

CNN-based Roofing Material **Segmentation using Aerial Imagery and LiDAR Data Fusion**

P5 Presentation | Dimitris Mantas 31-10-2024

Agenda

Introduction

Problem Statement

Applications of Roofing Material Classification

- Hazardous material mapping
- Urban heat island studies
- Energy retrofitting studies and solar potential estimations
- Material inventorying

Current State of the Art

- Narrow application and material scope
- Reliance on MSI and HSI
- Negative disposition towards pixel-based classification
- Limited integration of heterogenous data sources

To what extent is DL-based roofing material segmentation possible using aerial imagery and LiDAR data fusion?

Primary Question

To what extent is **DL-based** roofing material **segmentation** possible using aerial imagery and LiDAR **data fusion**?

Supporting Questions

- 1. Which **imagery- and LiDAR-derived features** are the most contextually prevalent and effective in terms of performance?
- 2. Which **classification and data fusion approaches** are the most contextually prevalent and effective in terms of performance?
- **3**. How does the **generalisation of pixel-wise material maps** to the roof segment level using each of the building LODs offered by the 3DBAG influence results?
- 4. How does the availability of LiDAR-derived features influence performance?

Image-based Classification

Assigns material labels at the image level

Key Takeaways

Delft

- Only method where DL has been applied
 - Small, custom models
- Potentially significant label localisation issues
 - Requires small or specially constructed images showing a single building or material

Object-based Classification

Assigns material labels at the superpixel level

Key Takeaways

- Alternative to pixel-based classification due to historically spatially inconsistent results
- Significant ambiguity in segmentation step
 - Image-specific algorithm parameters
 - "What constitutes an object"?

Pixel-based Classification

Assigns material labels at the pixel level

Key Takeaways

- No explicit input or preprocessing requirements
- "Infinite" output label resolution
 - Label merging becomes a matter of post-processing
- Potentially significant mixed pixel issues with models which cannot infer spatial context

TUDelft

Methodology

Overview

Normalised Digital Roof Model (nDRM)

Digital Roof Model

 Median roof elevation (MRE) where buildings are present and zero elsewhere

nDRM

- Signed elevation difference from MRE where buildings are present and DSM elsewhere
- Complements slope by assigning it a rough direction
 TUDelft

(b) **DRM**.

(a) nDSM.

(b) nDRM.

Material Classes

Implementation

Reference Dataset

Randomly sampled 512×512 px. chips from tiles within 15 km from one of 30 cities with at least 100K population

Sampling Requirements

- Chips accepted based on outcome of Bernoulli trial
- At most 80% background content
- No more than three accepted chips in a row

TUDelft

Summary Statistics

- 200 chips
- 4 tiles 1x Delft, 2x Dordrecht, 1x Enschede
- 15M+ px.
 100+ ha @ 8 cm GSD
 ³¹⁻¹⁰⁻²⁰²⁴
 ¹⁵

Reference Dataset

Randomly sampled 512×512 px. chips from tiles within 15 km from one of 30 cities with at least 100K population

Sampling Requirements

- Chips accepted based on outcome of Bernoulli trial
- At most 80% background content
- No more than three accepted chips in a row

TUDelft

Summary Statistics

- 200 chips
- 4 tiles 1x Delft, 2x Dordrecht, 1x Enschede
- 15M+ px.
 100+ ha @ 8 cm GSD
 ³¹⁻¹⁰⁻²⁰²⁴
 ¹⁶

Reference Dataset Splitting

A custom stratification algorithm was designed to preserve inherent class imbalance across splits

Training Subset Class Weighting

A custom weighting scheme was applied to the CE component of the loss function to account to mitigate image-level class imbalance in the training set

Data Augmentation

Training

- Individual band scaling to [0, 1] based on training subset statistics to prevent data leakage
- D4 dihedral group symmetries except the (off)-diagonal reflections applied sequentially with a probability of 50%

Inference

ŤUDelft

• Band scaling to [0, 1]

Loss Function

Sum of weighted CE and Dice loss

Key Advantages

- Metric of interest is directly maximised while maintaining favourable loss landscape properties
- Handling of inappropriate weighting scenarios

$$\ell(X, Y) = -w \ln \frac{\exp(X)}{\sum_{c \in C} \exp(X_c)} - \left(1 - \frac{2X \odot Y}{X^2 + Y^2}\right)$$

Model Design

Results

Hyperparameter Optimisation

Exploration to gain insights into the problem and model dynamics, followed by greedy exploitation of obtained knowledge

Process Outline

- Manual Experimentation
- Tuning Round 1 Input Data & Model
- Tuning Round 2 Optimiser & LR Scheduler Config.
- Tuning Round 3 Continuous Parameters

Key Changes

- Swapped ResNet-18 for ResNet-18-D and added ECA to each block
- Added 10% label smoothing in CE
- Increased max. LR by 4.5x and added linear warmup for 67.5% of training duration
 23

Hyperparameter Optimisation

Exploration to gain insights into the problem and model dynamics, followed by greedy exploitation of obtained knowledge

Process Outline

- Manual Experimentation
- Tuning Round 1 Input Data & Model
- Tuning Round 2 Optimiser & LR Scheduler Config.
- Tuning Round 3 Continuous Parameters

Key Changes

- Swapped ResNet-18 for ResNet-18-D and added ECA to each block
- Added 10% label smoothing in CE
- Increased max. LR by 4.5x and added linear warmup for 67.5% of training duration
 ²⁴

Key Findings

- OA: 85.15%; Avg. F₁: 78.09%
- mloU: 64.68%
- Class division into three groups based on general performance:
 - 1. Dark-coloured Membrane Gravel Light-coloured Membrane
 - 2. Ceramic Tile Solar Panel Vegetation
 - 3. Light-permitting Surface (LPS) Metal

0	0.89	0.02	0.03	0.04	0.0	0.0	0.0	0.0	0.01 -
1	0.0	0.92	0.03	0.0	0.01	0.0	0.0	0.0	0.03 -
2	0.0	0.01	0.96	0.01	0.0	0.0	0.0	0.01	0.01 -
3	0.0	0.01	0.0	0.95	0.0	0.0	0.0	0.01	0.02 -
rue Class	0.0	0.01	0.16	0.31	0.46	0.0	0.0	0.0	0.06 -
5	0.0	0.0	0.46	0.0	0.03	0.5	0.0	0.0	0.0 -
6	0.0	0.02	0.01	0.01	0.0	0.0	0.94	0.01	0.0 -
7	0.0	0.03	0.14	0.09	0.01	0.17	0.0	0.56	0.0 -
8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.0
	0	1	2	3	4	5	6	7	8
				Pre	edicted Cl	ass			

Key Findings

- OA: 85.15%; Avg. F₁: 78.09%
- mloU: 64.68%
- Class division into three groups based on general performance:
 - 1. Dark-coloured Membrane Gravel Light-coloured Membrane
 - 2. Ceramic Tile Solar Panel Vegetation
 - 3. Light-permitting Surface (LPS) Metal

Image

Ground Truth

Prediction

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 -1.0 -0.5 0.0 0.5 1.0

Key Issues

• Incomplete solar panel detections

Key Findings

- OA: 85.15%; Avg. F₁: 78.09%
- mloU: 64.68%
- Class division into three groups based on general performance:
 - 1. Dark-coloured Membrane Gravel Light-coloured Membrane
 - 2. Ceramic Tile Solar Panel Vegetation
 - 3. Light-permitting Surface (LPS) Metal

Ground Truth Prediction

Image

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 -1.0 -0.5 0.0 0.5 1.0

Key Issues

- Incomplete solar panel detections
- Confusion between dark metal and ceramic tiles

Key Findings

- OA: 85.15%; Avg. F₁: 78.09%
- mloU: 64.68%
- Class division into three groups based on general performance:
 - 1. Dark-coloured Membrane Gravel Light-coloured Membrane
 - 2. Ceramic Tile Solar Panel Vegetation
 - 3. Light-permitting Surface (LPS) Metal

Image

Prediction

Ground Truth

0 1 2 3 4 5 6 7 8 0 1 2 3 4 5 6 7 8 -1.0 -0.5 0.0 0.5 1.0

Key Issues

- Incomplete solar panel detections
- Confusion between dark metal and ceramic tiles
- Failure to detect small LPSs

Key Findings

- OA: 85.15%; Avg. F₁: 78.09%
- mloU: 64.68%
- Class division into three groups based on general performance:
 - 1. Dark-coloured Membrane Gravel Light-coloured Membrane
 - 2. Ceramic Tile Solar Panel Vegetation
 - 3. Light-permitting Surface (LPS) Metal

Image

Prediction

Ground Truth

5

6

4

-1.0

Key Issues

• Incomplete solar panel detections

2 3

- Confusion between dark metal and ceramic tiles
- Failure to detect small LPSs

Vegetation hallucinations

Pixel-wise Material Map Generalisation

Generalisation can be applied as a post-processing step to cater to applications which do not require the full resolution (and errors) of pixel-wise maps

Generalised Test Performance

Key Findings

- Light-permitting surfaces absent from all LoDs
- Improved performance across the board except in metal and solar panels
- Large reduction in vegetation hallucinations
- Largest improvement observed in Group 2

LoD	Avg. Prec. (%)	Avg. Recall (%)	mloU (%)
N/A	82.73	95.40	78.69
1.2	93.44	97.60	91.21
1.3	86.56	97.00	83.61
2.2	86.56	94.40	84.22

^(*) Scores do not include metal and solar panel classes

Ablation Study

Key Findings

- Reflectance does not behave as NIR band as originally assumed
- Slope and nDRM most impactful
- Performance degradation due to density ablation not significant
- Confusion amongst certain classes increased or dropped similarly regardless of ablated band
- No LiDAR not too bad

Ablated Band	Avg. Prec. (%)	Avg. Recall (%)	mloU (%)
N/A	77.55	78.63	64.68
Refl.	74.63	76.88	60.84
Slope	69.51	71.75	54.37
nDRM	71.47	74.25	56.07
Density	75.77	78.88	63.27
All	76.90	73.63	60.68

Conclusions

Review-based Questions

- 1. Which **imagery- and LiDAR-derived features** are the most contextually prevalent and effective in terms of performance?
 - Images: Spectral indices; PCA; no apparent performance gap between MSI/HSI and RGB/CIR
 - LiDAR: DTM, DSM, nDSM, intensity, slope
- 2. Which **classification and data fusion approaches** are the most contextually prevalent and effective in terms of performance?
 - Classification: Image-based methods competitive but suffer from label localisation issues; OBIA most widely used; Pixel-based techniques have no inherent technical limitations but still underexploited
 - Data Fusion: Band concatenation

Experiment-based Questions

- 3. How does the subsequent **generalisation of roofing material maps** to the roof segment level using each of the building LODs offered by the 3DBAG influence results?
 - No explicit performance improvement
 - Largely reduced gross errors
 - Small and incomplete predictions may be missing
 - LoD1.1 cannot model multi-material roofs with varying height
 - LoD1.3 solves this issue
 - LoD2.2 contains many gross errors but only option for dormer and skylight visualisation

Experiment-based Questions

- 4. How does the availability of LiDAR-derived features influence performance?
 - Slope and nDRM most impactful
 - Performance degradation due to density ablation not significant
 - LiDAR bands semantically coupled
 - Better to use them as a single dataset or not at all if not all bands are available

Contributions & Limitations

Scientific Contributions

- Dataset
- Dataset splitting and class weighting schemes
- Optimised model parameters
- Software implementation

Limitations

- Optimal performance in large, isolated buildings with flat roofs of uniform material
- Dataset size and quality

Future Work

High-priority

• Increasing the dataset size

Medium-priority

- Exploring (semi-) automated annotation methods and implementing quality control
- Exploring self-supervised pretraining methods

Low-priority

• Better datasets, more efficient pre-processing, extra features for small object detection

Thank you for your attention!

P5 Presentation | Dimitris Mantas 31-10-2024