

Delft University of Technology

From Requirements to Product: an MBSE Approach for the Digitalization of the Aircraft
Design Process

Bruggeman, A.M.R.M.; la Rocca, G.

DOI
10.1002/iis2.13107
Publication date
2023
Document Version
Final published version
Published in
INCOSE International Symposium

Citation (APA)
Bruggeman, A. M. R. M., & la Rocca, G. (2023). From Requirements to Product: an MBSE Approach for the
Digitalization of the Aircraft Design Process. INCOSE International Symposium, 33(1), 1688-1706.
https://doi.org/10.1002/iis2.13107

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1002/iis2.13107
https://doi.org/10.1002/iis2.13107

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

From Requirements to Product: an MBSE Approach for
the Digitalization of the Aircraft Design Process

Anne-Liza M.R.M. Bruggeman

Delft University of Technology

Faculty of Aerospace Engineering

Kluyverweg 1, 2629 HS, Delft

+31 15 278 5384

A.M.R.M.Bruggeman@tudelft.nl

Gianfranco La Rocca

Delft University of Technology

Faculty of Aerospace Engineering

Kluyverweg 1, 2629 HS, Delft

+31 15 278 5384

G.LaRocca@tudelft.nl

Copyright © 2023 by A.M.R.M. Bruggeman and G. La Rocca. Permission granted to INCOSE to publish and use.

Abstract. During the aircraft conceptual design phase, many different design options need to be

explored and compared in a short time frame. To speed up this process, efforts have been made in

the past decades to digitalize parts of the design process, with a focus on the automation of the repet-

itive and non-creative tasks inherent to the iterative design process. Whilst many of the newly devel-

oped methodologies focus on specific parts of the design process, a holistic model-based design

framework, incorporating the latest design technology developments, is lacking. To fill this gap, this

paper presents the latest version of the Design and Engineering Engine (DEE) framework, originally

proposed in the early 2000s and progressively matured through the experience of several international

research collaborations. The DEE enables the setup and execution of Multidisciplinary Design Anal-

ysis and Optimization (MDAO) problems for aircraft (sub)systems, leveraging the automated, rule-

based modeling capabilities offered by Knowledge-Based Engineering (KBE) and recent develop-

ments in the automatic formulation and integration of MDAO workflows. While the traditional

MDAO process focuses on a given product architecture, the DEE allows also architectural design

studies and makes use of Model-Based Systems Engineering (MBSE) principles to address the whole

design process, from requirements modeling up to the automatic verification of the requirements. In

practice, the DEE provides a single conceptual framework or template from which specific design

framework instances can be formulated and executed, according to the user’s needs. This paper de-

scribes the DEE architecture and its implementation concepts. Furthermore, it demonstrates the ap-

plication of the DEE template to four different scenarios, ranging from a simple requirement verifi-

cation study, up to the simultaneous synthesis and optimization of an aircraft system and its produc-

tion process, including multiple system architecture options.

Nomenclature

CAD = Computer-Aided Design

CMDOWS = Common MDO Workflow Schema

DEE = Design and Engineering Engine

DoE = Design of Experiments

FEM = Finite Element Method

GUI = Graphical User Interface

KADMOS = Knowledge- and graph-based Agile Design for Multidisciplinary Optimization

 System

mailto:G.LaRocca@tudelft.nl

KBE = Knowledge-Based Engineering

MBSE = Model-Based Systems Engineering

MDA(O) = Multidisciplinary Design Analysis (and Optimization)

MMG = Multi Model Generator

PIDO = Process Integration & Design Optimization

RVF = Requirement Verification Framework

XDSM = eXtended Design Structure Matrix

Introduction

During the conceptual design phase of a complex product, such as a complete aircraft or aircraft

subsystem, many different design options need to be explored and compared in a short time frame to

make proper design choices. However, the number of designs that can be evaluated at early design

stages is limited due to the manual, repetitive, and time-consuming tasks that are inherent to the

aircraft design process, especially considering the trend of increasing number of disciplines (e.g., to

address climate impact) and their fidelity level, already in conceptual design. Therefore, efforts have

been made in the last decades to develop methodologies that digitalize and automate parts of the

design process to reduce the development time and to enable the evaluation of more designs in early

design stages.

One of these methodologies is Multidisciplinary Design Analysis and Optimization (MDAO), which

brings together systems engineering principles and numerical optimization methods to connect dif-

ferent disciplines (e.g., aerodynamics, structures, production, etc.) and exploit their synergy to obtain

an optimal design from a holistic point of view. With MDAO, one can set up design workflows that

can automatically evaluate different design options against user-defined objectives and constraints.

This increases the number of design evaluations that can be performed in a given time frame (Flager

& Haymaker 2007) and enables a more efficient exploration of the design space. More what-if studies

can be performed, e.g. by setting up MDAO problems with different objectives, constraints or design

variables, thereby allowing designers to make better informed design choices.

However, setting up an MDAO workflow manually is a time-consuming and error-prone task (Flager

& Haymaker 2007). Furthermore, once the MDAO workflow has been properly set up, it may be

difficult to adapt, for example, to add or replace disciplinary analyses or change the optimization

problem formulation. Therefore, research has been performed into the automatic formulation and

execution of MDAO workflows (Gallard et al. 2018; Hoogreef 2017; Page Risueño et al. 2020; van

Gent & La Rocca 2019). Starting from a repository of tools, the full MDAO workflow can automat-

ically be formalized. By storing the formalized workflow in a standard data schema (for example as

proposed by (van Gent, La Rocca & Hoogreef 2018)), the workflow can be imported into a Process

Integration and Design Optimization (PIDO) tool to automatically materialize and subsequently ex-

ecute the workflow. This methodology makes the design process more agile and less error-prone, as

new studies can be set up automatically and existing design problems can be reformulated faster

without having to manually adapt the workflow.

Another methodology to accelerate the design process of complex products through the automation

of repetitive and non-creative tasks is Knowledge-Based Engineering (KBE). KBE provides a pow-

erful high-level programming language to formalize rule-based engineering design procedures and a

tight integration to a CAD kernel for the generation and manipulation of geometries. Using KBE,

designers can build software applications to automatically generate and flexibly configure complex

system architectures and their related disciplinary models (views), directly tailored to the needs of

external analysis tools. This can be achieved thanks to the so-called generative design capabilities of

KBE systems, which can fully automate the generation and modification of the system of interest

model, including its disciplinary views, all starting from a single data set, which can be edited by the

designer or an optimizer (La Rocca 2012). By using KBE, the time to create a model of a specific

system architecture is drastically reduced with respect to traditional CAD work (La Rocca 2012),

such that the evaluation of more design options in a given time frame as well as the exploitation of

MDAO is enabled.

Lastly, Model-Based Systems Engineering (MBSE) is a methodology that focuses on the digitaliza-

tion of the systems engineering process, where traditional document-based artifacts are replaced by

interconnected digital models. In a typical design problem, thousands of requirements need to be

taken into account. These requirements continuously change due to changes in design specifications

from the customer or changing markets (Mavris & Pinon 2012; Pernstål, Magazinius & Gorschek

2012). By using models to represent the system and the requirements, connections between the dif-

ferent elements are made explicit, making the system more transparent and facilitating change man-

agement. Furthermore, MBSE can be used to take the requirements automatically into account in the

design process, enabling the formulation of MDAO systems specifically defined to seek requirement-

compliant designs, thus enabling true design by requirements (Bruggeman et al. 2022).

While all the methodologies mentioned above contribute to the digitalization and automation of the

design process, each of them focuses on different parts of this process. Apart from the initiatives

addressed below in this paper, little research has been performed in combining these methodologies

into one holistic model-based design framework, which is scalable and suitable for collaborative

design; i.e., enabling different stakeholders to contribute with their needs, tools and expertise to a

design process systematically driven by requirement verification.

This paper addresses this gap by presenting the latest version of the Design and Engineering Engine

(DEE). Originally proposed in the early 2000s by (La Rocca & van Tooren 2007; La Rocca & van

Tooren 2009; Morris et al. 2004), the DEE is a conceptual framework continuously developed

through the experience and lessons learned from several international research collaborations, such

as MOB1, IDEALISM2, AGILE3, AGILE 4.04 and the currently running DEFAINE5 project. The

DEE enables the generation of use case specific computational design systems for MDAO. In its

latest version, it leverages recent developments in the automatic formulation and integration of

MDAO workflows, makes use of MBSE principles to address the whole design process from require-

ments modeling up to their automatic verification, and includes the product architecting phase in the

MDAO process.

The structure of the paper is as follows. First, an overview of the current version of the DEE is pro-

vided and a detailed explanation of its logical structure is given. Next, the current status of the DEE

technical implementation is discussed. As the DEE aims to be a general framework, its application

to a range of use cases is described, demonstrating its effectiveness to act as a blueprint for diverse

design studies. Lastly, the originality and useability of the DEE is discussed.

The Design and Engineering Engine

A diagrammatic representation of the current Design and Engineering Engine concept is shown in

Figure 1. The DEE is not a fixed computational framework, but a conceptual framework. Therefore,

it should be intended as a blueprint to derive specific architectures of design systems, integrated

according to the design case at hand, always starting from requirements modeling and finishing with

the generation of a design solution and related compliance report. Different instances of the DEE are

described later in this paper. Here below, a step-by-step description of the process shown in Figure 1

is provided.

1 https://cordis.europa.eu/project/id/G4RD-CT-1999-00172, accessed on: 24-04-2023
2 https://idealism.ifb.uni-stuttgart.de/, accessed on: 24-04-2023
3 https://www.agile-project.eu/, accessed on: 24-04-2023
4 https://www.agile4.eu/, accessed on: 24-04-2023
5 https://www.defaine.eu/, accessed on: 24-04-2023

https://cordis.europa.eu/project/id/G4RD-CT-1999-00172
https://idealism.ifb.uni-stuttgart.de/
https://www.agile-project.eu/
https://www.agile4.eu/
https://www.defaine.eu/

The process starts with the definition of the

top-level requirements for the system of in-

terest, e.g. an aircraft. A stakeholder analysis

is performed and from their needs, require-

ments are derived. Requirements can be di-

vided into several categories. The functional

requirement category includes requirements

that ‘specify a function that a system or sys-

tem component shall perform’ (International

Organization for Standardization 2017). The

functional requirements are used to derive

the so-called architectural design space

model.

The architectural design space consists of all

the possible logical architectures the system

of interest could have. It is modeled by con-

necting logical components to the functions

derived from the functional requirements.

One function can be fulfilled by multiple

components. In this case, a design choice

must be made, which leads to the definition

of different system architectures. Once a

component is introduced in the model, it usu-

ally induces new functions that must be ful-

filled by other components. An example of

an architectural design space is shown in Fig-

ure 2. More details and information on archi-

tecture modeling can be found in

(Bussemaker & Ciampa 2022).

Once the architectural model is complete, ar-

chitectural design choices must be made to

obtain one system architecture instance. The

architectural design choices can be made ei-

ther by the designer or by a computer during

the analysis or optimization of the logical sys-

tem architecture (Bussemaker et al. 2021). An

example of a selected system architecture is

shown in green in Figure 2. As soon as a

choice is made for a specific component, new

induced requirements, also called architec-

ture specific requirements, are introduced.

For example, choosing an electrical engine

will lead to different design requirements than

choosing a gas turbine.

After all top-level and architecture specific re-

quirements have been collected, verification

methods need to be selected for all non-func-

tional requirements. A verification method

consists of a means of compliance and a test

case. A means of compliance is defined as

Figure 2: System Architecting example for an

engine starting from the functional requirement

‘The engine shall provide power’. If multiple

components can fulfill the same function, an

architectural design choice has to be made. An

example of a system architecture instance derived

from this model is indicated in green.

Figure 1: Overview of the

Design and Engineering Engine framework (only

main connections shown for readability)

follows: ‘The agreement between the need stakeholder and the responsible stakeholder on how re-

quirement compliance will be shown’ (Bruggeman et al. 2022). The need stakeholder is the one from

whom the requirement is originating. The responsible stakeholder is the one who needs to show

compliance with the requirement. The means of compliance is materialized in test cases that are used

during the design process. A test case “consists of all the [system] models, analysis tools, and phys-

ical tests (including the required input and output variables) that are necessary to verify the compli-

ance of requirement given a fixed design” (Bruggeman et al. 2022). Examples of means of compli-

ance and test cases can be seen in Figure 3. More details and information on means of compliance

and test cases can be found in (Bruggeman et al. 2022).

Figure 3: Example of how the means of compliance and test cases are connected to the require-

ments and how the disciplinary tools are used to evaluate the system.

When all the requirements and their verification methods are known, a first estimate of the size of

the system needs to be made. In other words, a first estimation of the physical system architecture

needs to be made. This is achieved by using the Initiator (Figure 1), whose input consists of a selected

logical system architecture and its related requirements. The output is an (initial) set of values for the

parameters of the product model addressed below. The role of the Initiator can be taken by a compu-

tational tool implementing conceptual/preliminary design rules, as the one described by (Elmendorp,

Vos & La Rocca 2014), or directly by the designer, who proposes an initial product design, e.g.

derived from a previous project. Sometimes, an initial design cannot be generated for a given archi-

tecture and set of requirements, in which case an iteration of the previous DEE steps is required. A

different architecture may be selected or a request to relax some requirements can be proposed.

Based on the initial product parameters, a system model is created by the System Multi Model Gen-

erator. The System Multi Model Generator acts as the single source of truth from which the different

disciplinary views, or abstractions, can automatically be derived to feed the multidisciplinary analysis

process. Product views, such as the 3D geometrical representation of a wing outer surface, or the

FEM model of its internal structure, are required in the next step as input for the disciplinary tools.

The System Multi Model Generator can vary from a simple (analytically defined) parametric model

to a sophisticated KBE model to enable CAD-in-the-loop MDAO (Sobieszczanski-Sobieski, Morris

& Van Tooren 2015), as briefly mentioned in the Introduction section. In MDAO parlance, the com-

bination of the System Multi Model Generator and the disciplinary tools is addressed as the Multi-

disciplinary Design Analysis (MDA) block of the design system (see dashed contour in Figure 1).

The tools fed by the System Multi Model Generator are those required for the system analysis and

depend on the means of compliance and test cases agreed upon for the active set of requirements. As

is shown in Figure 3, tools that are part of the test cases are collected and used to evaluate the system.

A tool is thus only present in a DEE instance when needed to check or guarantee compliance with a

given requirement. Note that when physical tests or manual steps are part of the test cases, the design

process cannot be fully automated and will require designer intervention.

The result of the system analysis is passed to the Evaluator & Converger. The form of the evaluator

depends on the design study. When the goal is to optimize the design, the evaluator will take the form

of an optimizer. The formulation of the optimization problem is strictly dependent on the system

requirements, as each requirement is assigned a specific role in the MDAO problem formulation, e.g.

objective, constraint, design variable, design variable bound, input parameter or quantity of interest

(Bruggeman et al. 2022). Depending on the formulation of the MDAO problem, the optimizer can

change the design point for a given logical system architecture (i.e. perturb the initial design produced

by the Initiator), or even change the system architecture by making different architectural design

choices. In the latter case, also the architecture specific requirements change. As the disciplinary

tools are derived from the requirements, changing requirements can lead to different disciplinary

tools in the MDA. This requires a very flexible System Multi Model Generator, as it must adjust the

system model to the new system architecture and create different disciplinary views for the new set

of disciplinary tools. Furthermore, it requires a very flexible workflow management system to refor-

mulate the MDA and it requires specific optimization strategies to handle possible changes in the

design variables and constraints. MDAO workflows in which the design variables, constraints, and

disciplinary tools can vary based on the current design point are called dynamic workflows. Note that

the use of the DEE is not restricted to optimization studies only. DEE instances can be assembled to

formulate “simple” analysis workflows (MDAs) or perform parametric studies, e.g. based on some

Design of Experiments (DoE) strategy. In the latter case, the evaluator block feeds the MDA with

the different DoE points. A converger is present when multiple disciplinary tools are coupled and

thus depend on each other.

Once the optimization, DoE or design analysis is completed, the obtained design solution(s) are eval-

uated against the set requirements. A compliance report is generated, which shows for each require-

ment whether compliance has been achieved and with what margin, as well as the analysis tools used

to check the compliance (Bruggeman et al. 2022).

A key condition to enable the agile (re)con-

figuration of the DEE, such that different and

diverse design studies can be supported, is

the adoption of a central data schema

(Moerland et al. 2020; Nagel et al. 2012). All

elements in the DEE need to exchange data

with each other. To avoid having many spe-

cific interfaces between the different ele-

ments, a central data schema is used which

enables a plug-and-play approach for any

DEE component. As shown in Figure 4, each

element in the framework only needs to have

one interface with the central data schema

and, through that, can immediately communi-

cate with all other elements in the framework.

Figure 4 also indicates what kind of data each

element of the DEE exchanges with the cen-

tral data schema. Note that also the discipli-

nary views generated by the System Multi

Model Generator need to be translated to the

central data schema. Transferring highly spe-

cific and complex models (for example a

FEM model) to a central data schema might

Figure 4: A central data schema is used to let the

different elements of the DEE communicate with

each other. The figure indicates what kind of infor-

mation each element exchanges with the central

data schema

be very difficult or even impossible. Therefore, a node in the central data schema can also point to a

specific data set (e.g. a FEM model), stored outside the central data schema (Figure 4, bottom right).

The central data schema can take any form, as long as all the DEE elements use the same schema.

Implementation Concepts

While the previous section provided an overview of the DEE conceptual framework, introducing all

the components and steps involved in the overall design (and optimization) process, this section fo-

cuses on three of the implemented concepts and methodologies that effectively enable the digitaliza-

tion and automation of such a process, namely: modeling of the requirements, modeling of the system

architecture design space, and automatic formulation and execution of the MDAO workflows.

Requirements modeling

An important part of the DEE implementation is the

modeling of the requirements and associated ele-

ments, such as stakeholders, needs, means of compli-

ance, etc. Following the principles of MBSE, one

model is created that acts as the single source of truth

from which specific data and views can be extracted.

This model is represented by a graph as shown in the

center of Figure 5. A graph consists of nodes and

edges. The nodes represent the different elements (e.g.

stakeholders, requirements, disciplinary tools) and the

edges represent the connections between the different

elements (e.g. a need that originates from a stake-

holder). The use of a graph representation is conven-

ient to store, query and visualize data for inspection.

Attached to this model are several modules that inter-

act with the requirements graph.

The first is the input module (Figure 5, top left). The input module is a GUI that is used to add

information to the requirements graph. Within this GUI, the different elements, namely stakeholders,

needs, system of interest, requirements, means of compliance, test cases and disciplinary tools are

defined, together with their interrelationships. Furthermore, information related to the specific ele-

ments is given. For example, each requirement needs to be formulated according to a pattern to make

it machine-readable. This means that the requirement’s text is split up into small parts and each part

is assigned a specific meaning which is computer interpretable. More information on requirements

patterns and their utilization to automatically verify requirement compliance by means of a test case

can be found in (Bruggeman et al. 2022). At the moment, the input module consists of a simple Excel

spreadsheet, although any other software tool could be used.

The second module is the graph visualization module (Figure 5, top right). This consists of an inter-

active tool to inspect and visualize the requirement graph. The graph is exported into a GraphML

schema (Brandes et al. 2010) and then imported into the software tool yEd6 for visualization. Any

other software tool compatible with GraphML could be used as well. The benefit of the visualization

tool is that it allows the user to interactively navigate, and inspect the data attached to each element

in the graph and the relations between the different elements. This improves traceability and trans-

parency as one can see from which need and stakeholder a given requirement is originating and how

compliance can be shown, by means of what test cases. One can also extract the list of all the design

and analysis tools required for the design case at hand, where the presence of every single tool is

6 https://www.yworks.com/products/yed, accessed on: 28-04-2023

Figure 5: Overview of the requirements graph

and the modules that interact with the graph

https://www.yworks.com/products/yed

justified by its inclusion in at least one test case. An example of the graph visualization is shown in

Figure 6.

The third module is the requirements verification tool (Figure 5, bottom right). The requirement

verification tool is used to assess a specific system model against a set of requirements. To this pur-

pose, the disciplinary tools needed to check requirement compliance are extracted from the require-

ments graph, integrated into a simulation workflow, and executed to evaluate the system. The ac-

tual values of the system are compared against the target values specified in the requirements and

the compliance report is automatically generated. The compliance report (example in Figure 7) in-

dicates whether requirements are met and with what margin (called ‘Difference’ in Figure 7). In the

future, the report will also indicate the analysis tools involved in the compliance check.

The fourth, and possibly most distinctive module, is the one for automatic MDAO workflow formu-

lation & execution (Figure 5, bottom left). This module provides capabilities well beyond the “sim-

ple” assessment of requirement compliance: it formulates and executes an MDAO workflow aimed

at designing a system that meets its requirements at best. This module is explained in more detail

below.

Figure 7: Example of a compliance report (adapted from (Bruggeman et al. 2022))

Figure 6: Example of a requirement graph visualization and inspection using yEd

System architecture modeling

The system architecture can be modeled accord-

ing to the techniques described, for example, in

(Bussemaker & Ciampa 2022). By identifying the

functions a system must fulfill, adding compo-

nents to the functions, and determining the de-

rived functions from the components, an architec-

tural design space is built. Thereafter, individual

system architectures must be extracted from this

design space and fed to the subsequent sizing and

evaluation processes in the DEE. Therefore, the

system architecture model must be connected to

the requirements model. This is achieved by add-

ing a set of requirements to each component in the

system architecture model. As soon as one archi-

tecture is selected, the requirements attached to

each component of the given architecture become active as shown in Figure 8. A similar technique

can be used to configure the System Multi Model Generator, where different building blocks (e.g.

the High Level Primitives described in (La Rocca & van Tooren 2009)) are selected and combined

to compose the full system model.

Automatic MDAO Workflow formulation & execution

Once the system model and requirements model are built, the design study needs to be set up and

executed. This is achieved by using MDAO. A key step towards the formulation of the MDAO work-

flow consists of the assignment of “MDAO roles” to the different requirements by the user. MDAO

role options are constraint, objective, design variable, design variable bound, input parameter and

quantity of interest. Next, the disciplinary tools are collected from the requirements’ test cases and

connected, and the design variables, constraints, and objectives are formulated according to the roles

assigned to each requirement. This formulation process of the MDAO workflows based on require-

ment roles, means of compliance, and test cases is fully automated in the DEE.

In the current DEE implementation, the automatic formulation of the MDAO problem is provided by

KADMOS (van Gent & La Rocca 2019). KADMOS (Knowledge- and graph-based Agile Design for

Multidisciplinary Optimization System) is a graph manipulation system that makes use of the afore-

mentioned central data schema to connect all the tools in the repository into a user-selected MDAO

architecture. Once the MDAO problem has been formulated, it needs to be translated into an

Figure 8: Example of connecting system archi-

tecting to the requirements model. The green

blocks indicate the chosen system architecture

Figure 9: Example of an MDAO workflow automatically generated using KADMOS and translated

into an executable RCE workflow using CMDOWS

executable workflow. This is achieved by using CMDOWS (Common MDO Workflow Schema)

which is a proposed standard format to store and communicate MDAO workflows (van Gent, La

Rocca & Hoogreef 2018). The CMDOWS files generated by KADMOS can then be imported into a

Process Integration & Design Optimization (PIDO) tool, such as RCE7, OpenMDAO (Gray et al.

2019) or Optimus8, by means of dedicated translators. The complete executable workflow is then

automatically built (materialized), ready for execution. An example of a formulated workflow, for-

malized by means of an automatically generated XDSM representation (Lambe & Martins 2012),

and its executable counterpart integrated into RCE is shown in Figure 9.

Application of the Design and Engineering Engine

The DEE is a blueprint enabling the instantiation of different computational design systems, accord-

ing to the design case at hand. In this section, examples of possible instantiations are provided for

different use cases to demonstrate the flexibility of the proposed framework. The use case character-

istics are summarized in Table 1 and further explained in the following sections. Note that these use

cases are fictitious and show how the DEE can be applied in each of these scenarios.

Table 1: Overview of the different characteristics of four DEE use cases

 Use case 1:

Compliance

check

Use case 2:

Aircraft

synthesis

Use case 3:

Aircraft synthesis

and optimization

Use case 4:

Simultaneous design op-

timization of product

and production system

Architectural

modeling

No No Yes Yes

Architectural

modeling choices

made by

- - Designer Optimizer

Initiator capabil-

ity provided by

Designer Designer Empirical

relations

Empirical relations

Type of System

Multi Model

Generator

CAD model Analytical

parametric

model

KBE model System: KBE model

Production: Analytical

parametric model

Type of

disciplinary tools

Analysis

tools

Analysis and

sizing tools

Analysis, sizing,

and design opti-

mization tools

Analysis, sizing, and

design optimization tools

Evaluator &

Converger

None Converger Optimizer &

Converger

Optimizer & Converger

Dynamic

workflow

No No No Yes

7 https://rcenvironment.de/, accessed on: 21-04-2023
8 https://www.noesissolutions.com/our-products/optimus, accessed on: 21-04-2023

https://rcenvironment.de/
https://www.noesissolutions.com/our-products/optimus

Use Case 1: Requirements Compliance Check

The first use case entails the compliance check of a given aircraft design. In this case, the architecture

of the system of interest (the aircraft) is fixed and evaluated against the set requirements to check its

compliance. The DEE instance for this use case is shown in Figure 10. Both top-level and architecture

specific requirements are present. As the system architecture is fixed, the generation of the architec-

tural design space and related selection process are out of scope. The Initiator capability is provided

by the designer who is responsible for setting the values of the system parameters required by the

System Multi Model Generator, which is represented by a CAD model (see the corresponding block

in the XDSM, Figure 14). The goal of this use case is to check requirement compliance, therefore

only analysis tools are allowed in the MDA and no sizing or design tools, as they would alter the

system. Furthermore, there is no need for an evaluator or converger. The compliance check block in

Figure 14 compares the values computed by the MDA analysis tools with the values specified in the

requirements and generates the system compliance report.

Use Case 2: Aircraft Synthesis

The second use case focuses on the synthesis of a given aircraft configuration, starting from a set of

top level aircraft requirements. This means that, just as in the first use case, the aircraft architecture

is fixed and the architectural design space and design choices blocks are not present in this DEE

instance (Figure 11). The Initiator function is again provided by the designer who sets the initial

values for the system parameters (e.g. based on an existing reference aircraft). The System Multi

Model Generator is in this case represented by an analytical parametric model, i.e. a collection of

data and equations that describe the system shape and dimensions, without producing the actual ge-

ometrical models, like in CAD. Therefore, there is no System Multi Model Generator block present

in the XDSM shown in Figure 15. Even though the system architecture is fixed, both analysis and

sizing tools are present in the MDA. A converger is present to manage the couplings between the

various disciplinary tools. The process ends with the compliance check and the generation of the

compliance report.

Use Case 3: Aircraft Synthesis & Optimization

The third use case is about the conceptual design and optimization of an aircraft. The conceptual

design stage is characterized by analyzing different system architectures and performing trade-offs

to make proper design decisions. As shown in Figure 12, a system architecture design space model

is built and the designer is responsible for making architectural design choices. The Initiator is in this

case represented by a set of semi-empirical relations (aircraft conceptual design textbook methods)

to produce an initial system design. If the Initiator cannot find a feasible design solution, the designer

may have to revise his/her architectural design choices (or renegotiate the set of top level aircraft

requirements). For this use case, the aircraft system is modeled by means of a KBE application called

the MMG (Multi Model Generator), which needs to be sufficiently flexible to model many different

system architectures and, for each one, to generate the system views for the disciplinary tools in-

volved in the MDA. In this case, both analysis, sizing, and design optimization tools are present in

the DEE instance. The optimizer takes care of optimizing the given system architecture while guar-

anteeing compliance with the various requirements. Again, once the optimizer has reached conver-

gence, a compliance report is generated. As shown in the XDSM in Figure 16, the data for the com-

pliance check can come from the coordinator, optimizer, disciplinary tools, objective and/or con-

straints. This is because requirements can be taken into account differently in the optimization, e.g.

as design variable bounds, constraints or input parameters. Note that in this DEE instance, one system

architecture is sized and evaluated at the time, whereas the entire DEE workflow can be executed

multiple times for different system architectures, enabling multiple trade-offs. Alternatively, one

could configure a DEE instance where the optimizer is also responsible for the architecture design

choices, as discussed in the next use case.

Figure 10: Overview of the DEE for Use

Case 1: compliance check

Figure 11: Overview of the DEE for Use

Case 2: aircraft synthesis

Figure 12: Overview of the DEE for Use

Case 3: aircraft synthesis and optimization

Figure 13: Overview of the DEE for Use

Case 4: simultaneous aircraft and produc-

tion system design & optimization

Figure 14: XDSM of the DEE instance for Use

Case 1: compliance check
Figure 15: XDSM of the DEE instance for Use

Case 2: aircraft synthesis

Figure 16: XDSM of the DEE instance for Use Case 3: aircraft synthesis

and optimization

Figure 17: XDSM of the DEE instance for Use Case 4: simultaneous aircraft and production system

design & optimization. The manufacturing block in the left XDSM is a sub-workflow, whose lay-

out depends on the material choice: machining for metal (top right XDSM); hand layup for compo-

site (bottom right XDSM)

Use case 4: Simultaneous Aircraft and Production System Design &
Optimization

The last use case focuses on the simultaneous design of an aircraft and its production system. In this

case, multiple systems interact with each other. Therefore, two System Multi Model Generators are

present as shown in Figure 13. In this case, the aircraft is modeled using a KBE model (see MMG

block in Figure 17), while the production system is modeled using an analytical parametric model.

For both systems, a system architecture design space model is built and architectural design choices

are made. The starting point for the system architecture is chosen by the designer. However, during

the optimization, the optimizer is also allowed to make architectural design choices. Note that when

a different architectural design choice is made, different architecture specific requirements become

active, therefore different disciplinary tools will appear in the MDA. This means that the MDA needs

to dynamically adapt according to the design point proposed by the optimizer. The way this dynamic

workflow reconfiguration is tackled is shown in Figure 17. In this example, the manufacturing block

represents a sub-workflow, whose layout depends on the material choice. If the design variable spec-

ifying the structure material is set to metal, the machining sub-workflow is executed to evaluate the

manufacturing performance. When the design variable is set to composite by the optimizer, the hand

layup sub-workflow is triggered. Each sub-workflow includes the design and analysis tools specific

to the selected manufacturing approach, as required to guarantee compliance with the given manu-

facturing approach requirements.

Originality

Earlier publications have presented some of the concepts that have been implemented in the DEE

(e.g. (Bruggeman et al. 2022; van Gent & La Rocca 2019)). Furthermore, many tools, both commer-

cial as well as research tools, exist that can support the technical implementation of the DEE. Table

2 shows a non-exhaustive list of such tools, indicating which functionalities of the DEE they could

support. However, as becomes clear from Table 2, none of the tools support all functionalities pro-

vided by the DEE.

The DEE provides a bigger framework that explains how the functionalities of these tools can be

combined and how they complement each other, independent of the specific tools that are being used.

The DEE combines MBSE, MDAO and KBE, leveraging the benefits of each methodology. For

example, by using MBSE to model the requirements and their verification methods, the repository of

tools required to formulate the MDAO workflow can be established. Furthermore, by combining the

High Level Primitives of KBE with the system architecting process using MBSE, one can more easily

obtain the system model that is required as an input for the MDAO process.

Another novelty of the DEE is that it explains how different systems of interest can be simultaneously

designed while keeping track of the different requirements that each system of interest puts on the

other system. For example, the current state of practice is that the producibility of a system is evalu-

ated after the product design has been made. As shown previously in use case 4, the DEE indicates

how the product and production process can be designed simultaneously by using different require-

ment databases, which automatically become active or inactive based on the current design choices.

This increases the flexibility as one can more easily perform what-if scenarios with different produc-

tion processes while staying compliant with the different production specific requirements. Further-

more, it increases the transparency and traceability of the design process as it becomes clear why

certain requirements have been taken into account and how.

Table 2: Non-exhaustive list of commercial and research tools that can support functionalities of

the DEE (to the best of the authors’ knowledge)

 Requirement

Management

Automatic

Requirement

Verification

System

Architecting

MDAO

Workflow

Formulation

MDAO

Workflow

Execution

Commercial Tools

IBM Doors9 ✓ - ‒ ‒ ‒

Jama Connect10 ✓ ✓ ‒ ‒ ‒

Dassault Systèmes

(3DExperience11)
✓ ✓ ‒ ‒ ✓

Siemens (Polarion12

+ Heeds13)
✓ ‒ ‒ ‒ ✓

Noesis Solutions

(Optimus14)
‒ ‒ ‒ ‒ ✓

Research Tools

RVF

(Bruggeman et al.

2022)

✓ ✓ ‒ ‒ ‒

CCM

(Raudberget,

Edholm &

Andersson 2012)

‒ ‒ ✓ ‒ ‒

ADORE

(Bussemaker,

Boggero & Ciampa

2022)

‒ ‒ ✓ ‒ ‒

KADMOS

(van Gent & La

Rocca 2019)

‒ ‒ ‒ ✓ ‒

InFoRMA

(Hoogreef 2017)
‒ ‒ ‒ ✓ ‒

MDAx

(Page Risueño et al.

2020)

‒ ‒ ‒ ✓ ‒

Gemseo

(Gallard et al. 2018)
‒ ‒ ‒ ✓ ✓

OpenMDAO

(Gray et al. 2019)
‒ ‒ ‒ ‒ ✓

RCE

(Boden et al. 2021)
‒ ‒ ‒ ‒ ✓

DEE ✓

RVF

✓

RVF

✓

TBD15

✓

KADMOS

✓

Optimus

9 https://www.ibm.com/docs/en/ermd/9.7.0?topic=overview-doors, accessed on: 21-04-2023
10 https://www.jamasoftware.com/platform/jama-connect/, accessed on: 21-04-2023
11 https://www.3ds.com/3dexperience, accessed on: 21-04-2023
12 https://polarion.plm.automation.siemens.com/, accessed on: 21-04-2023
13 https://plm.sw.siemens.com/en-US/simcenter/integration-solutions/heeds/, accessed on: 21-04-2023
14 https://www.noesissolutions.com/our-products/optimus, accessed on: 21-04-2023
15 The requirements for the system architecture functionality of the DEE have been identified. However, no choice has

yet been made with regard to the tool to be used.

https://www.ibm.com/docs/en/ermd/9.7.0?topic=overview-doors
https://www.jamasoftware.com/platform/jama-connect/
https://www.3ds.com/3dexperience
https://polarion.plm.automation.siemens.com/
https://plm.sw.siemens.com/en-US/simcenter/integration-solutions/heeds/
https://www.noesissolutions.com/our-products/optimus

Useability of the Design and Engineering Engine

An implementation of the DEE is currently under development at the Delft University of Technology.

While some parts are already available, others are still under development, like the dynamic work-

flows and system architecting part. The bottom row of Table 2 indicates the tools that are currently

being used for the implementation of the DEE. Except for Optimus, all tools are being developed by

the Delft University of Technology. For the automatic formulation and execution of workflows,

KADMOS, CMDOWS and Optimus are being used. KADMOS16 and CMDOWS17 are freely avail-

able and open-source. The Requirements Verification Framework (RVF) is being developed in col-

laboration with GKN Fokker and is therefore not freely available.

Making an explicit quantification of the benefits and useability of the DEE is challenging as it de-

pends on the use case to which it is applied. However, earlier research performed by (Hoogreef 2017;

Kulkarni, Hoogreef & La Rocca 2017) showed that the automated formulation of MDAO workflows

was 90-97% faster than setting up the same workflows manually for several use cases. Other research

has found a 40% time reduction for the formulation and integration of collaborative MDAO work-

flows (Ciampa et al. 2019). Furthermore, previous research found that the main benefits of automa-

tion and digitalization are the reduction of errors made during the setup of the design problem

(Kulkarni, Hoogreef & La Rocca 2017). Application of the RVF as described by (Bruggeman et al.

2022) showed improved traceability from requirements to product design, as it shows how the design

problem was formulated and what tools were used to achieve requirement compliance. Based on

these results, similar benefits and results can be expected for the DEE.

The DEE makes use of fixed templates and patterns with which all elements must comply. For ex-

ample, all disciplinary tools need to communicate with each other through the central data schema,

all requirements need to be formulated according to specific patterns and all requirements need to be

verified either through derived requirements or through means of compliance and test cases. There-

fore, the expectation is that the effort to set up an initial DEE instance will increase compared to the

current state of the art, as similar results were found when MDAO was introduced in the design

process (Flager & Haymaker 2007). Furthermore, due to the many concepts and tools involved in the

DEE, there will be a big learning curve and it will require a change in mindset. However, once the

entire framework has been set up, it will be easier to perform a wide variety of design studies. More-

over, once certain elements (e.g. requirements or disciplinary tools) are formulated according to the

fixed templates and patterns, they can easily be reused in different design studies.

Conclusions and Outlook

A flexible, transparent, traceable, and fast design process is crucial in the conceptual aircraft design

phase to compare different design options and to come up with the best design according to the

stakeholders’ needs. For the past few decades, research has focused on the digitalization and auto-

mation of the design process, specifically focusing on the repetitive and time-consuming tasks inher-

ent to the aircraft design process. However, these developments focus on specific parts of the design

process. At present, a framework that combines all these developments is lacking.

The Design and Engineering Engine framework discussed in this paper aims at filling this gap by

providing a flexible, reconfigurable conceptual framework or template to cover the entire design

process, starting from the definition and formulation of requirements, through the system architect-

ing, design, and optimization, until the automatic verification of requirements. The first version of

the DEE was presented 20 years ago and since then has continuously evolved through the experience

acquired in several international collaboration projects. In its current state, the DEE combines the

16 https://gitlab.tudelft.nl/lr-fpp-mdo/kadmos, accessed on: 28-04-2023
17 https://gitlab.tudelft.nl/lr-fpp-mdo/cmdows, accessed on: 28-04-2023

https://gitlab.tudelft.nl/lr-fpp-mdo/kadmos
https://gitlab.tudelft.nl/lr-fpp-mdo/cmdows

principles of MBSE with the design automation capabilities offered by KBE and MDAO. By mod-

eling the requirements and their verification methods using graph theory, not only a single source of

truth is created, but also multiple visualizations can be created, increasing the transparency and trace-

ability of the requirements. From the requirements, complex MDAO workflows can automatically

be generated, using the latest developments in automatic MDAO workflow formulation and integra-

tion. By combining the system architecting process with KBE, robust configurable system models

can be created just starting from a list of parameters and multiple disciplinary views can automatically

be generated, thus enabling CAD-in-the-loop MDAO. Furthermore, the DEE is scalable and suitable

for collaborative design as multiple experts can contribute with their own tools due to the plug-and-

play methodology, without having to install all tools on one machine.

Many different types of design studies can be formulated using different instantiations of the same

DEE template. By removing or adapting elements, very different design cases can be addressed,

ranging from simple requirement verification to multidisciplinary optimization including design ar-

chitecture changes. Four exemplary use cases were described in this paper to show the flexibility and

generality of the proposed design framework.

A full technical implementation of the DEE is under development. The next developments are focus-

ing on the dynamic workflow capabilities addressed in the 4th use case in this paper. The objective is

to let the MDAO workflow change based on the design point at hand: both disciplinary tools, as well

as design variables, constraints, and objectives, can change if the system architecture is changed. At

the moment, no consolidated methodologies exist to adapt the MDAO workflow during execution.

Furthermore, the connection of dynamic workflows with system architecting will be developed, fo-

cusing on the activation of architecture specific requirements based on architectural design choices.

Acknowledgments

The research presented in this paper has been performed in the framework of the AGILE4.0 (Towards

Cyber-physical Collaborative Aircraft Development) and DEFAINE (Design Exploration Frame-

work based on AI for froNt-loaded Engineering) projects and has received funding from the European

Union programs Horizon 2020 (grant agreement n° 815122) and ITEA 3 Call 6 project 19009.

References

Boden, B, Flink, J, Först, N, Mischke, R, Schaffert, K, Weinert, A, Wohlan, A & Schreiber, A 2021,

'RCE: An Integration Environment for Engineering and Science', SoftwareX, vol. 15,

Brandes, U, Eiglsperger, M, Lerner, J & Pich, C 2010, 'Graph Markup Language (GraphML)', in

Handbook of graph drawing and visualization, Chapman & Hall.

Bruggeman, AMRM, van Manen, B, van der Laan, T, van den Berg, T & La Rocca, G 2022, 'An

MBSE-Based Requirement Verification Framework to support the MDAO process,' AIAA

Aviation 2022 Forum,

Bussemaker, J, Boggero, L & Ciampa, PD 2022, 'From System Architecting to System Design and

Optimization: A Link Between MBSE and MDAO,' 32nd Annual INCOSE International

Symposium, 343-359.

Bussemaker, JH & Ciampa, PD 2022, 'MBSE in Architecture Design Space Exploration', in

Handbook of Model-Based Systems Engineering, pp. 1-41.

Bussemaker, JH, De Smedt, T, La Rocca, G, Ciampa, PD & Nagel, B 2021, 'System Architecture

Optimization: An Open Source Multidisciplinary Aircraft Jet Engine Architecting Problem,'

Aiaa Aviation 2021 Forum,

Ciampa, PD, Prakasha, PS, Torrigiani, F, Walther, J-N, Lefebvre, T, Bartoli, N, Timmermans, H,

Della Vecchia, P, Stingo, L, Rajpal, D, van Gent, I, La Rocca, G, Fioriti, M, Cerino, G, Maierl,

R, Charbonnier, D, Jungo, A, Aigner, B, Anisimov, K, Mirzoyan, A & Voskuijl, M 2019,

'Streamlining Cross-Organizational Aircraft Development: Results from the AGILE Project,'

AIAA Aviation 2019 Forum,

Elmendorp, R, Vos, R & La Rocca, G 2014, 'A Conceptual Design and Analysis Method for

Conventional and Unconventional Airplanes,' 29th Congress of the International Council of

the Aeronautical Sciences (ICAS),

Flager, F & Haymaker, J 2007, 'A Comparison of Multidisciplinary Design, Analysis and

Optimization Processes in the Building Construction and Aerospace Industries,' 24th

International Conference on Information Technology in Construction

Gallard, F, Vanaret, C, Guénot, D, Gachelin, V, Lafage, R, Pauwels, B, Barjhoux, P-J & Gazaix, A

2018, 'GEMS: A Python Library for Automation of Multidisciplinary Design Optimization

Process Generation,' 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and

Materials Conference,

Gray, JS, Hwang, JT, Martins, JRRA, Moore, KT & Naylor, BA 2019, 'OpenMDAO: an open-source

framework for multidisciplinary design, analysis, and optimization', Structural and

Multidisciplinary Optimization, vol. 59, no. 4, pp. 1075-1104.

Hoogreef, MFM 2017, Advise, Formalize and Integrate MDO Architectures, PhD thesis, Delft

University of Technology.

International Organization for Standardization 2017, ISO/IEC/IEEE 24765 - Systems and software

engineering - Vocabulary,

Kulkarni, AR, Hoogreef, M & La Rocca, G 2017, 'Combining semantic web technologies and KBE

to solve industrial MDO problems,' 18th AIAA/ISSMO Multidisciplinary Analysis and

Optimization Conference,

La Rocca, G 2012, 'Knowledge based engineering: Between AI and CAD. Review of a language

based technology to support engineering design', Advanced Engineering Informatics, vol. 26,

no. 2, pp. 159-179.

La Rocca, G & van Tooren, MJL 2007, 'Enabling distributed multi-disciplinary design of complex

products: a knowledge based engineering approach', Journal of Design Research, vol. 3, no. 5,

pp. 333-352.

——— 2009, 'Knowledge-Based Engineering Approach to Support Aircraft Multidisciplinary

Design and Optimization', Journal of Aircraft, vol. 46, no. 6, pp. 1875-1885.

Lambe, AB & Martins, JRRA 2012, 'Extensions to the design structure matrix for the description of

multidisciplinary design, analysis, and optimization processes', Structural and

Multidisciplinary Optimization, vol. 46, no. 2, pp. 273-284.

Mavris, D & Pinon, O 2012, 'An Overview of Design Challenges and Methods in Aerospace

Engineering', in Complex Systems Design & Management, Springer, pp. 1-25.

Moerland, E, Ciampa, PD, Zur, S, Baalbergen, E, Noskov, N, D'Ippolito, R & Lombardi, R 2020,

'Collaborative Architecture supporting the next generation of MDAO within the AGILE

paradigm', Progress in Aerospace Sciences, vol. 119,

Morris, A, Arendsen, P, La Rocca, G, Laban, M, Voss, R & Hönlinger, H 2004, 'MOB - A European

Project On Multidisciplinary Design Optimisation,' 24th International Congress of the

Aeronautical Sciences (ICAS),

Nagel, B, Böhnke, D, Gollnick, V, Schmollgruber, P, Rizzi, A, La Rocca, G & Alonso, JJ 2012,

'Communication in Aircraft Design: Can We Establish a Common Language?,' 28th

International Congress of the Aeronautical Sciences (ICAS),

Page Risueño, A, Bussemaker, J, Ciampa, PD & Nagel, B 2020, 'MDAx: Agile Generation of

Collaborative MDAO Workflows for Complex Systems,' AIAA Aviation 2020 Forum,

Pernstål, J, Magazinius, A & Gorschek, T 2012, 'A Study investigating Challenges in the Interface

Between Product Development and Manufacturing in the Development of Software-Intensive

Automotive Systems', International Journal of Software Engineering and Knowledge

Engineering, vol. 22, no. 7, pp. 965-1004.

Raudberget, D, Edholm, P & Andersson, M 2012, 'Implementing the principles of Set-based

Concurrent Engineering in Configurable Component Platforms,' NordDesign 2012,

Sobieszczanski-Sobieski, J, Morris, A & Van Tooren, MJL 2015, Multidisciplinary design

optimization supported by knowledge based engineering, John Wiley & Sons.

van Gent, I & La Rocca, G 2019, 'Formulation and integration of MDAO systems for collaborative

design: A graph-based methodological approach', Aerospace Science and Technology, vol. 90,

pp. 410-433.

van Gent, I, La Rocca, G & Hoogreef, MFM 2018, 'CMDOWS: a proposed new standard to store

and exchange MDO systems', CEAS Aeronautical Journal, vol. 9, no. 4, pp. 607-627.

Biography

Anne-Liza M.R.M. Bruggeman. Ir. A.M.R.M. (Anne-Liza) Bruggeman

holds an MSc and BSc in Aerospace from the Delft University of Technol-

ogy and is currently a PhD Candidate in the section of Flight Performance

and Propulsion at the same university. Her doctoral research focuses on a

new methodological approach to enable design for manufacturing in early

design stages, using MBSE, MDAO and KBE.

Gianfranco La Rocca. Dr.ir. G. (Gianfranco) La Rocca holds an MSc in

Aerospace Engineering from the University of Pisa, Italy and a PhD from

Delft University of Technology in the Netherlands. He is associate profes-

sor in the section of Flight Performance and Propulsion of the same faculty

where he pursued his doctoral title. He has developed and taught several

BSc and MSc courses on Aircraft Design, Systems Engineering, and ad-

vanced design methodologies, such as KBE and MDAO. Dr. La Rocca’s

research activities focus on the development of design automation solutions

to support the design of novel and more sustainable aircraft architectures

and to contribute to the digitalization of complex, knowledge intensive de-

sign processes. As of 2000, Dr. La Rocca has been involved in many (in-

ter)national projects related to aircraft design and collaborative MDAO, in-

cluding the 2003 DESCARTES Prize finalist project MOB and the ICAS

2018 Innovation Award project AGILE.

