
Program Synthesis from Game Rewards Using FrAngel
Finding Complex Subprograms for Solving Minecraft

Alperen Guncan

Supervisors: Sebastijan Dumančić, Tilman Hinnerichs

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Alperen Guncan
Final project course: CSE3000 Research Project
Thesis committee: Sebastijan Dumančić, Tilman Hinnerichs, Wendelin Böhmer

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

Program synthesis has been extensively used for automating
code-related tasks, but it has yet to be applied in the realm of
reward-based games. FrAngel is a component-based program
synthesizer that addresses the aspects of exploration and ex-
ploitation, both important for the performance of a program
synthesizer. However, its specific implementation makes it
hard to study and extend. We first implement a generalized
version of FrAngel that takes arbitrary grammars and pro-
gram generators, while also generalizing most of its features
by redesign. We then use it to introduce a novel approach to
formulating a reward-based problem into an inductive spec-
ification. We integrate this algorithm within MineRL, an AI
framework for playing Minecraft. Lastly, we lay the ground-
work for using program synthesis for Minecraft by investi-
gating the ways of tuning the algorithm to generate complex
subprograms. By changing the configuration parameters, as
well as slightly changing the algorithm’s implementation, we
managed to observe a significant increase in the complexity
of fragments and generated programs. These modifications
are a stepping stone towards using program synthesis to solve
complex game tasks.

1 Introduction
The task of automatically generating programs based on user
requirements has always been of high interest to researchers
and software engineers alike. One of the more researched
methodologies is through program synthesis. This is where
a program automatically finds other programs that satisfy a
user specification. In its essence, program synthesis searches
over the space of all possible programs, usually called the
program space [1]. For each candidate in the space, it checks
if it passes the user’s specification. The specification can
take many forms, most commonly a list of examples out-
lining the program’s expected behavior [1].

While it has its applications in data processing and graph-
ics, program synthesis is mostly used for coding-related
tasks, like code repair, super-optimization, and automatic
code generation [1, pp. 15-34] [2]. The last application is es-
pecially sought after. The hope is that the process of writing
formally correct subroutines is fully automated. With cur-
rent advancements, there are already program synthesizers
that can generate programs for subsets of generic program-
ming languages, like C [3].

FrAngel is another program synthesizer that strives to gen-
erate generic programs, with a multitude of features [4].
FrAngel can reuse subprograms in future stages and prune
its search in smart ways. Its goal is to allow for the genera-
tion of complex programs with arbitrary control statements
and library functions [4]. However, the algorithm relies on
specific implementation details. They essentially hinder its
ability to be generalized. This makes it difficult to extend,
adapt to specific problems, and study as a whole. This is-
sue is common in the field of program synthesis - the lack
of standardized tooling for implementing and benchmarking
synthesis problems.

The paper firstly discusses how we generically re-
implement FrAngel with an existing library, namely
’Herb.jl’ [5]. This library aims to resolve the issue of non-
standardization in the field. It does so by generalizing some
aspects of implementing a program synthesizer, while also

standardizing others. We go over the changes made during
generalization and also mention additions to the algorithm.

We then apply this algorithm in the domain of playing
reward-based games. This type of research serves more than
philosophical curiosity. Research on artificial intelligence
in games drives advancements in optimization, reinforce-
ment learning, and decision-making. This lies in its ability to
push the boundaries of what is achievable by AI agents [6].
Prior research on program synthesis for games is limited,
mostly focusing on zero-sum games [7]. However, this ex-
cludes many other game types, including most single-player
and cooperative games. This paper explores a broader set
of reward-based games by applying the FrAngel synthesizer
to play Minecraft, an all-time best-seller sandbox game that
offers a diverse range of tasks [8].

The paper explores a novel problem formulation for play-
ing games with program synthesis. The program specifi-
cation for FrAngel needs to be remodeled to account for
reward-based specifications. They differ significantly from
the usual input-output examples by their properties. Further-
more, to fully utilize FrAngel’s capabilities, we need to de-
fine what constitutes a ’useful’ program and how to find
them. Ultimately, we apply our findings to generate com-
plex subprograms for solving Minecraft tasks. The research
examines how to tune FrAngel to achieve the goal of com-
plex program generation. Due to Minecraft’s rich environ-
ment, a program synthesizer must find complex solutions to
properly capture the task complexities.

To test the implementation, we integrate our synthesizer
with MineRL, the largest and most supported AI framework
for playing Minecraft [9]. We benchmark the base and tuned
models on MineRL and compare the complexity of gener-
ated programs and fragments across multiple configurations.

2 Background
A program synthesis problem is generally defined by two el-
ements: the specification that it needs to fulfill and the pro-
gram space to search over [1]. In its inception, the speci-
fications were formal and highly mathematical. Automatic
algorithm generation dates back to the 1930s, with Kol-
mogorov’s work on interpretable subprograms [10]. There,
programs are generated from formal proofs of the user’s
specifications. This approach of specification is called de-
ductive. This approach extracts the logic from formally cor-
rect proofs to generate useful programs. Although initially
it worked well, it ended up having a major issue. For more
complex programs, writing the formal specification is just
as difficult as writing the algorithm directly [1]. It takes high
mathematical prowess from the user to successfully write a
correct formal specification [2].

Inductive program synthesis
To address the issue of difficult specification, recent research
led to a new method of specifying behavior - an inductive
approach. This is the process of generating programs based
on a limited specification. The synthesizer induces the gen-
erally desired behavior, hence its name. The partial specifi-
cation is defined by input-output example pairs [1]. Unlike
deductive approaches, I/O examples are easy to use and flex-
ible, making it an effective approach to formalize program
behavior. The inductive approach dates back to the 1970s

1

when it was used to generate small LISP programs [11].
However, it has only recently gained recognition among re-
searchers [1]. One famous example is its use for the FlashFill
algorithm - the paper emphasizes its intuitive and simple de-
sign, along with its direct, tangible impact on the synthesizer
[12].

Syntax-guided synthesis
In inductive program synthesis, the structure of programs is
given by a grammar. Only recently Rajeev et al. [13] intro-
duced the use of syntactic templates to constrain the search,
directly provided by the user. It specifies the allowed syntax
and how programs are generated. By design, the programs
we generate are always syntactically correct. The grammars
can either be context-free, context-sensitive, or even proba-
bilistic. In the latter case, we specify the probability of pick-
ing each rule for generation.

Now that we have introduced the main elements of pro-
gram synthesis, we give a small example problem and a so-
lution. Let us say that we want to generate a linear function
as an expression. In Figure 1 we show the formulation of this
problem.

(x = 1)→ 3
(x = 2)→ 5
(x = 3)→ 7

(a) Input/Output specifi-
cation

1/2. Num = 1|2
3. Num = x
4. Num = Num+Num
5. Num = Num ∗Num

(b) Grammar for linear functions

+

*

2 x

1

(c) AST for 2x+ 1

4

5

2 3

1

(d) AST for 2x + 1 as
RuleNodes

Figure 1: A basic Program Synthesis Example

In (a), we specify the behavior inductively, by listing the
expected output for several inputs. In (b), we give the syntac-
tic specification, or grammar, that can be used to generate the
program. In (c) we show a solution to our I/O specification
as an abstract syntax tree. More generally, we represent the
tree with the grammar rule indices, as in (d). For instance,
note that the 4th rule is the addition of two numbers - the
topmost expression in (c). In this way, we can represent any
solution in a grammar-agnostic way. We call the nodes of
this tree rule nodes.

Enumerative search
Another variable in implementing a program synthesizer is
its search technique. This is how the algorithm looks for
candidates within the program space. Most commonly, this
is done through an enumerative search. This is a technique
that enumerates the program space in a certain fashion, and
checks the specification for each candidate. A naive search
would go over all possible programs. This is an intractable

problem, as candidates grow exponentially with their tree
size [1] [2]. The performance of a program synthesizer is
often summarized by how smartly it prunes its search, and
the quality of the candidates it finds.

The efficiency of a synthesizer is gauged by the balance
between its ability to explore and exploit its program space.
Exploration is its ability to find new good candidates in the
unexplored program space. Exploitation, on the other hand,
is its ability to augment new programs by reusing parts of
previous ones. A decent program synthesizer should have
features that address each of these challenges.

FrAngel
FrAngel is a modern component-based program synthesizer
that aims to generate highly complex and generic algorithms
[4]. A component-based program synthesizer is any syn-
thesizer that uses a set of libraries provided as its building
blocks for generating programs. FrAngel offers two key in-
novations to address the challenges of exploitation and ex-
ploration: fragments and angelic conditions.

Fragments are FrAngel’s way of reusing useful subpro-
grams. In each iteration, the generated program is checked
for whether it passes at least a single I/O pair. If it does, it is
deemed ”useful”, as it contains at least one sub-expression
that caused it to pass said test[s]. All such programs are re-
membered.

return

+

a foo!()

b c

(a) AST

a
b
c
foo!(b, c)
a + foo!(b, c)
return a + foo!(b, c)

(b) Mined fragments

Figure 2: An example of the fragment mining process.

On each iteration, we get all their subprograms in a pro-
cess called fragment mining. This process is showcased in
Figure 2 for the example program return a + b.foo(c).
The algorithm may modify the structure of each generated
program by replacing some subtrees with these fragments.
However, FrAngel does not store every program that passes
a single test. If two programs pass the same subset of tests,
they most likely share a similar [sub-] structure. Thus, to
maximize relevance, only the simplest program is remem-
bered.

Angelic conditions are FrAngel’s answer to exploration.
These are placeholder expressions that generalize control
statements to be resolved at the end. This allows FrAngel to
search over the program space more quickly. This, in turn,
helps it find useful expressions more often. Control state-
ments (if-statements and loops) have the strongest effect on
a program’s behavior. There is a big difference between, for
example, a loop being skipped, going for 20 iterations, or
running forever. As such, the algorithm does not try to re-
solve these statements on the first attempt. Instead, it puts

2

placeholders on these locations. This is shown as an exam-
ple in Figure 3 [4, Fig. 6]. During evaluation, the same pro-
gram is checked multiple times, by only changing the con-
trol statements.

Figure 3: An example angelic program with two conditions.

With both of these features, FrAngel is a powerful pro-
gram synthesizer that can generate multiline complex pro-
grams, with loops, conditional statements, and library func-
tions. We use this sophisticated synthesizer to tackle the do-
main of playing reward-based games.

3 Methodology
We first describe the issues of the existing implementation of
FrAngel. Then, we address and justify our decisions for gen-
eralizing the algorithm. Afterward, we modify the FrAngel
program synthesizer to be used for reward-based games. The
adaptation process has two main challenges - how we test
the generated program, and how we explore the game envi-
ronment for useful programs. After proposing a solution to
each, we delve into the final research question and describe
the experiments to be run.

Generalizing FrAngel
The original implementation of the algorithm, given in the
FrAngel repository [14] is written in Java, with many spe-
cific design choices. They make the algorithm difficult to
customize and study. The implementation has such issues in
most aspects of a program synthesizer - from its design of
the grammar to the generation of programs. We will go over
the three main conceptual subroutines and how we general-
ize each: program generation, fragment mining/storage, and
angelic conditions. A pseudo-code to summarize the gener-
alization on a high level is shown in Algorithm 1. Additions
and changes to the original algorithm have been highlighted
for simplicity. The rest is made to resemble the original as
closely as possible.

Probably the most significant issue is in the way the gram-
mar and programs are defined. In the original implemen-
tation, both of these are hard-coded into the solver. Ex-
pressions and statements are each implemented as sepa-
rate objects, combined with complex logic. This means it
is very difficult to extend the grammar and program struc-
tures. The solver provides only the minimal configuration
needed, namely the input/output parameters and allowed li-
brary functions. The algorithm cannot take any other gram-
mar than what is hard-coded; this heavily restricts its use
for problems better modeled with domain-specific languages
(like the one for Minecraft). We will let the user provide
the grammar and program generator (also called iterator in
’Herb.jl’) instead. This flexibility enables solving problems

Algorithm 1: Outline for generalized FrAngel - Herb.jl
Input: Grammar G, program iterator I, set of test cases C, angelic
conditions A
Output: The best-performing program P that passes the most tests
in C, or Nothing if no program was found to pass a single one
1: procedure FRANGEL(G, I ,C,A)
2: R← ∅ . A set of remembered programs
3: F ← ∅ . A set of fragments
4: V ← ∅ . A set of visited programs
5: S ← Nothing . Initialize state for iterator
6: B ← Nothing . Best partial solution
7:
8: AddAngelicRuleNode(G)

9: O ← AddFragments(G) . Store fragment rule offsets
10: repeat until timeout
11: P, S ← Iterate(I, S) . Generate & modify program
12: P ←ModifyAndReplace(P, F,O,G)

13: if using angelic this iteration then
14: P ← AddAngelic(P,G,A)

15: if P ∈ V then . Do not revisit a program
16: continue
17: T ← GetPassedTests(P,G,C)
18: if T = ∅ then . Check if it passes at least one test
19: continue
20: if P has an angelic condition then . Angelic
21: P ← ResolveAngelic(P, F,G, T, C,A,O)
22: if P still has an angelic condition then
23: continue
24: P ← Simplify(P,G, T) . Simplify program
25: T ← GetPassedTests(P,G,C)
26: if T = C then . Return if passes all tests
27: return P
28: else
29: B ← UpdateBestProgram(B,P, T)

30: if P is simplest to pass T then . Fragments
31: R← RememberPrograms(R,P, T, F,G)
32: F ←MineFragments(R)
33: if F is updated then
34: UpdateFragmentsInGrammar(G,F,O)

35: return B

with either generic or specific/domain-based grammar and
generators, all up to the user’s needs.

We then focus on the two main features of FrAngel - frag-
ments and angelic conditions. The obvious approach to im-
plementing fragments is to strictly follow the FrAngel spec-
ification - store all the fragments, and only consider using
them during program modification. However, it would im-
prove the performance, and provide more variety in gener-
ated programs, if they can be used by the program iterator
directly. With arbitrary grammars and iterators, it is non-
trivial to incorporate them into program generation. One op-
tion is to re-implement all existing iterators to optionally ac-
cept fragments. This is too costly in terms of development
and would over-complicate the design of program iterators.
Instead, we will add fragments directly into the grammar.
With this, all iterators can optionally use the fragments as
rules in the grammar. Most importantly, this enables more
diversity in generated programs.

The angelic conditions are also implemented quite
forcibly. In the original FrAngel, control statements have a
toggle field to determine if they are angelic. This bloats them

3

with data that is redundant in most cases (angelic conditions
seldom occur by the original spec). Furthermore, only some
statements have that toggle, so the locations are limited. We
can implement them by changing how programs are defined
in the core module. Yet, to avoid making changes to the en-
tire library, we decided to represent angelic conditions dif-
ferently. Similarly to fragments, we will have a rule in the
grammar. This will serve as a placeholder for angelic condi-
tions. Most importantly, this allows for putting angelic con-
ditions practically everywhere among the syntax tree of a
program. This leads to very flexible program evaluation and
generation. It also minimizes the changes that need to be
made for interpreting programs.

Extra additions/changes needed to be considered as well.
Currently, ’Herb.jl’ does not have the possibility of return-
ing code paths during interpretation - a required functional-
ity for angelic conditions. Furthermore, to play games more
efficiently, we will allow FrAngel to return partial solutions.
Finally, we have an important consideration regarding pro-
gram generation. Once we make the grammar user-defined,
it can range from very simple grammar with only a few
rules, to an extensive, or even Turing-complete language.
In the former’s case, program ”collisions” are very likely. It
means that a program may be generated and analyzed mul-
tiple times. Yet, if a program has been visited once, future
re-analysis cannot improve the state of the search. Our im-
plementation will keep track of visited programs during their
execution to avoid this redundant work.

Defining specification by reward
The main challenge in solving reward-based game tasks
with program synthesis is formulating the problem correctly.
With an inductive specification, it is unclear how the I/O
examples will be defined. A naive inductive specification
would not work on its own - to justify this, consider the
uniqueness of program solutions in either case.

In inductive program synthesis, the output remains the
same, specifically what the user specified with an example.
In contrast, reward-based game tasks can have numerous so-
lutions to the same task. A basic example is navigation -
the goal is static, while the path to reach it is not. In short,
there are potentially infinite programs, each generating its
path and altering the environment differently, but still solv-
ing the task. Furthermore, to check the generated programs,
we have to run them in the Minecraft environment and alter
the game state. This requires a different approach to testing,
as running and checking programs becomes a performance
bottleneck. We aim to minimize repeated evaluations. It is
also why we avoid angelic conditions in most experiments.

The method we use for creating a spec is by splitting the
maximal reward into segments. In turn, each one comprises a
separate test case. Then, the program is run in the Minecraft
environment, and the final reward is compared across all
tests. A program passes a test if its final reward is greater
than or equal to the test case’s specified reward. As such,
if the player completes the task, and acquires the maximal
reward, the program will pass all tests.

max reward = 50
percentage splits = [0.25, 0.5, 0.75, 1]
spec← CreateSpec(max reward, percentage splits)

As an example, the snippet above will result in a vector
of 4 IOExamples. Each has the starting player’s position as
input and for outputs - 12.5, 25, 37.5, and 50 respectively.

Exploring the game environment
It is also important to define how we are going to use the
programs that FrAngel generates. By extension, we need to
figure out how the environment will guide its search. Min-
eRL’s main source of information is through imaging/screen
information of the player. However, image processing tech-
niques are complex and out-of-scope, thus we only make use
of the numerical reward.

Given how complex MineRL tasks can be, it makes sense
to split the whole task into subtasks. The most natural way
of doing this is by ”checkpointing”. Here, this means we pe-
riodically store the state with the highest reward yet. With
that, we can force the player to start his search from there.
To incorporate FrAngel into MineRL, we will generate pro-
grams repeatedly while keeping track of the best-found state
so far. At the end, we make a checkpoint and start the next
iteration from the new position/state.

Generating complex subprograms for Minecraft
Finally, we will look into how FrAngel can be tuned to
generate complex subprograms to play Minecraft. In our
experiments, we consider one subprogram more complex
than another if its syntax tree is larger by the number of
nodes. This encapsulates complexity in the number of sub-
expressions. By extension, it also accounts for the individ-
ual sub-expression complexities. We will keep track of two
main metrics - the complexity of the generated programs,
and all fragments. Our goal is to tune FrAngel to generate
more complex programs and fragments, while not wrecking
performance.

We split the experiments into two types - ones that only
tweak the configuration of FrAngel and ones that change
its original specification or function. For the former, we fo-
cus on the fragments, since complex subprograms tie heav-
ily with exploitation. We will consider two types of config
changes, based on the ”quantity vs. quality” paradigm. Re-
spectively, they refer to changes in how large programs are,
and how often they are augmented with fragments. Then, we
turn our attention to the ”fragment mining” feature. Origi-
nally, FrAngel stores the simpler programs to resolve ties be-
tween candidates. We look into flipping this condition, with
the hope that storing the more complex programs will offer
a wider range of fragments and more complex programs. Fi-
nally, we consider the idea of changing the rule preference
of the algorithm to choose recursive grammar rules, like

Statement = (Statement;Statement)

more often. This forcibly makes FrAngel explore larger
programs.

4 Experimental Setup and Results
We first describe how we implement FrAngel within the
’Herb.jl’ library. Then, we introduce the experimental setup
for the last research question. Finally, for each experiment,
we describe our hypothesis and discuss the results.

4

Implementing generalized FrAngel
After the iterator has generated a program, we modify it
by following the original FrAngel specification: we modify
subtrees, look for replacements with new programs and frag-
ments, and add angelic conditions wherever possible. This
behavior can be configured with a ’config’ struct that is also
passed to the algorithm.

Once we add fragments to the grammar, we calculate the
probabilities for the grammar. We let the algorithm pick
fragments uniformly across the same type. To easily up-
date the grammar, we have two types of ’fragment rules’:
the identity-fragment rules, and the regular fragment rules.
The former interconnects fragments with their base type so
that they can be used interchangeably. An example for the
type :Num would be

Num = Fragment Num

The regular fragment rules map each fragment type to all
its fragment expressions and adjust their probabilities of se-
lection. For example, if we had the fragment ”5+x”, and its
return type is :Num, we would have the rule

Fragment Num = :(5 + x)

We provide a simple example of how the grammar would
look after an arbitrary iteration, in Figure 4. Right before
the first iteration, the grammar adds the identity fragment
rules. Now, let the set of remembered programs after an it-
eration be [(5 + x), (x == 3)]. We do not only add the full
expressions onto the grammar but also their complete sub-
programs. We mine fragments by taking the root expression,
and all its subsequent complete subprograms, while also ac-
counting for duplicates. In the above example, the variable
:x is used in both expressions, but only added once to the
grammar.

Base grammar


Num = |(0:10)

Num = (Num + Num) | (Num - Num) | x

Bool = (Num == Num) | (Num < Num)

Identity rules
{
Num = Fragment Num

Bool = Fragment Bool

Regular rules
{
Fragment Num = (5 + x) | 5 | x | 3

Fragment Bool = (x == 3)

Figure 4: An example grammar during an arbitrary FrAngel
iteration, modified with fragments (identity & regular rules).

For the angelic rule node placeholder, the algorithm ap-
pends the rule to the grammar automatically. Our implemen-
tation defaults to

Angelic = update angelic path

We ensure that the rule has zero probability, as it does not
have any true meaning outside of angelic execution. We pro-
vide an example of how angelic resolution and execution
work with an example. We assume the grammar in Figure 5,
similar to the one used for describing the fragments above,
extended with if-statements:

Let us say that the iterator generates a Program with two
if-statements, one nested within the other, and a return value
of 1. Assume both conditionals are replaced with angelic

Num = |(0:10)
Num = (Num + Num) | (Num - Num) | x
Num = (if Bool ; Num ; end)
Bool = (Num == Num) | (Num < Num)
Program = Num
Angelic = update_angelic_path

Figure 5: The grammar for our angelic example, with the
angelic rule node and conditional statements

placeholders. This program is represented as a syntax tree in
Figure 6. We also show all the intermediate steps of resolu-
tion and execution.

18

15

< hole > 15

< hole > 2

(a) Before resolution

18

15

19 15

17

14 6

2

(b) First resolution

18

15

17

2 14

15

17

14 6

2

(c) Fully resolved

Figure 6: An angelic expression’s state in our FrAngel

Initially, we add AbstractHole nodes where the an-
gelic condition would reside (a). During resolution, we at-
tempt to replace each hole with a Boolean expression, one
at a time (b). Right before an angelic evaluation, we re-
place all the remaining, unresolved holes with the angelic
rule node, which is RuleNode(19) for this grammar. We
repeat this process until we find replacements for all holes
(c). The distinction between holes and angelic rule nodes
is important, both for correctness and performance reasons.
This is because the domains of holes change every iteration
in which the grammar is updated with fragments. This indi-
rectly entails that equivalent programs with holes will have
different hashes, and will thus be revisited. Importantly, this
is the conceptually correct approach - non-angelic programs
offer no benefit when revisited, but angelic programs do. The
Bool replacements are randomly generated and thus may be
different on each visit.

Game environment and MineRL integration
The general algorithm that we use in MineRL to run pro-
gram synthesis is shown in 2.

This subroutine is run for every world seed, and FrAngel
seed (for randomization), for each experiment run sepa-
rately. The world seed is what Minecraft uses to generate the
in-game environment. Note that the I/O examples are gener-
ated anew on every iteration. The closer the task is to com-
pletion, the more of the initial tests are meaningless. This
is because a good checkpoint will already pass the first few
reward checkpoints. Thus, the specification ranges from the
current reward, instead of 0, to the goal’s reward.

For our experiments, the environment we focus on is

5

Algorithm 2: Running MineRL experiments with FrAngel
Input: World seed W, FrAngel seed R, MineRL config S
Output: A program P that achieves the task (equivalent to passing
the final test case in C)
1: procedure FRANGELWITHMINERL(W,R, S)
2: G,A← GetMinecraftGrammar()
3: I ← FrAngelIterator(R)
4: repeat until timeout
5: C ← GenerateSpec(S)
6: P ← FrAngel(G, I, C,A)
7: if P 6= Nothing then
8: if task is completed then
9: break

10: UpdateStartingPositionAndReward()

11: SaveData()

MineRLNavigateDenseProgSynth. It is a slightly
modified version of the original dense navigation task in
MineRL. The goal is to find a diamond block that is max-
imally 64 blocks away from the player. After each frame, a
reward is calculated. It is inversely proportional to the dis-
tance of the player to the goal. This is the reward used for
generating the specification.

The grammar we use for the experiments is listed below
in Figure 7. We use a helper function mc move! to general-
ize the player’s actions. More importantly, the grammar in-
cludes control statements to fully utilize FrAngel’s feature
set. Loops are especially useful. The player usually must
perform a pattern of actions repeatedly, like moving forward.
Fragments can capture this behavior (by extracting the loop
body as a subprogram). They can also store the conditional
expressions if useful, for example, moving until the player
is blocked (mc has moved).

Program = (state = mc_init(start_pos) ;
Stmt ; mc_end(state))

Stmt = mc_move!(state, Dir, Times,
Sprint, Jump)

Stmt = (Stmt ; Stmt)
Stmt = (if Bool ; Stmt ; end)
Stmt = (while Bool ; Stmt ; end)
Dir = (["forward"]) | (["back"]) | (["

left"]) | (["right"]) | (["forward",
"left"]) | (["forward", "right"]) |
(["back", "left"]) | (["back", "right
"])

Sprint = false | true
Jump = false | true
Times = 1 | 2 | 3 | 4
Bool = is_done(state) | mc_has_moved(

state) | mc_was_good_move(state) | !
Bool

Figure 7: The grammar used for the navigation task experi-
ments with MineRL

The hardware for running the experiments has an Intel
Core i7-8700k, and 32GB of RAM. For the FrAngel
seed, we stick to the same value for all tests to preserve re-
producibility - 1234. Finally, we describe the five Minecraft
world seeds used and a summarized description of what they

pose as a challenge to the player below:

6354 → ”Many trees. Small hill. Ocean on the way
and goal on island”,
958129 → ”Relatively flat. Some trees. Small cave
opening.”,
95812 → ”Big hole between start and goal. Small
hills. Many trees.”,
11248956 → ”Big cave forward. Reward increases
when entering cave. Goal not in cave.”,
999999→ ”Desert. No obstacles.”

Experiments and Results
The goal of the experiments is to find the configuration that
leads to the most complex programs and fragment pools. We
define complexity by the node size of the program’s syntax
tree. For the experiments, we run the algorithm across mul-
tiple configurations, based on the Cartesian product of all
selected values. For all the plots, two rules follow. On the y-
axis, we plot the average fragment complexity. Second, the
program complexity is only annotated next to the plots, or
mentioned in the legend.

Experiment 1 - ”Quantity” config changes
For the ”quantity” configuration experiment, we tune
max time, the maximal time FrAngel runs before timing
out, in seconds, and max size, the maximal size of gener-
ated programs, in the number of nodes. The hypothesis is
that larger sizes and larger times will increase complexity.
For the latter, we presume that larger times allow for more
exploration, and thus possibly finding larger programs.

(a) Experiment 1 - world 6354

(b) Experiment 1 - world 958129

Figure 8: Results of Experiment 1 - running each config-
uration 3 times. Selected few combinations are shown, to
demonstrate trends. On the x-axis, we have the normalized
time, from starting the synthesis to completing the task (or
timing out).

6

Let us first discuss a trend present across all experiments.
The complexity of fragments peaks in the middle of exe-
cution, shown with the thick pink trend lines. Initially, we
expected the most fragments to appear at the end since the
algorithm would have the most time to generate them. How-
ever, checkpointing significantly impacts this, since it recon-
siders its fragment set at each one. In a navigation task, when
checkpointing close to the goal, changes in movement di-
rection can drastically affect the player’s position. Often, it
leads to negative rewards and no mined fragments.

Regarding the results in Figure 8, the trend is clear:
lower max time and higher max size favor fragment
complexity. On the plot, we compare opposite configu-
rations max time and low max size. From the two,
max size impacts fragment complexity more positively
than max time. This is shown by the difference between
the yellow (midway) configs and the red (worst) ones. The
best configuration had over 30% higher fragment complex-
ity than the worst.

The effect of max size is expected - limiting the size
of programs necessarily limits their complexity. While the
prediction was wrong that high max time is better, con-
ceptually it still has merit. Instead of running the algorithm
longer for fragment exploitation, the environment does the
exploitation for us. Importantly, fragments are not carried
over between checkpoints. The context is different each
time, so they would not be relevant. Thus, prolonging the
search at one checkpoint does not help in the long run. In-
stead, starting from a new checkpoint resets the context,
and new relevant fragments can be found. We can conclude
that frequent checkpointing (smaller max time) and larger
program sizes increase the number and complexity of frag-
ments.

Experiment 2 - ”Quality” config changes
For configuring the quality of fragments, we focus on three
main parameters - use fragment chance, which deter-
mines the probability of including fragments into a gen-
erated program, use entire fragment chance, the
probability to entirely replace children in with fragments,
and gen prob similar new, the chance to instead re-
place them with a newly generated program. We hypothe-
size that excessively exploiting entire fragments, though it
makes programs more relevant for the checkpoint, will de-
crease their size and complexity.

We see that lower values are preferable for using frag-
ments. The former two’s top configurations have a 20% and
10% difference in fragment complexity to their worst con-
figs, respectively. Usually, fragments are smaller than newly
generated programs. However, they are generally more rele-
vant to the behavior of the program. Similarly, starting with
fragments (high use fragments chance) leaves fewer
options for modifications, so the ending programs will not be
as complex. As to gen prob similar new, the opposite
is observed. For this parameter, higher values tend to gener-
ate more complex fragments. We simply reverse our reason-
ing from earlier. Making it more likely to generate children
from scratch often leads to more complex modifications. For
the last feature, however, the results are not as definitive. For
instance, the program complexity is mostly the same across
configurations.

Figure 9: Experiment 2 - running each combination of fea-
tures 5 times, on world seed 958129, and then aggregating
the results by feature value. Here, we aggregate results based
on the modified feature. On the x-axis, for each feature, we
list the tested values.

To summarize, decreasing the use of fragments will in-
crease the size and complexity of programs. Smaller frag-
ments are simply more likely to be chosen. Each program
with subtrees of height n will have at least as many n -
1 sized subtrees - its direct descendants. Since most frag-
ments are 2- or 3-sized, the total complexity will be reduced
if we excessively exploit them. The trade-off here is that we
are sacrificing ”program relevance” by not using fragments.
In other words, we sacrifice exploitation for exploration of
larger replacements. This trade-off between complexity and
relevance is important for understanding the results.

Experiment 3 - Inverting fragment mining condition
For this experiment, we compare flipping the remem-
ber condition to store more complex programs, instead
of simpler ones. Furthermore, we compare this change
for the original FrAngel config and a tuned version of
the algorithm, based on the observations from the previ-
ous two experiments. Our tuned model uses the following
values: max size = 60, max time = 10, use fragment
chance = 0.3, use entire fragment chance = 0.3.
gen similar prob new is ignored, since the results
were not definitive in the second experiment. The goal is to
see if aggregating all performing features individually also
performs better. Furthermore, we want to know if flipping
the condition aids program complexity. We hypothesize that
this is indeed the case, for both subquestions.

Firstly, note how the tuned version significantly outper-
forms the original configuration by fragment complexities,
easily averaging a 25% improvement overall, and outper-
forms it by fragment complexities on all world seeds. Next,
note how the inverted configurations have much higher av-
erage fragment complexity. In most seeds, it is around a 2
node or 60% difference.

Naturally, larger stored programs imply larger fragments
mined. This change forcefully increases the average frag-
ment size during exploitation. Note, however, that the ”com-
plex” versions do not have statistically significant improve-
ment in program complexity. The inversion of the condition

7

Figure 10: Experiment 3 - running each combination 12
times, for each world seed.

only affects the mining process by implementation, after all.
We conclude that the tuned aggregated version and flipping
the remember condition indeed perform significantly better
(for the latter, only fragment complexity).

Experiment 4 - Recursive rule preference
For the last experiment, we look into giving preference
to recursive rules. Recursive rules map a single state-
ment to multiple other statements, e.g. :(Statement =
Statement ; Statement). Here, instead of forcing a
complex exploitation process like the last experiment, we fo-
cus on complex exploration. Here, we just add extra recur-
sive rules to the grammar. We define a ”recursive depth” pa-
rameter, which is the number of Statements on the right-
hand side. We hypothesize that the programs and fragments
will be more complex as a result of the recursive rules.

Figure 11: Experiment 4 - we consider recursive depths 2-
to-4, and running each 8 times, for each world.

Yet, this is the one experiment where results are unclear.
Having more recursive rules seemingly does not increase
program or fragment complexity. In some worlds, a depth
of 3 performs best, while in others, 4 does. There is an over-
performing configuration on World 95812 (the one with re-
cursive depth 4). However, interestingly the two versions
with smaller parameters managed to solve the task within
all tries, while the one only managed to solve the task once.
Thus, this is an outlier that is ignored in the conclusion.

No reasonable conclusion in favor of complex subpro-
grams can be drawn from this experiment. Presumably, it is
due to the high error rate of the programs with many state-
ments. If the program leads to a negative reward, it will not
be saved for fragments, after all. Furthermore, any modifi-

cations can nullify the recursive statements.

5 Responsible Research
The research paper was written, and all supplemental coding
was executed, with reproducibility in mind. This is so future
researchers have an easier time contributing to the challenge
of solving Minecraft with program synthesis.

The paper lays out our implementation of FrAngel in
pseudo-code, with changes highlighted. The ’Herb.jl’ li-
brary is open-source, with all the code publicly accessible
[5]. This includes the algorithm implementation, MineRL
integration, experiment setups, and the data collected. The
frangel branches in HerbSearch and HerbInterpret
contain the FrAngel implementation. All the code is docu-
mented with docs and inline comments. One may refer to the
frangel-with-minerl-exploit branch in HerbSearch for the
MineRL integration and experiments. The wiki page 1 under
the repository contains guides for setting up ’Herb.jl’, Julia,
and the MineRL environment. These guides have been tested
by multiple peers that work on the same module. The paper
describes the exact methodology for conducting the experi-
ments. Finally, we note that the hardware used for running
the tests can significantly impact the runtimes. It is up to the
reader to tune their expectations based on their testing sys-
tem in comparison to ours.

6 Conclusion and Future Work
This paper looked into the novel application of program
synthesis for non-zero-sum reward-based games, specifi-
cally Minecraft. The component-based program synthesizer
FrAngel was adapted to accept any grammar and program
generator. We model the inductive specification by splitting
the reward between the goal and the player. FrAngel then
selects the best partial solution to get closer to the goal. The
environment uses checkpointing, splitting the task into sub-
tasks to make the problem tractable to a synthesizer.

Experiments focused on tuning FrAngel to find complex
[sub-]programs, crucial for capturing task intricacies. The
first experiments examined configuration changes affect-
ing fragment generation and usage frequency. Configura-
tions favoring fewer fragments and more program genera-
tion yielded higher complexity. Then, we looked into slight
implementational changes in FrAngel. Forcing the agent to
store more complex programs for fragment mining will nec-
essarily result in more complex subprograms. However, us-
ing higher-depth recursion of statements did not improve
overall complexity.

This paper only lays the foundation for Minecraft program
synthesis. Yet, there are many things to be investigated. Most
importantly, the algorithm was only tested on the navigation
task. We strongly encourage others to test the algorithm on
other tasks, like chopping trees, building, mining for met-
als, etc. The visual element of the environment should also
be used, something that the current integration with MineRL
disregards. Once that is used, the synthesizer will certainly
find more general solutions, which can be reused for other
tasks, and perhaps be able to solve multiple tasks in succes-
sion.

1You can find the wiki pages here and here.

8

https://github.com/Herb-AI/HerbSearch.jl/wiki/Setup-and-Installation-Julia
https://github.com/Herb-AI/HerbSearch.jl/wiki/Install-Minecraft-Environment

References
[1] S. Gulwani, O. Polozov, and R. Singh, “Program syn-

thesis,” Foundations and Trends® in Programming
Languages, vol. 4, pp. 1–119, 01 2017.

[2] A. Solar-Lezama, Program synthesis by sketching.
PhD thesis, University of California at Berkeley, USA,
2008.

[3] X. Chen, D. Song, and Y. Tian, “Latent execution for
neural program synthesis,” 2021.

[4] K. Shi, J. Steinhardt, and P. Liang, “Frangel:
Component-based synthesis with control structures,”
CoRR, vol. abs/1811.05175, 2018.

[5] T. Hinnerichs and S. Dumancic, “Herb.jl: A library
for defining and efficiently solving program synthesis
tasks in julia,” 2024. GitHub repository.

[6] G. N. Yannakakis and J. Togelius, “A panorama of arti-
ficial and computational intelligence in games,” IEEE
Transactions on Computational Intelligence and AI in
Games, vol. 7, no. 4, pp. 317–335, 2015.

[7] J. R. Mariño and C. F. Toledo, “Evolving interpretable
strategies for zero-sum games,” Applied Soft Comput-
ing, vol. 122, p. 108860, 2022.

[8] Z. Boddy, “Minecraft crosses 300 million copies sold
as it prepares to celebrate its 15th anniversary,” 10
2023.

[9] G. William, “Minerl: Towards ai in minecraft; minerl
0.4.0 documentation — minerl.readthedocs.io.” https://
minerl.readthedocs.io/en/latest/index.html, 2020. [Ac-
cessed 03-06-2024].

[10] A. N. Kolmogorov, “Zur deutung der intuitionistischen
logik,” Mathematische Zeitschrift, 35, 58-65, 1932.
(Engl. Transl. in Mancosu P. (Ed.), pp. 328-334).

[11] A. W. Biermann, “The inference of regular lisp pro-
grams from examples,” IEEE Transactions on Systems,
Man, and Cybernetics, vol. 8, pp. 585–600, 1978.

[12] S. Gulwani, “Automating string processing in spread-
sheets using input-output examples,” in Proceedings of
the 38th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’11,
(New York, NY, USA), p. 317–330, Association for
Computing Machinery, 2011.

[13] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin,
M. Raghothaman, S. A. Seshia, R. Singh, A. Solar-
Lezama, E. Torlak, and A. Udupa, “Syntax-guided syn-
thesis,” in 2013 Formal Methods in Computer-Aided
Design, pp. 1–8, 2013.

[14] S. Kensen, S. Jacob, and L. Percy, “Frangel.” https://
github.com/kensens/FrAngel, 2018.

9

https://minerl.readthedocs.io/en/latest/index.html
https://minerl.readthedocs.io/en/latest/index.html
https://github.com/kensens/FrAngel
https://github.com/kensens/FrAngel

	Introduction
	Background
	Inductive program synthesis
	Syntax-guided synthesis
	Enumerative search

	FrAngel

	Methodology
	Generalizing FrAngel
	Defining specification by reward
	Exploring the game environment
	Generating complex subprograms for Minecraft

	Experimental Setup and Results
	Implementing generalized FrAngel
	Game environment and MineRL integration
	Experiments and Results
	Experiment 1 - "Quantity" config changes
	Experiment 2 - "Quality" config changes
	Experiment 3 - Inverting fragment mining condition
	Experiment 4 - Recursive rule preference

	Responsible Research
	Conclusion and Future Work

