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Abstract—The path to zero-emission shipping is deeply con-
nected to full-electric vessels. One major challenge to enable this
technology for broader application is the design of optimal energy
management (EM). The flexibility of operating load sharing in
hybrid energy systems could lead to suboptimal solutions using
rule-based control. Advanced control strategies can be used to
find optimal solutions for the EM problem. In addition, the use
of advanced control allows for the incorporation of multiple
objectives. An important compromise is the decision between
minimizing cost and emissions. A promising approach for EM
is the Equivalent Consumption Minimization Strategy (ECMS),
which allows for instantaneous optimization of the problem and
is suitable for dealing with fast system dynamics. The strategy
assigns equivalent factors in the objective function, leading to an
easily expandable multi-objective control approach.

This paper presents a novel ECMS-based control strategy
for health-aware EM of a full-electric vessel, incorporating
diesel internal combustion engines, fuel cells, and batteries
with flexible changing operation conditions. To this aim, firstly,
we introduce our innovative formulation of the multi-objective
problem, considering fuel and electricity expenditures and CO2
and NOx emissions, alongside the degradation of batteries and
fuel cells. Subsequently, we determine the equivalent factors
by employing a Pareto Front approach. Lastly, our developed
controllers are assessed against a benchmark derived from state-
of-the-art strategies. A case study of a full-electric vessel showcase
the potential of our proposed solution. The results demonstrate
the control’s effectiveness in optimizing the operation considering
a variety of objectives, such as fuel consumption or emission
production, under variable operational conditions.

Index Terms—Energy Management, Full-Electric Vessel, Al-
ternative Fuels, ECMS, NOx Emission

This research is supported by the project MENENS, funded by the Nether-
lands Enterprise Agency (RVO) under the grant number MOB21012.

I. INTRODUCTION

Full-electric vessels are important for transitioning to a
sustainable maritime industry [1]. Electrified shipboard power
systems allow the integration of various power generation
and storage components into the energy system, resulting
in increased operational flexibility. This can lead to a more
energy-efficient operation and decreased CO2 emissions [2].
However, the increased complexity of those heterogeneous
energy systems could lead to suboptimal control solutions
using rule-based control (RBC) when trying to optimize for
multiple targets at the same time [3]. While an RBC can
be highly effective and cost-effective for single objective
control, a focus on heterogeneous objectives, sometimes also
contradicting, renders this control approach more and more
infeasible. Multi-objective control is increasingly necessary to
operate energy systems incorporating several power sources
successfully. Advanced control strategies allow for multi-
objective optimization of fuel consumption (SFC), emission
output, and degradation of power generation components si-
multaneously [4].

A simple way to realize zero-emission full-electric vessel
propulsion is to use battery-only systems [5]. However, the
low energy density of the battery limits the application to
short travel distances of the vessel without recharging [6]. To
maintain the autonomous travel distance while decreasing the
emission output of a diesel-fuelled vessel, alternative fuels
gain more importance [5]. Alternative fuels for application
in internal combustion engines (ICE) or fuel cells (FC) have
been researched for integration into marine energy systems
in the past years [7]. However, both FC and hydrogen come
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with high costs, which can restrict their practical application.
A combination with diesel or alternatively fuelled ICE could
allow for cost- and energy-efficient operation at high loads. In
ICE, alternative fuels can significantly reduce emissions [8].

However, one problem of FC and batteries is the degrada-
tion of the components [9]. Health-aware control strategies
incorporate factors relating the component’s degradation to
the operation [10]. While the aspect of battery aging is
addressed quite frequently in the automotive industry [11],
the combination of FC and battery aging is a relatively new
field of research. Incorporating health-awareness into a multi-
objective problem that addresses cost and emissions further
complicates the control challenge. When integrating a dual
fuel system, the control mechanism faces a trade-off: opting
for diesel, a more cost-effective fuel that unfortunately results
in CO2 and NOx emissions, or for hydrogen, which, while
being emission-free, is costlier and accelerates the degrada-
tion of the FC. Furthermore, when integrating these power
sources with an energy storage system like batteries, one
gains the advantage of buffering against load variations and
achieving peak shaving. However, this integration concurrently
introduces an operational-dependent battery degradation as
an objective. Consequently, this situation results in a multi-
objective optimization problem requiring a real-time solution
to guarantee optimal vessel operation.

The current state of marine energy management research
rarely considers more than two objectives simultaneously.
Predominantly, these objectives are fuel consumption, viewed
as a primary cost determinant, and CO2 production, targeted
for emission mitigation. Some researchers also incorporated
battery aging [12] and FC aging [9]. However, some challenges
remain still unaddressed. One is the emission reduction, which
needs to consider other emissions besides CO2 as well due
to rising restrictions in many areas. NOx emissions are not
related to the SFC but to the local temperatures and air-fuel
mixture composition in the ICE, which are determined by
its operating point. However, the emission reduction aspect
gets more complex in a dual fuel scenario when the decision
is to be made between increased cost and degradation for
a zero-emission fuel in an FC and the emissions from an
ICE. The most optimal point of operation can vary between
different operation types and locations. This gap requires
further research.

Advanced control strategies have been extensively re-
searched for marine energy management. Among these, Model
Predictive Control (MPC) stands out as a notable approach for
improving energy efficiency in various application fields with
a predictable operating profile [13], including the maritime.
MPC can be used for energy management with various objec-
tives [14]. However, one major problem of MPC is the required
knowledge of the system [15]. Especially for vessels with a
high degree of uncertainty in the load profile, the application
of MPC is difficult. A promising advanced control strategy is
Equivalent Consumption Minimization (ECMS). ECMS has
garnered significant attention in automotive research. Owing
to analogous problem characteristics, it exhibits considerable

potential for application in the maritime sector.
The ECMS method is commonly employed to minimize

consumption between components such as engines, fuel cells,
and batteries. Significantly, ECMS’s can account for com-
ponent aging as an objective, as shown by Li et al. [16].
Intrinsically, ECMS correlates objectives via equivalent factors
for battery use within its objective function. This correla-
tion empowers the control mechanism to strike an optimal
balance among objectives of varying natures. ECMS serves
as a real-time control strategy, offering computational and
temporal efficiencies over the MPC. In a pioneering maritime
application, Kalikatzarakis et al. [17] have underscored the
fuel-saving capabilities of ECMS. Nevertheless, the holistic
integration of multiple objectives, encompassing emissions,
SFC, and component aging, remains an area warranting further
exploration.

In this study, we present a new approach that combines
two main innovations. First, we’ve created a multi-objective
optimization model that considers fuel consumption, CO2 and
NOx emissions, and the degradation of FC and batteries. Then,
building on this, we have developed a health-aware energy
management strategy. Based on ECMS principles, this strategy
aims to address the challenges posed by our optimization
model in real-time, especially for vessels running on dual fuel
in an all-electric mode.

II. MODELS DEVELOPMENT

The use case for this study is a fully electric yacht,
originally operating with 4 diesel-generator sets, which is
virtually retrofitted to the configuration displayed in Fig. 1.
Two generator sets are replaced by hydrogen-fuelled FCs
connected to the bus by DC/DC converters. The vessel is
operated using a DC-distribution system. Two battery packs
function as energy storage with a direct connection to the bus.
Two generator sets remain in the layout to provide the required
propulsive power, allowing for variable engine speed operation
due to the AC/DC conversion.

G

Propulsion Load Auxiliary Load

2.

3.

4.

1.

6.

1. Battery Pack

2. Large Diesel Engine

3. Generator

4. AC/DC Converter

5. Small Diesel Engine

6. DC Bus

7. Fuel Cell

8. DC/DC Converter

G
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Fig. 1. Retrofitted layout of the yacht
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TABLE I
CASE STUDY PARAMETERS

Parameter Description Value
VDC DC-bus voltage 800− 1000V
PEng Engine power rating (x2) 1430KWe
PFC FC power rating (x4) 217KWe
EBat Battery nominal capacity (x2) 2250KWh

ηAC−DC Conversion efficiency 0.98
ηDC−AC Conversion efficiency 0.98
ηDC−DC Conversion efficiency 0.98

ηm Motor efficiency 0.97
ηgb Gearbox loss 0.97
ηgen Generator efficiency 0.96

A. Component Modelling

The propulsion system is modelled using mathematical re-
lations of the steady-state behavior of the components or real-
world measurements. In the following, the component models
used are shortly introduced. The power system specifications
are summarized in Tab. I. For the battery, we use a Lithium-
Ion battery model based on Tremblay et al. [18], which we
scale to the required size for the case study vessel. The
battery is directly connected to the DC bus, which leads to
an indirect control based on the power balance of the system.
We model the ICE using maps for the SFC and the NOx
over rpm and power for the complete performance envelope.
Fig. 2 represents the SFC and NOx production maps. Notably,
while CO2 production exhibits a linear correlation with the
fuel consumed, the NOx formation is related to the engine’s
operating conditions and cannot be related to the SFC. The
engines are controlled with two parameters: the engine speed
in rpm and the requested power. Those two parameters can
be varied to use different operating points in the operational
envelope presented in Fig. 2.

For the retrofit, a proton-exchange membrane FC is chosen.
The FC is modelled after the publication of Souleman et
al. [19]. A single cell is modelled and later combined into a
stack of parallel and series cells of the required nominal power.
The size is chosen to replace the nominal power of two diesel
generators in the original vessel with four FC. The FC are
controlled using a power reference, With this power reference,
the required current, which is requested from the fuel cell, is
determined. The system is further characterized by constant
efficiencies for AC/DC (ηAC−DC), DC/AC (ηDC−AC), and
DC/DC (ηDC−DC) converters and the losses of motor (ηm),
gearbox (ηgb), and generators (ηgen). The values of the losses
were obtained from information from manufacturers.

III. CONTROL DEVELOPMENT

The ECMS control framework is developed as a 2-level
optimization. The first layer determines the optimal power
scheduling of the components, and the second layer optimizes
the operational points of the components in use. A set of vari-
ables describes the behaviour of the system in the controller.
The five states, eight controls, and some additional inputs and
parameters are shown in Tab. II.

Fig. 2. Specific fuel consumption map and NOx production map [20] of the
engines.

TABLE II
CONTROL VARIABLES AND PARAMETERS

Parameter Description Role
IEng Engine Current State x1

ILoad Requested Load Current State x2

IFC Fuel Cell Current State x3

IBat Battery Current State x4

SoCBat Engine Current State x5

PEng,i ith Engine Power Reference Control ui i ∈ {1, 2}
nEng,i ith Speed Reference Control ui i ∈ {3, 4}
PFC,j jth Fuel Cell Power Reference Control uj j ∈ {5, 6, 7, 8}
PProp Propulsion Load Input
PAux Auxiliary Load Input
VDC DC Voltage Input
VFC,i Fuel Cell Voltage Input
rCO2 Release Rate CO2 from Diesel Param.
ns Fuel Cell Cells in series Param.
F Faraday constant Param.
pD Price of diesel Param.
pH2 Price of hydrogen Param.
pBat Equivalent factor battery Param.
np Battery modules in parallel Param.
Qnom Battery nominal power Param.

The five states include the currents of sources and loads at
the DC bus and the SoC of one battery since the behaviour of
the batteries is identical due to the load sharing between them.
The eight controls include the two variables for each engine,
which are speed and power set points and the power set points
for each fuel cell. The five states are reported in Eq. 1.

x1 =
(u1 + u2) · ηgen

VDC
· ηAC−DC

x2 =
PProp · 1/ηgb · 1/ηm + PAux

VDC · ηDC−AC

x3 =
(u5 + u6 + u7 + u8)

VDC
· ηDC−DC

x4 = x1 + x3 − x2

x5 = x5n−1 +
1

2

∆t · x4

Qnom · np

(1)

Those references for the state variables need to be matched
by the controller’s states to enforce the similarity to the real
system. Objectives are defined to consider specific targets in
the optimization. First, the SFC and the NOx formation of the
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engines are related to the two control variables of each engine
using the SFC and NOx production map of Fig. 2, For engines
indexed by i ∈ {1, 2}, the relationships can be mathematically
expressed as:

SFCEng,i = f1(u2i−1, u2i) (2)
NOxEng,i = f2(u2i−1, u2i) (3)

where f1 and f2 denote functions representing the SFC and
NOx production rates, respectively.

With those references, the mass of diesel fuel consumed
(mD) and the emissions produced (mCO2 , mNOx) can be
determined as follows:

mD = SFCEng,1 · u1 + SFCEng,2 · u3 (4)
mCO2 = SFCEng,1 · u1 · rCO2 + SFCEng,2 · u3 · rCO2 (5)
mNOx = NOxEng,1 · u1 +NOxEng,2 · u3 (6)

where rCO2 is the release rate of CO2 from diesel during
combustion.

The mass of hydrogen utilized, mH2, can be determined
using the following relation:

mH2 =

(
4∑

i=1

u4+i

VFC,i

)
· ns

F
, (7)

where ns represents the number of cells in series within the
fuel cell stack, VFC,i denotes the voltage of the ith fuel cell,
and F is the Faraday constant.

According to Fig. 2, the SFC of the engines is not linear in
the engine envelope; therefore, we define an efficiency in the
following way

ηEng =
SFC− SFCmin

SFCmax − SFCmin
.

A. Objective Funtion Definition

To further diversify the control decision, we introduce four
additional objectives C. The first three objectives primarily
address the utilization of two distinct fuels (i.e., diesel and hy-
drogen) and batteries. Each objective correlates the consumed
fuel mass to a specific pricing factor reflective of the fuel’s
market value. Notably, the first objective, which focuses on
diesel consumption, incorporates the SFC relative to its opti-
mal value. Concurrently, the battery power is equated with an
equivalent factor, denoted as pBat. Finally, the fourth objective
is defined as the amount of NOx emissions produced. The
mathematical formulations of the four considered objectives
are presented in Eq. 8

C1 : mD · pD +
∑

ηEng,i

C2 : mH2
· pH2

C3 : PBat · pBat

C4 : mNOx

(8)

The objectives are normalized to compare objectives of differ-
ent natures.

The health of the FCs is taken into account by introducing
a lower limit at 20% of the load since degradation increases

and efficiency decreases below that limit due to starvation.
In addition, the high price of hydrogen acts as a prevention
against high currents on the FC and limits the degradation.

The battery health is taken into account by the battery objec-
tive, which penalizes the power output of the battery with the
equivalent cost factor. Furthermore, constraints are imposed
with boundaries to ensure that the operation remains between
20% and 80% of charge. The battery’s depth of discharge
(DoD) is also restricted to avoid excessive currents. This
limitation is represented by the penalty term cBat · (x4 − 0.5).

The scalarized objective function, also known as the cost
function, can be formulated by considering the four distinct
objectives of Eq. 8. Each objective has an associated weight
denoted by λi with the index i ∈ {1, 2, 3, 4}.

J(x,u) =
∑

λi · Ci, (9)

where x and u represent the state and control variables, as
reported in Tab. II.

B. Optimization Problem

Optimal vessel energy management is achieved by solving
a multi-objective optimization problem. In this context, the
objective function presented in Eq. 9 is enriched in two
significant ways. Firstly, it integrates the controller’s reference,
denoted as xref , which quantifies the deviations of the system’s
states from their desired or target values. Secondly, the objec-
tive function accounts for the DoD, indicating how much of
the rechargeable battery’s capacity has been utilized. The final
objective function is reported in Eq. 10.

J(x,u) = (x− xref) + DoD +
∑

λi · Ci, (10)

Several constraints characterize the minimization problem de-
scribed above. Foremost, we assert a power balance criterion,
ensuring equivalence between requested and generated power:

PLoad = PGen. (11)

Operational bounds of distinct components are considered as:

Olower ≤ O ≤ Oupper. (12)

Where O symbolizes the operational level of a particular com-
ponent with Olower and Oupper designating the respective lower
and upper operational confines. For the engine varieties under
consideration, their operational envelopes are demarcated by
nonlinear functions that prescribe both their upper and lower
thresholds:

flower,i(x) ≤ OEng,i ≤ fupper,i(x) (13)

In this expression, OEng,i represents the operational magnitude
of the ith engine, and flower,i(x) and fupper,i(x) are nonlinear
functions that respectively define the lower and upper opera-
tional perimeters.

Given the system dynamics and constraints, we aim to
determine the optimal control input, u(·|k)opt, that minimizes
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the objective function J . Formally, the optimization problem
can be articulated as:

Minimize: J(u(·|k))
s.t.:

xk+1 = f(xk,uk)

uk = uk−1 +∆uk

gin(xk,uk) ≤ 0

geq(xk,uk) = 0

(14)

where xk+1 represents the state at the next time-step as a
function of the current state, xk, and the current control, uk

which is the evolution of the control input, which is derived
by adjusting the control from the preceding time-step, uk−1,
by an increment, ∆uk.

The constraints ensure that gin is an inequality function
which, when evaluated with the current state and control,
should always be non-positive, and geq represents the equality
constraint which, for any valid state-control pairing, must
evaluate to zero.

The optimization problem of Eq. (14) has a non-linear and
non-convex objective and a series of non-linear constraints.
In order to solve this problem, different approaches can be
exploited [21]. A series of no-free-lunch theorems [22] ensure
that there is no way to choose apriori the best optimization
algorithms for a particular problem, and the only option is to
empirically test multiple approaches verifying which is actu-
ally the best one. Nonetheless, in this case, we decided to apply
Sequential Quadratic Programming (SQP) [23], supported by
the other scholars’ findings and results as reported in [24].
Moreover, based on the recent literature [25], this optimization
algorithm reasonably covers the most important approaches to
solving the optimization problem of Eq. (14). Since the starting
point influences the convergence of all these algorithms, we
employed a multi-start strategy [26]. In particular, as starting
points, we used 100 random points uniformly distributed in the
domain induced by the linear constraints of the optimization
problem of Eq. (14). The optimization methods have been
implemented using the Matlab 2023a environment.

It is worth noting that solving Eq. (14) for different values
of λi in [0, 1] allows for creating the so-called Pareto frontier
in a computationally efficient way [27]. For this, we create
a surface of feasible points between 0 and 1 for the four
objectives. As base criteria for the selection of the weights,
we use λ1 + λ2 + λ3 + λ4 = 1, which imposes the constraint
that the sum of all values is required to be 1 at all times. Those
objectives are the fuel used in the engine, the fuel used in the
FCs, the equivalent cost of the battery, and the produced NOx
emission. We optimize the minimization problem for every
point of the Pareto front and compare the objective function
value. As a first approach, we develop a holistic picking
scheme. We chose the set of weights with the overall lowest
objective function value for each step of the control. However,
we disregard edge points, in which relevant objectives are set
to zero.

The control is implemented as two-level optimization in a
hierarchical approach. The first level schedules the combina-
tion of power sources to provide the load demand of every step,
while the second level determines the exact operational points
of every component by solving the minimization problem. The
power source scheduling is based on the SOC of the batteries,
the load demand, and the solution of the minimization problem
for various constellations of power sources. The engines are
used when the load demand exceeds a certain threshold. The
controller takes the fluctuation of the load into account to
suppress the constant changing of the control variables.

IV. SIMULATION STUDY

The control is tested in a simulation study with an example
load profile and compared with a benchmark control. The
example load profile covers 4 h of operation, including times
with and without sailing. Fig. 3 shows the load profile, where
the auxiliary load is shown in red and the propulsion load in
blue.

A. Benchmark

First, to evaluate the performance of the optimization con-
troller, we develop a RBC as a benchmark. The RBC is
designed to focus on providing the required load by generation
scheduling while reducing the specific fuel consumption. For
this, the batteries are used both to buffer fluctuation in the
load and to allow the operation of the engines and FCs at fuel-
efficient setpoints set along the propeller curve of the engine,
which leads to the engine operating at fixed speeds. In Fig. 4,
the concept of the RBC scheme is depicted. The inputs are the
load demand of each step and the current SoC of the battery.
The battery mode changes between charge and discharge when
the SoC is approaching the lower or upper limit. The battery
limits are chosen to 20% and 80% SoC, as this has been shown
in practice to be beneficial for the lifetime. If no change of
the battery mode is required and the load variation does not
exceed 150 kW, the controller keeps the old set points for the
next step to avoid excessive changes to the control variables.
The set points of the engines and FCs are chosen to be the
most fuel-efficient and with regard to the battery mode, the

Fig. 3. Load Profile used for the Simulation Study
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Fig. 4. Schematic of the rule-based controller used as benchmark

generated power is either PLoad ≥ PSet or PLoad ≤ PSet. The
RBC focuses on using the FCs at low loads to minimize the
cost of hydrogen. We test the RBC on the load profile shown in
Fig. 3. For the comparison, we choose the same discretization
time as for the ECMS control, which is 5min. The smaller the
timestep for the discretization is, the more it will resemble the
real load profile shown in Fig. 3. Fig. 5 shows that the control
secures the power balance over the complete operational time.
It shows the balance of the currents of the three power sources
in the first subplot and the load demand and the provided
power in the second subplot. The RBC keeps the FC and the
engines at stable setpoints while the battery is used to buffer
for small changes in the load. The corresponding behaviour of
the battery is shown in Fig. 6. The left axis shows the SoC over
time, while the right axis displays the battery voltage. Since
the batteries are directly connected to the bus, the voltage is
also the voltage of the DC bus simultaneously.

B. ECMS Control

The performance of the ECMS controller is tested in a
similar manner to the benchmark. The control step size is
set to 5min. We assume the density of diesel according
to [28], the release rate of CO2 from fuel rCO2 [29], and
the price of the fuels for the control as shown in Tab. III.
In this study, we assume the battery operates at the point of
minimal fuel consumption of the engines to balance between
the power sources. With all those parameters, the controller
determines the values of the objectives and minimizes the
cost function. Another factor to carefully choose is the penalty
factor for the battery, which limits the DoD. A too-low factor
increases the degradation due to high gradients, and a too-high
factor will result in non-optimal use of the battery. This factor
should be investigated using a logarithmic scale to determine
a good choice between flexibility and health preservation.
In this study, we tested only a few choices and showcased

TABLE III
CONTROL PARAMETERS

Parameter Description Value
ρD Density diesel 0.838 kg/l

rCO2 CO2 release rate 2.7 tCO2/l
pD price diesel 0.7Euro/l
pH2 price hydrogen 9.4Euro/kg
pB battery equivalent cost 0.7Euro/l
cBat battery penalty 3
SoC0 Initial SoC 0.5

the performance of the presented controller using a factor
cBat = 3, as a proof of concept. A full study on the effect
of this parameter needs to be completed to be able to choose
it optimally.

V. RESULTS

Fig. 7 shows the power balance of the produced energy
and the required load, proving that the controller can provide
the required load at every time step demand utilising all
available power sources. Furthermore, the buffer inside the
controller manages to ensure a not-too-high fluctuation in
the control variables. Fig. 8 shows the corresponding DC
system voltage and the SoC of the batteries. The control
discharges the battery slowly allowing the FCs to operate a
very efficient low load point for low load demand. The main
propulsion load is provided using the engines, keeping the FCs
at comparably low loads. We see, that the discharge current
is not exceeding low values, which can have a beneficial
aspect for the lifetime. Furthermore, the ECMS controller
maintains the SoC within its respective limits. To assess our
control’s effectiveness, we compare the ECMS controller with
the RBC. We demonstrate the ECMS controller’s adaptability
by examining its performance across various scenarios, that
investigate the edges of the Pareto surface. The scenarios

Fig. 5. Current sharing and power balance using rule-based control. The
current colors indicate the power source (engines = red, FCs = orange, battery
= blue, load = dark green and light green = sum of produced power)
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Fig. 6. Battery SoC and DC system voltage using rule-based control. SoC is
shown in blue, Voltage in red.

TABLE IV
SCENARIO DESIGN

Scenario Diesel Hydrogen Battery NOx
λ1 λ2 λ3 λ4

SFC 0.3 0.7 0 0
NOx 0 0 0 1

and their respective weights are displayed in Tab. IV. The
first scenario takes into account the SFC for both fuels.
Because hydrogen is more expensive and stored in smaller
amounts than diesel, 30% focus is put on diesel and 70% on
hydrogen consumption, The choice of this ratio is based on a
small sensitivity analysis conducted beforehand. The second
scenario focuses only on the reduction of NOx emissions.
In the third scenario, we compare the holistically optimal
combination of objective weights determined with the Pareto
front presented in the previous section. The results of the tested
scenarios for the ECMS controller and the RBC are shown
in Tab. V. We compare five aspects: diesel consumption,
hydrogen consumption, CO2 production, NOx production, and

Fig. 7. Current sharing and power balance using ECMS. The current colors
indicate the power source (engines = red, FCs = orange, battery = blue, load
= dark green and light green = sum of produced power)
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Fig. 8. Battery SoC and DC system voltage using ECMS. SoC is shown in
blue and Voltage in red.

overall costs. We calculate the deviation from the RBC results
for each aspect to showcase the ECMS controller’s perfor-
mance on different objectives. We observe that the ECMS
controller’s performance differs between the scenarios, and
the results correspond to the focus of the objectives. A focus
on emission production results in an increase in hydrogen
consumption, a decrease in diesel consumption, and increased
fuel cost. The test of the NOx scenario shows that a drastic
decrease in NOx formation is possible by choice of engine
operation point and usage of more hydrogen. A focus on the
reduction of the consumed fuel results in decreasing hydrogen
and increasing diesel consumption, which the higher price
of hydrogen can explain. However, the test of this scenario
shows that it is hard to beat a well-designed RBC for a single
objective optimization. An increase in NOx formation can be
observed, as the objective is not prioritized in this scenario.

The Pareto front scenario results show an overall balanced
performance. While we see an increase in diesel consumption,
we still see a decrease of nearly 5% in the formation of NOx
emission, which can be related to the choice of the operational
point. In addition, the controller is able to save some hydrogen,
which results in only an increase of 7.36% of the overall cost.
In conclusion, the ECMS framework provides a stable trade-
off for different scenarios and acts as expected, as it is not
possible to minimize contradicting objectives all at the same
time. Moreover, with this ECMS framework, we allow users to
express their preferences and prioritize different aspects of the
operation. Finally, the penalty on the DoD of the batteries and
the continuous running of the FCs at a base load introduces

TABLE V
SCENARIO COMPARISON

Scenario Fuel Emission Cost
Diesel Hydrogen CO2 NOx

RBC 0.626 [t] 0.039 [t] 2.01 [t] 0.026 [t] 889.4 [AC]

SFC 0.773 [t] 0.034 [t] 2.49 [t] 0.03 [t] 967 [AC]
+23.4% -12.7 [%] +23.9 [%] +14.5 [%] +8.7 [%]

NOx 0.354 [t] 0.148 [t] 1.14 [t] 0.010 [t] 1684 [AC]
-43.5[%] +277 [%] -43.2 [%] -59.9 [%] +89.4 [%]

Pareto 0.758 [t] 0.034 [t] 2.44 [t] 0.025 [t] 954 [AC]
+21.1 [%] -12.7 [%] +21.6 [%] -4.7 [%] +7.4 [%]
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health-awareness into the control.

VI. CONCLUSION

This paper presented the first proof of concept of an
optimization-based control using equivalent consumption min-
imization for a multi-component vessel energy system. The
developed controller fulfills the required load demand and
stabilizes the system while considering the fuel consumption
of two different fuels and the produced NOx emissions. The
degradation of batteries and FCs was considered by choosing
operation limits and penalizing the use of the component,
introducing health-awareness into the control. The controller
was able to optimize between using the emission-free, but ex-
pensive hydrogen and less expensive, but emission-producing
diesel in three test scenarios. As a first step, we demonstrated
the application on a 4 h load profile from a real vessel and
showcase potential for flexible adaption of the performance
based on the choice of the weights of the multi-objective
problem. Future work will focus on implementing degradation
models for the batteries and fuel cells into the model and
the control strategy toward enhanced health-aware control. In
addition, a study of the DoD penalization should be conducted
to obtain insights on optimally choosing it. This also applies
to the choice of the equivalent cost of the battery use, which
could be chosen adaptively in the future. Furthermore, variable
component efficiencies are a way to improve the model’s
accuracy compared to the real system. In addition, the focus
can be set on developing an advanced selection scheme for the
Pareto front weights to highlight the potential of influencing
the control as an operator.
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