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Abstract

Automated Sentiment Classification (SC) on short text fragments has been an upcoming
field of research. Different machine learning techniques and word representation models have
proven to be successful in classifying sentiment of opinion expressions in various domains,
i.e. different topics or source media. However, when training on a source domain different
from the target domain of interest, we encounter a large domain shift resulting in poor cross
domain classification performance.

In this report, we first provide information on the key principles of SC, starting with the SC
pipeline and the encountered domain shift. Then, we show a novel method of selecting a
source domain by using four unsupervised distance measures: Chi squared (Chi2) distance,
Maximum Mean Discrepancy (MMD), Earth Mover’s Distance (EMD) and Kullback-Leibler
Divergence (KLD). We evaluate the effectiveness of using these unsupervised measures in-
dividually, and in a linear combination, to identify one or more suitable source domains for
an SC task for various target domains. This linear combination is proposed as the CMEK
model, an acronym of the four measures it uses.

Results show that our proposed CMEK model for source domain selection results in a re-
duction of adaptation loss by 7 percent points compared to training on a randomly selected
source domain. When selecting multiple domains, our proposed selection method is competi-
tive with training on all data. In the light of general performance, we recommend the CMEK
model for source domain selection for an SC task. The CMEK model shows significantly
good performance and stable behavior in selecting multiple source domains and it has solid
performance in selecting the single best domain.

Master of Science Thesis L.E. Razoux Schultz



ii

L.E. Razoux Schultz Master of Science Thesis



Table of Contents

Preface xi

Acknowledgements xiii

1 Introduction 1
1-1 Report outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 3
2-1 SC as research field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 SC pipeline 5
3-1 General process of performing SC . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3-2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3-2-1 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3-2-2 N-grams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3-2-3 Capturing semantic distinctions . . . . . . . . . . . . . . . . . . . . . . . 8

3-3 Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3-3-1 Feature space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3-3-2 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3-3-3 Feature transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3-3-4 Embedded feature space . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3-4 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3-4-1 Regression classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3-4-2 Naive Bayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3-4-3 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Master of Science Thesis L.E. Razoux Schultz



iv Table of Contents

4 Domain shift 21
4-1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4-2 Domain shift in SC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4-3 Dealing with domain shift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4-3-1 Domain adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4-3-2 Source domain selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 CMEK source domain selection 29
5-1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5-2 CMEK model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5-2-1 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5-2-2 Performance evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5-3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5-3-1 Statistical limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5-3-2 Computational limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5-3-3 Further discussion on SC related limitations . . . . . . . . . . . . . . . . 36
5-3-4 CMEK selection model limitations . . . . . . . . . . . . . . . . . . . . . 37

6 Experimental setup 39
6-1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6-2 Design choices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

7 Results 41
7-1 Significance of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8 Conclusion 47

9 Further discussion 49
9-1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

9-1-1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

A Final paper 51

B Supportive figures and tables 63

C Examples and derivations 71
C-1 MI-score example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
C-2 Chi squared value example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
C-3 Maximizing likelihood for normal distribution . . . . . . . . . . . . . . . . . . . 72
C-4 Maximizing likelihood for logistic distribution . . . . . . . . . . . . . . . . . . . 74

D More on word embeddings 75
D-1 Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
D-2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
D-3 Model variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

L.E. Razoux Schultz Master of Science Thesis



Table of Contents v

Bibliography 79

Glossary 85
List of Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
List of Symbols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Master of Science Thesis L.E. Razoux Schultz



vi Table of Contents

L.E. Razoux Schultz Master of Science Thesis



List of Figures

3-1 Example of 2D linear sentiment classification . . . . . . . . . . . . . . . . . . . 7
3-2 Feature space representation of training data set . . . . . . . . . . . . . . . . . . 10
3-3 Vocabulary, feature set and feature space for example data set . . . . . . . . . . 13
3-4 Feature space transformation to term presence . . . . . . . . . . . . . . . . . . . 14
3-5 Two-dimensional SVM with corresponding margins. . . . . . . . . . . . . . . . . 18

4-1 Inner and cross domain performance of RR, LR, NB and SVM . . . . . . . . . . 24
4-2 Distribution of adaptation loss . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4-3 Adaptation loss source vs. target domain . . . . . . . . . . . . . . . . . . . . . . 25

5-1 Representation and classification structure . . . . . . . . . . . . . . . . . . . . . 37

7-1 CMEK performance single domain selection . . . . . . . . . . . . . . . . . . . . 42
7-2 Performance multiple domain selection . . . . . . . . . . . . . . . . . . . . . . . 42

B-1 Performance when using N -grams . . . . . . . . . . . . . . . . . . . . . . . . . 64
B-2 Performance when excluding frequent or rare features . . . . . . . . . . . . . . . 64
B-3 Performance when performing lemmatization . . . . . . . . . . . . . . . . . . . . 65
B-4 Feature curves for χ2-selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
B-5 Inner domain performance of 9 popular classifiers . . . . . . . . . . . . . . . . . 66
B-6 Training curve for cross domain classification error . . . . . . . . . . . . . . . . . 67

D-1 Vector operation in embedded space . . . . . . . . . . . . . . . . . . . . . . . . 76
D-2 Bengio’s model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
D-3 Transformation to embedded space . . . . . . . . . . . . . . . . . . . . . . . . . 78

Master of Science Thesis L.E. Razoux Schultz



viii List of Figures

L.E. Razoux Schultz Master of Science Thesis



List of Tables

4-1 Used data sets for experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

7-1 Performance single domain selection . . . . . . . . . . . . . . . . . . . . . . . . 42
7-2 Single domain selection: normality assumption . . . . . . . . . . . . . . . . . . . 44
7-3 Single domain selection: significance of results . . . . . . . . . . . . . . . . . . . 44
7-4 Multiple domain selection: normality assumption . . . . . . . . . . . . . . . . . 44
7-5 Multiple domain selection: significance of results . . . . . . . . . . . . . . . . . 45

B-1 Adaptation loss experimental data sets . . . . . . . . . . . . . . . . . . . . . . . 66
B-2 Significance of results Table 7-1 I . . . . . . . . . . . . . . . . . . . . . . . . . . 68
B-3 Significance of results Table 7-1 II . . . . . . . . . . . . . . . . . . . . . . . . . 68
B-4 Significance selecting multiple domains random-CMEK . . . . . . . . . . . . . . 68
B-5 Significance selecting multiple domains random-Chi2 . . . . . . . . . . . . . . . 69
B-6 Significance selecting multiple domains random-EMD . . . . . . . . . . . . . . . 69
B-7 Significance selecting multiple domains CMEK-Chi2 . . . . . . . . . . . . . . . . 69
B-8 Significance selecting multiple domains CMEK-EMD . . . . . . . . . . . . . . . 70
B-9 Significance selecting multiple domains Chi2-EMD . . . . . . . . . . . . . . . . . 70

C-1 Example data MI calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
C-2 Example data χ2 calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Master of Science Thesis L.E. Razoux Schultz



x List of Tables

L.E. Razoux Schultz Master of Science Thesis



Preface

This document is the final deliverable of my Master of Science graduation thesis, summa-
rizing the full graduation project study on source domain selection for automated sentiment
classification. In first sight, the subject of automated sentiment classification does not seem
naturally associated with the Master of Science program Systems and Control. However, the
pipeline of performing sentiment analysis, including preprocessing, representation and classi-
fication together with identifying a suitable source domain, have certain parallels with system
theory and system identification. In addition, future implementation of sentiment analysis
will likely be in the field of robotics and man-machine systems.

The matter drew my attention and after a period of gaining more knowledge on machine
learning techniques, I started researching the field of sentiment classification and wrote a
literature survey on my findings. During this part of my research project, I came to find that
there was a relatively unexposed problem. The effectiveness of sentiment classification was
proven, but the effects on performance when training on the “wrong” data were not often
described. This phenomenon known as domain shift seemed an interesting field of research
with many opportunities to contribute and improve. In addition to methods such as transfer
learning or domain adaption, I was intrigued by identifying a “good” data set for training
a sentiment classification model. I was motivated to construct a model that could tell what
would be the best domain to train on when we have data sets from different domains available.
This motivation led to the development of a novel source domain selection model described
in the end of this report and the resulting paper attached in Appendix A.
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Chapter 1

Introduction

This Master of Science thesis report serves as summary of the performed research in the light
of the graduation project of the Master of Science Systems and Control from the Mechanical
Engineering department at the Delft University of Technology. It serves as an autonomous
deliverable including but not limited to findings from the previously performed literature
survey and explanation of the developed model that is also described in the paper, see Ap-
pendix A. This study is supervised by the Delft Center for Systems and Control (DCSC) and
the Pattern Recognition Laboratory (PRLab). The DCSC provides education and performs
research in systems and control, where it contributes to fundamental aspects of dynamical
systems and control as well as advancing innovative and high-tech applications [1]. Research
topics include Robotics and mechatronics, Identification and estimation, Intelligent Control
and Model-based control, among others [2]. The PRLab is concerned with the classical trin-
ity of representation, generalization, and evaluation, being the core elements of every pattern
recognition system. Examples of prominent research areas covered are dissimilarity-based
pattern recognition, multiple classifier systems, and fields like semi-supervised and active
learning [3].

The research topic of this study is improving automated sentiment classification (SC) of tex-
tual opinion expressions by developing a model for source domain selection. The task of SC
in several distinguished domains is one that encounters aspects of identifying the domain of
application and adapting accordingly as well as (semi-)supervised learning. Also, SC plays
an important role in developing human-machine systems, since human sentiment has to be
interpreted properly to construct a well performing system. Think of voice commands for
example. The domain identification, machine learning approaches, and implementations in
artificial intelligence and human-machine systems concerned with SC make this field of re-
search interesting for both the DCSC and the PRlab.

The aim of this thesis report is to provide a concise description of the MSc. graduation
project and the achieved results [4]. This will include presenting the proposed model as
final contribution to the scientific community but also providing context and domain specific
background knowledge. In addition, noteworthy findings and conclusions not related to source
domain selection will be reported.
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2 Introduction

1-1 Report outline

Before reading, please be informed that this report can be dived into two parts.
The first parts describes background research and findings in the general field of
SC. This has been a major part in this master thesis project and is partly based
on the preliminary literature study. This first part consists of chapter 2 and
chapter 3. Then, we have a small bridge, chapter 4, to the second part describing
the proposed method of selecting a source domain. This part includes chapter 5,
chapter 6, the results, conclusion and discussion section. Based on the research
described in this second part, a paper is written, see Appendix A. Both parts
can be read separately. The second part mainly covers the content of the paper.

This report will start with providing background knowledge on the topic of SC. We point out
its upcoming popularity and describe what Sentiment Analysis (SA) and, more specific, SC
are. Next, we will give illustrative examples of current use of automated SC and sketch an
idea of possible future applications that SC offers.

In chapter 3 we start by presenting a simple and clarifying example of how SC is performed.
The pipeline for SC consists of three parts: preprocessing, representation and classification.
Each part will be then looked at individually. For each part, we will present findings in
literature and show which design choices can be made in making an SC model. To sup-
port conclusions, we constructed a model and tested different design choices on a data set
containing employee survey reviews. Results will be reported.

Next, in chapter 4, we elaborate on the phenomenon domain shift that is deeply rooted in the
field of SC. We report on the consequences of domain shift on the performance of classification
and briefly elaborate on techniques that attempt to reduce the negative impact of domain
shift on performance.

Then, we arrive at problem definition: how do we select the best source domain to train our
SC model on for a given target domain? In chapter 5 we give a mathematical description
of the problem and propose a source domain selection model that is able to select a suitable
source domain from a set of candidates. The conceptual working of the model is supported
on a couple of hypotheses that will be explained. The distance measures used in the model
will be elaborated on.

To test the proposed model, we construct an experimental setup that will be explained in
chapter 6. We elaborate on the used data sets, SC model design choices and statistical
distance measures we use for our selection model.

We present the performance of the proposed source domain selection model, the CMEKmodel,
and compare this with randomly selecting a source domain or training on all candidate source
domains. We also look at the performance of the CMEK model when we let it select multiple
domains to train on. In order to draw conclusions, significance of the results is tested and
reported.

We conclude with interpreting the results of our experiments and generalizing this to a rec-
ommendation to use the CMEK model for source domain selection. We give a set of side
marks and nuances with this recommendation, point out weaknesses of our model and offer
suggestions for future work to improve the proposed CMEK model.

L.E. Razoux Schultz Master of Science Thesis



Chapter 2

Background

With the rapidly growing number of online reviews, comments and posts on products and
services, the need for automated SC of textual opinion expressions arises [5]. Possible appli-
cations of automated SA lay in the field of recommendation systems [6], business intelligence,
predictive models and survey response analysis. Using SA, companies are able to gain in-
sights on big data opinion expression giving them information on topics such as customer
satisfaction, investment opportunities and other business influential factors.

There are examples of companies providing services on big data SA, covering meta data on
over 300 million public news websites, blogs, social media and public financial documents [7].
One can think of using instant SA of millions of sources in combination with topic detection as
a useful tool for stock trading. Furthermore, recent studies claim that 90% of the people that
read online reviews of a product were influenced by the content of the review in their purchase
decision [8]. With over $300 billion of online purchases in the United States alone and almost
70% of the US population online shipping at least monthly [9], automated review SA qualifies
as a potential goldmine. Also, claims have been made that SA on Twitter messages is a useful
predictor for political matters such as the 2016 US presidential elections [10].

But, there are more future applications of SA that are some what further away but not less
interesting. Think about the development of care robots that interact with elderly people
to provide certain aspects of social needs. For the robot to interact properly, detecting the
sentiment of expression of its human counter part is essential for serving its purpose. Noticing
that a human is sad gives the robot a different angle of approach than when the human is
cheerful. Thorough analysis of the sentiment of a human subject will have massive impact
on man-machine communications. Other applications in this area are advanced voice com-
mand systems that induce more complex conclusions from speech than literally interpreting
or executing voice commands. Think about how the reaction of chat robots for customer
satisfaction departments can be improved by knowing what the sentiment of the respective
customer is. And in other technological fields, is it possible for music streaming services to
adapt the music you listen to your sentiment by analyzing what you type on your computer
or smart phone?

Master of Science Thesis L.E. Razoux Schultz



4 Background

Performing accurate SA is, however, subjective to certain environmental factors in the domain
of implementation as will be discussed further in this report. Better and more accurate
sentiment prediction will increase the value of the analysis, making it useful to research what
factors influence the performance of classification and how to improve this performance.

2-1 SC as research field

SA can be seen as measuring the degree of presence of a certain evaluative subjectivity.
Analysis can be performed on several aspects of subjectivity. It can measure presence of
subjectivity of any kind but also more specific to emotions or evaluative topics such as an-
gry, joyful, satisfied, positive or negative. The term ‘sentiment analysis’ is strongly related
to umbrella terms such as semantic orientation or polarity, defined as an indication of the
direction a word deviates from the norm for its semantic group or lexical field [11]. Also the
terms subjectivity analysis or opinion mining are used, but a uniform terminology is not yet
established [5].

In this report, we look at a more specific type of sentiment analysis, namely binary sentiment
classification (SC). Binary SC refers to the specific binary determination of a textual document
being of positive or negative sentiment; the task is to classify an expression in a positive or
negative class.

Extensive research on machine learning techniques for the purpose of binary SC started in the
early 2000’s with papers from Pang et al. in 2002 [12] and Turney in 2002 [13], indicating this
line of research is relatively new. In the following years, many papers have been published
proposing techniques to improve performance of the classifiers proposed by Pang et al. and
Turney, and applying them on new types of text messages such as Twitter messages. Different
kind of preprocessing techniques have been evaluated and weighting schemes were introduced
to give certain words more importance than others.

A new angle within SC was introduced by Google researchers Mikolov et al. in 2013 [14].
Their groundbreaking paper proposed an unsupervised algorithm building a lower dimen-
sional feature space where distance between two points in this space is a measure of semantic
equivalence. This research claims to observe large improvements in performance at much
lower computational cost. However, to construct the embedding, it requires large amounts of
data.

The data sets that are widely used mostly origin from move reviews data basis or product
reviews. These sources are very convenient to use as they posses already some kind of in-
formation on the sentiment; reviewers give a rating to the movie or product. These ratings
can be translated to positive and negative labels to obtain labeled data needed to train on.
Other used sources are Twitter messages. This source is interesting as it contains sentiment
information on a broad set of topics. It is often hand labeled or labeled based on emoticons
the expressions contain.

L.E. Razoux Schultz Master of Science Thesis



Chapter 3

SC pipeline

The pipeline of SC consists of three parts: preprocessing, representation and classification. In
this chapter, we first give a general outline of the process accompanied with an example and
then dive into each of the three parts individually. In this deep dive, we will discuss model
design parameters, findings in literature and results of own experiments.

3-1 General process of performing SC

Performing automated SC with supervised machine learning starts with acquiring labeled
data points of the evaluated domain to construct a training set. These data points consists of
a document di containing an opinion expression and a label. In case of binary SC, the labels
either take the value positive or negative. The total set of documents, is called a corpus. A
classifier is trained on this corpus and its labels and oughts to predict unlabeled data points,
e.g. opinion expressions. Preferably, the training data is originated from the same domain as
the unlabeled documents of which the sentiment has to be predicted.

From the acquired data, sentiment informative features have to be extracted. Most intuitive,
is to choose words as features since we have textual data. But also combinations of words, part
of speech, punctuation or even lengths or locations of words can be used as features. Recent
research shows that also semantic properties of a word can be successfully used as features
[14]. Choosing a set of n features, we build an n-dimensional space S in which each document
di is a point which location is determined by the count of the chosen features present in the
document.

Subsequently, a classifier is trained on these data points such that it constructs a hyperplane
that optimally separates the negative labeled data points from the positive labeled ones
by minimizing a cost function that penalizes misclassification. The hyperplane divides S
in a positive class subspace S+ and negative class subspace S−, imposing Sc+ = S− and
S = S+ ∪ S−.

Master of Science Thesis L.E. Razoux Schultz



6 SC pipeline

When sentiment of a new document has to be predicted, the document is positioned in S
according to its feature values. If this location is in S+, the predicted corresponding label is
positive, if in S−, it is predicted negative.

Let us illustrate these three steps with an example. The most basic, but still competitive,
approaches in performing SC on text, are ‘bag-of-word’ approaches with a feature space
consisting of (weighted) word counts as dimensions. Each text fragment is a point in this
space; A document can be represented by a bag containing all the words of the document,
disregarding grammar and word order but keeping multiplicity [15] and can be plotted as a
point in the feature space. Our example follows the bag-of-words approach for binary SC.
Assume we have the two documents containing both only one sentence

(d1, POSITIV E) : “I like, really like my job”,
(d2, NEGATIV E) : “I hate my job”.

We now choose to preprocess the data in a very minimal way. We only lower case all words
and remove punctuation,

(d1, POSITIV E) : “i like really like my job”,
(d2, NEGATIV E) : “i hate my job”.

(3-1)

Next we choose a document representation model. Let us take all the verbs as features,
resulting in a two dimensional feature space S ∈N2 with the word “hate” on the x-axis and
the word “like” on the y-axis. The value of a document in a single dimension is the count of the
word corresponding to this dimension. The two documents in Eqn. (3-1) can be represented
by two points in a two dimensional space

(d1, POSITIV E) : (x1, y1) = (0, 2),
(d2, NEGATIV E) : (x2, y2) = (1, 0).

Now, for the last part, the classification, a hyperplane can be constructed to separate the
positive points from the negative ones. To seperate the positive point from the negative
point, we define the hyperplane as

y = 2x

implying

S+ = {x, y|y ≥ 2x}, S− = {x, y|y < 2x}.

Now we need to test our model. Assume we have a test set containing again two documents
with both again only one sentence

(d3, ŷ3) : “I like this car”,
(d4, ŷ4) : “I like, hate this car”.

L.E. Razoux Schultz Master of Science Thesis



3-2 Preprocessing 7

d1 = “I like really like my job.”

d2 = “I hate my job.”

training set “like”

“hate”

d1

d2

d3 d4

0

2

1

1 2

classifier

S+ S− d3 = “I like this car.” ?

d4 = “I like, hate this car.” ?

test set

Figure 3-1: Example of binary two-dimensional linear classification with two single words as
features.

Preprocessing these document and transforming them to points in S we have

d3 : (x3, y3) = (0, 1) ∈ S+,

d4 : (x4, y4) = (1, 1) ∈ S−.

The classifier has classified d3 to be of positive sentiment and d4 to be of negative sentiment.
The process described in this example is visualized in Figure 3-1.

For this simple example we see a classification error rate of 0 since we predicted the sentiment
of all test documents correctly. We made some blunt choices on what preprocessing to do
and how to represent the documents. Also, the training and test documents where very alike.
In real world problems, the document are more diverse. In literature, we will typically see
classification error rates between .1 and .3 when a classifier is trained on suitable data. To
realize competing performance, we have to think about preprocessing, representation and
classification more thoroughly than in our example.

3-2 Preprocessing

The input for the SC model, the training data, usually consists of documents containing raw
text. If the training corpus consists of documents in multiple languages, it is preferable to
filter documents on the language of interest first since different languages use different words
to express sentiment. There are some simple preprocessing algorithms that can increase
performance of classification by transforming the raw text of the training corpus. With this
process we filter for certain type of words or create features other than the unique words.

3-2-1 Filtering

To reduce dimensionality, one can consider certain words as noise. These words do influ-
ence the training of the classifier but are assumed to hold no or only very little sentiment
information. It can be considered to remove this noise by filtering some words in order to
reduce dimensionality of the feature space. This improves computational efficiency and re-
duces overfitting. Stop words such as the, a, of, etc., intuitively have little to no sentiment
information which raises the question if they have to be included in the features for SC. An
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often used list of stopwords is the “Van stoplist” [16]. Note that negation words such as no,
never, nor, etc., should not be removed as they hold much sentiment information, especially
when used in combination with another word. Research suggests that the removal of stop
words minimally affects the performance of classification [17]. Alternatively, when using an
inverse frequency weighting of the features such as TF-IDF, the weight of stop words will
automatically be lower due to the high frequency of stop words. Therefore, TF-IDF might be
a good substitute for stop word removal. Furthermore, numerous researches use emoticons
in documents to label sentiment of unlabeled documents [18] [19]. This suggests that these
emoticons contain sentiment expression and can therefore be used as features for SA. Also,
one can think of an exclamation mark in a sentence as a sign for higher probability of present
sentiment in the sentence, for example.

3-2-2 N-grams

In some cases, sentiment is expressed by using several words. Frequently occurring positive
class examples for product reviews are “I love”, “love it” and “the best”. For the negative class
we see frequent occurrence of “returned it”, “not worth” and “customer service” [20]. Notice
that some of these expressions can be interpreted as different when looking at the individual
words. Especially in case of negation words, it is important to look at the combination of
words rather that analyzing each word separately. A set of N subsequent words is called
an N -gram. The effect on performance of using N -grams as features with different values
for N is not unambiguously described in literature. A survey on N -grams in SC states that
using unigrams and bigrams is preferable over using N -grams with N > 2 [21]. But the
conclusions of various papers differ, suggesting that the best choice of N is submissive to data
characteristics. Own research on employee survey responses we acquired, shows that using
N = {1, 2} slightly beats using N = 1 or N = {1, 2, 3}, see Appendix B Figure B-1. A reason
for improvement by using also bigrams as features could be the inclusion of some negations
such as “not good” since using negation word combinations as features improves classification
error [22].

3-2-3 Capturing semantic distinctions

Several studies elaborate on using a word plus its Part of Speech (POS) as feature and using
the combination of the POS and the word as feature. Using POS improves the performance
of SC when using unigrams and a bigrams of a word plus a part of speech [23]. Also, tagging
each unigram feature with its POS, making distinction between different usage of same words,
improves results [12]. For example, using POS tagging, there will be two features of the word
“love” for documents “A love story.” and “I love the movie.” instead of one. POS tagging
makes distinction between meaning of textual equivalent expressions.

As opposite of POS-tagging, we can treat different textual expressions as being of similar
meaning. For some Natural Language Processing (NLP) implementations, different forms
of a word may be treated the same to improve results. Two different techniques can be
distinguished: stemming and lemmatization. Compared to lemmatization, stemming is a more
crude and heuristic process of removing the derivational affixes of a word. Lemmatization
is a process that usually uses a vocabulary and morphological analysis to transform a word
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to it base form, called the lemma. Both techniques are used in NLP to write related forms
of a word to their common base form [24]. In SC these techniques might be used to reduce
dimensionality.

Applying stemming with the widely used Porter algorithm [25] will transform

“I am loving my job and colleagues, they make me happy!”

to

“I am love my job and colleagu, they make me happi!”.

In information retrieval, using stemming techniques improves results of database search
queries [26] [27]. There is, however, research suggesting that the effectiveness of stemming for
English query systems is rather limited [28]. For SC, stemming and lemmatization seems to
increase error [29]. Own experiments support the conclusion concerning lemmatization, see
Appendix B Figure B-3.

There are various other preprocessing techniques. One, almost always used unmentioned
technique, is writing all words in lower case so that a certain word at the beginning of a
sentence (with a capital) is treated the same as the lower case word. One could also consider
dividing a compound such as couldn’t into could and not. Sometimes multiple characters are
incorrectly used which creates a non existing word such as hellllooooooo or misspelled words.
There are simple algorithms similar to spell checkers that transform these words into their
expected correct word. The implications of these techniques on the error of classification are
hard to extract from literature. There are, however, studies that construct algorithms that
normalize ‘social media’ English which is proven to, at least, improve the correct spelling of
words [30].

3-3 Representation

Most classifiers need numerical values as input in order to be trained and in order to predict
labels. When performing SC, we initially have sequences of words as data and thus there
is a need to transform these words into numerical values. We seek a way of transforming
each word into a set of numerical values. This set of values can be represented as a vector or
point in a feature space. In this section, we start by explaining the feature space and define
it mathematically. To reduce dimensions or filter noise, we often use feature selection. We
quickly discuss in what ways one can perform feature selection and introduce the concept of
feature weighing. A number of different weighing schemes will be explained. Then, we will
elaborate briefly on two popular distinct types of feature spaces to represent words; A high
dimensional space where all words and N -grams correspond to a single dimension, and a word
embedding where this high dimensional space is transformed into a lower dimensional space.
This transformed space has some very interesting properties for NLP.

3-3-1 Feature space

Let us start off with defining some of the concepts earlier mentioned, namely a feature,
a feature space and a class. We begin with a simple approach in which we will only use
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di ⊂ ℘(W ) =



Dtr

F⊂℘(W )︷ ︸︸ ︷
f1 f2 · · · fnF Ytr

d1
d2
...

dntr

1 0 · · · 0
0 0 2
... . . . ...
0 3 · · · 1︸ ︷︷ ︸
X∈Nntr×nF

y1
y2
...

yntr


= yi ∈ {0, 1}

Figure 3-2: Feature space representation of training data set.

single words to classify a document, we do not use N -grams, lemmatization etc. In this
scenario, we start by defining a vocabulary W that is a finite collection of n unique words,
W = {w1, w2, ..., wn} and |W | = n. For simplicity we can assume that the vocabulary exists
of all unique words in the corpus. Next, from the vocabulary, we define a feature set F
which is a subset of the power set of all words denoted as ℘(W ) which represents all possible
combinations of words from W , F ⊂ ℘(W ) and |F| =nF . The process of choosing F from W
is referred to as feature selection.

To build and test a classifier, we have a training set and a test set. These sets consist of
tuples each containing a document di and its corresponding label yi, in our case we have the
label values 0 and 1 corresponding to the, respectively, negative sentiment class and positive
sentiment class. Note that each document is actually a set supported on the vocabulary as it
is a combination of words of the vocabulary. The set of all possible documents is denoted as
℘(W ) and di ∈ ℘(W ). Each tuple (di, yi) is referred to as a labeled object. The training set
consists of ntr labeled objects and the test set consists of nts objects. So, the training and
test set can be represented by, respectively ntr and nts objects (di, yi) where di ∈ ℘(W ) and
yi ∈ {0, 1}.

Now, each document di is converted into an nF -dimensional feature vector xi by a count
vectorizer Z. This count vectorizer Z simply counts the occurrences of each feature in the
inputted document and outputs a vector of counts, Z(di) = xi ∈ NnF , where NnF is called the
feature space. When the entire set of documents from the training set Dtr= {d1, d2, ..., dntr}
is inputted in Z we get Z(Dtr) =Xtr∈ Nntr×nF , where Xtr is referred to as our feature values
matrix of the training data. In our evaluated domains, documents typically have relatively
few words, resulting in a highly sparse matrix Xtr. With the similar transformation Z for the
test data set Dts we get Z(Dts) =Xts∈ Nnts×nF . The set of labels of the training and test
documents are denoted as Ytr and Yts respectively.

In many cases, preprocessing is performed, resulting in a transformation of the feature set
F by transforming words from the documents (lemmatization, stemming, spelling correction
and lower casing), by removing words from the documents (stop word removal or punctuation
removal) or by creating new words or entities (N -grams and POS-tagging). Often a transfor-
mation of the feature matrix X is performed to weight the features or to transform it into a
lower dimensional continuous feature space, as is discussed later on in the setion.
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3-3 Representation 11

3-3-2 Feature selection

In a traditional features space, all words and N -grams are included in the feature set F ,
resulting in a very high dimensional space, typically nF >> 104. However, a lot of these
words and N -grams do not carry much sentiment or no sentiment at all. More precisely,
it is not possible for the classifier to classify sentiment based on these features. Intuitively,
words such as the, of or by do not tell much about the sentiment in the document. And
what about the words walking, tree or boss? A lot of words can be seen as noise and can be
filtered to reduce dimensionality. If we are interested in using only a subset of all words and
N -grams in the corpus we perform feature selection to define a subset of the initial feature
space F ′⊆ F . In this section we will look into the effects of performing feature selection
on the classification error. We take a closer look at two popular feature selection methods:
Mutual Information (MI) and χ2-selection.

MI selection is a method that selects “the most informative” features by measuring the mutual
dependence between a feature and a class. It measures the amount of information of a class
given feature presence and vica-versa. The MI score can be calculated according to

MI(F ;C) =
∑

ef∈{0,1}

∑
ec∈{0,1}

P (F = ef , C = ec)log2

(
P (F = ef , C = ec)
P (F = ef )P (C = ec)

)

where F is random variable that takes value ef= 0 if the feature is not present and takes the
value ef = 1 if the feature is present, C is a random variable taking value ec= 0 if the class
is negative and ec = 1 when the class is positive [24]. Note that when the feature F is not
correlated with the class C, the log function becomes 0 and the MI-score will be 0, indicating
that there is no mutual information of F and C. For an example, see Appendix C. The
nF ′ features with the highest MI score will be selected. Research indicates that for opinion
detection, merely if there is an opinion or not, the MI method does not significantly improves
the results using a relatively small data set [31]. They note that this can be due to class
imbalance. However, for a categorization task of small text fragments, it does improve the
error of classification significantly. In an SC task of 2000 movie reviews, slight improvements
are realized when using MI selection but no statistical significance is mentioned [32].

Another selection method is χ2-selection. This method first calculates the expected number
of objects with (F = ef , C = ec) when drawing from a mixed set with both classes. These
expected values are denoted by Eef ,ec . These values are compared with the actual number of
drawings denoted by Nef ,ec . The χ2-value is calculated [24] as

χ2(F,C) =
∑

ef∈{0,1}

∑
ec∈{0,1}

(
Netec − Eetec

)2
Eetec

.

For an example, see Appendix C. Note that when there is no correlation between the presence
of a feature F and a class C, the χ2-value is zero. The feature with the nF ′ highest χ2-
values get selected to build a feature space. Research indicates that the χ2 method for
feature selection improves results for short text classification [31]. Other research that tries
to improve SC in the movie review domain with again 2000 documents shows improvement in
performance but statistical significance is not mentioned [32]. Own experiments suggest that
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we can use a χ2-selected subset of the vocabulary of unigrams and bigrams and get similar
performance as using all unigrams and bigrams. However, χ2-selection will not increase
performance. This conclusion seems not subjected to the number of training samples. See
Appendix B for support for this conclusion.

3-3-3 Feature transformation

To summarize the process so far, we started with a set of ntr documents di and their corre-
sponding binary labels yi. From the documents we extract all unique words and call this set
our vocabulary W . By performing text preprocessing on all documents, the set of words in
the vocabulary will change. Common preprocessing techniques are using N -grams, lemmati-
zation, lower casing all words or performing spelling correction. The changed vocabulary we
now call our initial feature set F . After feature selection we remain with a subset of our initial
feature space F ′ ⊆ F . A regular count vectorizer Z counts the occurrences of all features
in a document and outputs a vector of counts. Performing this operation for all documents
results in a high dimensional, sparse and discrete feature value matrix Xtr ∈ Nntr×nF ′ and
Xts ∈ Nnts×nF ′ . Now, we have the possibility to transform these matrices by giving certain
words more weight.

The elements of Xtr and Xts are called the raw term frequencies and the term frequency of the
feature fj in document di is denoted as tfij . These elements are called raw term frequencies
since they represent the actual count of features in a document. Instead of counting the
number of occurrences of a feature in a document, one can also just look at the presence of
a feature. If the feature fj is present in the document di, the element of the feature value
matrix xij gets a value of 1 and 0 if it is absent. See Figure 3-3 and 3-4 for an example of
building a feature space and transforming it according the presence based approach. Research
shows that the presence based approach is preferable over the raw term frequency for SC [12].
This is in contradiction to the task of topic classification [12] [33] [34]. For the movie reviews
data set used by Pang et al. we find, using the raw term frequency, an classification error of
16.60% and for presence based (boolean or binary weighting) we have an error of 12.15% [33].
Most research seem not to use the presence based approach but to use feature weighing.

A widely used technique for weighting features is the Term Frequency-Inverse Document
Frequency (TF-IDF) weighting formula, originated from information retrieval systems. The
feature value for feature fj of a document di is calculated as a function of the number of
occurrences of fj in di, called the term frequency tfij , the total number of documents N =
ntr + nts and the number of documents in which fj is present, nfj ,

xij = tfij × log
(
N

nfj

)
.

The base of the logarithmic function can be used as parameter. This weight function can be
seen as base line weight function as it is used in 83% of all text-based recommender systems
[35]. Note that if a term occurs in every document, the weighting function assumes this term
is of no relevance for SC and therefore will relinquish the corresponding feature. Often, for a
two class problem, we can integrate a class distinction using the formula
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f1 = “cat”

f2 = “sad”

f3 = “happy”

d1

d2

d3

d4

d1 = “The cat makes me happy.”
d2 = “The cat is beautiful.”
d3 = “The cat makes me sad.”
d4 = “I was happy, the sad cat made me sad.”

POS
POS
NEG
NEG

w1 = beautiful
w2 = cat
w3 = happy
w4 = I
w5 = is
w6 = made
w7 = me
w8 = sad
w9 = the
w10 = was
F = {w1, w2, w8}

Figure 3-3: Vocabulary, feature set and feature space for example data set.

xij = tfij × log
(
N0 × nfj ,1
N1 × nfj ,0

)

where the subscripts 0 and 1 denote the class label. For example, N0 is the number of
documents with label 0. This type of Inverse Document Frequency (IDF), we call Delta IDF.
On the same movie review data set as before (Pang et al.), we see a classification error of
8.40% for this TF-IDF weighting function with class distinction [33].

3-3-4 Embedded feature space

The high dimensional and sparse feature value matrix Xtr has some disadvantages due to its
high dimensionality. In the early 2000’s, approaches to transform the high dimensional and
sparse matrix Xtr into a lower dimensional matrix where developed which opened a whole
new world for NLP, including SC.

In 2003 Y. Bengio proposed a neural probabilistic language model to learn a joint probability
function of sequences of words [36]. This model uses a feature transform of each word into a
lower dimensional space as input for a neural network in order to predict the joint probability
function of sequences of words. The mapping of a space where each dimension represents the
count of a unique word into a lower dimensional continuous vector space, typically 50-1000
dimensions, is called a word embedding [37]. The proposed model therefore uses an embedded
feature space to represent words. One of the interesting properties of this representation of
words is, that similar words are expected to have a similar feature vector [36]. This property
can be used to distinguish words or documents containing positive sentiment information from
words or documents containing negative sentiment information [38]. Further improvements
on Bengio’s model have led to the popular word2vec algorithm [14] and doc2vec algorithm
[39].
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f1 = “cat”

f2 = “sad”

f3 = “happy”

d1

d2

d3

d4

(a) Raw term frequency feature space.

f1 = “cat”

f2 = “sad”

f3 = “happy”

d1

d2

d3

d4

(b) Presence of term feature space.

Figure 3-4: Feature space transformation from raw term frequency to term presence.

The construction of the embedding requires much training data. Since most of the acquired
data sets in our experiments are not large enough to construct a proper embedding, we will
not use an embedded space. Combining multiple data sets to build an embedding would
compromises the purity of conclusions since results might be affected by the embedding that
is constructed by data that is not related to the individual data set under evaluation. For
further reading on the embedded feature space, see Appendix D.

3-4 Classification

With all ntr labeled document in the training set defined in the selected feature space F ,
we now try to find a relation between the location of each document di in F , or the feature
values of di, and its label yi. This approach is called supervised learning due to the fact
that it uses labeled documents for training instead of unlabeled ones, in which case it would
be unsupervised learning. Now, we denote the discrete space S in which our feature values
matrices exist as the discrete feature space spanned by F , X∈ RnF . The space in which the
binary class labels exist is denoted as Y∈ {0, 1}. For this supervised learning task, we attempt
to find the true hypothesis function h? : X → Y that maps the feature value vector xi ∈ X
to its corresponding label yi ∈ Y. Recall that in our binary sentiment classification task, Y
merely consists of the set {0, 1}.
To restrict the search for the true mapping h? from all, infinite many, possible mappings, we
restrict the search to a limited family of candidate functions H. We will further refer to h∈ H
as a candidate hypothesis function and H as the hypothesis space. In our classification task,
we have to select a learning algorithm that constructs the optimal hypothesis function ĥ∈ H
that approximates h?. Often, in classification, a threshold is used to determine class

yi =
{

1 ĥ(xi) > 0
0 else.

In order to be able to define what the optimal hypothesis is, a loss function ` is chosen which
has to be minimized. The loss function typically reflects the mismatch between the predicted

L.E. Razoux Schultz Master of Science Thesis



3-4 Classification 15

output ŷi by ĥ(xi) and the actual output yi. The search for ĥ is formalized by the following
optimization program

ĥ := argmin
h∈H

ntr∑
i=1

`
(
h(xi), yi

)
where x1, x2, . . . , xntr represent the feature values of the training objects and y1, y2, . . . , yntr
the corresponding labels. The optimal hypothesis function ĥ is in machine learning referred
to as trained classifier. To measure the performance of the trained classifier ĥ, we use the
classification error defined as

ξ
(
ĥ, (Xts, Yts)

)
= 1
nts

nts∑
i

1{
ĥ(xi)6=yi

} (3-2)

where Xts are the feature values of the test set and Yts the corresponding labels. For proper
performance assessment, no data from the test set is used for training.

In this chapter differentH and ` will be explained and evaluated on performance for an SC task
using a high dimensional feature space. Due to the high dimensionality, to prevent over fitting,
only linear classifiers are considered. For orientation what would be suitable classifiers we
did experiments. The best performing classifiers are Ridge Regression Classification, Logistic
Regression Classification, Multinomial Naive Bayes and a linear Support Vector Machine, see
Appendix B. These four classifiers are widely used and popular in performing SC. Therefore,
these four classifiers will be explained in the upcoming part of this section.

3-4-1 Regression classifiers

Regression classifiers belong to the type of probabilistic classifier since they have the ability
to predict the probability of an object belonging to a certain class rather than identifying
only the most likely class it belongs to. To apply simple linear regression to classify points
in the feature space, one assumes that the label is determined by a linear combination of its
corresponding feature values with an additional error ε that is standard normal distributed,
εi ∼ N (0, σ),

yi = xiβ̂ + εi, i = 1, . . . , ntr

with β̂T ∈ RnF , or in matrix form

y = Xβ̂ + ε, i = 1, . . . , ntr.

The model assumes linear independence of the objects. Now, the error ε represents the dif-
ference between the actual value of y and the prediction by the model ŷ= Xβ. The described
model has some interesting properties. By maximizing the log-likelihood, the optimization
problem boils down to the minimization of a least square loss function, which is convex and has
a closed form solution. Therefore, optimization is generally fast. The minimization problem
and its closed form solution are
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y ∼ N(βx, σ2)
β̂ = arg max

β
L(x|y)

= (XTX)−1XT y

inferring the hypothesis function

ĥ : yi =
{

1 xiβ̂ > 0
0 else.

.

See Appendix C for the derivation.

Since our feature value matrix is usually rather sparse, we have a so called ill posed problem.
For this type of problems, adding a regularization term to the loss function will improve
classification performance. The regulatory term prevents the weights β to cluster onto one or
a few features, it forces to spread the weight over the features. A proposed way to use this
regularization, is to use the loss function

`(y,X) = ||y −Xβ||2 + ||Γβ||2

where Γ is often chosen as αI with I as the identity matrix and α a parameter to determine
the intensity of regularization. A classifier with this loss function is referred to as Ridge
Classifier. The analytic solution becomes

β̂ = (XTX + ΓTΓ)−1XT y.

A variation of simple linear regression classification that is commonly used, is Logistic Regres-
sion. This type of regression classification assumes Y not to be normally distributed around
0 but assumes Y to be distributed according to a logistic distribution centered around 0. The
model assumes discrete output, in our case Y ∈ {0, 1}. This distribution is characterized by
the function

P (y = 1|x) = 1
1 + e−βx

, P (y = 0|x) = 1
1 + eβx

and the hypothesis

ĥ : yi =
{

1 P (y = 1|x) > 0.5 or β̂x > 0
0 else.

Now, maximizing the likelihood gives

β̂ = arg max
β
,
ntr∑
i=1

yiβx− log
(
1 + eβx

)
.
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See Appendix C for the derivation. The solution has no closed form. As can be noticed, the
logistic regression and normal regression classification have much in common. The differences
are that logistic regression assumes y to be discretely distributed according to the logit func-
tion as cumulative distribution function. The normal linear regression model assumes y to be
normally distributed. In contrary to normal regression classification, the logistic regression
classification does not yield a closed form solution.

Pang et al. reviewed this classifier for a sentiment classification task on movie reviews and
found that for most feature settings, the logistic regression classifier did a slightly inferior
job compared to the Support Vector Machine (SVM) and Naive Bayes classifiers [12]. Own
experiments show different results, see Appendix B.

3-4-2 Naive Bayes

The Naive Bayes (NB) classifier is a probabilistic classifier assuming independence of the
features. In text classification, it is competitive to more advanced methods such as SVM’s
[40]. This classifier is one of the baseline methods for text categorization and SC and has
been studied for decades. The benefits of this classifier are that it is computational fast as
the number of parameters to be estimated scales linear with the number of variables. The
NB classifier is based on the Bayes’ theorem

P (A|B) = P (B|A)P (A)
P (B)

which can be translated to our specific classification task terminology

P (yi|xi) = P (xi|yi)P (yi)
P (xi)

=

∏nF
j=1

{
P (xi,j > 0|yi)xi,j

}
P (yi)

P (xi)
.

The NB classifier does not have a loss function and the hypothesis ĥ is constructed as

ĥ : yi =
{

1 P (yi = 1|xi) > P (yi = 0|xi)
0 else.

.

Research shows that the NB approach is inferior to the SVM [20] [41]. This conclusion is
supported by own experiments, see Appendix B. Note worthy is that NB is computational
cheap which can be of relevance for large SC tasks.

3-4-3 Support Vector Machines

Support Vector Machines (SVM’s) are distance based classifiers since they do not predict
a probability of an object belonging to a class. As measure for likeliness of two objects
belonging to the same class, a distance metric is used, often the Euclidean distance. Other
examples of distance based classifiers are k-Nearest Neighbour and Nearest Mean classifiers.
An SVM classifier defines a hyperplane in the feature space separating positive class points

Master of Science Thesis L.E. Razoux Schultz



18 SC pipeline

f1

f2

m
ar

gi
n

m
ar

gi
n

Figure 3-5: Two-dimensional SVM with corresponding margins.

from negative class points. The margin between the closest (Euclidean distance) points of
both classes to the hyperplane is maximized. Development of SVM’s started in the 60’s and
it is said that the first SVM techniques were recognized to be published in 1979 by Vladimir
N. Vapnik [42] [43]. SVM’s can be categorized into two approaches depending on linear
separability of the object representations X. When X is linearly separable, a hard margin is
used. Otherwise we use a soft-margin.

In many cases, especially for small data sets, the number of features is higher than the number
of training object. In this case, it is likely that X is linearly separable, making it possible
to construct a hyperplane that separates the objects with no error. In this case we do not
have to define a loss function to penalize incorrect classification within the training set. Let
us define two hyperplanes describing the margins, see also Figure 3-5,

wx− b = −1 and wx− b = 1.

Now, the distance between these margins has to be maximized. We can describe the opti-
mization problem in constructing an SVM as

ŵ, b̂ = argmin
w,b

||w||

subject to wxi − b ≥ 1 if yi = 1 and
wxi − b ≤ −1 if yi = 0 for i = 1, . . . , ntr.

And the hypothesis becomes

ĥ : yi =
{

1 ŵxi − b̂ > 0
0 else.

In case the data is not linearly separable, we have to define a loss function to penalize incorrect
classified points. We then have a soft-margin. Often the hinge loss is used, giving the following
loss function `
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`(xi) =
{

max(0, 1− wxi + b) yi = 1
max(0, 1 + wxi − b) yi = −1.

The optimal parameter values for the hypothesis function are now defined by the optimization
problem

ŵ, b̂ = argmin
w,b

[
1
ntr

ntr∑
i=1

`(xi)
]

+ λ||w||2.

SVM’s are widely used in SC. If we compare the results of Pang et al. for the NB and SVM
classifiers, we see that for most feature sets, the SVM performs better [12]. For the best
feature set, presence based unigrams and bigrams, the SVM also gives the lowest classifcation
error. Same holds for results of Dave et al. [20]. The error on the data set of Kalaivani et
al. are over the set ntr = {100, 200, 300, 400, 800, 1600, 2000} always in favour of the SVM
classifier [41]. On average the SVM approaches outperforms the NB approaches. However, in
most cases only slightly better than the best performing NB classifier.
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Chapter 4

Domain shift

In supervised machine learning problems, we are interested in classifying certain objects
of interest. In order to do so, we use labeled objects to train on. The data we train on
originates from the source domain and the data we ought to classify originates from the
target domain. Often, we assume the source and target domain to be of such similar nature
that the characteristics of the samples from the two domains are the same. Mathematically
speaking, the underlying distributions of the source sample and target sample are similar and
therefore the expected samples are similar. In many cases, this similarity assumption is valid,
but in other cases, the similarity assumption doesn’t hold and classification performance is
rather bad.

For example, a classifier is trained on Dutch citizens to diagnose diabetes based on Hemoglobin
A1c level. The classifier proves to be successful. If we would use the same classifier to diagnose
diabetes for Belgian citizens, we seem right to assume that the classifier will still perform
well since Dutch and Belgian citizens live under similar circumstances. Their Hemoglobin
A1c levels are assumed to be distributed similar and the similarity assumption holds. Now
imagine that a US hospital asks to deploy the same constructed classifier in order to diagnose
their American patients on diabetes. The classifier is used and we see a performance drop. It
appears that the normal versus abnormal levels differ severely between Dutch and US citizens.
In this case the underlying distributions are not equal and the similarity assumption does not
hold, we have encountered a domain shift [44]. In other words, for optimal performance, the
source domain and target domain have to be the same [45].

In this chapter, we will first state what we define as a unique domain. We will introduce the
concept of adaptation loss to measure the extent of domain shift. Then, we will give proof of
domain shift affecting the classification performance drastically in the case study of SC. We
will briefly discuss techniques in literature that attempt to overcome the domain shift. We
conclude this chapter by stating the relevance of proper source domain selection.
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4-1 Definitions

We define the term ‘domain’ as a class of documents that follow same rules of sentiment
expression. In the light of SC, a general domain view distinguishes domains such as product
reviews, (professional) movie reviews and common textual communication such as email. A
more detailed view will distinguish each unique person in each unique situation as a separate
domain since opinion expression arose under different circumstances and is therefore assumed
to be different in its nature, i.e. different in its distribution. The most strict definition of
domain will state that documents share domain if and only if they are samples from the same
underlying distribution. However, in practice we do not know this distribution.
We have to give a subjective definition of a domain to be able to evaluate them, we have to
assume what kind of data has the same or somehow similar distribution. For generalizability,
we give the following definition to a domain: Two documents share domain if they are retrieved
from the same medium and targeting the same class of topics. Therefore, two movie reviews
retrieved from the same medium but written by two different persons on two different movies
are from the same domain. Documents retrieved from two different sources (websites) are
not in the same domain. Tweets about politics and tweets about a sports game are not from
the same domain, but tweets about mobile phone A and mobile phone B are within the same
domain.
Strictly speaking, we encounter a domain shift if we have two domains that do not share
distribution. As we do not know the underlying distribution, we have to find some measure
on how much domain shift we encounter. In this perspective, we introduce the adaptation
loss. Assume we train a classifier on a domain denoted by P and use this classifier to classify
different data from the same domain, we will find the inner domain classification error ξ(P).
Assume we use the same classifier to classify data from another domain denoted by P̄, we will
find the cross domain classification error ξ(P, P̄). If the two distributions of P and P̄ differ, we
expect a domain shift giving ξ(P, P̄) > ξ(P). The adaptation loss can be seen as a measure
of how much domain shift we encounter. The adaptation loss of a classifier trained on P and
tested on P̄, a(P, P̄), is defined as:

a(P, P̄) = ξ(P, P̄)− ξ(P). (4-1)

Note that the adaptation loss is dependent on design choices in the SC pipeline such as,
type of classifier and features used for classification. See chapter 5 for a more mathematical
expression of the classification error and classifier.

4-2 Domain shift in SC

One of the biggest challenges in many SC applications, is the discrepancy between the source
domain where the classifier is trained on, and the target domain of interest. Typically, we have
large amounts of labeled data from different source domains, but only possess few, unlabeled
data from the target domain, both originated from different underlying distributions. In
this setting, cross domain classification for SC generally performs rather bad compared with
inner domain training and testing. This so called domain-transfer problem can be intuitively
explained due to different fashions of sentiment expression in different domains [46].
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Let us quantify the assumption that SC is subjected to domain shift. First, we acquired 14
different datasets, see Table 4-1. We lower cased all words and removed punctuation. We
choose to use all bigrams and unigrams as features when they occur more than 4 times in
the corpus and at most in 40% of the documents. We weight the feature values by the TF-
IDF weighting scheme, see section 3-3-3. As last step, we need to select a classifier. We used
nine popular classifiers in default setting [47] and measured classification error and processing
time, see Figure B-5. To make sure we measure the adaptation loss properly, we used the four
best performing classifiers in terms of classification error: Ridge Regression (RR), Logistic
Regression (LR), Multinomial NB (NB) and Linear Support Vector Machine (SVM). We
measured the inner domain classification error, cross domain classification error and resulting
adaptation loss, see Figure 4-1 and Figure 4-2, see Table B-1 for specific results on adaptation
loss of each domain pair. From Figure 4-1 we see that the LR classifier has the lowest cross
and inner domain classification error. Also, its computation time is more or less equal to the
other evaluated classifiers. Therefore, we use a LR classifier in further experiments.

From Figure 4-2 we clearly see that we encounter a major domain shift in nearly every source-
target domain pair. There is no evaluated scenario where a source domain is better to train
on for a selected target domain than the target domain itself, although this could be possible
when the source domain consists of more data and is similar to the actual target domain.
The adaptation loss seems to follow a beta distribution. Also, we see that for a specific
target domain, it is very beneficial to select the right source domain to train on. To state the
relevance of the domain shift problem in SC:

1. Training on another domain than the target domain results in an average adaptation
loss of 21.7 percent point,

2. Training on the best source domain, excluding the target domain itself, results in 6.7
percent point adaptation loss,

3. Training on the worst source domain gives an average adaptation loss of 39.6 percent
point.

Notice that there is a lot to win if one is able to identify a ‘good source domain’.

If we take a closer look at the adaptation loss for all the domain pairs, we see that there is a
difference in the loss when using a domain as source domain, compared to using it as target.
We see only little correlation between the two, see Figure 4-3. For clarification, Figure 4-3
shows the scatter plot of the average of each row versus the average over each column of
Table B-1. The diagonal elements are discarded as these values represent the adaptation loss
of inner domain classification, which is by definition zero.

4-3 Dealing with domain shift

In this chapter, we elaborate on two approaches to reduce the adaptation loss. First, by
domain adaptation and second, by selecting a suitable source domain to train on. These two
approaches can be combined to boost performance, this combined approach is however out
of scope for this research.
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Table 4-1: Used data sets for experiments.

Source Topic Number Doc. Std. doc
of docs length length

Crunchr BV ? [48] Employee surveys 4474 46 65
University of Michigan [49] Movies (1) 7085 11 7.2

CrowdFlower [50] Books and movies 30602 14 6.9
Twitter [50] Politics 10729 17 5.0
Twitter [50] Self-driving cars 2698 16 5.2
Amazon [51] Consumer electronics 1000 10 6.7
Yelp [51] Venues 996 11 6.3
IMDB [51] Movies (2) 746 20 67
Twitter [50] Weather 502 14 6.3
Twitter [50] Airlines 11541 19 6.6
Twitter [50] Festival 2836 12 5.5
Twitter [50] Sports game 8621 16 5.2
Twitter [50] Apple computers 1642 16 6.0
Twitter [50] Medicine 3244 13 6.0

? A confidential data set that is not included in all simulations due to legal
issues when results will be published.

Figure 4-1: Inner and cross domain classification error of RR, LR, NB and SVM for used datasets.
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Figure 4-2: Distribution of adaptation loss averaged over RR, LR, NB and SVM classifier for
used datasets.

Figure 4-3: Scatter plot of adaptation loss averaged over RR, LR, NB and SVM classifier using
a domain as source vs. using it as target.
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4-3-1 Domain adaptation

In a naive training setting, we construct a classifier without looking at data of the target
domain. However, in a domain shift situation, the source and the target distribution differ.
Looking only at the source domain data might result in a bad performing classifier. There
are machine learning techniques that look at both source and target data in order to increase
performance in a domain shift training setting. In a domain shift setting, when we use
unlabeled data of the target domain in the construction of the feature space or classifier,
we make use of domain adaptation or transfer learning techniques. Three main categories
of domain adaptation techniques can be distinguished: importance sampling, feature space
transformations and self learning or iterative transfer learning.

When we make use of importance sampling, we assign (importance) weights to the source
objects, documents in our case study, in such a way that the distribution of source and target
data are more similar. In order to do so, a distance function has to be defined. The weights
on the source sample ought to minimize the distance function. A popular approach is Kernel
Mean Matching. This method finds importance weights by minimizing the MMD, see section
5-2-1 for a mathematical description of the MMD [52].

The second class of techniques modifies the feature space to a new, often lower dimensional,
feature space in which classification will be performed. A well known approach is Structural
Correspondence Learning (SCL) [53]. With SCL one tries to identify correspondences among
features from the source and features from the target domain by modeling their correlations
with pivot features. Pivot features are features that occur frequent or behave the same in both
source and target domain. Non-pivot features that are correlated with a pivot feature will
be treated as if they hold similar sentiment. This allows us to, for example, use words of the
target domain that do not occur in the source domain for classification. Another technique
is called Transfer Component Analysis (TCA) [54]. TCA tries to construct a transformation
to a lower dimensional embedded space in which the source and target distribution are sim-
ilar. Similarity is, again, measured with the MMD. One of the relatively new approaches is
Subspace Alignment. To perform Subspace Alignment [55], one performs a Principle Compo-
nent Analysis to select eigenvactors. The eigenvectors are used to span a subspace. Next, the
source data in the subspace is transformed with an affine transformation. The transformation
is constructed in such a way that the transformed source and original target data are similar
in the subspace spanned by the eigenvectors. Similarity is measured with the Frobenius norm,
and is minimized.

A last category of domain adaptation techniques is self learning transfer learning. These
methods use iteration to improve the classifier. In the first step, a classifier is trained on the
source data. It is then applied to the target data to establish predictions for their labels.
These predicted labels of the target domain are then used to update the classifier. These
last two steps are repeated. A transformation matrix is constructed through iteration, for
example based on maximum entropy [56].

4-3-2 Source domain selection

Apart from performing domain adaptation, if multiple labeled source domains are available,
one could choose to train on all or on a subset of all possible candidate source domains. In
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many cases, it appears natural which source domain to choose. Let us assume that we would
like to classify the sentiment on tweets about Dutch right wing politician Geert Wilders. If
we would have lots of labeled tweets on Wilders, we would simply train a classifier on this
labeled data. Often, we do not have labeled data from the target domain to train on and
we have to select another domain to train a classifier. Let us again assume that we want to
classify the tweets on right wing politician Wilders. Now, we have access to multiple labeled
data sets with infinite labeled objects. We have a data set concerning tweets about the Dutch
Royal Airlines, the new iPhone and the Dutch prime minister. It feels natural to assume that
we should train on the data set with tweets about the prime minister as this lays close in
topic and source audience to the target domain. But in some cases, the choice is little harder.
In a new scenario, again, we would like to classify tweets on Geert Wilders. We got hold of
labeled tweets on the Dutch prime minister, left wing politician Marianne Thieme and Dutch
tweets about right wing US politician Mike Pence. On which one should we train? Or if we
would like to classify reviews on the new BMW sports car, should we train on labeled movie
reviews, reviews of restaurants or reviews on consumer electronics? Or should we train on
all of them? The process of selecting one or multiple source domains from a set of candidate
source domains is referred to as source domain selection.

Source domain selection has been researched and used before in the light of applications
in several fields. For example, to improve brain-computer interface calibration, supervised
source domain selection based on distance measured as distance between the class average
vectors has been successfully used [57]. For a more open search space for a suitable source
domain, techniques have been researched to find a source domain in open online information
sources such as Wikipedia [58]. However both approaches are supervised as they need class
labels of the target domain. In many cases, we do not have any class labels of the target
domain.

In the field of sentiment analysis, Blitzer et al. show a very good correlation between the A-
distance and adaptation loss [58]. However, the adaptation loss is measured using the target
domain inner domain classification error, ξ(P̄). In many cases, we do not have any labeled
information on the target domain, making source domain selection based on the predicted
adaptation loss impossible in the way it is proposed by Blitzer. Also, remarkably, for the proof
of correlation, half of the domains is not shown in the figure which may rise some eyebrows.
The A(P, P̄)-distance between P and P̄ is defined as

A(P, P̄) = 2 sup
A∈A

∣∣∣P (x ∈ A | x ∼ Px
)
− P

(
x ∈ A | x ∼ P̄x

)∣∣∣
where Px and P̄x denote the marginal distribution of the source and target domain respectively,
i.e. the distribution of unlabeled data. The computation of this optimization problem is
however not convex. A proxy is used to approximate the A-distance. Blizter et al. use
modified Huber loss as proxy. Notice that this optimization problem actually is similar to a
classification process. In this optimization, a classifier is fitted by minimizing the modified
Huber loss, in order to classify each document to its source domain. When this classifier
would be perfect, it is able to perfectly identify which document comes from which domain.
When the classifier error is zero, the domains are completely separable and are assumed to be
very different. Other proxies for the A-distance can be used. In recent research in orthophoto
classification, the A-distance is, for example, approximated by the MMD in stead of the Huber
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loss [58]. Apart from the A-distance, there have been studied some other approaches in the
field of SC such as selecting individual source documents based on cross entropy [59].

For 13 acquired data sets, we tested the performance of using the A-distance to select the one
best source domain from 12 candidates. We used the data sets described in 4-1 except the
confidential Crunchr data set. The results were poor, improving the cross domain classification
error only by .5 percent point compared to random domain selection.

In the next chapters, we will propose a new method of selecting a suitable source domain from
a set of candidates without the need for any labeled data from a target domain of interest.
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Chapter 5

CMEK source domain selection

In this chapter we will propose a new, unseen method to select one or multiple source domains.
We will start by properly defining the problem and the challenges it brings for selecting the
best source domain, not specified to the field of SC. Then, we will propose a method to
address this challenge by using four distance measures. Using a linear combination of the
four measures, a constant and the inner domain classification error of the source domains for
source domain selection is introduced as the CMEK source domain selection model. We state
some important limitations of our approach and how we will evaluate its performance.

5-1 Problem definition

With a document represented by a random variable X and its sentiment label by random
variable Y , each domain is uniquely characterized by its joint probability density function
supported on X×Y. Let us then define two underlying distributions to the evaluated source
and target data on X×Y, denoted by P and P̄ respectively. Their marginals on X, are denoted
as Px and P̄x respectively. In machine learning, a realization of P is referred to as labeled
data whereas realizations from Px are referred to as unlabeled data.

We define an hypothesis function as a mapping from X to Y, h : X → Y. In the context of
classification problems in the machine learning literature, the set Y is often discrete, often
binary, and the hypothesis h is often referred to as a classifier as it is able to assign a class
label in Y to each data point in X. The true hypothesis function h?P for a domain characterized
by P, is defined as

h?P := arg min
h
P
(
h(x) 6= y | (x, y) ∼ P

)
. (5-1)

We then define the inner domain classification error as the probability of misclassification in
the same domain as the true hypothesis function is constructed in. And the cross domain
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classification error is defined as the probability of misclassification in the target domain of
the true hypothesis function of the source domain

ξ(P) := P
(
h?P(x) 6= y | (x, y) ∼ P

)
.

ξ(P, P̄) := P
(
h?P(x) 6= y | (x, y) ∼ P̄

)
.

(5-2)

Note that due to the stochastic nature of sentiment expression, ξ(P) and ξ(P, P̄) are not likely
to be zero, even if we would have infinite data to train on. In addition, due to the difference
in source and target distribution, ξ(P, P̄) is likely to be higher than ξ(P) [58]. The difference
between the cross and inner domain classification error is referred to as the adaptation loss.

The goal in many classification tasks is to minimize the cross domain classification error (5-2)
for a specific target domain while we have access to a finite set of labeled candidate source
domains. An appropriate choice of the source domain in this context is the main goal of this
study, leading to the following question:

What source domain minimizes the cross domain classification error for a given target
domain?

With the choice of source domain restricted to a domain characterized by a probability den-
sity function in the candidate set P, our main goal can be formally described through the
optimization program

P? := arg min
P∈P

ξ(P, P̄). (5-3)

where ξ(P, P̄) is the cross domain classification error introduced in (5-2). In other words,
when we posses a finite number of labelled data sets, each originated from a unique source
domain, on which set should we train our classifier in order to minimize classification error
on data from a specific target domain?

The challenge concerning the objective (5-3), is that for a target domain of interest we typi-
cally only have unlabeled data, therefore we cannot calculate the cross domain classification
error. This means we only know the marginal distribution P̄x of our target domain instead
of P̄, making it impossible to explicitly calculate ξ(P, P̄). In order to find the best source do-
main characterized by P? ∈ P for our target domain with distribution P̄, we ought to predict
ξ(P, P̄) for all P ∈ P. For this prediction we have full distributional information of the source
domains, P, and marginal information on the distribution of the target domain, P̄x, available.

5-2 CMEK model

In this section, we propose a model, called CMEK source domain selection, to deal with
the challenge stated in section 5-1. The model measures statistical distances between the
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marginal distributions of candidate source domains and the target domain and uses the inner
domain classification error of the candidate source domains. The candidate source domain
with the lowest distance is hypothesized to have the lowest cross domain classification error
and is selected to train a classifier. This section will describe the CMEK model, the distance
measures it uses and how we will evaluate the performance of the model.

We consider a set D containing a family of distance functions d: P × P̄x →R+. We now
hypothesize that given an available set of source domain distributions P and a target domain
distribution denoted by P̄ with the marginal P̄x, there exists a d̂ ∈ D that can reliably predict
the cross domain classification accuracy ξ(P, P̄), that is,

ξ(P, P̄)
hyp
≈ d̂(P, P̄x). (5-4)

More specific, we hypothesize that the cross domain classification error can be predicted by
looking at the difference in marginal distribution functions Px and P̄x and ξ(P). With this
prediction, the best candidate source domain can be selected for training. We formalize this
optimal choice of the measure by considering the optimization problem

d̂ := arg min
d∈D

∑
P∈P̄

∣∣ξ(P, P̄)− d(P,Px)
∣∣. (5-5)

To construct the family D of candidate measures, we use a vector s with K known statis-
tical distance measures as elements, si: Px × P̄x → R+ for i ∈ {1, · · · ,K}. The family D
consists of linear combinations of these measures si with corresponding weight coefficients
βi ∈ R+, with βi being elements of the weight vector β. We augment the linear combination
with a constant. Note that the distance measures are functions supported on the marginal
distributions of source and target domain. Examples of these statistical distance metrics
are the Chi squared distance (Chi2), Maximum Mean Discrepancy (MMD), Earth Mover’s
Distance (EMD) and Kullback-Leibler Divergence (KLD). When a source domain has poor
inner domain classification performance, we expect it to be less suitable as source domain
for cross domain classification. Therefore, we calculate the inner domain classification error
for all candidate source domains and add this to our vector s. With our choice for D, the
optimization problem (5-5) can be reduced to

β̂ := arg min
β≥0

∑
P∈P

∣∣ξ(P, P̄)− βs(P, P̄x)
∣∣,

d̂ := β̂s(P, P̄x)
(5-6)

where β̂ denotes the optimal weight vector. Note that program (5-6) constructs the optimal
unsupervised predictor by using the full distribution of the target data, which is presumed
to be unknown. In a practical setting with a finite number of elements in P, we deal with
this problem by training only on the domains in P. In each run, one of the elements of P is
extracted from the set and used as proxy P̄, at the end of the run, this element, denoted as
P̃ and its marginal P̃x, is placed back in P. In every run, another element is extracted and
placed back for training. This training program is described as
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β̂ := arg min
β≥0

∑
P∈P,P6=P̃

∑
P̃∈P

∣∣ξ(P, P̃)− βs(P, P̃x)
∣∣.

We hypothesize that with a sufficient amount of source domain distributions in P, the con-
structed predictor for the cross domain classification error, based on information from P, is
also reasonably accurate in predicting the cross domain classification error for a target domain
not included in P. This allows us to select the best source domain to train on for this unseen
target domain.

Now, in view of our hypothesis (5-4), with the predictor d̂ we are able to approximate ξ(P, P̄)
with only marginal information of the target domain P̄x, which allows us to deal with the chal-
lenge through an approximation. This enables us to, given a target domain with distribution
P̄, select the source domain, characterized by P̂ from a set of available source domains that is
predicted to minimize the cross domain classification error ξ(P, P̄) as formalized through the
optimization program

P̂ := arg min
P∈P

d̂(P, P̄x)

which is the goal of this study.

5-2-1 Measures

For our SC case study, we hypothesize that the way people express sentiment can be captured
in how often certain words and word combinations are used. The underlying joint distributions
P differs among different domains. To accurately classify sentiment for a target domain, we
therefore ought to find a domain with similar underlying distribution function. But how do
we measure similarity between distributions?

When we talk about statistical similarity or distance measures, we can define two different
approaches of measuring distance. First, we can compare statistical meta data such as the
average word frequency. The Chi2 distance is based on comparing this average word frequency
between two evaluated corpora. Other meta approaches are, for example, based on comparing
rank of word frequency. These approaches are in general computational cheap, but not
very robust. Another approach is to compare the distribution of word frequency. These
approaches are referred to as Integral Probability Metrics (IPMs). Where the previously
described metrics only compare meta data on the word frequency distributions, IPMs compare
the actual distributions. IPMs use a class F of functions f : X→ R to calculate the distance
si between Px and P̄x as

si(Px, P̄x) = sup
f∈F

∣∣∣EPx[f(X)
]
− EP̄x[f(X)

]∣∣∣, (5-7)

the question arises which class F to choose [60]. If we would choose the 1-Lipschitz function
for F , we get the popular and straightforward EMDmetric [61]. This metric is straightforward
as it measures how much distribution mass has to be moved to transform one distribution in
another. The mass is weighted proportionally to the distance it has to travel. If we would

L.E. Razoux Schultz Master of Science Thesis



5-2 CMEK model 33

choose F in (5-7) to be a class of functions in the unit ball of a reproducing kernel Hilbert
space, we would have the MMD metric [62]. This approach finds a well behaved, smooth,
function which is high on the points drawn from Px and low on P̄x or vice verse. We use as our
test statistic the difference between the mean function values on the two samples according
to (5-7) [63]. Another approach is to choose a logarithmic function for f , giving the KLD
with the interesting asymmetry property si(Px, P̄x) 6= si(P̄x,Px). As difference in distribution
becomes larger, KLD gives decreasingly increasing distance.

Since we hypothesize that the way people express sentiment can be captured in how often
certain words and word combinations are used, but not know in what relationship, we propose
a broad spectrum of possibilities to optimize over. We propose to evaluate a meta approach,
Chi2 distance, and three IPM approaches that use different comparison functions f : MMD,
EMD and KLD. Therefore we have four measures, a constant and the inner domain clas-
sification error of the source domain that span the distance vector space D. In the next
paragraphs we will briefly elaborate on how we use these distance measures in a discretized
fashion. Selection based on the linear combination of these four metrics, the constant and
ξ(P) will be referred to as the CMEK selection model.

Chi2

As first distance measure, we make use of the test statistic of Pearson’s χ2 test [64]. Let us
have two unlabeled corpora, cx and c̄x, containing the documents of the source and target
domain respectively. Then, let p(w) be the probability of a word in cx being w, and p̄(w)
indicating the probability of a word being w in c̄x. We calculate the value of Chi2(cx, c̄x) as
the sum of Pearson’s test metric over the N most occurring words, w1, w2, . . . , wN ,

Chi2(cx, c̄x) :=
N∑
i=1

(
(p(wi)− p̄(wi)

)2
p(wi) + p̄(wi)

.

MMD

Our second distance measure is the Maximum Mean Discrepancy (MMD) defined as the
largest difference in expectations over functions in the unit ball of a reproducing kernel Hilbert
space [62]. Let a unit ball F in a universal reproducing kernel Hilbert space H be a class
of functions f : X → R and EP[X] be the expected value of random variable X distributed
according distribution P. Then the MMD is defined as

MMD(Px, P̄x) := sup
f :||f ||H≤1

∣∣∣EPx[f(X)
]
− EP̄x[f(X)

]∣∣∣. (5-8)

EMD

The Earth Mover’s Distance (EMD), similar to the Wasserstein metric [65], is a broadly
used metric to compare distributions. The metric measures how much probability mass has
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to be moved, and how far it has to be moved, to transform two distributions into each
other. Imagine two discrete distribution functions Px and P̄x with cluster representatives b
and b̄ both with m clusters and their corresponding probabilities p and p̄ adding both up
to one. This can be visualized by a histogram with m bins, centered on b, with heights p,
and a similar representation for the target domain data. Then, we define a distance matrix
D[=di,j ] ∈ Rm×m, indicating the distances between the two cluster representatives b and b̄.
At last we define the flow matrix F= [fi,j ] ∈ Rm×m as the flow of probability mass that has
to be moved to transform the two distribution into each other. The EMD value between the
two distributions is the minimized weighted, by D, flow needed for transformation,

EMD(Px, P̄x) := min
F

m∑
i=1

m∑
j=1

di,jfi,j

subject to fi,j ≥ 0
m∑
i=1

fi,j = pi

m∑
j=1

fi,j = p̄j .

KLD

As last measure, we use the Kullback-Leibler Divergence (KLD) [66], also known as relative
entropy [67]. For two discrete probability functions Px and P̄x, the natural logarithm of the
ratio of their two probability values p and p̄ respectively are basis for the KLD value. With
cluster representatives b = b̄ and m clusters, the KLD value is defined as

KLD(Px, P̄x) :=
m∑
i=1

pi log
(
pi
p̄i

)
.

Notice that this metric is asymmetric which might come in handy as the cross domain clas-
sification error is asymmetric as well.

5-2-2 Performance evaluation

We have constructed a model that predicts cross domain classification error between a can-
didate source domain and a target domain with a linear combination of statistical distance
measures based on the marginal distributions Px and P̄x, a constant and ξ(P). Now we are
interested in how well this model is able to identify the best candidate source domain, i.e. the
one that gives the lowest cross domain classification error ξ(P, P̄). For nc acquired data sets,
let us use one corpus as target domain, P̄, and the others as candidate source domains with
the set annotation P ′. We can repeat the experiment nc times by using each time a different
target domain and average the results.

We first let the model select the predicted best source domain P̂ ∈ P ′ and use this domain
for training. To evaluate performance we define the relative cross domain classification error
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ξrelative(P̂, P̄) as
ξrelative(P̄) = ξ(P̂, P̄)− ξ(P?, P̄) (5-9)

where P? is the domain in P ′ of which we know it has the lowest cross domain classification
error, the true best domain. When the model selects the best source domain, the relative error
will therefore be zero. We perform the same analysis when using each measure individually
as predictor. We calculate the average relative error but also look at the distribution of this
relative error to see how often our models selects one of the best candidate source domains
and how often it fails and selects a poor candidate source domain.

Next, we let our proposed CMEK model select the best n domains from P ′ and compare
ξ(
⋃n
i=1 P̂i, P̄) with training on all domains in P ′. We perform the same analysis when using

the Chi2 distance and EMD measure individually. All results will be tested on significance
using a paired t-test over the results of 13 runs, we will use a significance level of p = 0.05.
The paired t-test is strongly dependent on the assumption that the pairwise differences are
normally distributed. For every comparison between results, we evaluated the normality
assumption. We report only on significant results for which the normality assumption is con-
firmed.

5-3 Limitations

In solving the problem as defined in section 5-1 with our proposed method, we encounter
limitations of various kinds. We first discuss a fundamental statistical limitation that is
present in almost all practical machine learning problems. Then we discuss a limitation of
computational nature and how to deal with this. In the last paragraph we elaborate on
limitations that are more specific to the case study of SC: numerically representing text and
the limited hypothesis space. We end with briefly explaining the limitations of our proposed
CMEK model.

5-3-1 Statistical limitations

In the first place, and inherent to all classification problems, we are unable to retrieve the true
distribution over the support set X × Y in practical settings. Instead, we need to infer this
distribution through only a finite number of observations. In this case a natural approximation
for the distribution is the empirical distribution supported on these observations, which are
the available documents in our SC case study. We then encounter an inevitable approximation

P ≈ 1
ns

ns∑
i

δ{xi,yi}

where ns denotes the number of documents in the domain sample. Due to the approximation
of the true distribution, the hypothesis function (5-1) will be suboptimal, resulting in a higher
classification error. To evaluate this error, the available data originated from one domain is
split into a train and test set. The train set is used to construct h?P as defined in (5-1). The
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test set is used to calculate the inner domain classification error. When using sufficient data
in the test set, a large difference in apparent and true error indicates that the observations
used for training are a poor support for approximating the true distribution since it means
that the empirical distributions from the train and test set are not much alike. When this is
the case, we are over fitting; the hypothesis function works for the data it is constructed on,
but can not be properly generalized to perform well on new data from the same underlying
distribution. To reduce over fitting, we ought to use a sufficient number of training objects
and a low but not too low number of features.

5-3-2 Computational limitations

Another limitation is that the optimization in (5-1) uses the indicator function as loss function,
which is non-convex. For computational reasons, we replace this loss function with a convex
counterpart. For the true hypothesis function h?P in (5-1), a common convex loss function
`(x, y) to minimize, is the quadratic error of the prediction, popular as the method of least
squares

h?P = arg min
h

ns∑
i=1

`(xi, yi) `(x, y) :=
(
h(x)− y

)2
, (5-10)

and the cross domain classification error ξ(P, P̄) will be defined by empirical distributions of
the target and the hypothesis function from (5-10),

ξ(P, P̄) := 1
ns

ns∑
i

1{
h?P(xi)6=yi | (x,y)∼P̄

}. (5-11)

5-3-3 Further discussion on SC related limitations

There are limitations concerned with performing SC with a nature that may also be relevant
to other fields of application. Choosing a word representation model is a field of study by itself
and should be considered carefully here. In the previous section we assumed a true hypothesis
function h? mapping each document represented in X to a label in Y. For computational
purpose, we need to numerically express documents in the X space. Let us call W the set of
all words, W = {w1, w2, . . . wnw} where nw is the number of unique words. Then, documents
in X are combinations of these words, indicating that X can be viewed as an element in
the power set of W denoted by ℘(W ). Note that repetition in the subset is possible. For
computational feasibility, we choose a subset F ⊂ ℘(W ) to represent our documents. The
subset F is called the feature set whose cardinality is denoted by |F|. The features selection
process depends on what representation model is at hand. The representation model F maps
X to R|F|, i.e. F : X→ R|F|. The computational need for a representation model F to select
a subset of X for representation, limits the classification model since information has to be
discarded, see Figure 5-1.

Furthermore, in the task of classification we need to define a search space H for our hypothesis
function as it is computational impossible to search through all possible hypothesis functions
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X Y

R|F|

h?

F ĥ ∈ H

Figure 5-1: Representation and classification structure

as proposed in (5-1). SC tasks are characterized by the fact that the representation space
is sparse, i.e. the ratio of number of training documents to |F| is significantly low. In this
situation, computational feasibility calls for a tractable subset of hypothesis functions H such
as all linear functions. The true hypothesis function is not likely to be in our hypothesis
space, h? 6∈ H. We define the optimal hypothesis function constructed in the domain P as
the hypothesis ĥ within our limited hypothesis space H, which is the collection of all linear
mappings from R|F| to R, that minimizes the chosen loss function (5-10). The cross domain
classification error from (5-11) is calculated with the optimal hypothesis function ĥP.

Hereafter, we use P to annotate the empirical distribution instead of the true continuous
distribution. Furthermore, the cross domain classification error defined as ξ(P, P̄) in (5-2) is
calculated with the optimal hypothesis function in H that minimizes the empirical loss in
(5-10).

5-3-4 CMEK selection model limitations

Our model assumes that a good source domain, with low cross domain classification error,
can be identified by the distributions P and P̄x. However, where in reality sentiment is
determined by joint distribution of the features, the measure we use only measure distance
on the individual distributions of the features. This means we try to find similarity of the
joint distributions from marginal distributions of individual features. The same holds for
classification that is based on marginal data of individual features whereas sentiment in real
life is determined by combinations of features. Since we use marginal data for calculating the
cross domain classification error as well as the prediction of this error, this approach seems
justified, but it creates a model separated from the true fashion of expressing sentiment.

In addition, we do not know in what way we should compare distributions, only that when
distributions are the same, we expect no adaptation loss. It might very well be that the
linear combination of our chosen measures does not include the true distance function that
distinguishes domains from each other.
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Chapter 6

Experimental setup

In this Chapter we briefly elaborate on the data sets we used for our experiments and the
design choices we made concerning the SC pipeline and used distance measures.

6-1 Data sets

We acquired 13 data sets, corpora, each consisting of a different number of documents ranging
from 502 to 30602 documents with an average of 6326 documents, see Table 4-1. The average
length of each document among the corpora varies between 10 words and 20 words with an
average of 15 words. We used a corpus of online reviews on movies, venues and consumer
products [51], short opinions about movies [49] and nine sets of tweets with various topics
[50]. The acquired data sets do not have any major class imbalances.

6-2 Design choices

Considering the SC pipeline design choices, in our experiments we only remove punctuation
and lower case all words as prepossessing. For classification in our experiments, we use a
bag-of-words approach with unigrams and bigrams and use all features that occur more than
4 times in the training corpus and at maximum in 40% of the training documents. These
choices are supported on outcomes of experiments, see Appendix B Figures B-1 and B-2 We
weight the features according to the TF-IDF weighting scheme. We deliberately do not use
word embeddings since the lower dimensional projection needs too much textual domain data
to construct. Using data from other domains will distort results as the representation becomes
dependent on other domains than the source and target domain that are under performance
evaluation. We use LR for its good performance. We use binary classification, y ∈ {0, 1},
giving the following loss function for our classifier

`(x, y)LR =
nd∑
i=1

log
(
1 + e−(2yi−1)xiβ+β0

)
+ α

1
2‖β‖

2
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where w and w0 represent the optimizers, α represents the regularization parameter and the
hypothesis function is defined as

h(x) =
{

1 if βx+ β0 > 0
0 else.

For α, we use the default classifier settings of our used toolbox [47].

For the Chi2 distance, we use the number of occurrences of a word divided by the occurrences
of the top N = 1000 words for calculating the probabilities. The N = 1000 most occurring
words are used to compare means. For the MMD we use a discrete version of (5-8) [68]
where X represents the feature value matrix for the N = 1000 most occurring features in the
combined set of the two evaluated corpora. We use corpora of the same number of objects,
i.e. documents, as input by using a subset of the largest corpus of the two corpora used. For
computational convenience we use a maximum of 5000 documents. For EMD, we compare
the discrete normalized distributions of the feature count in one document and use the sum
of the EMD over the N = 1000 most occurring words with available EMD code [69] [70] [71].
Note that the distribution is highly dependent on the length of a document. Therefore, we
match document lengths among the two domains. We use the same cluster representatives for
both domains, b = b̄ = {0, 1, . . . ,m} and a distance matrix D = [di,j ] defined by di,j = |i− j|.
For the KLD we again use the discrete normalized distributions of the feature count in one
document of Px and P̄x and calculate the KLD as the sum over the N = 1000 most occurring
features.

We do not compare the distribution of all features for two reasons. In the first place, the
distance calculations will take long when using all features. And second, and more important,
distributions of rarely occurring features are less reliable.

For the inner domain classification error that is used as predictor in the CMEK model, we
use the same logistic regression as for the cross domain classification and use 10-fold cross
validation to assess the inner domain classification error.
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Results

In this chapter we will objectively present the results of our experiments according to our per-
formance evaluation described in subsection 5-2-2 without any interpretation. Interpretation
of the results will be described in the next chapters.

Figure 3 shows the empirical distribution of the relative error as defined in (5-9) when selecting
one source domain. The relative error distributions when randomly selecting a source domain
and when using the CMEK source domain selection model are shown.

Table 7-1 shows the probability of selecting the true best domain, the probability of selecting
one of the five worst domains in terms of the cross domain classification error, and the average
cross domain classification error, averaged over the 13 different target domains. We listed
the results when individual measures are used for selection, when the linear combination is
used (CMEK) and when a source domain is selected at random. The optimal cross domain
classification error is listed which can be seen as lower bound of error. The CMEK model
uses the optimized weights

β̂ = [0.04, 1.19, 0.12, 0.05, 0.66, 0.25] (7-1)

for respectively, Chi2, MMD, EMD, KLD, the source domain inner domain classification error
and the constant 1.

Figure 7-2 shows the cross domain classification error when we let our selection model select
n source domains. Results are shown when using CMEK, Chi2, EMD and random selection.
Note that the CMEK model is constructed by optimizing the predicted cross domain classi-
fication error when training the classifier on single source domains, not training on multiple.
The results of using these models for source domain selection are compared with training on
all candidate source domains. We choose to present the Chi2 and EMD measures as they
show the most interesting behavior over using n domains to train on. The MMD measure has
similar behavior as the CMEK model and KLD selection behaves similar to EMD selection.
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Figure 7-1: Performance of CMEK source domain selection model compared to random source
domain selection.

Table 7-1: Performance of CMEK, individual measures, random and optimal selection

Probability Probability
Selection Best possible One of 5 worst Average
method domain selected domains selected ξ(P̂, P̄)

Optimal 1 0 .252
EMD .308 .000 .309
KLD .308 .077 .324
CMEK .385 .154 .330
MMD .077 .154 .350
Chi2 .154 .308 .369

Random .083 .417 .403

Figure 7-2: Performance of CMEK model, Chi2, EMD and random selection for different number
of source domains to be selected, compared with training on all source domains.
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7-1 Significance of the results

In determining the significance of the results, we cannot simply calculate the deviation of the
results. The optimal, random or selection model results are dependent on the target domain;
the deviation over the 13 runs, i.e. 13 different targets domains, tells us nothing about
significance. Instead, to compare two methods with each other, we look at the distribution
of the pair wise difference by performing a paired t-test.
The paired t-test subtracts the results of two models from each other, we denote the difference
between the N results of model M j and Mk by δ,

δ(Mj ,Mk) = {δ1, δ2, . . . , δN} δi =
[
ξ(P̂ ∈ P ′, P̄i)|Mj

]
−
[
ξ(P̂ ∈ P ′, P̄i)|Mk

]
(7-2)

where the condition |M denotes that the predicted best source domain P̂ is chosen by the
model M . Now the t-test assumes this difference to be distributed normally, δ(M1,M2) ∼
N
(
µ, σ2). With this distribution, we can calculate the probability of observing model Mj

performing better than or equal to model Mk and vice versa. We choose a p-value of .05 to
establish a significant result.
I order to be able to compare two results with the t-test, we first check if the normality
assumption δ(M1,M2) ∼ N

(
µ, σ2) holds. If not, even if the p-value of significance is lower

than 0.05, we cannot say with certainty that the result is a significant and we will therefore
not claim that it is.

Single domain selection

First we look at the significance of the results shown in the last column of 7-1. We compare
if one model is better in selecting one source domain, i.e. lower error, than another. In Table
7-2 we show the p-values of the normality assumption. For example, we see that the difference
between KLD and Chi2 is significantly not normally distributed. In Table 7-3, we showed
the p-value determining if the one domain is significantly better performing than the other
in terms of cross domain classification error. For example, looking at Table 7-2, we see that
the difference between the cross domain classification error for CMEK and KLD selecting
the single best domain over 13 runs, is likely to be normally distributed (p = 0.77 > 0.05).
However, from Table 7-3 we do not see a significant difference between the two (p = 0.37 >
0.05).
To evaluate significance of selecting one of the best domains or one of the five worst, we used
a binomial distribution. Results are presented in Appendix B, Table B-2 and B-3.

Multiple domain selection

If we let the model select multiple training domains, we are interested in the significance
of the cross domain classification error over the range of n = {2, 3, . . . , 11}. We define the
difference vector for the paired t-test

δ(Mj ,Mk) = {δ1, δ2, . . . , δ11} δn =
[
ξ(∪nz=1P̂z ∈ P ′, P̄i)|Mj

]
−
[
ξ(∪nz=1P̂z ∈ P ′, P̄i)|Mk

]
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where ∪nz=1P̂z denotes the set of n selected training domains according to the selection model.
We can look at this evaluation as evaluating if the lines in Figure 7-2 differ significantly. Table
7-4 shows if the normality assumption is met, and Table 7-5 shows the significance of the
difference.

In Figure 7-2, each line consists of 10 data points. Each data point is actually an average over
13 runs, each run with a unique target domain. We can evaluate the significant difference of
each point between two models. So, in the previous paragraph, we evaluated significance over
the entire range n = {2, 3, . . . , 11}, we now look if there is a significant difference between
models in selecting n domains. We perform a paired t-test over the 13 runs that construct
each data point in Figure 7-2. In Appendix B, Tables B-4 to B-9 show the p-values of the
normality assumption and significance of the difference.

Table 7-2: P-values of normality assumption of δ(Mj ,Mk) for results selecting 1 source domain.

Selection model Random CMEK Chi2 MMD EMD KLD
Random x 0.81 0.61 0.78 0.64 0.71
CMEK 0.81 x 0.54 0.50 0.62 0.77
Chi2 0.61 0.54 x 0.092 0.065 0.012
MMD 0.78 0.50 0.092 x 0.00085 0.10
EMD 0.64 0.62 0.065 0.00085 x 0.00056
KLD 0.71 0.77 0.012 0.10 0.00056 x

Table 7-3: P-values of significant difference in results ofM1 andM2 in selecting 1 source domain.

Selection model Random CMEK Chi2 MMD EMD KLD
random x 0.0033 0.078 0.0053 0.000047 0.0019
CMEK 0.0033 x 0.059 0.23 0.16 0.37
Chi2 0.078 0.059 x 0.14 0.0073 0.023
MMD 0.0053 0.23 0.14 x 0.022 0.14
EMD 0.000047 0.16 0.0073 0.022 x 0.22
KLD 0.0019 0.37 0.023 0.14 0.22 x

Table 7-4: P-values of normality assumption of δ(Mj ,Mk) for results selecting multiple source
domains.

Selection model Random CMEK Chi2 EMD
Random x 0.85 0.68 0.31
CMEK 0.85 x 0.0017 0.60
Chi2 0.68 0.0017 x 0.0014
EMD 0.31 0.60 0.0014 x
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Table 7-5: P-values of significant difference in results ofM1 andM2 for selecting multiple source
domains.

Selection model Random CMEK Chi2 EMD
Random x 0.013 0.00043 0.00014
CMEK 0.013 x 0.50 0.25
Chi2 0.00043 0.50 x 0.12
EMD 0.0.00014 0.25 0.12 x
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Chapter 8

Conclusion

To select a suitable source domain in terms of cross domain classification error, we hypoth-
esized that this error can be predicted by a function of the source domain distribution P
and marginal target domain distribution P̄x. We proposed the CMEK model to select the
best source domain(s) from a set of candidates. The CMEK model uses a linear combina-
tion of the Chi2, MMD, EMD, KLD, the inner domain classification error and the constant
1, with weight vector β as predictor for the cross domain classification error. To evaluate
performance, we consider an example including 12 distinct domains forming 132 different
source-target domain pairs. The proposed metric parameter β is optimized to minimize the
absolute error of the prediction. The optimized predictor was used to select one or multiple
best source domains among those 12 domains in order to train a classifier for a thirteenth,
unseen target domain. This classifier is tested by calculating the cross domain classification
error of the selected source domain(s) and the target domain. The process is repeated 13
times, each time using a different unseen target domain to test on. We benchmark perfor-
mance with randomly selecting a source domain and with using all candidate source domains
to train on.

From figure 7-1 we see that the CMEK model is well able to identify source domains with low
cross domain classification error. In 54% of the runs, the selected source domain was within
5 percent points error of the optimal choice whereas random selection only selected 16% of
the times a source domain in this category.

From Table 7-1, we see that compared to random domain selection, the CMEK, MMD, EMD
and KLD selection realize significant improvement in average cross domain classification error
(p = 0.0034, p = 0.0054, p = 0.000047 and p = 0.0019 respectively). The CMEK model has
a significant larger probability of selecting the best domain compared to random, MMD
and Chi2 selection (p = 0.0029, p = 0.0021 and p = 0.038 respectively). If we look at the
probability of not selecting one of the five worst domains for training, all models except the
Chi2 selection model significantly perform better than the random selection model. From
(7-1) we see that the CMEK model depends primarily on the MMD and the inner domain
classification error.
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Although most selection models significantly improve performance compared to random se-
lecting one source domain, we would still be better off training on all the available source
domains. However, if we let our CMEK model select multiple source domains to train on, we
are able to get better performance than training on all source domains for some n, see Figure
7-2. The CMEK model seems to perform significantly better than training on all domains
when it selects 8 or 9 domains (p = 0.047 and p = 0.041). Note, for all mentioned significant
results, the normality assumption of the t-test is confirmed, however in this specific eval-
uation, the pairwise differences seem not normally distributed. What the optimal number
of domains to train on is, may be very dependent on what candidate source domains are
available. When we have candidate source domains that are somehow similar to the target
domain, the optimal n will be higher. For a diverse set of candidate source domains the
optimal n will be lower.

Looking closely at the curve of the random domain selection for n training domains, we can
conclude that we are still not at a saturation point; adding more data to train on will still
improve performance. Making a logarithmic projection for adding more domains to train on,
we expect the the cross domain classification error to be .27 for 20 training domains and .22
for 50 training domains. However, confidence intervals are quite large on these predictions.
See see Appendix B for the projection.

Also, from Figure 7-2, we see that the EMD selection really loses its magic when multiple
domains have to be selected. Apparently, the EMD distance is primarily good in detecting
the few best domains, and much less capable of estimating the cross domain classification
error of medium range source domains. The CMEK model performs significantly better than
EMD and random selection in selecting multiple source domains to train on (p = 0.000023
and p = 0.046 respectively). The CMEK model is for each 3 ≥ n ≤ 11 significantly better
then random selection. Compared to the CMEK model, EMD selection significantly fails in
selecting 6, 7 and 8 source domains.

If we are to make a general recommendation for using one of the evaluated models, in the
light of general performance, we would choose the CMEK model. The CMEK model shows
significantly good performance and stable behavior in selecting multiple source domains and
it has solid performance in selecting the single best domain. In retrospect to our hypothesis
(5-4), we can conclude that it is to some extend possible to approximate the cross domain
classification error as we were able to use this approximation for successful source domain
selection. However, there is much more room for improvement.
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Chapter 9

Further discussion

In this chapter, we reflect on the proposed CMEK model and our recommendation. We will
elaborate on the weaknesses of our approach and will give some context information in order
to be able to assess implementation of the CMEK model on other data sets.

9-1 Discussion

Reflecting on our conclusion, we would like to place some remarks. We showed that the
CMEK model works superior in selecting one source domain compared to random selection.
However, the results show that, even for candidate source domains with a wide spread in
topic and source medium, it is quite beneficial to train on all the candidate source domains.
One of the reasons not to train on all data could be that it is too computational expensive.
Another reason might be that the candidate source domains are too diverse. To establish if
this is the case, we would need a measure that informs us about the diversity of the candidate
source domains.

When we know we have candidate source domains that are similar to each other in terms
of expressing sentiment, it might very well be that our CMEK model is not able to improve
performance compared to training on all data. Therefore, if we have candidate source domains
that are similar to each other, we might choose to train on all domains for simplicity.

Another disadvantage of the CMEK model, is that it uses some distance measures that are
quite expensive to calculate. This can be a problem when we have many or large candidate
source domains. This challenge might be addressed by using less features and more informa-
tive features to calculate distance over and we could optimize used code on efficiency. We
might investigate what happens to the performance of the CMEK model in case we leave out
the Chi2 and KLD measure, as they are given fewest importance, i.e. low weight βi.

We constructed, tested and evaluated the model with the 13 acquired data sets. We would
like to remind that sentiment expression is characterized by a severe notion of stochasticity.
It is hard to tell how much performance of the CMEK model will deviate when 13 other sets
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are chosen to construct the model. Furthermore, we have not evaluated the model when it
is constructed on only 3 or 4 data sets for example. For more available domains to construct
the model, we might assume that the model will be more refined and better performing due
to the wider support for the β weight vector.

Although we described a method that can be easily implemented in other fields of machine
learning that encounter a domain shift such as computer vision, fraud detection or spam
detection, we only showed our model works reasonably well in the domain of SC.

9-1-1 Future work

As the selection models presented in Table 7-1 are to some extension able to select a source
domain with lower than average cross domain classification error, we concluded that the
measures are to some extend able to predict the cross domain classification error in order
to select a suitable source domain. However, if our model would fully do justice to our
hypothesis (5-4), we would improve even further. We could say that proof of concept is given:
it is possible to roughly predict the cross domain classification error based on the distribution
of the source domain distribution and marginal distribution of the target domain. However,
we still see much room for improvement as the lower bound for the error when selecting one
domain is .252, we’re only half way.

If we would like to improve results further, first steps would be to look closer into the features
over which we measure distance. Should we use the 1000 most common, or is distance better
measured with more or less features? This could be dependent on corpus size as well. There
might be feature selection methods to select the features that are most informative in terms
of distance, instead of simply using the N most occurring features.

To improve, we might add some predictors to the linear combination, such as the document
length distribution or the length of a corpus. Brief statement are on average more similar
with each other than short statements compared with long expressions. Also, if we have more
objects in a source domain, we might benefit more when training on that large source domain
than training on a corpus with only a few documents. However, with more elements in β, we
might need more data to prevent over fitting.

We can also extend our model to give a weight factor on every source domain: source domains
that are predicted not suitable get a low weight, domains with low distance to the target are
given more weight. This approach leans towards importance sampling.

We constructed a predictor for the cross domain classification error of one source domain,
and used the model to select multiple source domains. If this is what we are interested in,
it would make sense to calculate distances between a set of multiple domains and the target
domain and make a selection model optimized on predicting the cross domain classification
error when training on multiple domains. In that case, synergies of data sets will be taken
into account. This approach will, however, be very computational expensive.
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Abstract—Automated sentiment classification (SC) on short
text fragments has been an upcoming field of research. Perform-
ing SC in unseen domains with few or no labeled samples can
significantly affect the classification performance and is likely
to results in an adaptation loss due to different expression
of sentiment in source and target domain. We evaluate the
effectiveness of using an unsupervised measure to identify a
suitable source domain for an SC task in a specific target
domain. A linear combinations of the Chi squared distance, Maxi-
mum Mean Discrepancy, Earth Mover’s Distance and Kullback-
Leibler Divergence to select a source domain will be assessed.
Results show that selecting a source domain by using this linear
combination and the inner domain classification error of the
candidate source domain, results in a reduction of adaptation
loss by 7 percent points compared to training on a randomly
selected source domain. The model is proposed as the CMEK
selection model. In addition, the CMEK model is able to select
a subset of all candidate domains to train on and realize slightly
improved performance compared to training on all candidate
source domains. Therefore, for an SC task of a given target
domain, when no labeled target domain data is available, we
propose to use the novel CMEK selection model for choosing
one or multiple source domains to train on.

Index Terms—Sentiment classification, sentiment analysis, do-
main shift, distance measure, source selection

I. INTRODUCTION

Automated SC is performed when a trained classifier is used
to label documents with a sentiment label, based on the content
of the document. In practice, a document represents a review,
tweet or other small textual opinion expression and oughts
to be classified as either positive or negative (binary SC).
Allied terminology for SC is semantic orientation or polarity,
which indicates the direction a word deviates from the norm
of its semantic group [1]. Often, the terms opinion mining
and sentiment analysis are used to describe the computational
treatment of opinion, sentiment and subjectivity in text [2].
Examples of current applications that benefit from SC are
recommendation systems [3], stock market prediction systems
[4] and political election predictors [5]. Also in the future,
we could imagine SC put in practice to improve man-machine
communication such as voice commands or even interaction
between robots and humans.

One of the biggest challenges in many SC applications,
is the discrepancy between the source domain where the

classifier is trained on, and the target domain of interest.
Typically, we have large amounts of labeled data from different
source domains, but only possess few, unlabeled data from
the target domain, both originated from different underlying
distributions. In this setting, SC generally performs rather
bad compared to inner domain training and testing. This so
called domain transfer problem can be intuitively explained
due to different fashions of sentiment expression in different
domains [6]. Various research has been performed with the
aim to decrease the loss in classification performance due
to domain shift. This loss is referred to as the adaptation
loss [7] [8]. One of the popular transfer learning techniques
to maintain performance of SC when crossing domains, is
Structural Correspondence Learning which uses pivot features
as link between the source and target domain [9] [10]. Many
other techniques are based on optimal transport which matches
the conditional probability distribution of the training domain
and target domain by a transformation of the source domain
data. The distance between source and target distribution
is minimized [11]. Often distance is minimized in a lower
dimensional embedded space, for example when performing
Subspace Alignment [12] or Transfer Component Analysis
[13]. Other approaches successfully use unsupervised feature
scaling to increase performance when source and target do-
main differ in topic or author group [14].

Another approach to reduce adaptation loss that has received
less attention in literature, is unsupervised source domain
selection. This selection method attempts to select an optimal
source domain, for training purpose, from a set of candidate
domains without supervision; i.e. it selects the source do-
main that has best cross domain classification performance
compared to the other candidates without the use of class
labels of the target domain data. Source domain selection has
been successfully used before, for example to improve brain-
computer interface calibration. In this case, supervised source
domain selection based on distance between the class average
vectors has been used [15].

In the field of source domain selection for SC, Blitzer
et al. show a good correlation between the A-distance and
adaptation loss [8]. However, the adaptation loss is measured
using the target domain’s inner domain classification error
which requires labeled data of the target domain. The concept
of A-distance is also used in recent research for orthophoto



classification, were it is approximated by the Maximum Mean
Discrepancy [16]. For even more open search space for source
domain, techniques have been researched to find a suitable
source domain in open online information sources such as
Wikipedia [17]. However, this techniques also uses labeled
information of the target domain. In this paper, we propose
a new method, CMEK, for source domain selection that does
not require any labeled information of the target domain.

In the second section of this paper, we define the problem
of source domain selection in general, that is, not in context
of SC. Next, in the method section, we propose an approach
to predict the performance of a classifier trained on a source
domain and applied on a target domain of interest of which the
labels are unknown in order to find a solution for the defined
problem. This prediction is based on statistical distances
between the distributions of the source and target data. We use
several statistical measures to determine the distance, which
will be elaborated on. We will address certain limitations to
our proposed model, starting with fundamental limitations that
occur in all classification tasks and ending with limitations of
our approach within the task of SC. Section V describes the
experimental setup in detail and will elaborate on the data
sources we used and the model settings we chose. In section
VII we will objectively present results. In the conclusion we
reflect on the results and offer suggestions for future work.

II. PROBLEM DEFINITION

With a document represented by a random variable
X and its sentiment label by random variable Y , each
domain is uniquely characterized by its joint probability
density function supported on X× Y. Let us then define two
underlying distributions to the evaluated source and target data
on X × Y, denoted by P and P̄ respectively. Their marginals
on X, are denoted as Px and P̄x respectively. In machine
learning, a realization of P is referred to as labeled data
whereas realizations from Px are referred to as unlabeled data.

We define an hypothesis function as a mapping from X to
Y, h : X→ Y. In the context of classification problems in the
machine learning literature, the set Y is often discrete, often
binary, and the hypothesis h is often referred to as a classifier
as it is able to assign a class label in Y to each data point in
X. The true hypothesis function h?P for a domain characterized
by P, is defined as

h?P := arg min
h
P
(
h(x) 6= y | (x, y) ∼ P

)
. (1)

We then define the inner domain classification error as the
probability of misclassification in the same domain as the
true hypothesis function is constructed in. And the cross
domain classification error is defined as the probability of
misclassification in the target domain of the true hypothesis
function of the source domain

ξ(P) := P
(
h?P(x) 6= y | (x, y) ∼ P

)
.

ξ(P, P̄) := P
(
h?P(x) 6= y | (x, y) ∼ P̄

)
.

(2)

Note that due to the stochastic nature of sentiment expression,
ξ(P) and ξ(P, P̄) are not likely to be zero, even if we would
have infinite data to train on. In addition, due to the difference
in source and target distribution, ξ(P, P̄) is likely to be higher
than ξ(P) [8]. The difference between the cross and inner
domain classification error is referred to as the adaptation loss.

The goal in many classification tasks is to minimize the
cross domain classification error (2) for a specific target do-
main while we have access to a finite set of labeled candidate
source domains. An appropriate choice of the source domain
in this context is the main goal of this study, leading to the
following question:

What source domain minimizes the cross domain
classification error for a given target domain?

With the choice of source domain restricted to a domain
characterized by a probability density function in the candidate
set P , our main goal can be formally described through the
optimization program

P? := arg min
P∈P

ξ(P, P̄). (3)

where ξ(P, P̄) is the cross domain classification error intro-
duced in (2). In other words, when we posses a finite number
of labelled data sets, each originated from a unique source
domain, on which set should we train our classifier in order
to minimize classification error on data from a specific target
domain?

The challenge concerning the objective (3), is that for a
target domain of interest we typically only have unlabeled
data, therefore we cannot calculate the cross domain
classification error. This means we only know the marginal
distribution P̄x of our target domain instead of P̄, making
it impossible to explicitly calculate ξ(P, P̄). In order to
find the best source domain characterized by P? ∈ P for
our target domain with distribution P̄, we ought to predict
ξ(P, P̄) for all P ∈ P . For this prediction we have full
distributional information of the source domains, P, and
marginal information on the distribution of the target domain,
P̄x, available.

III. METHOD

In this section, we propose a model, called CMEK source
domain selection, an acronym of the four measures it uses, to
deal with the previously stated challenge. The model measures
statistical distances between the marginal distributions of can-
didate source domains and the target domain and uses the inner
domain classification error of the candidate source domains.
The candidate source domain with the lowest distance is



hypothesized to have the lowest cross domain classification
error and is selected to train a classifier. This section will
describe the CMEK model, the distance measures it uses and
how we will evaluate the performance of the model.

We consider a set D containing a family of distance func-
tions d : P × P̄x → R+. We now hypothesize that given an
available set of source domain distributions P and a target
domain distribution denoted by P̄ with the marginal P̄x, there
exists a d̂ ∈ D that can reliably predict the cross domain
classification accuracy ξ(P, P̄), that is,

ξ(P, P̄)
hyp≈ d̂(P, P̄x). (4)

More specific, we hypothesize that the cross domain classifi-
cation error can be predicted by looking at the difference in
marginal distribution functions Px and P̄x and ξ(P). With this
prediction, the best candidate source domain can be selected
for training. We formalize this optimal choice of the measure
by considering the optimization problem

d̂ := arg min
d∈D

∑

P∈P̄

∣∣ξ(P, P̄)− d(P,Px)
∣∣. (5)

To construct the family D of candidate measures, we use
a vector s with K known statistical distance measures as
elements, si : Px × P̄x → R+ for i ∈ {1, · · · ,K}. The
family D consists of linear combinations of these measures
si with corresponding weight coefficients βi ∈ R+, with βi
being elements of the weight vector β. We augment the linear
combination with a constant. Note that the distance measures
are functions supported on the marginal distributions of source
and target domain. Examples of these statistical distance
metrics are the Chi squared distance (Chi2), Maximum Mean
Discrepancy (MMD), Earth Mover’s Distance (EMD) and
Kullback-Leibler Divergence (KLD). When a source domain
has poor inner domain classification performance, we expect it
to be less suitable as source domain for cross domain classifi-
cation. Therefore, we calculate the inner domain classification
error for all candidate source domains and add this to our
vector s. With our choice for D, the optimization problem (5)
can be reduced to

β̂ := arg min
β≥0

∑

P∈P

∣∣ξ(P, P̄)− βs(P, P̄x)
∣∣,

d̂ := β̂s(P, P̄x).

(6)

Note that program (6) constructs the optimal unsupervised
predictor by using the full distribution of the target data, which
is presumed to be unknown. In a practical setting with a
finite number of elements in P , we deal with this problem
by training only on the domains in P . In each run, one of the
elements of P is extracted from the set and used as proxy P̄, at
the end of the run, this element, denoted as P̃ and its marginal
P̃x, is placed back in P . In every run, another element is
extracted and placed back for training. This training program
is described as

β̂ := arg min
β≥0

∑

P∈P,P 6=P̃

∑

P̃∈P

∣∣ξ(P, P̃)− βs(P, P̃x)
∣∣.

We hypothesize that with a sufficient amount of source domain
distributions in P , the constructed predictor for the cross
domain classification error, based on information from P ,
is also reasonably accurate in predicting the cross domain
classification error for a target domain not included in P . This
allows us to select the best source domain to train on for this
unseen target domain.

Now, in view of our hypothesis (4), with the predictor d̂ we
are able to approximate ξ(P, P̄) with only marginal informa-
tion of the target domain P̄x, which allows us to deal with the
challenge through an approximation. This enables us to, given
a target domain with distribution P̄, select the source domain,
characterized by P̂ from a set of available source domains that
is predicted to minimize the cross domain classification error
ξ(P, P̄) as formalized through the optimization program

P̂ := arg min
P∈P

d̂(P, P̄x)

which is the goal of this study.

A. Measures

For our SC case study, we hypothesize that the way peo-
ple express sentiment can be captured in how often certain
words and word combinations are used. The underlying joint
distributions P differs among different domains. To accurately
classify sentiment for a target domain, we therefore ought to
find a domain with similar underlying distribution function.
But how do we measure similarity between distributions?

When we talk about statistical similarity or distance mea-
sures, we can define two different approaches of measuring
distance. First, we can compare statistical meta data such as
the average word frequency. The Chi2 distance is based on
comparing this average word frequency between two evaluated
corpora. Other meta approaches are, for example, based on
comparing rank of word frequency. These approaches are in
general computational cheap, but not very robust. Another ap-
proach is to compare the distribution of word frequency. These
approaches are referred to as Integral Probability Metrics
(IPMs). Where the previously described metrics only compare
meta data on the word frequency distributions, IPMs compare
the actual distributions. IPMs use a class F of functions
f : X → R to calculate the distance si between Px and
P̄x as

si(Px, P̄x) = sup
f∈F

∣∣∣EPx
[
f(X)

]
− EP̄x

[
f(X)

]∣∣∣, (7)

the question arises which class F to choose [18]. If we
would choose the 1-Lipschitz function for F , we get the
popular and straightforward EMD metric [19]. This metric is
straightforward as it measures how much distribution mass has



to be moved to transform one distribution in another. The mass
is weighted proportionally to the distance it has to travel. If we
would choose F in (7) to be a class of functions in the unit
ball of a reproducing kernel Hilbert space, we would have
the MMD metric [20]. This approach finds a well behaved,
smooth, function which is high on the points drawn from Px
and low on P̄x or vice verse. We use as our test statistic
the difference between the mean function values on the two
samples according to (7) [21]. Another approach is to choose a
logarithmic function for f , giving the KLD with the interesting
asymmetry property si(Px, P̄x) 6= si(P̄x,Px). As difference in
distribution becomes larger, KLD gives decreasingly increas-
ing distance.

Since we hypothesize that the way people express
sentiment can be captured in how often certain words
and word combinations are used, but not know in what
relationship, we propose a broad spectrum of possibilities
to optimize over. We propose to evaluate a meta approach,
Chi2 distance, and three IPM approaches that use different
comparison functions f : MMD, EMD and KLD. Therefore
we have four measures, a constant and the inner domain
classification error of the source domain that span the
distance vector space D. In the next paragraphs we will
briefly elaborate on how we use these distance measures in a
discretized fashion. Selection based on the linear combination
of these four metrics, the constant and ξ(P) will be referred
to as the CMEK selection model.

1) Chi2: As first distance measure, we make use of the test
statistic of Pearson’s χ2 test [22]. Let us have two unlabeled
corpora, cx and c̄x, containing the documents of the source and
target domain respectively. Then, let p(w) be the probability
of a word in cx being w, and p̄(w) indicating the probability of
a word being w in c̄x. We calculate the value of Chi2(cx, c̄x)
as the sum of Pearson’s test metric over the N most occurring
words, w1, w2, . . . , wN ,

Chi2(cx, c̄x) :=
N∑

i=1

(
(p(wi)− p̄(wi)

)2

p(wi) + p̄(wi)
.

2) MMD: Our second distance measure is the Maximum
Mean Discrepancy (MMD) defined as the largest difference in
expectations over functions in the unit ball of a reproducing
kernel Hilbert space [20]. Let a unit ball F in a universal
reproducing kernel Hilbert space H be a class of functions f :
X→ R and EP[X] be the expected value of random variable X
distributed according distribution P. Then the MMD is defined
as

MMD(Px, P̄x) := sup
f :||f ||H≤1

∣∣∣EPx
[
f(X)

]
− EP̄x

[
f(X)

]∣∣∣.
(8)

3) EMD: The Earth Mover’s Distance (EMD), similar
to the Wasserstein metric [23], is a broadly used metric
to compare distributions. The metric measures how much
probability mass has to be moved, and how far it has to

be moved, to transform two distributions into each other.
Imagine two discrete distribution functions Px and P̄x with
cluster representatives b and b̄ both with m clusters and
their corresponding probabilities p and p̄ adding both up to
one. This can be visualized by a histogram with m bins,
centered on b, with heights p, and a similar representation
for the target domain data. Then, we define a distance matrix
D = [di,j ] ∈ Rm×m, indicating the distances between the
two cluster representatives b and b̄. At last we define the flow
matrix F = [fi,j ] ∈ Rm×m as the flow of probability mass that
has to be moved to transform the two distribution into each
other. The EMD value between the two distributions is the
minimized weighted, by D, flow needed for transformation,

EMD(Px, P̄x) := min
F

m∑

i=1

m∑

j=1

di,jfi,j

subject to fi,j ≥ 0
m∑

i=1

fi,j = pi

m∑

j=1

fi,j = p̄j .

4) KLD: As last measure, we use the Kullback-Leibler
Divergence (KLD) [24], also known as relative entropy [25].
For two discrete probability functions Px and P̄x, the natural
logarithm of the ratio of their two probability values p and
p̄ respectively are basis for the KLD value. With cluster
representatives b = b̄ and m clusters, the KLD value is defined
as

KLD(Px, P̄x) :=
m∑

i=1

pi log

(
pi
p̄i

)
.

Notice that this metric is asymmetric which might come in
handy as the cross domain classification error is asymmetric
as well.

B. Performance evaluation

We have constructed a model that predicts cross domain
classification error between a candidate source domain and a
target domain with a linear combination of statistical distance
measures based on the marginal distributions Px and P̄x, a
constant and ξ(P). Now we are interested in how well this
model is able to identify the best candidate source domain, i.e.
the one that gives the lowest cross domain classification error
ξ(P, P̄). For nc acquired data sets, let us use one corpus as
target domain, P̄, and the others as candidate source domains
with the set annotation P ′. We can repeat the experiment nc
times by using each time a different target domain and average
the results.

We first let the model select the predicted best source
domain P̂ ∈ P ′ and use this domain for training. To evaluate
performance we define the relative cross domain classification
error as

ξrelative(P̂, P̄) = ξ(P̂, P̄)− ξ(P?, P̄) (9)



where P? is the domain in P ′ of which we know it has
the lowest cross domain classification error, the true best
domain. When the model selects the best source domain, the
relative error will therefore be zero. We perform the same
analysis when using each measure individually as predictor.
We calculate the average relative error but also look at the
distribution of this relative error to see how often our models
selects one of the best candidate source domains and how often
it fails and selects a poor candidate source domain.

Next, we let our proposed CMEK model select the best n
domains from P ′ and compare ξ(

⋃n
i=1 P̂i, P̄) with training on

all domains in P ′. We perform the same analysis when using
the Chi2 distance and EMD measure individually. All results
will be tested on significance using a paired t-test over the
results of 13 runs, we will use a significance level of p = 0.05.
The paired t-test is strongly dependent on the assumption
that the pairwise differences are normally distributed. For
every comparison between results, we evaluated the normality
assumption. We report only on significant results for which
the normality assumption is confirmed.

IV. LIMITATIONS

In solving the problem as defined in section II with our
proposed method, we encounter limitations of various kinds.
We first discuss a fundamental statistical limitation that is
present in almost all practical machine learning problems.
Then we discuss a limitation of computational nature and
how to deal with this. In the last paragraph we elaborate on
limitations that are more specific to the case study of SC:
numerically representing text and the limited hypothesis space.
We end with briefly explaining the limitations of our proposed
CMEK model.

A. Statistical limitations

In the first place, and inherent to all classification problems,
we are unable to retrieve the true distribution over the support
set X× Y in practical settings. Instead, we need to infer this
distribution through only a finite number of observations. In
this case a natural approximation for the distribution is the
empirical distribution supported on these observations, which
are the available documents in our SC case study. We then
encounter an inevitable approximation

P ≈ 1

ns

ns∑

i

δ{xi,yi}

where ns denotes the number of documents in the domain
sample. Due to the approximation of the true distribution,
the hypothesis function (1) will be suboptimal, resulting in a
higher classification error. To evaluate this error, the available
data originated from one domain is split into a train and
test set. The train set is used to construct h?P as defined
in (1). The test set is used to calculate the inner domain
classification error. When using sufficient data in the test
set, a large difference in apparent and true error indicates

that the observations used for training are a poor support for
approximating the true distribution since it means that the
empirical distributions from the train and test set are not much
alike. When this is the case, we are over fitting; the hypothesis
function works for the data it is constructed on, but can not
be properly generalized to perform well on new data from the
same underlying distribution. To reduce over fitting, we ought
to use a sufficient number of training objects and a low but
not too low number of features.

B. Computational limitations

Another limitation is that the optimization in (1) uses the
indicator function as loss function, which is non-convex. For
computational reasons, we replace this loss function with a
convex counterpart. For the true hypothesis function h?P in
(1), a common convex loss function `(x, y) to minimize, is
the quadratic error of the prediction, popular as the method of
least squares

h?P = arg min
h

ns∑

i=1

`(xi, yi) `(x, y) :=
(
h(x)− y

)2
, (10)

and the cross domain classification error ξ(P, P̄) will be de-
fined by empirical distributions of the target and the hypothesis
function from (10),

ξ(P, P̄) :=
1

ns

ns∑

i

1{
h?
P (xi) 6=yi | (x,y)∼P̄

}. (11)

C. Further discussion on SC related limitations

There are limitations concerned with performing SC with a
nature that may also be relevant to other fields of application.
Choosing a word representation model is a field of study
by itself and should be considered carefully here. In the
previous section we assumed a true hypothesis function h?

mapping each document represented in X to a label in Y.
For computational purpose, we need to numerically express
documents in the X space. Let us call W the set of all words,
W = {w1, w2, . . . wnw

} where nw is the number of unique
words. Then, documents in X are combinations of these words,
indicating that X can be viewed as an element in the power
set of W denoted by ℘(W ). Note that repetition in the subset
is possible. For computational feasibility, we choose a subset
F ⊂ ℘(W ) to represent our documents. The subset F is
called the feature set whose cardinality is denoted by |F|.
The features selection process depends on what representation
model is at hand. The representation model F maps X to R|F|,
i.e. F : X→ R|F|. The computational need for a representation
model F to select a subset of X for representation, limits the
classification model since information has to be discarded, see
Figure 1.

Furthermore, in the task of classification we need to define
a search space H for our hypothesis function as it is compu-
tational impossible to search through all possible hypothesis
functions as proposed in (1). SC tasks are characterized by
the fact that the representation space is sparse, i.e. the ratio
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R|F|

h?

F ĥ ∈ H

Fig. 1. Representation and classification structure

of number of training documents to |F| is significantly low.
In this situation, computational feasibility calls for a tractable
subset of hypothesis functions H such as all linear functions.
The true hypothesis function is not likely to be in our hypoth-
esis space, h? 6∈ H. We define the optimal hypothesis function
constructed in the domain P as the hypothesis ĥ within our
limited hypothesis spaceH, which is the collection of all linear
mappings from R|F| to R, that minimizes the chosen loss
function (10). The cross domain classification error from (11)
is calculated with the optimal hypothesis function ĥP.

Hereafter, we use P to annotate the empirical distribution
instead of the true continuous distribution. Furthermore, the
cross domain classification error defined as ξ(P, P̄) in (2)
is calculated with the optimal hypothesis function in H that
minimizes the empirical loss in (10).

D. CMEK selection model limitations

Our model assumes that a good source domain, with low
cross domain classification error, can be identified by the
distributions P and P̄x. However, where in reality sentiment is
determined by joint distribution of the features, the measure
we use only measure distance on the individual distributions
of the features. This means we try to find similarity of the
joint distributions from marginal distributions of individual
features. The same holds for classification that is based on
marginal data of individual features whereas sentiment in real
life is determined by combinations of features. Since we use
marginal data for calculating the cross domain classification
error as well as the prediction of this error, this approach seems
justified, but it creates a model separated from the true fashion
of expressing sentiment.

In addition, we do not know in what way we should compare
distributions, only that when distributions are the same, we
expect no adaptation loss. It might very well be that the linear
combination of our chosen measures does not include the true
distance function that distinguishes domains from each other.

V. CASE STUDY: SENTIMENT CLASSIFICATION

Let us give some brief background information on how to
perform SC, mainly to clarify design choices made in the
experimental set up. The pipeline for SC can be segmented into
three parts: data preprocessing, document representation and
classification. The next paragraphs will describe the pipeline.
For a lower dimensional visualization, see Figure 2.

A. Preprocessing

In the preprocessing part one tries to remove noise from the
text that does not hold sentiment information in order to reduce
complexity, i.e. dimensionality. Common techniques to do so
are stop word removal, lower casing words, spelling correction
and removing punctuation. Other techniques, including part
of speech tagging, stemming and lemmatization, attempt to
find implicit sentiment information by predicting syntactics of
words or combinations of words.

f1 = “cat”

f2 = “sad”

f3 = “happy”

d1

d2

d3

d4

d1 = “The cat makes me happy.”
d2 = “The cat is beautiful.”
d3 = “The cat makes me sad.”
d4 = “I was happy, the sad cat made me sad.”

POS
POS
NEG
NEG

Fig. 2. Classified feature space

B. Document representation

The second part of the pipeline for sentiment classifica-
tion deals with representing documents in a mathematical
interpretable fashion. The most upfront approach is to use
words as features, and word counts as feature values without
looking at word order, a bag-of-words approach. With nF
words or combinations of words as features, nF = |F|, we
can build an nF -dimensional feature space in which each word
is represented by an nF -dimensional vector. The number of
occurrences of a feature in the document determines the value
in that dimension. Each document is then represented as the
sum of all the vectors of its features. When using nF features,
a corpus of nd documents can be represented as a matrix
X ∈ Nnd×nF which is referred to as the feature value matrix.
X represents a projection of the empirical distribution P. In
addition one could choose to use combinations of N words
as features, called N -grams. Often, features are weighted to
assign less value to more common words such as stop words.
A widely used weighting scheme borrowed from information
retrieval systems is the TF-IDF weighting scheme. To reduce
dimensionality, feature selection algorithms can be used, se-
lecting the most class label informative features by using for
example χ2, mutual information or lexicon based selection
[26]. Another popular approach for document representation



uses word embeddings [27] [28], a lower dimensional projec-
tion of a high dimensional feature space. To construct a good
projection, we need a lot of data, preferably from the domain
that is under evaluation.

C. Classification

When we have a mathematical representation for the source
and target documents, we try to find a hypothesis function
that separates the feature space in subspaces belonging to the
different class labels. All documents that are represented in
certain subspace, are predicted to have the accompanying label
of that specific subspace. The hypothesis function, or classifier,
is constructed by minimizing a loss function, see (10). Pop-
ular classifiers for sentiment classification are Support Vector
Machines, Naive Bayes and Logistic Regression (LR).

VI. EXPERIMENTAL SETUP

In this section we will briefly elaborate on the data sets
we used for our experiments and the design choices we made
concerning the SC pipeline and used distance measures.

A. Data sets

We acquired 13 data sets, corpora, each consisting of a
different number of documents ranging from 502 to 30602
documents with an average of 6326 documents. The average
length of each document among the corpora varies between
10 words and 20 words with an average of 15 words. We used
a corpus of online reviews on movies, venues and consumer
products [29], short opinions about movies [30] and nine sets
of tweets with various topics [31]. The acquired data sets do
not have any major class imbalances.

B. Design choices

Considering the SC pipeline design choices, in our experi-
ments we only remove punctuation and lower case all words
as prepossessing. For classification in our experiments, we use
a bag-of-words approach with unigrams and bigrams and use
all features that occur more than 4 times in the training corpus
and at maximum in 40% of the training documents. We weight
the features according to the TF-IDF weighting scheme. We
deliberately do not use word embeddings since the lower
dimensional projection needs too much textual domain data to
construct. Using data from other domains will distort results
as the representation becomes dependent on other domains
than the source and target domain that are under performance
evaluation. We use LR for its good performance. We use binary
classification, y ∈ {0, 1}, giving the following loss function
for our classifier

`(x, y)LR =

nd∑

i=1

log
(
1 + e−(2yi−1)xiβ+β0

)
+ α

1

2
‖β‖2

where w and w0 represent the optimizers, α represents the
regularization parameter and the hypothesis function is defined
as

h(x) =

{
1 if βx+ β0 > 0

0 else.

For α, we use the default classifier settings of our used toolbox
[32].

For the Chi2 distance, we use the number of occurrences
of a word divided by the occurrences of the top N = 1000
words for calculating the probabilities. The N = 1000 most
occurring words are used to compare means. For the MMD
we use a discrete version of (8) [33] where X represents
the feature value matrix for the N = 1000 most occurring
features in the combined set of the two evaluated corpora. We
use corpora of the same number of objects, i.e. documents,
as input by using a subset of the largest corpus of the
two corpora used. For computational convenience we use a
maximum of 5000 documents. For EMD, we compare the
discrete normalized distributions of the feature count in one
document and use the sum of the EMD over the N = 1000
most occurring words with available EMD code [34] [35] [36].
Note that the distribution is highly dependent on the length of
a document. Therefore, we match document lengths among
the two domains. We use the same cluster representatives for
both domains, b = b̄ = {0, 1, . . . ,m} and a distance matrix
D = [di,j ] defined by di,j = |i − j|. For the KLD we again
use the discrete normalized distributions of the feature count
in one document of Px and P̄x and calculate the KLD as the
sum over the N = 1000 most occurring features.

We do not compare the distribution of all features for two
reasons. In the first place, the distance calculations will take
long when using all features. And second, and more important,
distributions of rarely occurring features are less reliable.

For the inner domain classification error that is used as
predictor in the CMEK model, we use the same logistic
regression as for the cross domain classification and use 10-
fold cross validation to assess the inner domain classification
error.

VII. RESULTS

In this section we will objectively present the results of
our experiments according to our performance evaluation
described in subsection III-B.

Figure 3 shows the empirical distribution of the relative
error as defined in (9) when selecting one source domain. The
relative error distributions when randomly selecting a source
domain and when using the CMEK source domain selection
model are shown.

Table I shows the probability of selecting the true best
domain, the probability of selecting one of the five worst
domains in terms of the cross domain classification error, and
the average cross domain classification error, averaged over
the 13 different target domains. We listed the results when
individual measures are used for selection, when the linear
combination is used (CMEK) and when a source domain is
selected at random. The optimal cross domain classification



Fig. 3. Performance of CMEK source domain selection model compared to
random source domain selection.

TABLE I
PERFORMANCE OF CMEK, INDIVIDUAL MEASURES, RANDOM AND

OPTIMAL SELECTION

Probability Probability
Selection Best possible One of 5 worst Average
method domain selected domains selected ξ(P̂, P̄)

Optimal 1 0 .252

EMD .308 .000 .309

KLD .308 .077 .324

CMEK .385 .154 .330

MMD .077 .154 .350

Chi2 .154 .308 .369

Random .083 .417 .403

error is listed which can be seen as lower bound of error. The
CMEK model uses the optimized weights

β̂ = [0.04, 1.19, 0.12, 0.05, 0.66, 0.25] (12)

for respectively, Chi2, MMD, EMD, KLD, the source domain
inner domain classification error and the constant 1.

Figure 4 shows the cross domain classification error when
we let our selection model select n source domains. Results are
shown when using CMEK, Chi2, EMD and random selection.
Note that the CMEK model is constructed by optimizing the
predicted cross domain classification error when training the
classifier on single source domains, not training on multiple.
The results of using these models for source domain selection
are compared with training on all candidate source domains.
We choose to present the Chi2 and EMD measures as they
show the most interesting behavior over using n domains
to train on. The MMD measure has similar behavior as the
CMEK model and KLD selection behaves similar to EMD
selection.

Fig. 4. Performance of CMEK model, Chi2, EMD and random selection for
different number of source domains to be selected, compared with training
on all source domains.

VIII. CONCLUSION

To select a suitable source domain in terms of cross domain
classification error, we hypothesized that this error can be
predicted by a function of the source domain distribution P
and marginal target domain distribution P̄x. We proposed the
CMEK model to select the best source domain(s) from a set
of candidates. The CMEK model uses a linear combination of
the Chi2, MMD, EMD, KLD, the inner domain classification
error and the constant 1, with weight vector β as predictor for
the cross domain classification error. To evaluate performance,
we consider an example including 12 distinct domains forming
132 different source-target domain pairs. The proposed metric
parameter β is optimized to minimize the absolute error of
the prediction. The optimized predictor was used to select
one or multiple best source domains among those 12 domains
in order to train a classifier for a thirteenth, unseen target
domain. This classifier is tested by calculating the cross
domain classification error of the selected source domain(s)
and the target domain. The process is repeated 13 times,
each time using a different unseen target domain to test on.
We benchmark performance with randomly selecting a source
domain and with using all candidate source domains to train
on.

From figure 3 we see that the CMEK model is well able to
identify source domains with low cross domain classification
error. In 54% of the runs, the selected source domain was
within 5 percent points error of the optimal choice whereas
random selection only selected 16% of the times a source
domain in this category.

From Table I, we see that compared to random domain
selection, the CMEK, MMD, EMD and KLD selection realize
significant improvement in average cross domain classification
error (p = 0.0034, p = 0.0054, p = 0.000047 and p = 0.0019
respectively). The CMEK model has a significant larger proba-
bility of selecting the best domain compared to random, MMD
and Chi2 selection (p = 0.0029, p = 0.0021 and p = 0.038
respectively). If we look at the probability of not selecting



one of the five worst domains for training, all models except
the Chi2 selection model significantly perform better than the
random selection model. From (12) we see that the CMEK
model depends primarily on the MMD and the inner domain
classification error.

Although most selection models significantly improve per-
formance compared to random selecting one source domain,
we would still be better off training on all the available
source domains. However, if we let our CMEK model select
multiple source domains to train on, we are able to get better
performance than training on all source domains for some n,
see Figure 4. The CMEK model seems to perform significantly
better than training on all domains when it selects 8 or 9
domains (p = 0.047 and p = 0.041). Note, for all mentioned
significant results, the normality assumption of the t-test is
confirmed, however in this specific evaluation, the pairwise
differences seem not normally distributed. What the optimal
number of domains to train on is, may be very dependent
on what candidate source domains are available. When we
have candidate source domains that are somehow similar to
the target domain, the optimal n will be higher. For a diverse
set of candidate source domains the optimal n will be lower.

Also, from Figure 4, we see that the EMD selection really
loses its magic when multiple domains have to be selected.
Apparently, the EMD distance is primarily good in detecting
the few best domains, and much less capable of estimating
the cross domain classification error of medium range source
domains. The CMEK model performs significantly better than
EMD and random selection in selecting multiple source do-
mains to train on (p = 0.000023 and p = 0.046 respectively).
The CMEK model is for each 3 ≥ n ≤ 11 significantly
better then random selection. Compared to the CMEK model,
EMD selection significantly fails in selecting 6, 7 and 8 source
domains.

If we are to make a general recommendation for using one
of the evaluated models, in the light of general performance,
we would choose the CMEK model. The CMEK model shows
significantly good performance and stable behavior in selecting
multiple source domains and it has solid performance in
selecting the single best domain.

In retrospect to our hypothesis (4), we can conclude that it
is to some extend possible to approximate the cross domain
classification error as we were able to use this approximation
for successful source domain selection. However, there is
much more room for improvement.

A. Further discussion

Reflecting on our conclusion, we would like to place some
remarks. We showed that the CMEK model works superior in
selecting one source domain compared to random selection.
However, the results show that, even for candidate source
domains with a wide spread in topic and source medium, it is
quite beneficial to train on all the candidate source domains.
One of the reasons not to train on all data could be that it is
too computational expensive. Another reason might be that the
candidate source domains are too diverse. To establish if this

is the case, we would need a measure that informs us about
the diversity of the candidate source domains.

When we know we have candidate source domains that are
similar to each other in terms of expressing sentiment, it might
very well be that our CMEK model is not able to improve
performance compared to training on all data. Therefore, if
we have candidate source domains that are similar to each
other, we might choose to train on all domains for simplicity.

Another disadvantage of the CMEK model, is that it uses
some distance measures that are quite expensive to calculate.
This can be a problem when we have many or large candi-
date source domains. This challenge might be addressed by
using less features and more informative features to calculate
distance over and we could optimize used code on efficiency.
We might investigate what happens to the performance of the
CMEK model in case we leave out the Chi2 and KLD measure,
as they are given fewest importance, i.e. low weight βi.

We constructed, tested and evaluated the model with the 13
acquired data sets. We would like to remind that sentiment
expression is characterized by a severe notion of stochasticity.
It is hard to tell how much performance of the CMEK model
will deviate when 13 other sets are chosen to construct the
model. Furthermore, we have not evaluated the model when it
is constructed on only 3 or 4 data sets for example. For more
available domains to construct the model, we might assume
that the model will be more refined and better performing due
to the wider support for the β weight vector.

Although we described a method that can be easily im-
plemented in other fields of machine learning that encounter a
domain shift such as computer vision, fraud detection or spam
detection, we only showed our model works reasonably well
in the domain of SC.

B. Future Work

As the selection models presented in Table I are to some
extension able to select a source domain with lower than
average cross domain classification error, we concluded that
the measures are to some extend able to predict the cross
domain classification error in order to select a suitable source
domain. However, if our model would fully do justice to our
hypothesis (4), we would improve even further. We could say
that proof of concept is given: it is possible to roughly predict
the cross domain classification error based on the distribution
of the source domain distribution and marginal distribution
of the target domain. However, we still see much room for
improvement as the lower bound for the error when selecting
one domain is .252, we’re only half way.

If we would like to improve results further, first steps
would be to look closer into the features over which we
measure distance. Should we use the 1000 most common, or
is distance better measured with more or less features? This
could be dependent on corpus size as well. There might be
feature selection methods to select the features that are most
informative in terms of distance, instead of simply using the
N most occurring features.



To improve, we might add some predictors to the linear
combination, such as the document length distribution or the
length of a corpus. Brief statement are on average more similar
with each other than short statements compared with long
expressions. Also, if we have more objects in a source domain,
we might benefit more when training on that large source
domain than training on a corpus with only a few documents.
However, with more elements in β, we might need more data
to prevent over fitting.

We can also extend our model to give a weight factor on
every source domain: source domains that are predicted not
suitable get a low weight, domains with low distance to the
target are given more weight. This approach leans towards
importance sampling.

We constructed a predictor for the cross domain classifica-
tion error of one source domain, and used the model to select
multiple source domains. If this is what we are interested
in, it would make sense to calculate distances between a
set of multiple domains and the target domain and make a
selection model optimized on predicting the cross domain
classification error when training on multiple domains. In that
case, synergies of data sets will be taken into account. This
approach will, however, be very computational expensive.
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Appendix B

Supportive figures and tables

In this chapter, we show results of own experiments. The data set used is not to be made
public due to privacy issues. The data set holds over 5000 English reviews of employees
all over the world about their shared employer. Performance is reported as classification
accuracy or error and experiments are performed in 10-fold cross validation. The classifiers
used are, if not specifically mentioned, in default setting from the scikit-learn toolbox [47].
If not specifically mentioned, we used TF-IDF feature weighting with a maximum frequency
rate of .8 and minimum frequency of 5. Stopwords are not removed. All words are lower
cased and punctuation is removed.

Figure B-1 shows the classification accuracy when using N -grams as features. The accuracies
are calculated for nine different on-par performing classifiers. The presented accuracies are
averages over a model that selects 1200, 2400 or all features by χ2 selection. When for a
certain N -gram model the classifier is displayed bold, it is the best N -gram model for this
classifier.

Figure B-2 shows the classification accuracy when excluding features based on their number
of occurrences. Results are calculated with a Ridge Regression classifier and unigrams and
bigrams as features.

Figure B-3 shows the increase in classification accuracy when using lemmatization in combi-
nation with a unigram + bigram model. The presented accuracy’s are averages over a model
that selects 1200, 2400 or all features by χ2 selection.

Figure B-4 shows the classification accuracy when χ2-selection is used to select features. Two
training set sizes are used to see if behavior is subjected to the training set size.

Figure B-5 shows the classification error rate as defined in 3-2 for 9 popular classifiers.
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64 Supportive figures and tables

Figure B-1: Performance of using unigrams, unigrams + bigrams, and unigrams + bigrams +
trigrams as features.

Figure B-2: Performance when excluding features that occur less than n times (left) or in more
than ratio r of the documents (right).
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Figure B-3: Classification accuracy increase due to using lemmatization.

Figure B-4: Feature curves for χ2-selection
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Figure B-5: Inner domain classification performance for 9 on-par performing classifiers.

Table B-1: Adaptation loss for 182 unique source-target domain pairs of our 14 evaluated data
sets. The integer numbers correspond to data sets in Table 4-1. The rates are averages over
using Ridge Regression, Logistic Regression, Multinomial NB and a Linear SVM.

target 1 2 3 4 5 6 7 8 9 10 11 12 13 14
source
1 0 0.30 0.14 0.11 0.25 0.09 0.10 0.13 0.17 0.10 0.34 0.24 0.11 0.37
2 0.31 0 0.20 0.21 0.25 0.16 0.15 0.15 0.19 0.29 0.30 0.20 0.19 0.35
3 0.15 0.11 0 0.20 0.20 0.03 0.00 0.00 0.02 0.10 0.19 0.36 0.13 0.34
4 0.19 0.28 0.15 0 0.34 0.12 0.11 0.11 0.17 0.06 0.42 0.16 0.04 0.45
5 0.31 0.38 0.19 0.28 0 0.18 0.16 0.18 0.23 0.39 0.07 0.35 0.25 0.13
6 0.15 0.23 0.14 0.14 0.23 0 0.06 0.09 0.16 0.17 0.40 0.17 0.12 0.40
7 0.14 0.20 0.12 0.16 0.22 0.05 0 0.06 0.14 0.16 0.36 0.22 0.15 0.43
8 0.29 0.31 0.17 0.25 0.29 0.09 0.08 0 0.18 0.25 0.28 0.26 0.19 0.24
9 0.29 0.26 0.13 0.15 0.30 0.13 0.15 0.17 0 0.18 0.41 0.20 0.10 0.41
10 0.12 0.21 0.09 0.08 0.31 0.09 0.07 0.10 0.15 0 0.29 0.26 0.03 0.47
11 0.31 0.29 0.20 0.38 0.12 0.16 0.17 0.17 0.25 0.47 0 0.38 0.34 0.07
12 0.50 0.62 0.29 0.30 0.29 0.33 0.31 0.31 0.35 0.36 0.46 0 0.34 0.42
13 0.22 0.27 0.14 0.11 0.23 0.15 0.14 0.18 0.14 0.10 0.34 0.29 0 0.05
14 0.31 0.29 0.16 0.33 0.22 0.16 0.17 0.16 0.24 0.31 0.15 0.28 0.27 0
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Figure B-6: Prediction and 95% confidence interval of cross domain classification error for
training on n domains.

Figure B-6 shows the cross domain classification error rate as defined in 3-2 for training on n
randomly selected domains. For the predictions, we fitted a logarithmic model.

The Tables B-2 and B-3 show the probability ofM2 performing better thanM1. For example,
looking at Table B-2, we see that there is a very small probability of MMD performing better
than CMEK (p = 0.0021), we can conclude that the proposed model (CMEK) is significantly
better than the MMD model in selecting the single best source domain.

The Tables B-5 to B-9 show the probability that the difference is normally distributed, and
the probability of an event of equal or greater extremeness being observed. For example,
looking at Table B-4, we see that if we let the CMEK model select 7 source domains to
train on (n = 7), the difference over the 13 runs was likely to follow a normal distribution
p = 0.86 > 0.05, we conclude the normality assumption of the paired t-test is not rejected.
From the last column, we see that there is a low probability of an observation of equal or
greater extremeness, p = 0.0017. We conclude the difference is significant.

very small probability of MMD performing better than CMEK (p = 0.0021), we can conclude
that CMEK is significantly better than the MMD model in selecting the single best source
domain.
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Table B-2: Probability of M2 performing equally good or better than M1 in selecting single best
source domain.

M2
Selection model Random EMD KLD CMEK MMD Chi2

M1

EMD 0.019 x 0.60 0.80 0.014 0.13
KLD 0.019 0.60 x 0.80 0.014 0.13
CMEK 0.0029 0.37 0.37 x 0.0021 0.038
MMD 0.68 0.99 0.99 1.0 x 0.89
Chi2 0.30 0.94 0.94 0.98 0.26 x

Table B-3: Probability of M2 performing equally good or better than M1 in not selecting one
of the 5 worst source domains.

M2
Selection model Random EMD KLD CMEK MMD Chi2

M1

EMD 0.000091 x 0.35 0.11 0.11 0.0084
KLD 0.0093 1.0 x 0.38 0.38 0.057
CMEK 0.045 1.0 0.93 x 0.68 0.19
MMD 0.045 1.0 0.93 0.68 x 0.19
Chi2 0.31 1.0 1.0 0.96 0.96 x

Table B-4: Significance of difference in results of random and CMEK selecting n domains.

random - CMEK
n p normal p value
2 0.013 <1.0E-3
3 0.12 0.013
4 0.18 <1.0E-3
5 0.75 <1.0E-3
6 0.72 <1.0E-3
7 0.86 0.0017
8 0.08 <1.0E-3
9 0.48 0.0026
10 0.97 0.0036
11 0.85 0.096
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Table B-5: Significance of difference in results of random and Chi2 selecting n domains.

random - Chi2
n p normal p value
2 0.65 <1.0E-3
3 0.44 <1.0E-3
4 0.64 0.0019
5 0.14 0.0046
6 0.47 0.014
7 0.008 0.0030
8 0.0021 0.031
9 0.59 0.050
10 0.67 0.25
11 0.62 0.10

Table B-6: Significance of difference in results of random and EMD selecting n domains.

random - EMD
n p normal p value
2 0.60 <1.0E-3
3 0.46 <1.0E-3
4 0.11 0.0043
5 0.71 0.083
6 0.10 0.40
7 0.18 0.21
8 <1.0E-3 0.48
9 0.61 0.17
10 0.50 0.10
11 0.65 0.052

Table B-7: Significance of difference in results of CMEK and Chi2 selecting n domains.

CMEK - Chi2
n p normal p value
2 0.032 0.50
3 0.75 0.31
4 0.10 0.24
5 0.022 0.26
6 0.62 0.10
7 0.48 0.053
8 0.42 0.12
9 <1.0E-3 0.024
10 0.82 0.019
11 0.12 0.43
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Table B-8: Significance of difference in results of CMEK and EMD selecting n domains.

CMEK - EMD
n p normal p value
2 0.32 0.25
3 0.13 0.43
4 <1.0E-3 0.36
5 0.0032 0.13
6 0.15 0.029
7 0.15 0.023
8 0.07 0.0094
9 0.0032 0.014
10 0.45 0.063
11 0.04 0.41

Table B-9: Significance of difference in results of Chi2 and EMD selecting n domains.

Chi2 - EMD
n p normal p value
2 0.74 0.12
3 0.10 0.43
4 0.35 0.35
5 0.52 0.11
6 0.075 0.081
7 0.059 0.13
8 0.028 0.050
9 0.16 0.12
10 0.51 0.020
11 <1.0E-3 0.094
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Appendix C

Examples and derivations

C-1 MI-score example

The following example shows how the MI-score is calculated. Consider the table

Feature fj Negative class (0) Positive class (1)
Absent (0) 4 7
Present (1) 6 3

Table C-1: Occurrence of feature fj for N = 20 documents split by class.

where the values reflect drawings from random variables F and C, we can treat these samples
as objects (document and corresponding label). The MI is now calculated with the following
formula

MI(F ;C) =
∑

ef∈{0,1}

∑
ec∈{0,1}

P (F = ef , C = ec)log2

(
P (F = ef , C = ec)
P (F = ef )P (C = ec)

)
(C-1)

where F is random variable that takes value ef = 0 if the feature is not present and takes the
value ef = 1 if the feature is present, C is a random variable taking value ec = 0 if the class
is negative and ec = 1 when the class is positive [24]. Note that when presence of the feature
fj denoted by F is not correlated with the class C, the logarithmic function becomes 0 and
the MI-score will be 0, indicating that there is no mutual information between F and C. For
the given data in Table C-1, we calculate the MI-score according to (C-1).
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MI(F,C) = 4
20 log2

(
20× 4
11× 10

)

+ 6
20 log2

(
20× 6
9× 10

)

+ 7
20 log2

(
20× 7
11× 10

)

+ 3
20 log2

(
20× 3
9× 10

)
= 0.07.

C-2 Chi squared value example

The following example shows how the χ2-value is calculated. Consider Table C-1. The
expected number of drawings from a mixed class set when performing N drawings in total,
are calculated as

Eef ,ec = N × P (F = ef )× P (C = ec).

This gives us the values displayed in C-2 for Eef ,ec .

Feature fj Negative class (0) Positive class (1)
Absent (0) 5.5 5.5
Present (1) 4.5 4.5

Table C-2: Expected occurrence of feature fj for N = 20 documents split by class assuming
independence of F and C.

Now, the χ2-vale is calculated [24] as

χ2(F,C) =
∑

ef∈{0,1}

∑
ec∈{0,1}

(
Netec − Eetec

)2
Eetec

with Nef ,ec in Table C-1 and Eef ,ec in Table C-2. For our example we calculate

χ2(F,C) = (5.5− 4)2

5.5 + (5.5− 7)2

5.5 + (4.5− 6)2

4.5 + (4.5− 3)2

4.5 = 1.82

.

C-3 Maximizing likelihood for normal distribution

This section shows the derivation of maximizing the likelihood for the regular linear regression
problem in chapter 3 section 3-4.
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Let us define β̂ as β that maximizes the log-likelihood L. We show that this β̂ is also the
argument that minimizes the least square solution.

y ∼ N(βx, σ2)
β̂ = arg max

β
L(x|y)

= arg max
β

ntr∏
i=1

PY
(
yi|x, σ2)

= arg max
β

ntr∏
i=1

1
σ
√

2π
e−

(yi−βx)2

2σ2

= arg max
β

ntr∑
i=1

log
(
e−

(yi−βx)2

2σ2

)

= arg min
β

ntr∑
i=1

(
y − βx

)2
or in matrix form

β̂ = arg min
β

(Y − βX)2.

This optimization problem has the closed form solution derived as

β̂ = arg min
β

(Y − βX)2

= arg min
β

(Y − βX)T (Y − βX)

= arg min
β

Y TY − 2βTXTY + βTXTXβ

taking the partial derivative with respect to β and finding the minimum by setting this
derivative equal to zero gives

∂

∂β̂

(
Y TY − 2β̂TXTY + β̂TXTXβ̂

)
= 0

−2XTY + 2XTXβ̂ = 0
β̂ = (XTX)−1XTY.

We now have a hypothesis function ĥ : X→ Y defined as

ĥ : yi =
{

1 xiβ̂ > 0
0 else.
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74 Examples and derivations

C-4 Maximizing likelihood for logistic distribution

This section shows the derivation of maximizing the likelihood for the logistic regression
problem in chapter 3 section 3-4.

Let us define β̂ as β that minimizes the loss function.

β̂ = arg max
β
L(x|y)

= arg max
β

ntr∏
i=1

PY (yi = 1|xi)yiPY (yi = 0|xi)1−yi

= arg max
β

ntr∑
i=1

yi log
(
PY (yi = 1|xi)

)
+ (1− yi) log

(
PY (yi = 0|xi)

)
= arg max

β

ntr∑
i=1

yi log
(

1
1 + e−βx

)
+ (1− yi) log

(
1

1 + eβx

)

= arg max
β

ntr∑
i=1

yiβx− log
(
1 + eβx

)
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Appendix D

More on word embeddings

In this chapter, we will take a closer look at the properties of embedded feature spaces, how
to construct them and what variations are popular.

D-1 Properties

The embedded feature space constructed by popular models [36] [14], has the property that
similar words have similar vector representations in the lower dimensional embedded feature
space. Assume we have two words wi and wj which have similar meaning, they are synonyms
represented in the space X ∈ R|F|�m. We apply a mapping C : X→Xemb∈ Rm that maps wi
and wj into the m-dimensional space giving C(wi) = vi and C(wj) = vj where vi ∈ Rm and
vj ∈ Rm. Now, since wi and wj have similar meaning, we construct C such that ||vi−vj || ≈ 0.
In practise the mapping wi → vi is performed by a table look up. Assume we choose all unique
words as features, F = W . In this case, C is a matrix of size |W |×m where |W | is the number
of unique words in the corpus, the length of the vocabulary W .

Another very interesting property of this embedded feature space for NLP, is that the sim-
ilarity of the vector representations of words is not limited to syntactic properties alone.
These representations are surprisingly good at capturing semantic regularities in language as
well[72]. It is possible to perform vector operations to add or subtract certain semantic and
syntactic properties of a word, see Figure D-1. Below a few examples of vector operations
showing that the embedding by C captures semantic notions [14],

1. C(“king”)− C(“man”) + C(“woman”) ≈ C(“queen”)

2. C(“Paris”)− C(“France”) + C(“Germany”) ≈ C(“Berlin”)

3. C(“biggest”)− C(“big”) + C(“small”) ≈ C(“smallest”).
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76 More on word embeddings

It appears that this embedded feature space captures semantic notions such as capital cities,
currencies and man-woman equivalence but also syntactic relations such as opposites, com-
paratives and grammatical conjugates. This suggests that it might be possible that also
notions such as objective and subjective or positive and negative are included in the space.
In this case, it should be possible to train a classifier that distinguishes a positive sentiment
subspace and a negative sentiment subspace. And indeed, research has proven that this
embedded feature space can be used for effective SC [73].

C(“woman”)

C(“queen”)

C(“man”)

C(“king”)

−C(“man”)+C(“woman”)

Figure D-1: Illustrative example of a vector operation in the embedded feature space.

D-2 Model

The models that construct an embedded feature space are based on the assumption that
words with similar meanings occur in similar context. Let the m-dimensional feature space
be notated as Xemb and C(wi) being the mapping of a word wi to vi ∈ Xemb. Now, the context
of the word wi is defined as the N words subsequent to wi denoted as wi−1

i−N . The assumption
can be formulated as

IF P (wi|wi−1
i−N ) ≈ P (wj |wj−1

j−N ) AND wi−1
i−N = wj−1

j−N
THAN C(wi) ≈ C(wj).
A simplification of Bengio’s model assuming no output or hidden layer bias, uses a look
up table C to transform the N -context words into N feature vectors in the m-dimensional
embedded space. These vectors are used as input for a neural network with one layer and h
hidden units. The h-dimensional output of the neural network is mapped to an output vector
y with |W | elements by a function U . A softmax function is used to add the constraint that
all conditional probabilities add up to 1 and are non-negative. See Fig. D-2 for an schematic
representation of the model.
The model consists of N×m+N×m×h+ |W |×h = (h+1)×n×m+ |W |×h parameters to
be estimated per word wi where |W | is clearly the most influential factor for dimensionality.
It estimates a conditional probability of wi by giving its context wi−1

i−N as input. The sum
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wi−1
wi−2
...

wi−N

 C : R|W | → Rm

Embedding 
vi−1
vi−2
...

vi−N

 f : RN×m → Rh

Neural net

U : Rh → R|W |

Output mapping 
y1
y2
...

y|W |

 eywi∑|W |
t=1 e

yt

Softmax

P
(
wi|wi−1

i−N

)

Figure D-2: Schematic representation of a simplified version of Bengio’s model.

of all log-likelihoods of all estimated conditional probabilities for i ∈ I has to be maximized,
where I is the total number of words in the corpus. With L being the likelihood function, we
have the optimization problem

max
C,f,U

I∑
i=1

logL
(
P

(
wi
∣∣∣wj−1

j−N

)∣∣∣∣corpus
)
.

With the assumption that similar words occur in similar contexts in mind, we know that
when the conditional probability function of two different contexts is more or less equal, the
representations of the context words in Xemb must be more or less equal. The model forces
this to be true. An example, let us have two sentences with different context with similar
meaning

the
w1

cat
w2

walks
w3

in
w4

the
w1

room
w5

the
w1

dog
w6

walks
w3

in
w4

the
w1

room
w5

The proposed model calculates the conditional probability distribution of w5

P (w5|w1, w2, w3, w4, w1) = U
(
f
(
C
(
w1
)
, C
(
w2
)
, C
(
w3
)
, C
(
w4
)
, C
(
w1
)))

P (w5|w1, w6, w3, w4, w1) = U
(
f
(
C
(
w1
)
, C
(
w6
)
, C
(
w3
)
, C
(
w4
)
, C
(
w1
)))

.

Since the likeliness of the word room to occur subsequent to both contexts is equal, we have
equal probability distribution functions for both contexts.

P (w5|w1, w2, w3, w4, w1) = P (w5|w1, w6, w3, w4, w1)
U
(
f
(
C
(
w1
)
, C
(
w2
)
, C
(
w3
)
, C
(
w4
)
, C
(
w1
)))

= U
(
f
(
C
(
w1
)
, C
(
w6
)
, C
(
w3
)
, C
(
w4
)
, C
(
w1
)))

imposing a C such that

||C(w2)− C(w6)|| ≈ 0
||C(“cat”)− C(“dog”)|| ≈ 0.
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78 More on word embeddings

f1 = “cat”

f2 = “sad”

f3 = “happy”

d1

d2

d3

d4

(a) Raw term frequency feature space.

ne
ga
tiv

e positive

objective

subjective

cat

happysad

d1

d2

d3

d4

(b) Embedded feature space sketch.

Figure D-3: Feature space transformation from raw term frequency to embedded space.

D-3 Model variations

Newer versions of Bengio’s model are designed to improve computational speed, semantic ac-
curacy and syntactic accuracy. One of the most popular algorithms is the word2vec algorithm
developed by Mikolov [14]. This algorithm is based on a simplified version of Bengio’s model.
The hidden layer of the neural network is removed from the model as shown in Figure D-2 and
a hierarchical softmax function is used. Both changes reduce the number of parameters to
be estimated drastically. This model is called the Continuous Bag-of-Words (CBOW) model
because the order of words is not taken into account (bag-of-words) and it uses a continuous
distributed representation of the context. The number of parameters to be estimated per wi
are in this model N ×m+m× log2(|W |).

Another model of Mikolov is called the Continuous Skip-gram Model. For this model, instead
of predicting the current word based on the context, it tries to maximize classification of a
word based on another word in the same sentence. When the maximum distance between
the context word and target word is called D, the number of parameters to be estimated per
wi is D × (m + m × log2(|W |). This model is thus more computational expensive than the
CBOW model but wins in semantic accuracy [14]. Similar approaches can be used to convert
a document or paragraph of variable length into a fixed length feature vector. A popular
model is from Le and is called doc2vec. Using the word2vec algorithm in order to build a
feature space used for SC beats the previously best models [39].

If we would use a word embedded feature space for classification of the sample data set from
Figure 3-3, we could visualize this as in Figure D-3. Note that this is only a sketch and in
used applications, the dimensions of this feature space do not directly represent notions such
as objectivity and subjectivity or positive and negative.
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Glossary

List of Acronyms

CBOW Continuous Bag-of-Words

Chi2 Chi squared

CMEK Acronym of Chi2, MMD, EMD and KLD

DCSC Delft Center for Systems and Control

EMD Earth Mover’s Distance

IDF Inverse Document Frequency

IPMs Integral Probability Metrics

KLD Kullback-Leibler Divergence

LR Logistic Regression

MI Mutual Information

MMD Maximum Mean Discrepancy

NB Naive Bayes

NLP Natural Language Processing

POS Part of Speech

PRLab Pattern Recognition Laboratory

RR Ridge Regression

SA Sentiment Analysis

SC Sentiment Classification

SCL Structural Correspondence Learning
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86 Glossary

SVM Support Vector Machine

TCA Transfer Component Analysis

TF-IDF Term Frequency-Inverse Document Frequency

List of Symbols

P̄ Target domain data or distribution
P̄x Marginal distribution of the target domain, unlabeled target data
β Weight vector
βi Element in β
χ2 Pearson’s cumulative test statistic
δ The difference vector between 2 result vectors, or Dirac delta distribution
` Loss function
ε Stochastic error
Γ Regularization strength parameter
β̂ Optimal weight vector
P̂ Predicted best source domain
d̂ Optimal distance function
ĥ Optimal hypothesis function ∈ H
ŷ Set of predicted class labels
ŷi Predicted label of di by ĥ
EP[X] Expected value of X with X ∼ P
N Set of natural numbers including 0
P Source domain data or distribution
P? True best source domain
Px Marginal distribution of the source domain, unlabeled source data
R+ Set of positive real numbers including zero
X Discrete feature space
Xemb Embedded feature space
Y Discrete class label space
A(P, P̄) The A-distance between P and P̄
D Family of distance functions
F ′ Selected feature set, subset of F
F Feature set, or set of mapping functions
H Hypothesis space, or Reproducing Kernel Hilbert space
L Log-likelihood
P Set of candidate source domains
P ′ Set P without P̃
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P̃ Proxy target domain, borrowed from P
P̃x Proxy target domain marginal on X, borrowed from P
℘(W ) Power set of W
ξ(P) Inner domain classification error of domain P
ξ(P, P̄) Cross domain classification error of a classifier trained on P and tested on P̄
ξrelative(P̂, P̄) Relative cross domain classification error
a(P, P̄) Adaptation loss of a classifier trained on P and applied on P̄
b Vector of cluster representatives
C Random variable in {0, 1} that denotes the class
cx Unlabeled corpus
D Distance matrix
d Distance function d : P× P̄x → R+

di A document or opinion expression
di,j Element in D
Dtr Set of training documents
Dts Set of test documents
ec Variable that denotes the class
ef Variable that denotes presence or absence of feature
Eef ,ec Expected number of drawings with properties ef and ec
F Flow Matrix, or random variable in {0, 1} that denotes presence of a feature
f Comparison function for IPM
fj The jth feature of F
fi,j Element in flow matrix F
h A hypothesis function that maps X→ Y
h? True mapping X→ Y
h?P True hypothesis function for domain P
M A selection model
nc Number of data sets in P
nF Number of features
ns Number of documents in domain sample
Nef ,ec Observed number of drawings with properties ef and ec
nF ′ Number of feature in the selected feature set F ′

nfj Number of documents in which fj occurs
ntr Number of training objects
nts Number of test objects
p(w) Probability of w
S Feature space
s Vector containing weighted distance functions, a constant and the inner domain

classification error
S+ Subspace of feature space for positive class
S− Subspace of feature space for negative class
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88 Glossary

si Element in s
tfij The frequency of term fj in di
U Output mapping from the neural net output to a class
W Vocabulary
X Feature space, or random variable representing a document
xi Feature vector of di
xij The feature value of di for feature fj , element of X
Xtr Feature values matrix of Dtr

Xts Feature values matrix of Dts

Y Vector of class labels, or random variable representing the class label
y Set of class labels
yi Class label of di
Ytr Labels of the training documents
Yts Labels of the test documents
Z Count vectorizer
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