. 20 (4) (2013) 347–360. IOS Press. 

[27] Zheng Wu, Nathan Fuller, Diane Theriault, Margrit Betke, A thermal infrared 
video benchmark for visual analysis, Proc. IEEE Conf. Comp. Vision Pattern 
Recog. Workshops 201–208 (2014). 

[28] Soonmin Hwang, Jaesik Park, Namil Kim, Yukyung Choi, In So Kweon, 
Multispectral pedestrian detection: Benchmark dataset and baseline, in: 
Proceedings of the IEEE conference on computer vision and pattern recognition 
1037–1045, 2015. 

[29] Piniarski Karol, Pawlowski Pawel, Dabrowski Adam, Video processing algorithms 
for detection of pedestrians, CMST 21 (3) (2015) 141–150. PSNC, Poznan 
Supercomputing and Networking Center. 
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Kazimierz Krzywicki, Embedded night-vision system for pedestrian detection, 
IEEE Sensors J. 20 (16) (2020) 9293–9304. IEEE. 

[42] JongBae Kim, Pedestrian detection and distance estimation using thermal camera 
in night time, in: 2019 International Conference on Artificial Intelligence in 
Information and Communication (ICAIIC), IEEE, 2019, pp. 463–466. 

[43] Jong Bae Kim, Detection of direction indicators on road surfaces using inverse 
perspective mapping and NN, J. Inf. Proc. Korean 4 (2015) 201–208. 

[44] Dongmei Zhou, Shi Qiu, Song Yang, Kaijian Xia, A pedestrian extraction 
algorithm based on a single infrared image, Infrared Phys. Technol. 105 (2020) 
103236. Elsevier. 

[45] Anouar Ben Khalifa, Ihsen Alouani, Mohamed Ali Mahjoub, Najoua Essoukri 
Ben Amara, Pedestrian detection using a moving camera: A novel framework for 
foreground detection, Cogn. Syst. Res. 60 (2020) 77–96. Elsevier. 

[46] Ali Raza Shahzad, Ahmad Jalal, A smart surveillance system for pedestrian 
tracking and counting using template matching, in: 2021 International 
Conference on Robotics and Automation in Industry (ICRAI), IEEE, 2021, pp. 1–6. 

[47] Yingfeng Cai, Ze Liu, Hai Wang, Xiaoqiang Sun, Saliency-based pedestrian 
detection in far infrared images, IEEE Access 5 (2017) 5013–5019. IEEE. 

[48] Hao Zhang, Han Xu, Xin Tian, Junjun Jiang, Jiayi Ma, Image fusion meets deep 
learning: a survey and perspective, Inform. Fusion 76 (2021) 323–336. Elsevier. 

[49] Jason Nataprawira, Gu Yanlei, Igor Goncharenko, Shunsuke Kamijo, Pedestrian 
detection on multispectral images in different lighting conditions, in: 2021 IEEE 
International Conference on Consumer Electronics (ICCE), IEEE, 2021, pp. 1–5. 

[50] Joseph Redmon, Ali Farhadi, Yolov3: An incremental improvement, arXiv preprint. 
arXiv:1804.02767, 2018. 

[51] Jason Nataprawira, Gu Yanlei, Igor Goncharenko, Shunsuke Kamijo, Pedestrian 
detection using multispectral images and a deep neural network, Sensors 21 (7) 
(2021) 2536. Multidisciplinary Digital Publishing Institute. 

[52] Yang Yang, Kaixiong Xu, Kaizheng Wang, Cascaded information enhancement 
and cross-modal attention feature fusion for multispectral pedestrian detection, 
Front. Phys. 11 (2023) 1121311. Frontiers. 

[53] Yongtao Zhang, Zhishuai Yin, Linzhen Nie, Song Huang, Attention based multi- 
layer fusion of multispectral images for pedestrian detection, IEEE Access 8 
(2020) 165071–165084. IEEE. 
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Póvoa de Varzim, Portugal, June 27–29, 2018, Proceedings 15, Springer, 2018, 
pp. 419–426. 

[109] Joseph Redmon, Ali Farhadi, YOLO9000: Better, faster, stronger, Proc. IEEE Conf. 
Comput. Vis. Pattern Recognit. 7263–7271 (2017). 

[110] Shengqi Geng, Infrared image pedestrian target detection based on yolov3 and 
migration learning, arXiv preprint. arXiv:2012.11185, 2020. 

[111] Zhaohui Zheng, Ping Wang, Wei Liu, Jinze Li, Rongguang Ye, Dongwei Ren, 
Distance-IoU loss: faster and better learning for bounding box regression, Proc. 
AAAI Conf. Artific. Intel. 34 (07) (2020) 12993–13000. 

[112] Tiantong Guo, Cong Phuoc Huynh, Mashhour Solh, Domain-adaptive pedestrian 
detection in thermal images, in: 2019 IEEE International Conference on Image 
Processing (ICIP), IEEE, 2019, pp. 1660–1664. 

[113] My Kieu, Andrew D. Bagdanov, Marco Bertini, Alberto Del Bimbo, Task- 
conditioned domain adaptation for pedestrian detection in thermal imagery, in: 
Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 
23–28, 2020, Proceedings, Part XXII 16, 546–562, Springer, 2020. 

[114] My Kieu, Andrew D. Bagdanov, Marco Bertini, Alberto Del Bimbo, Domain 
adaptation for privacy-preserving pedestrian detection in thermal imagery, in: 
Image Analysis and Processing–ICIAP 2019: 20th International Conference, 
Trento, Italy, September 9–13, 2019, Proceedings, Part II 20, Springer, 2019, 
pp. 203–213. 

[115] My Kieu, Andrew D. Bagdanov, Marco Bertini, Bottom-up and layerwise domain 
adaptation for pedestrian detection in thermal images, ACM Trans. Multimedia 
Comp. Commun. Appl. (TOMM) 17 (1) (2021) 1–19. ACM New York, NY. 
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