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Abstract Integer ambiguity resolution (IAR) is the key to
fastand precise GNSS positioning and navigation. Next to the
positioning parameters, however, there are several other types
of GNSS parameters that are of importance for a range of
different applications like atmospheric sounding, instrumen-
tal calibrations or time transfer. As some of these parameters
may still require pseudo-range data for their estimation, their
response to IAR may differ significantly. To infer the impact
of ambiguity resolution on the parameters, we show how
the ambiguity-resolved double-differenced phase data prop-
agate into the GNSS parameter solutions. For that purpose,
we introduce a canonical decomposition of the GNSS net-
work model that, through its decoupled and decorrelated
nature, provides direct insight into which parameters, or func-
tions thereof, gain from IAR and which do not. Next to
this qualitative analysis, we present for the GNSS estimable
parameters of geometry, ionosphere, timing and instrumental
biases closed-form expressions of their [AR precision gains
together with supporting numerical examples.
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1 Introduction

Integer ambiguity resolution (IAR) is the process of resolv-
ing the ambiguous cycles of the carrier-phase measurements
as integers. It has found a widespread usage in various global
navigation satellite system (GNSS) applications and is con-
sidered to be the key to fast and precise GNSS parameter
estimation (Teunissen 1995; Tiberius and de Jonge 1995;
Teunissen et al. 1997; Han 1997; Hassibi and Boyd 1998; Xu
etal. 2012). The goal of IAR is to fully exploit the high preci-
sion of the carrier-phase data. Once the unknown ambiguities
are resolved, the carrier-phase data will act as very precise
pseudo-range data, thus making fast and precise position-
ing, navigation and attitude determination possible, see, e.g.,
Jonkman et al. (2000), Hauschild et al. (2008), Giorgi et al.
(2012), Gunther and Henkel (2012), Nadarajah et al. (2013),
Li et al. (2014), Banville (2016), Odolinski and Teunissen
(2017).

Next to the positioning parameters, however, there exist
several other types of GNSS parameters that are of great
importance for a range of different applications like atmo-
spheric sounding (Coster et al. 1992; Schaer et al. 1995; Liao
and Gao 2001), instrumental calibration (Petit et al. 2000;
Zhang et al. 2017) or time transfer (Fliegel et al. 1990; Plumb
et al. 2005; Delporte et al. 2007). The estimable parameters
such as satellite clocks, satellite phase biases and ionospheric
delays serve as essential corrections in the IAR-enabled
precise point positioning (PPP-RTK) methods (Ge et al.
2008; Laurichesse et al. 2009; Teunissen et al. 2010; Collins
et al. 2010; Geng et al. 2012; Odijk et al. 2015). Estima-
tion of the stated parameters often demands an undifferenced
(UD) formulation. The UD formulation has the advan-
tage over its single-differenced (SD) and double-differenced
(DD) counterparts, as it still contains all estimable GNSS
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parameters (Teunissen 1995), i.e., none are a priori elimi-
nated.

In our earlier study (Teunissen and Khodabandeh 2014),
we showed that there exist estimable parameters, other-
than-DD functions, which cannot be determined solely from
ambiguity-resolved DD phase data. Thus, even after IAR,
such parameters do still require pseudo-range (code) data
for their estimation. Such parameters will therefore have
an IAR response that may differ significantly from the IAR
benefit that positioning and zenith tropospheric delay (ZTD)
parameters enjoy. It is therefore the goal of the present con-
tribution to show how the ambiguity-resolved DD phase data
propagate into the solutions of such GNSS parameters, thus
allowing one to infer the impact of ambiguity fixing on the
precision of these parameters.

We base our analysis on the UD carrier-phase and code
observation equations of a network of n GNSS receivers
tracking m satellites on f frequencies. We develop a canoni-
cal decomposition of the multivariate GNSS network model
consisting of 4 blocks of decoupled and uncorrelated obser-
vation equations. They are formed from (1) satellite- and
receiver-averaged components, (2) satellite-averaged SD
components, (3) receiver-averaged SD components, and (4)
DD components. With the aid of these four blocks, we present
closed-form expressions of the precision gain numbers for
the estimable parameters, thereby quantifying the parameter
precision improvement due to IAR.

This contribution is organized as follows. In Sect. 2,
we briefly review and highlight the underlying differences
between the UD and DD formulations. Here, we initiate the
idea of decomposing the estimable parameters into their DD
and other-than-DD components. In Sect. 3 we develop our
canonical decomposition of the multivariate GNSS network
model. By applying a specific one-to-one transformation to
the observations and parameters, we obtain 4 sets of decou-
pled and uncorrelated observation equations, one of which is
the set of DD observation equations that drives integer ambi-
guity resolution. Due to its structure, one can directly infer
which parameters benefit from IAR and which do not. Fol-
lowing this approach, we first conduct a qualitative analysis
of the AR impact in Sect. 4. In Sect. 5 we then quantify the
precision gain of the parameters using the concept of gain
numbers (Teunissen 1997) for which a geometric approach is
employed to provide further insights into the links between
the linear combinations of UD, SD and DD types. It is geo-
metrically demonstrated how the precision gain of a float
solution is reduced when it deviates from the subspace of
the DD functions. A summary with concluding remarks is
provided in Sect. 6.

@ Springer

2 Undifferenced (UD) versus double-differenced
(DD)

2.1 Network observation equations

We base our analysis on a network of GNSS receivers r (r =
1,...,n),tracking satellites s (s = 1, ..., m) on frequencies
j(=1,...,f). The corresponding observation equations
read (Teunissen and Kleusberg 1998)

AL =Py
Ap) ;= p) + g +d)

_ /,thi + )\jaij n

where Aqbf . and Ap denote the ‘observed minus com-
puted’ phasé and code observatlons, respectively. The precise
orbital corrections are assumed included in the observed
minus computed observations. The non-dispersive param-
eter p} = g,TAxr + dt, — dt* contains the position/ZTD
increments Aux,, the receiver clock parameter d¢, and the
satellite clock parameter dt°, with g7 containing the receiver-
satellite direction vector and/or the tropospheric mapping
function. Ambiguities a i = zﬁ’ j + 8, — 5:?},, in units
of cycles, are composed of the integer part z, rj and the
receiver/satellite non-integer parts §,, ; and 6°, NE respectively.
They manifest themselves through their wavelength Aj. The
(first-order) slant ionospheric delay, as experienced on the
first frequency, is denoted by (. Thus, we have the scalars
nj = (AZ/AZ) linking the ionospheric delays to the obser-
vations. The lumped term ds =d; — ds contains the
frequency-dependent code recelver and satelhte biases d;
and df], respectively. Apart from a; ;, j the rest of the quanti-
ties are all expressed in units of range.

In the following, we use the term ‘float’ for the solutions
before IAR and indicate them by the *-symbol. The term
‘fixed’ is used for the solutions after IAR and indicated by
the “-symbol.

2.2 The DD model and its IAR phase data

To understand the role played by IAR in improving the pre-
cision of the GNSS parameters, we first briefly review the
impact of having resolved ambiguities in the DD model.
Let the between-receiver and between-satellite differences
be symbolized by (.)1, = (.), — ()1 and ()" = () — (),
respectively. The DD version of (1) is then given as

A¢lr1 = piy — wjt 1r )+ hjajy

Apl}’] _'Olr+u’] lr

1r,j

@
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Table 1 Estimable GNSS

network-derived parameters
formed by a commonly used
S-basis (Odijk et al. 2015)

Positions/ZTDs
Tonospheric delays
Satellite clocks
Receiver clocks
Sat. phase biases
Rec. phase biases
Sat. code biases
Rec. code biases
Ambiguities

S-basis parameters

AX, = Ax, — {Axy);
Zi = Lf +drcr — d,SGF
di* = (dt° +d5,) — (dn +dy i) — (g} Ax1)

di, =dtyy +dyyur; r # 1

5 =5+ o~y o) 1)

r={1},2,...,n

A
1j

5r.j = O1rj + 3= jdirgr = dirar) + 24,50 7 # 1

&5 = (@ = 1d%p + wjds, ) = (dij = [dior + wjdirl)s j > 2
by ; =dirj — (dirir + 1jdyer); T#1, j>2

Bi=d - rELs#EL

{Axi}, dr.dyj, 81, 2 Zl sdrzy =12, d¥iy

The additional parameter Ax; (within {.}) is taken as S-basis for the small-to-regional scale networks, i.e.,

when g %gl‘(r =2,...,n)

O = o (a2 — )2l

with (.){i = ()}, — (.)}r being the DD symbol. Compare
(2) with its UD counterpart (1). The clock terms dt,/dt*
as well as the biases d,.j/d’; and §,;/5°; are eliminated.
The non-dispersive parameter p? is reduced to the DD-range
parameter ,ollf as

piy =g’ Axy + g1}7 Axy, 3)

while the ambiguities a rjo ,in their DD form, become integer-

valued, i.e., allj = er j € Z.. The number of DD phase data
A ¢1x

ber of DD ambiguities a
data A¢
leaving the less precise DD code data Aplr jto drive the
precision of the float solutions ,611r‘ and{ L] + (Teunissen 1997).
This situation becomes quite different though, once the float
als »,; are successfully mapped to their integers

- in the single- epoch model (2) is the same as the num-
. Thus, the very precise phase

have to be fully reserved for determining alr i

amblgumes a,
al lr i .In that case one may treat the integer estimated ambi-

guities a jas known and deterministic, and move them to
the left- hand side of (2) thus maklng the ‘ambiguity-resolved’
DD phase data (Aq)lr e Aj alr J) act as if they are Very pre-

cise code data. The precision of the fixed solutions p ,o andc

would then be dominated by that of the ‘ambiguity- resolved’
phase data. In other words, the unknown parameters pllj and
t}f can then be determined fully by means of the ‘ambiguity-

resolved’ phase-only model

<A¢lrj éir{j):plli{_'ujtii’ j:19"-vf 4)

Thus, in the single-epoch case, the precision of the solu-
tions i1 1y and p p 5 (and therefore AX,) experiences two orders
of magnitude improvement, as the standard-deviation of the
phase data is almost 100 times smaller than its code counter-
part.

Oor = 57 [O2 = O]

H2— Ml

2.3 The UD model and its estimable parameters

We now turn our attention to the UD formulation of (1). In
this case, there exist components other than the DD param-
eters ,ollrs and L}ﬁ which cannot be fully determined by the
ambiguity-resolved DD phase data. Even after IAR, such
components still require code data for their estimation. The
question is now whether such components can still benefit
from IAR and if so, to what extent.

If we want to work with the UD formulation (1), we
first need to eliminate its rank-deficiencies. Due to its rank-
deficiency, not all of its parameters are estimable, only
combinations of them. A number of parameters, equal to the
rank-deficiency, must therefore be chosen as the system’s S-
basis so as to form a set of minimum constraints that helps
recover the system of equations to one of full rank (Baarda
1973; Teunissen 1985). For a commonly used S-basis, a
full-rank version of the single-epoch UD model (1) is given
as (Odijk et al. 2015)

A¢ /‘LJ r F A ar]

! )
Aprj _pr—i—lu‘] r+d
with /3; = ¢'TA%, + di, — di*, d’; = d,; — d';, and
a, ; =7, ;+ 8 — 8°;. The estimable parameters are indi-

cated w1th the ~-symbol. Their interpretations, together with
the choice of S-basis, are given in Table 1. The table shows
how each estimable parameter is formed as a certain lin-
ear combination of the original parameters. For instance, the
estimable receiver clocks df, represent the between-receiver
SD clocks dt;, that are biased by the ‘ionosphere-free’ (IF)
combination of the receiver code biases, i.e., di, ;. On the
other hand, the estimable slant ionospheric delays i are
the true slant ionospheric delays ¢} that are biased by the

@ Springer
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Transformation

r=2 F 12

Fig. 1 Visualization of the transformation (6) to receiver pairr = 1, 2
tracking satellite pair s = 1, 2. After the transformation, the roles of
the reference receiver r = 1 and satellite s = 1 are replaced by those
of the ‘receiver-average’ r and the ‘satellite-average’ 5, respectively

‘geometry-free’ (GF) combination of the receiver/satellite
biases, i.e., dr gr/ dfG  (see the table for their definition).

2.4 A UD-SD-DD decomposition

From the DD model (2) we learned that ambiguity-resolved
DD phase data are sufficient to estimate the model’s DD
parameters. As the ambiguity-resolved estimation of these
parameters does not need any code data, they can be deter-
mined with very high precision. To see how this works out for
the estimable parameters of the UD model (5), we introduce
a decomposition of the UD model that allows us to bring it
into a useful canonical form. This form is created such that
it contains the DD formulation (2). As DD components are
of a ‘differenced’ nature, the idea of the decomposition is
based on the following two simple facts. Firstly, that any two
random variables can be uniquely expressed in terms of their
average and their difference. Secondly, that if the two vari-
ables are of equal precision and uncorrelated, then also their
‘average’ and ‘difference’ are uncorrelated.

Consider areceiver pair r = 1, 2 tracking the satellite pair
s = 1, 2. By ‘averaging’ and ‘differencing’ both at receiver
level and satellite level, the corresponding four-phase obser-
vations Aqﬁf’ j (r=1,2, s =1, 2), on frequency j, undergo
the following one-to-one transformation

[M‘E, j o A, ,}

Aot as,
SR el A I
B I O B Y v

Accordingly, the role of the reference receiver r = 1 is

replaced by that of the ‘receiver-average’ r. Likewise, the
‘satellite-average’ s replaces the reference satellite s = 1 (see
Fig. 1). The transformed observations are the satellite- and
receiver-averaged component Aqbf:’ i the satellite-averaged
SD component the A¢>i_'2’ i the receiver-averaged SD com-
ponent A¢>}’2i, and the DD component A¢£’ i These trans-
formed observations are mutually uncorrelated if the four

@ Springer

original undifferenced phase observations A¢; ; are uncor-
related and equally precise. To see this, let us present the
transformation (6) in its vectorial form as

s 1 1 11 L
AP: O O O N N
12 11 11 2
A6 | |2 Taea || A9 -
ApS [ I S U U O N PP
12, 2° 20 2 2 2,j
12 —1. — 2
A3, Lo=L =L 1]{ A¢y;

The zero-correlation property of the transformed observa-
tions follows then from the mutually orthogonal rows of the
above transformation matrix.

By applying the same transformation (6) to the estimable
parameters o7,y and Z) (r = 1, 2, s = 1, 2) of the UD model
(5), we obtain the following four decoupled and uncorrelated
observation equations
Ag; =5 — ity +Aa

12 _ =12 =12 =12
AQp = pp” — Wyl Ajag ®
A¢f2,j =Pl — Kjlip + )‘./'Elfz,j

12 _ =12 =12 =12
Appy ;= P13 — Mjliy +Ajag;

A similar set of equations can be obtained for the code data.
This set will have the same structure as that of (8), but with
the ambiguities absent.

We now show how the decoupled and uncorrelated prop-
erty of (8) helps us in understanding how GNSS parameters
are impacted by integer ambiguity resolution (IAR). First
note, since every phase observation equation has its own
unknown ambiguity, that in the single-epoch case, the deter-
mination of any of the p- and t-parameters relies solely on
the code data. That is, the phase data will not contribute
to their determination in case the ambiguities are unknown.
Now consider the case of successful IAR. After successful
IAR, the DD ambiguity a 11% ;€ 7Z may be assumed known,
which can then be moved to the left-hand side of the last equa-
tion of (8), thus allowing for a significant improvement in the
precision of the float solutions of the DD parameters ,511% and
Z%%, just as it happened in the DD model (4). The remaining
parameters of (8), however, do not benefit from IAR. They
do not benefit, since they themselves are decoupled from the
DD equation, while at the same time their equations phase
and code data are uncorrelated with the DD data used for
IAR. Thus, none of the p-, - and a-parameters of the first
three equations of (8) benefit from IAR.

Since the parameters of (8) can also be used to reconstruct
their original undifferenced versions (e.g., ,511 = ,5‘; — % ,0}12 —
%ﬁf_z + }1,5 3), one can infer how the precision improvement
due to IAR propagates. Consider, for instance, the between-
satellite SD ionospheric parameter Z}z. Its float and fixed
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solutions can be expressed in terms of those of the compo-

nents Z}Z and Z}% They, respectively, read
L2 1412 ~12
float: ;7= —57;5+1 ©
F2 ~12
fixed : 7;° = le +1

While the DD float solution f{% changes to its fixed ver-

sion ¢! 13 2 after ambiguity fixing, the float solution le remains

unchanged as it belongs to the second equation of (8), being
uncorrelated with the float ambiguities asllg i In the next sec-
tion, we generalize the above ideas to the multivariate GNSS
network case.

3 Canonical decomposition of the GNSS model
3.1 A multivariate representation

The transformations (6) and (7) are limited in the sense that
they apply to equally precise phase data of only a single
receiver pair tracking a single satellite pair. To generalize the
transformation, we first formulate the GNSS model in multi-
variate form. We therefore deﬁne the phase observation vec-
tor of receiver r as ¢ = qbr e ¢f;]T eRI™ ¢ =
[Aq)r’j, el q)r’j] , j=1,..., f, with a likewise defini-
tion for the code observation vector p3. For the n receivers,
the network observation matrices are defined as ¢3 R =
[q)f, R q‘),f] and plse = [pf, R pn] The multivariate for-
mulation of the full-rank observation Eq. (5) becomes then

(AR Iy)ay
+(E® Ly dy

¢R (ef ® Iy ))OR (M@Im)Z%

(10)
PR =(ef® Im)ﬁR +u® Im)fi
The m x n matrices ﬁlse and TJSQ contain the estimable param-
eters o) and i), respectively. The f-vectors ey and u,
respectively, contain ‘ones’ and ‘w;’ (j = 1,..., f). The
f x f diagonal matrix A contains the wavelengths Aj,
through which the fm x n ambiguity matrix @ % is linked to
the phase data ¢ - According to Table 1, the estimable code
biases a’s = dr j ds are only present in the third frequency
and beyond (i.e., j > 2) In contrast to the ambiguity matrix
aR, the dimension of the code-bias matrix d]Se is (f—2)m xn.
Therefore, the first two columns of the identity matrix [ are
eliminated to form the f x (f — 2) matrix E. The symbol
® is the Kronecker matrix product (Henderson et al. 1983).
The stochastic model of the observables is assumed given

as

S Cy 0
p| =2 |ocs r=1.....n (11)
Dr 0 CP

with D(.) being the dispersion operator. The m x m cofactor
matrix Cg captures the satellite elevation dependency. The
scalars cr2 (r = 1,...,n) are receiver-dependent cofactors,
structuring the n x n diagonal matrix Cg. The f x f positive-
definite matrices Cy and C), are the cofactor matrices of the
phase and code observable types, respectively.

3.2 The canonical differencing (CD) transformation

We now generalize the transformations (6) and (7) to the
multivariate case. The idea is again to decompose the phase
and code data qb,% and pISe into four uncorrelated blocks. The
nfm x nfm multivariate generalization of (7) is given as

el If®e+
Teo=| " |® o (12)
D, Iy ® Dy,

in which the matrices D, and D,, take care of the differencing
and the vectors ¢, and e, of the averaging. The m x (m —
1) matrix D,, forms between-satellite differences, while the
n x (n — 1) matrix D,, forms between-receiver differences.
Their columns are, respectively, orthogonal to the vectors
of ones ¢, and ¢,, i.e., D,ﬁem = 0 and DnTen = 0. The
averaging operators, e, and e;", are given as the weighted
pseudo-inverses,

Satellite-averaging : el = T;,leTCS_l

TG " (13)
Receiver-averaging : ef = —L oI !
ging : n = ,JTc-l, "N R
n =R ©n

The multivariate transformation (12) will be referred to as
the canonical differencing (CD) transformation (Fig. 2). It is
not difficult to verify that the transformation is one-to-one.
The CD-transformation will now allow us to transform the
multivariate GNSS model (10) into an easy-to-use canonical
form.

per frequency

receiver-averaging

et Iy @ e,

lcp=
D Iy oDt
betvyeen—sarellite{_l

differencing

satellite-averaging

between-receiver
differencing
v

Receiver-related Satellite-related
terms terms

Fig. 2 The CD-transformation: interpretation and functionality of its
components
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3.3 CD-transformed observations and parameters

We first apply the transformation to the phase and code obser-
vations, thus giving Tcpvec (q)i) and Tcpvec( plse). With (12)
and an application of the triple-matrix-product vec-property
vec(ABC) = (CT ® A)vec(B), we obtain for the trans-
formed phase data TCDvec(qﬁ;g) in matrix form,

. o
[If@’em}mg [ef7 Dn]:[ o TR:|
n =

Iy ® Dy, ¢ s ix

S ¢ f_R e
T ro n
¢r=[1r ®em. Iy ® D] D+
n

015 pl5
(14)

in which we used the notation ()!S = D,E(.)S and
(.)1r = () rDy. The superscript § and subscript 7 refer to
the ‘satellite-’ and ‘receiver-averaged’ components, respec-
tively. Thus, ()° = ¢ ()5 and ()7 = ()ref’. The
pseudo-inverses of D,, and D, are defined as D,‘n“ =
(DI CsD,y)'DICs and D} = (DI'CrD,)~'DICg,
respectively. A similar decomposition as (14) can be obtained
for the code data pISe.

The decomposition (14) achieves that the undifferenced
raw GNSS data ¢>I§/ pISe is decomposed into the following
four uncorrelated blocks of data (Fig. 3):

1. Satellite- and receiver-averaged components ¢§/ p‘; ,
2. Satellite-averaged SD components ¢ ./ p] g

3. Receiver-averaged SD components ¢r-15 / p}S,

4. DD components qﬁ]lf(,/pllfe.

Since the averaging operators ¢, and e, are, respectively,
orthogonal to the differencing operators D,, and D, (i.e.,
e CsDy = 0 and e,;" CrD,, = 0), these four blocks of data
are mutually uncorrelated.

Just as with the phase and code observations, we also apply
the CD-transformation to the estimable parameters of the
multivariate GNSS model (10). This will then transform ,51%,
Zi, Zzlse, and glse accordingly. In case of the estimable code
biases J;g, the identity matrix /¢, in (14), must be replaced
by its lower-dimension version /;_, and in case of 53 and
Z}g, the identity matrix / 7 is replaced by ‘1°. Thus, if we apply
the CD-transformation to the non-dispersive matrix ﬁg, we
obtain similar to (14) the decomposition,

¥ S

€m | ~S 1 4T Pi 5 PIR
'OR e s Dn = » » R

[Dﬁ] e o] L bin

~5 =5 T
~s +T Pz 5 PIR €y
P = [em. D] ~1S =18

" 67> big | | Dif
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15)

A similar decomposition is achieved for the other parameters
Z?;’ Zzlse, and d,ﬁ as well.

3.4 The canonical GNSS model

We are now in a position to formulate how the multivariate
GNSS model looks like after we have applied the one-to-one
CD-transformations to both observations and parameters. It
follows that the resulting set of observation equations can
then be divided into four uncorrelated and decoupled blocks
(Fig. 3):

The satellite- and receiver-averaged block:

| =er B - ui+AG
(GIR L - (16)
pi=erps+pii+ Ed;
The satellite-averaged SD block:
5 $ir = er Pig — HIg + Adjg
Oir 5 ~5 ~ 55 (a7)
Pig =ef Pig T i + Ediy

The receiver-averaged SD block:

OIS { 615 = (ef @ In-1) S — (W@ Ln-D T + (A® In—1) @’
Jr

IS =(ef ®Lu-1) A5 + (U ® In-1) 115 + (E ® Ipy—1) d}S
(18)

The double-differenced (DD) block:

¢11R = (ef®‘m—l)pllR (M®‘m—l)L}R (“@‘m—l)a]lR
()1
/1R

iy = (ef ® In—1) pls + (L ® Ly—1) 115
(19)

The four blocks (16-19) represent four sets of decoupled
and uncorrelated observation equations. That is, the four
blocks of data are not mutually correlated and each block
of observation equations has its own set of parameters, i.e.,
the four blocks have no parameters in common. Because of
these two properties, we can now already get a quick first
insight into the impact of IAR. As the DD float ambiguity
solution 5111 ISQ, being a function of only the double-differenced
data, is not correlated with the data of the other three blocks,
none of the parameters of these three sets of observation equa-
tions will benefit from integer ambiguity resolution. That is,
they remain unaffected by IAR. For instance, the solution
of the ionospheric component T‘i - being a function of only
the satellite-averaged SD components ¢‘1§ &/ p‘f r» Will remain
unaffected by IAR (see Fig. 3).

So far we have used the parametrization ,5;3, both in (15)
and in (16-19). These parameters themselves, however, have
a further one-to-one parametrization into the position/ZTD
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Transformed observations Transformed parameters
UD SD ()F (g
1S 1S
SD DD ()7 g

l

Constituent components
()f = F(0F ,08,08,08)
.

Any estimable parameter

Fig. 3 The four-block decomposition of the GNSS data. Only the
estimable functions of the DD block (in blue) are affected by IAR.
Any estimable function of the other-than-DD blocks (in gray) remains
unaffected. Expressing the GNSS estimable parameters in terms of their
constituent components, (.); = F((.)‘g, (.)}S, (.)‘TR, (.)}fe), shows how
they benefit from IAR

increments AXg =[AX1, ..., AX,] and the clock parameters
diS = [di', ..., di" and dig = [dfa, ..., di,]" (cf. 5).
To show this, we make use of the multivariate version of
o8 = gsTAX, + di, — di*, being

n
P = 2| GF Afguul | +en dig 10, 1-11-di €] (20)

r=1

with matrices G¥ = [g!,...,¢"7 (r = 1,...,n) and the
n-vectors u, having zero entries, except their rth entry equal
to 1. Substituting (20) into the first expression of (15), the
following one-to-one correspondence with the p-parameters
of (16-19) is obtained

2

M:

o; = —di® + [GfAiR u,.urTe;:'T] + dt}g [0, In,l]e;fT

‘
Il

M:

pip = +dik + > [GS Axgu,ul D,]

1

535 = —di'S + Y [GISAxgu,ule;T]

7
r=1

\
sl

n
,5111% = +> [G}S AXR u,u,TDn]
r=1

21

This shows, when reading (21) from last to first equation, that
the DD component ,5} ISQ determines geometry, i.e., the posi-
tion/ZTD increments Ax g (cf. 3), that the receiver-averaged
SD components ,5;15 (of size m — 1) are reserved for the
SD satellite clock parameters df'S (of size m — 1), while
the satellite-averaged SD components ﬁf_ g (of size n — 1)
are reserved for the receiver clock parameters dig (of size
n — 1), and finally, that the satellite- and receiver-averaged

UD ionospheric delays
S
DD ionospheric delays

;3 " Bf; Oé. 12‘;“148
DD L1 ambiguities

1 22 43 64 85 106 127 148 1
DD L1 ambiguities

Fig. 4 Absolute values of the cross-correlation matrix between the DD
L1 ambiguities (columns) and the estimable ionospheric delays (rows).
Left: UD estimable ionospheric delays; right: DD estimable ionospheric
delays. The results are obtained from a network of 20 GPS (L1/L2)
stations within Australia

component ,5; (ascalar) is reserved for the satellite-averaged
clock parameter d7°.

The above parametrization (21) combined with the uncor-
related and decoupled set of observation equations (16—19)
will now be used to further analyze the parameter impact of
integer ambiguity resolution.

4 Qualitative analysis of the IAR impact

In this section, we use the canonical decomposition of the
multivariate GNSS network model to provide a qualitative
insight into the impact of integer ambiguity resolution on the
various GNSS parameters.

4.1 Tonospheric parameters &

Given the four decoupled and uncorrelated blocks of observa-
tion equations (16-19), we are now in a position to address
how the ambiguity-resolved phase data propagate into the
fixed solutions of any GNSS estimable parameters. In an
analogous way to (9), the float and fixed ionospheric solu-
tions can be structured from their constituent components as
follows

A A

LS 35 4 §S 58 =55
Float: @ =6+ + 13, + 13,

v s A A e (22)
1 . 785 _ 738 7SS 7S 7SS
Fixed: @7 =6 + & + 105, + 13
The last term 3% = [1}5 — T1$] — [1]¥ — 7}5] is a func-

tion of the DD constituent component Z}i, driven by the

ambiguity-resolved DD phase data (cf. 4), thereby experi-
encing two orders of magnitude precision improvement. The
other three terms, however, are all functions of the other-
than-DD constituent components, thus being uncorrelated
with the float DD ambiguities. These components are driven
by the code data. Therefore, they prohibit the precision gain
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E=F (0 , 0¥, O , W)

l l l l 1 B

~5 ~3 ~5s ~3 1788 X185 2

by = b + by + Ly + LL_T_JM‘LLJ%J‘ L%% )

dF = 5 — 55 4 A e (1)
Pr T P17 Wars \P1R/) Eq. (19)

g — ~S |r___~i§-: ‘rir’ij‘ Y =

dtr = TP = e (1) ATR, Ao ><:.

5 _ 25| _|~5s |, |8 T g

0° = —ap — ap® + aj; + iy

T ~5 T 218 218 |

ro= Ir — lag] 1R R

45 = 15 fEC — -
Pt e (PL3) = P2 + 91102,

d, = di« S, (P15) = P15 + AT 1 +91T AT

Fig. 5 Diagram showing how the ambiguity-resolved DD phase data,
by fixing the DD ambiguities a { ISQ, propagate into the constituent com-
ponents and therefore into the estimable parameters (blue lines). As the

of the fixed solution fﬁ to reach the two orders of magni-
tude level. The presence of these components decreases the
correlation between the float solution fﬁ and the DD float
ambiguities. Figure 4 shows absolute values of the cross-
correlation matrix between the DD L1 ambiguities (columns)
and the estimable ionospheric delays (rows). The results are
obtained from a network of 20 GPS stations within Aus-
tralia. The larger the correlation coefficients, the darker the
elements become. In case of the DD ionospheric solutions f%j,
the correlation coefficients are all significant (right-panel of
the figure). This is, however, not the case with the UD iono-
spheric solutions fﬁ (left-panel of the figure). In this case,
only the ionospheric solutions corresponding to the pivot
satellites (diagonal strips) and pivot receivers (the first rows)
are correlated with the float DD ambiguities. By ‘pivot’, we
mean those receivers and satellites which their ambiguities
are taken as reference to form the DD network ambiguities,
see, e.g., de Jonge (1998). The rest of the solutions represent
very small correlation coefficients, showing that the presence
of UD and SD ionospheric components does indeed decrease
the correlation between the float ionospheric delays and the
DD ambiguities.

Similar to expression (22), the other estimable parameters
given in Table 1 can also be expressed in terms of their con-
stituent components, i.e., the parameters of (16—19). Such
expressions are presented in Fig. 5. They are accompanied
by a diagram showing how the ambiguity-resolved DD phase
data, through fixing the DD ambiguities &111%, propagate into
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estimable code biases d. j and c?sj do not depend on the DD constituent

components (,)},Se, they are uncorrelated with the float ambiguities élllse,
thereby remaining unaffected after JAR

the constituent components and therefore into the estimable
parameters (blue lines).

According to the diagram, the DD observation equations
deliver the float DD solutions f%ﬁ, A)%, and & 115 Once IAR
is carried out, the ambiguity-resolved DD phase data would
then propagate into i} only through the fixed DD solutions
f}; As a consequence, when the DD parameters Z%; are a pri-
ori known, the float solutions of 7 become uncorrelated with
the float ambiguities and therefore no precision improvement
is obtained by IAR. Practical examples of such are the short
inter-station distance scenarios where the between-receiver
SD ionospheric delays are assumed to be absent, i.e., (§ = Lﬁ
(r =2,...,n). Thisyields & = (] +d; ; (cf. Table 1), thus
Z}i = 0. The (m — 1) x (n — 1) constraints Z}i = 0 reduce the
m X n parameters I, to m parameters i}, but then introduc-
ing (n — 1) additional estimable parameters cfw F=10,0=
2, ..., n). These parameters are the (scaled) SD receiver ‘dif-
ferential code biases’ (DCBs), see, e.g., Schaer (1999) or
Zhang and Teunissen (2015). The corresponding decompo-
sition of 7} and Jr,G ~ 1s then given as (compare with 22)

=048 +8,+0
dr=04+0 + 7, +0 (23)
Thus, neither the ionospheric parameters i} nor the receiver

DCBs dNr,G r benefit from IAR, when the between-receiver
SD ionospheric delays are absent.
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4.2 Clock parameters df, and d¢°

Let us now focus on the estimable clock parameters. Accord-
ing to Fig. 5, the ambiguity-resolved DD phase data propa-
gate into df, and df* only through the DD-range solutions
A ,511; and therefore, through the position/ZTD solutions
A g Consider the case where Ax g are a priori known. This
corresponds to the ‘geometry-fixed’ scenario when the posi-
tion of the receivers is assumed to be known, while the ZTDs
are a priori corrected. Under these conditions, the DD-range
parameters Ap llj are absent, that is, the float solutions of the
estimable clocks d7, and d7* have no dependency on the DD
block (.)}%. Thus, the clock solutions d7, and d7* become
uncorrelated with the float ambiguities and do not benefit
from IAR. To what extent these parameters can gain preci-
sion improvement does then very much depend on the fixed
solution AX r and therefore on the DD-range parameter ,5111‘%.
We come back to this when we quantify the clocks’ precision
gain as a function of the DD-range’s dependency in Sect. 5.

4.3 Phase biases &, ; and §° f

In case of the estimable phase biases, the ambiguity-resolved
DD phase data propagate to them directly through the DD
ambiguities 5111 ;E,. Their correlation with the DD ambiguities
becomes absent only when the DD ambiguities are a priori
known. As no a priori information on the DD ambiguities
are often available, these types of parameters would there-
fore be correlated with the float ambiguities fllllse. Figure 6
shows scatter-plots (green dots) of the satellite phase-bias
residuals versus those of the DD ambiguities. The residuals
are obtained from the difference between the single-epoch
and the final filtered solutions. In case of the UD phase
biases (top-panel of the figure), the stated correlation is esti-
mated as 0.26. In case of the SD phase biases, however, the
correlation increases to 0.61 (bottom-panel of the figure).
The reason behind this behavior follows by expressing the
estimable phase biases in terms of their constituent compo-
nents. According to the diagram of Fig. 5, the UD and SD
satellite phase biases can be, respectively, expressed as

s ~5 ~58 ~5 ~5s

S,j = —a;.j —af’j +al;’j +a1;yj (24)
s ~1s ~1s

S’j = O—af’j +0+a];’j

The expression (24) reveals that the terms Ezg and sz; are
eliminated by forming between-satellite differences. Both are
uncorrelated with the float ambiguities; thus, their absence
in the SD phase biases 8% increases the stated correlation.
To show the dependency of the phase biases on the ambigu-
ities, we also plot the expected phase-bias values when the
corresponding L1 ambiguity is given (gray straight lines of
Fig. 6). These values show how much the fixed phase-bias

30 T T T Te

UD L1 phase-biases [cycle]

-30 . !
-30 -20 -10 0 10 20 30

SD L1 phase-biases [cycle]

_30 N N N
-30 -20 -10 0 10 20 30

DD L1 ambiguities [cycle]

Fig. 6 Scatter-plots (green dots) of the L1 satellite phase-bias residuals
(vertical axis) versus that of the DD L1 ambiguities (horizontal axis),
together with their 95% confidence ellipses (in black).7op: UD satel-
lite phase biases; bottom: SD satellite phase biases. The gray straight
lines represent expected phase-bias values when the corresponding L1
ambiguity is given. The results are obtained from a network of 20 GPS
(L1/L2) stations within Australia

solution deviates from its float version (the blue line arrows
on the vertical axis), when the difference between the float
and fixed ambiguities is given (the blue line arrows on the
horizontal axis). The SD phase biases are shown to deviate
much more than their UD versions for a given difference
between the float and fixed ambiguities, i.e., the SD phase
biases benefit more than their UD counterparts.
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4.4 Code biases d,, ; and Jf ;

As shown in Fig. 5, the estimable code biases d, ; and c?sj
do not depend on the DD constituent components. They
are therefore uncorrelated with the float ambiguities al 1%’
thereby remaining unaffected after TAR. Would one be inter-
ested to determine such estimable parameters, no additional
IAR step is then required.

5 Precision gain of the GNSS parameters

In the previous section, it was shown how the four-block
decomposition (14) facilitates our qualitative analysis of the
IAR impact on the GNSS parameters. The analysis was, how-
ever, confined to a single observational epoch. We now take
this one step further and quantify the IAR impact in a multi-
epoch sense. Since the goal is to study the role played by
the integer ambiguities, we consider a multi-epoch scenario
where only the integer-valued parameters zj’ I given in (1),
are assumed to be constant in time. For the sake of presen-
tation, from now on we assume the network to be such that
the receivers view satellite s from almost the same direction
angle, i.e., g = g (r = 1,...,n). Thus, Ax; = 0 (cf.
Table 1).

5.1 Gain numbers and reduction factors

We use the concept of gain numbers (Teunissen 1997) to
measure the gain in the parameters’ precision due to ambi-
guity fixing. Let the estimable parameters, in Table 1, be
symbolized by the unknown vector x. Any linear function
of x can be expressed as /7 x with vector I of the same size
of x. Its float and fixed solutions, respectively, read /7 £ and
1x. Applylng the error propagation law, their variances are
given by 17 Q;;1 and 1T Q;1, where Q;; and Qyy denote
the variance matrices of the float and fixed solutions X and
¥, respectively. The gain number of the float solution /7 % is
then defined as the variance ratio

1T Q¢l

_ o 1T(04—04x
= lTQl T Qgl

Qi:)l

=1
* ITQxl

(25)

The gain number y tells us how many times the variance
of I” % gets smaller by IAR. Thus, the corresponding standard
deviation decreases by a factor of ,/y (the ‘square-root’ gain
number) after ambiguity fixing. Note that the gain numbers
are never smaller than 1 (i.e., ¥ > 1), as successful ambiguity
fixing does not degrade the parameters’ precision (Teunissen
1997).

Example To provide further insight into the concept of gain
number, float and fixed slant ionospheric solutions of a GPS
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network have been analyzed. The goal is to empirically eval-
uate the gain number (25). To that end, 120 ionospheric
outcomes at every epoch (30 seconds) serve as samples to
compute the sample variance

h
1 S
1" Q)i -n! ~ W PAETEE DI (26)

i=1

in which %; and X;, respectively, denote the float and fixed
samples, with / being the number of samples. With (25) and
(26), the empirical gain number reads

T _
v~ 1+ — Z[l (xz let)] 27)

as Oz—y)(3—x) = Ozs — Oxx. Time series of such empirical
gain numbers are presented in Fig. 7. As partial ambiguity
resolution, based on subset selection strategy with minimum
success rate 99.9%, is applied (Teunissen et al. 1999), a sub-
set of float ambiguities are fixed only after 10 minutes of
the network processing. As shown in the figure, empirical
gain number of the DD components (blue circles) represents
large values and increases over time, reaching its maximum
after 37 minutes. This is because of the fact that more ambi-
guities can be fixed as observations of further epochs are
collected. After 37 minutes the full set of ambiguities were
already fixed, while the float ionospheric solutions improve
in precision over time. That is why their gain numbers start
decreasing at that time. Figure 7 also shows empirical gain
numbers of the satellite averages (gray crosses). They are
close to 1, since they do not benefit from IAR by much. As
the averages are obtained by arithmetic averaging and not by
that of (13), the corresponding gain numbers are not exactly

equal to 1. O
500f ' R ' ' ]
o °P ° ® Double-differences
g . NP % Sat. averages
9 400 S ‘. i
g '. ﬁ.
[ e ..“-’
£ 300t o ® 1
g - -, o
= e
8 200 1
=
Q
S
w 100 J 1
20 30 40 50
( : ‘ ‘ b ‘
10 20 30 40 50 60 70
Time [min]

Fig. 7 Empirical gain numbers of the slant ionospheric solutions (DD
in blue and satellite averages in gray), given in (27), as a function of
time. The results are obtained from a network of 20 GPS (L1/L.2) stations
within Australia
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According to the decompositions (14) and (15), the function
1Tx can be decomposed into two constituent components,
say, ) x4 = ljx which benefits fromIAR, and 2) x3 = lj X
which is unaffected by IAR. Thus,

T

X=xA+xg, or [=Ilq4+14 (28)

As the float solutions x 4 and X are uncorrelated, we have
0% i = lj 22142 = 0. Thus, the vectors [4 and [4.
are orthogonal in the metric of Q;;. This explains the
orthogonality-symbol ‘L’ for the subspace B = A* rep-
resenting all linear functions of x that are unaffected by IAR.
The complementary subspace A would therefore represent
those linear functions of x that are affected by IAR. For
instance, in case of the ionospheric parameters (i.e., x = 1}),
A represents all the DD functions of . In case of the satellite
clocks (i.e., x > df*), however, the role of A is taken by the
between-satellite SD functions of d7* (cf. Fig. 5).

As xp remains unchanged after IAR, i.e., Xg = Xp, we
have oy , v, = 0%, ¢,5- Butthe fixed solution ¥ 4 is afunction
of x 4 and the DD float ambiguities, both being uncorrelated
with X3 = Xp. This means oy, z,, = 0 or II‘ Osslyr =
II\ #2l41 = 0. Applying the error propagation law to the
solutions of (28), the gain number (25) would then take the
following form

U Osila + 1 Ogalyr

y() =
Uh Oxila + 1 Ogalyr

(29)

The variance lj 1 OxzxlyL is replaced by its float version
I/T‘ . Qz:l41 in the denominator of (29), because of the iden-
tity [, % =1}, &.

According to (29), by choosing the linear function /7 x such
that/4 = 0 (i.e., [ = [ 41), the gain number y becomes

yy) =1 (30)

This is what one would expect since the float solution
1T | % does not benefit from IAR, thus having its variance
unchanged. On the other hand, choosing the linear function
1T, % reduces (29) to

3D

We now show that the gain number of any linear function of
x is bounded by (30) and (31), that is

I=yl ) =y =yla) (32)

To see this, we express the gain number (29) in terms of
y (Il 4). This yields

1
v =yla) x -~ (33)

X

in which the reduction factor ry is given by

1402 1T Qxlas

o= — U with 02 = ALTEAT (34)
14 2 1T Qxl
+ )/([A) A XxtA

As any gain number is never smaller than one, i.e., y (I 4) > 1,
we have

2
1+12>1+

>
AR or ry > 1 (3%
The reduction factor r, is therefore never smaller than one.
This, in combined with (33), proves the inequality y <
y (La).

The reduction factor ry tells us how many times the gain
number y is smaller than its maximum value y (L4). The gain
number of y reaches its maximum y ([4) when ! = [4. In this
case, the reduction factor becomes r, = 1. When [/ =1 4.,
the gain number of y reaches its minimum 1. In this case, we
have [4 — 0 (or v> — 00), having the maximum reduction
factor r, — y(ln).

5.2 Geometrical interpretation

The second expression of (28), together with lj Ozl =0,
implies that

[(l,leQiﬁlA)_l l,leQ)E)E] I =1

. (36)
[({LQ%IAQ lLQm} I=1

From a geometrical point of view, the vectors [ 4 and [ 4.
are thus the orthogonal projections of . The magnitude of
the gain number y is driven by the ‘direction’ of the vector /
(and not its length) with respect to the orthogonal projections
[ 4 and [ 41. The gain number y gets closer to its maximum
y(l 4), the smaller the angle between / and /4. When [ is
orthogonal to the subspace A (i.e.,! = [ 41), the gain number
y reaches its minimum y ([ 41) = 1.

In the following, we present the gain numbers of the
GNSS parameters in Table 1, using the representation (33).
To get a better understanding of their variations, a ‘geomet-
ric’ approach is taken, for which the following geometrical
concepts are used. We use the orthogonal projectors (cf. 14)

Between-satellite SD projection : Pp,, = Dy, D,
(37)
Between-receiver SD projection : Pp, = D, D;}
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Table 2 The (co)variance-type scalars used in the expressions of the gain numbers

Analytical expressions

GPS (L1/L2) example

2
cs o, Cpp -1
Float: Q5 = |: p /;l:| = ([ea M]TC;][E, ,U«])

Cpt > G

2 Tr ~—1
. Cx s Cpi e, —j c,”, 0 e, —l
Fixed: Qun=| " ) |= ¢ .

Cpi oy € [ 0 ,Cp e, +un

59.6%, —50.3 )
—50.32, 43.7? (em)

597, 5.07 5
502, 442 |

Their dual-frequency versions, i.e., O[5, i1, that are indicated in text by (.)2, are computed based on the first two frequencies j = 1, 2. The GPS
(L1/L2) example follows by setting Cy = 0‘512 ,Cp = (71%12, with u; = 1 and py ~ 1.6469 (0 = 0.002 [m], 0, = 0.2 [m])

2 2 (pafp)2e o2 2
G =6 (cpi/cp)™s Cilp

0y = A1 (Cp + e, =1 Q15,101 le. —H]T) Al

The projector Pp,, projects any vector in R™ onto the sub-
space containing between-satellite SD functions. In case of
Pb,,» the orthogonality is defined by the metric Cs € R"*",
while the orthogonality of Pp, is defined by the metric
Cr € R™ (cf. 11). These two projectors structure the
higher-dimension DD projector

DD projection : Ppp = Pp, ®Pp,, (38)

with the metric Cgp ® Cg € R™>*™" The projector Ppp
orthogonally projects vector [ € R"" onto the subspace con-
taining the DD functions. The angle between vector / and
its orthogonal projection [pp = Ppp [ is denoted by ‘400 ’
The (co)variance-type scalars, given in Table 2, frequently
appear in our gain-number expressions.

5.3 Ionospheric parameters 7§

As shown in Fig. 5, the ionospheric parameters Zfe benefit
from IAR through their DD components Z} fe‘ Thus, the role of
subspace A, in (33), is taken by the DD functions (i.e., A +—
DD). We first present the maximum gain number y (Ipp) and
then evaluate its reduction factor r,. The m x n matrix Tfe is
expressed in its vector form as vec (Zi) e R™,

Lemma 1 (Maximum gain number of Zfe) Given the obser-

vation Eq. (10), let ff? be the float solutions of the ionospheric
parameters at epoch k that are obtained by the data of k

epochs (i = 1,...,k). Among the solutions lTvec(f‘Ig), the
DD functions

T 28 . _

bovee (%), with Ipp =Popl, (39)
achieve the maximum gain number

yUpp) = ey OF + (1 — )y " (40)
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tlp

The geometry-free (GF) and geometry-fixed (GFi) gain num-
bers are, respectively, given as

2

GF _ k=1 1 (<4
v —T+z(c—‘g>

L

2

GFi _ k—1 1 Cup
=14 14k
14 I3 e\

The scalar o, = [1 + (czz‘p/c?) tan2(1m)]_1 is specified by
the deviation angle 1, as follows

(41)

1
Y= Af,gf, Ip, =Pp, lpp (42)
The orthogonal projector PDp projects onto the range-space
of the design matrix of ,511;2 (see (82) in Appendix for its
expression).

Proof See “Appendix”. O

The above lemma shows, among the functions of the iono-
spheric parameters, that the DD functions of ffe achieve the
largest gain number due to ambiguity fixing. The value is a
convex combination of y9F and Y. When k = 1 (i.e.,
single-epoch), both of these gain numbers represent large
values (see Table 2)

[S]

yGF *Z1 4~ 99 32

S

2
13

43

GFi k=l i “3)
2

i

{2}

y ~ 103.9?

)

affirming the two orders of magnitude improvement by
IAR. They decrease as the number of epochs k increases,
tending to ‘1’ when k — oo. The ‘geometry-free’ gain num-
ber y¢F corresponds to the case where the non-dispersive
parameter ,015-‘, is not parametrized into the position/ZTD
increments Axg. Thus, no information about the relative
receiver-satellite geometry is present in the model’s design
matrix. On the other hand, the ‘geometry-fixed’ gain num-
ber y 91 corresponds to the case where the position/ZTD
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Satellite- or receiver-averaged components

B=R(e;"® eiNOR(eT©Dm) SR D, @ ) Rmn

B\

A =R(D,® Dy)
Double-differenced components (DD-space)

Fig. 8 Geometrical illustration showing the relation between vector
[ € R™*" (black) and its orthogonal projections [ pp (blue) and/p, (red).
The gray plain represents the subspace containing all DD ionospheric
functions. The axis orthogonal to /p, shows the subspace containing

218 .
the DD ionospheric functions that are uncorrelated with o g, having no
dependency on the DD-range solutions. The ‘direct sum’ between two
subspaces is denoted by @

parameters are completely known, i.e., AXg = 0. Thus, the
full information on the receiver-satellite geometry is given.
The maximum gain number y (Ipp) ranges between y ¢ %
and y 977 through the scalar 0 < o, < 1. The scalar o itself
is driven by the deviation angle v,. This angle measures the
dependency of solution ILT)D VeC(?i) on the DD-range solu-

tion 5:; When i, = 90°, the vector Ipp is orthogonal
to the design matrix of the DD-range solution, thus hav-
ing 17 vec(iS,) uncorrelated with ﬁii, and o, = 0. In this
case, the solution llT)D vec (f%) has no dependency on the DD-
range solution, thereby having the gain number equal to the
geometry-fixed one, i.e., y(Ipp) = y°F'. When v, = 0,
the vector [ pp lies in the range-space of the design matrix of

the DD-range solution, having lIT)D vec(fi) with maximum
218 .
dependency on p;p, and @, = 1. In this case, the solu-

tion ZIT)D vec(ffe) therefore has the gain number equal to the
geometry-free one, i.e., ¥ (Ipp) = y°F.

The corresponding geometrical illustration is presented in
Fig. 8. The gray plain represents the subspace containing all
DD ionospheric functions. When vector /pp coincides with
its projection /p, , the deviation angle becomes v/, = 0. The

float solution lgD vec(ffe) would then experience strongest
dependency on the DD-range solution. The axis orthogonal
to /p, shows the subspace containing the DD ionospheric

functions that are uncorrelated with the DD-range solution,
218
thereby having no dependency on p .

Note that the solutions / Tvec(f}g) do not only represent
the DD components. That is why the vector / does not lie in
the DD space (see Fig. 8). The deviation angle 6, governs the
reduction in the maximum gain number y (Ipp). Below, the
corresponding reduction factor is presented.

Lemma 2 (Gain number of Zfe) Given the observation Eq.

(10), let ?fe be the float solutions of the ionospheric param-
eters at epoch k that are obtained by the data of k epochs
(i = 1,....k). The gain number of the float solution
1 Tvec(Zfe) is linked to its maximum yffe (Ipp) through

1
v =y(pp) x = (44)

X

in which the reduction factor ry is given by

1+ v?tan’(8,)
L+ [v2/y Upp)]tan?(6)

(45)

ry =

with the scalar vlz = [(czz/czzz) + (czzlp/czzz) tanz(l/fl)]’1 and

the deviation angle 6, = 400'
Proof See “Appendix”. O

When 6, = 0, the solution / Tvec(?fe) belongs to the class of
DD functions. In that the case, there is no reduction in the
maximum gain number y (Ipp), i.e., ry = 1. When vector [
is orthogonal to the DD space (i.e., 6, = 90°), the solution
lTvec(ffe) represents the satellite- or receiver-averaged func-

tions (Fig. 8). In this case, the solution / Tvec(ffe) becomes
uncorrelated with DD float ambiguities, having the maximum
reduction factor r, = y(Ipp). Thus, y = 1.

Figure 9 shows square-root gain numbers of the iono-
spheric solutions / Tvec(ffe) as a function of the deviation
angle 6,. As shown, the gain number significantly decreases
as 0, gets closer to 90°. The deviation angles corresponding
to the UD component i}, between-receiver (BR) SD compo-
nent ij, and between-satellite (BS) SD component T}S can
be evaluated as functions of the numbers of satellites and
receivers m and n as follows (see “Appendix”)

(1-3)(1-5). up
(1-1), BR-SD (46)
(1-1), BS-SD

The larger the numbers m and n, the smaller the deviation
angle 6, becomes. For the numbers of receivers 2 < n <
300, and numbers of satellites 5 < m < 60, the ranges of
6, have been highlighted in Fig. 9. As shown, the standard
deviation of the float solution f; decreases by factors of 1 to
7. Depending on the numbers of receivers and satellites, the
standard deviation of fir and ?}‘ can, respectively, become up
to 8 and 19 times smaller after IAR. These standard deviation
ratios get smaller, the larger the number of epochs k. This
shows that the float solutions of the ionospheric components
can have very distinct responses to IAR.

To conclude this subsection, it is important to remark that
the DD functions Zﬁe refer to those functions at one individual

cos’ 0, =
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Square-root gain numbers

0 10 20 30 40 50
Deviation angle of DD-space: 9L [degree]

Fig. 9 Square-root gain numbers of the ionospheric solutions
l Tvec(ff?) as a function of the deviation angle 6,. Left: the geometry-free
scenario (Y, = 0), right: the geometry-fixed scenario (v, = 90°). The
ranges of the deviation angles corresponding to the UD component i

epoch k (cf. Lemma 1). These functions should therefore not
to be confused with their between-epoch differenced counter-
parts. As shown, for instance in (Khodabandeh and Teunissen
2016), any sole function of the ‘between-epoch’ differenced
components are uncorrelated with the DD float ambiguities
and therefore does not benefit from IAR. The same conclu-
sion holds for the other DD functions.

5.4 Clock parameters df, and d¢°

According to Fig. 5, the satellite clock parameters d7° benefit
from IAR through their SD components d7'S. Thus, the role
of subspace A, in (33), is now taken by the between-satellite
SD functions. Similar to the ionospheric parameters, we first
present the maximum gain number y (Ip,, ).

Lemma 3 (Maximum gain number of di%) Given the obser-
vation Eq. (10), let d?s be the float solutions of the satellite
clock parameters at epoch k that are obtained by the data of
k epochs (i =1, ..., k). Among the solutions let:S, the SD
functions

15 dis, with Ip, =Pp,l, (47)
achieve the maximum gain number
y(p,) =gy + (1 —aq)y " (48)
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Square-root gain numbers

R

0 10 20 30 40 50
Deviation angle of DD-space: 6l [degree]

(bounded by the blue lines), between-receiver (BR) SD component 7},
(dark gray area) and between-satellite (BS) SD component Z}s (light
gray area) are highlighted

The geometry-free (GF) and geometry-fixed (GFi) gain num-
bers are, respectively, introduced as

GF _—_1 + n—1
14 k |:n+(c§2/c§)—1

GFi=1

(49)
v

2
Cx
The scalarag; = [1 +(m) tan? (lﬁd,)]_l is specified
i) p

by the deviation angle V4; as follows

Ipy,
1/’(11 = lep

. Ip,, =Pp,, D, (50)

The orthogonal projector Pp, = projects onto the range-space

mp

of the design matrix of ,511;? (see (77) in “Appendix” for its
expression).
Proof See “Appendix”. O

Note the resemblance between (48) and its ionospheric coun-
terpart (40). The maximum gain number y (I/p,,) is also a
convex combination of y9F and y¢F7. In contrast to the
ionospheric gain numbers (43) where both represent very
large values (i.e., around 1002), the values of the GF and GFi
gain numbers of the satellite clock parameters can be quite
different. For the geometry-fixed case, we have yOFfi =1
as the dependency of the clock solutions /7 d75 on the posi-
tion/ZTD components Axg is absent (cf. Fig. 5). For the
geometry-free case, however, we have
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VGF§1+nk;1k;1n

(S
The above upper-bound is sharp when the number of
receivers n is not too large. The larger the number of net-
work receivers, the larger the precision gain the satellite clock
solutions achieve after IAR. In the single-epoch case, the GF
gain number roughly becomes 7. This can be well understood

from the satellite clocks’ constituent components as follows
(Fig. 5 with Ax| = 0)

~ls

Float : di's = —p; + ,511; = —,31

(52)

~ls

Fixed: di's =—p; + pls

As the variance of the fixed solution ,5115 is negligible com-

~ls
paredtothatof p; (fornottoo large n), one can then conclude
that

M 2ls ~ls 2
Di") ~ D (—,5;) =1p (—ﬁ) =1p (dt”) (53)
The maximum gain number y (Ip, ) ranges between y ¢!
and ySF through the scalar 0 < «g; < 1 which itself
is driven by the deviation angle v4;. This angle measures
the dependency of solution /7 d7S on the DD-range solution

ﬁif, thereby its dependency on the strength of the model’s
geometry. Figure 10 shows square root of the maximum
gain numbers of the satellite clock solutions, i.e., y(Ip,,),
as a function of the deviation angle ¥4;. When ¥4 = 0

0 Number of stations: 30

Square-root gain numbers

0 10 20 30 40 50 60 70 80 90
Dependency on DD-range: Vs [degree]

Fig. 10 Square root of the maximum gain numbers of the satellite
clock solutions {7 (d75) as a function of the deviation angle ¥4,. This
angle measures the dependency of solution /7 drS on the strength of

(geometry-free case), Ehe model’s geometry is weakest, hav-
ing the solutions /7 d7® with largest precision gains due to
ambiguity fixing. The precision gains decrease as the devia-
tion angle 1/4; gets closer to 90° (i.e., the model’s geometry
gets stronger). In the extreme case ¥4 = 90° (geometry-
fixed case), the model’s geometry becomes strongest. In this
case, no precision improvement is gained after IAR, as the
clock solutions / Td?S would then be uncorrelated with the
DD float ambiguities.

Since the solutions {7 d7S do not only represent the SD
components, a nonzero deviation angle, say 84, from the SD-
space can further reduce the maximum gain number y (I/p,, ).

Lemma 4 (Gain number of d7°) Given the observation Eq.
(10), letd 75 be the float solutions of the satellite clock param-
eters at epoch k that are obtained by the data of k epochs
(i =1,...,k). The gain number of the float solution 17dsS

is linked to its maximum y (Ip,,) through
1
vy =yUp,) x — (54
Ix
in which the reduction factor ry is given by
1+ v3 tan?(f
ry dt ( dl) (55)

T 1+ 2, /v Up,)] tan®(Gar)

with the scalar v, = n[1 + (n — 1)(c%/céz)cosz(wd,)]’1
and the deviation angle 64, = 40 .

0 Number of stations: 100

Square-root gain numbers

0 10 20 30 40 50 60 70 80 90
Dependency on DD-range: Ve [degree]

the model’s geometry. Left: A network of n = 30 receivers, right: a
network of n = 100 receivers. The precision gains decrease as the
deviation angle V4, gets closer to 90° (i.e., the model’s geometry gets
stronger)
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Proof See “Appendix”. O

The reduction factor ry, in (55), shows how the maAXimum
gain number (54) reduces when the float solution /7 d7' S devi-
ates from the class of between-satellite SD functions. For the
geometry-free case, square-root gain numbers of the satellite
clock solutions /7 dfS as a function of the deviation angle
64: is shown (Fig. 11). The values decrease as the deviation
angle 6,4, increases. Similar to (46), the deviation angles cor-
responding to the UD component d* can be evaluated (see
“Appendix”)

2 1
cos“(Og;) =1— — (56)
m

Thus, when the number of satellites gets larger, the devia-
tion angle 6, gets closer to zero. In this case, the UD clock
solution d7* can significantly benefit from IAR. For the num-
bers of satellites 5 < m < 60, the ranges of 8, are depicted
in Fig. ll.A Accordingly, the standard deviation of the float
solution d7* decreases by factors of 2 to 6 when the model’s
geometry is weakest (i.e., the geometry-free case).

Let us now consider the receiver clock solutions d7g.

Lemma 5 (Gain number of dfg) Given the observation Eq.
(10), letd t:R be the float solutions of the receiver clock param-
eters at epoch k that are obtained by the data of k epochs
(i =1,...,k). The gain number of the float solution le?R
is given by

10 Number of stations: 100

©
T
i

ub

Square-root gain numbers

2o o
0 10 20 30 40 50

Deviation angle of SD-space: 6 r [degree]

Fig. 11 Square-root gain numbers of the satellite clock solutions /7 dr5
as a function of the deviation angle 6, for the geometry-free scenario
(Y, = 0) and a network of n = 100 receivers. The ranges of the
deviation angles corresponding to the UD component d* (gray area)
are also given
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=1 ! [ 6‘23 _C’% } (57)
‘)/ = + —_
k c%z tan?(Yrg) + c%

with the deviation angle
el +T
Ve =4, g="Pce, (58)

The orthogonal projector Pg projects onto the range-space
of CS_IG]g (see “Appendix” for its expression).

Proof See “Appendix”. O

The above lemma shows that the receiver clock gain number
y does not depend on vector / and therefore on the choice
of function /7 dfg. This is due to the fact that the estimable
receiver clocks df, are of a between-receiver SD nature (cf.
Table 1). Similar to the satellite clocks, their maximum gain
number is experienced for the SD functions and thus not
dependent on the choice of /. ThAat is why no reduction factor
is devised for the solutions [T d7g.

Next to the number of epochs k, the gain number (57) is
driven by the deviation angle v/,. The angle v, measures the
dependency of the vector e, on the matrix of receiver-satell-
ite direction vectors G| = [gll, R g’]"]T. We now consider
two extreme cases. First consider the case where ¥, = 0,
ie., tan(yg) = 0. The gain number (57) is reduced to (see
Table 2)

1[< 1
y(l)=1+%|:—§—1j| = C—§m1o12 (59)
p ;

The extreme case ¥, = 0 occurs when e, is completely
dependent on G. In this case, the design matrix [e,,, G1]
is singular. Thus, when the receiver clocks dfg are poorly
estimable, they significantly benefit from IAR. Now consider
the second extreme case when ¥, = 90°,i.e.,tan(yg) — 0.
The gain number (57) is reduced to y — 1. The condition
Ye = 90° occurs when the vector e, is orthogonal to the
receiver-satellite direction matrix G| (with metric C§1 ), 1.e.,

when the float solutions dt:R are uncorrelated with the float
baseline/ZTD solutions Ax g. This is in agreement with the
qualitative analysis done in Sect. 4 (cf. Fig. 5). Similar to
the satellite clocks, the receiver clocks’ precision gain due to
ambiguity fixing is therefore large when the model’s geom-
etry is weak.

5.5 Phase biases &, ; and S’SJ

For each receiver and satellite, we have f number of phase
biases Sr, ; and Sf ; (j =1,..., f), respectively. Their multi-
variate forms, respectively, read S r € R/™" and 85 e RSm,
We consider the gain number of their ‘between-frequency’
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combinations characterized by the f-vector ¢. If there is no
reason for confusion, we therefore refer to the following func-
tions
Satellite phase biases : (g7 ® 17)8%, [ e R™

(60)

Receiver phase biases : g7 g1, leR”
as the float solutions of the phase biases. Next to the vector
1, their gain numbers are thus also dependent on the vector

q. The corresponding gain numbers are presented below.

Lemma 6 (Gain numbers of 8% and § Rr) Given the observa-
tion Eq. (10), let 55 be the float solutions of the satellite phase
biases at epoch k that are obtained by the data of k epochs

(i =1,...,k). The gain numbers of (60) are, respectively,
given as
1
y()=y(p,) x —, leR™
I'x
v =y, 1eR” (61)

with the reduction factor

1 + ntan®(Gy,)

rx = 2 (62)
1+ [n/y(p,)]tan=(64;)
and
v(p,) = cos’Wan) v +sin* Way S
Vie =08’ vl 4 sin?(yy S (63)

The geometry-free (GF) and geometry-fixed (GFi) gain num-
bers are introduced as (see Table 2)

GF _ -1[4q"0q GFi 97 Q1o
S _1+"k[ ] yGFi= 14171 [—”]

T Q0aq g7 02
GF _ 1[40 7. GFi _ 1 qTQ|pq]
Yir _1+k[qTqu]’ Vi _1+k[qTqu

(64)

The deviation angle rq; and 64, follow from (50) and (55),
respectively. The deviation angle V| reads

P,
Yi=4pr "y, v =11,0,....00" (65)
Proof See “Appendix”. O

Similar to the receiver clock gain number (57), the receiver
phase-bias gain number does not depend on the vector /. This
is due to the fact that the estimable receiver biases 8, ; are of
a between-receiver SD nature (cf. Table 1). Thus, no reduc-

tion factor is devised for the solutions g7 8g [. In case of

the satellite phase-bias gain number, however, the reduction
factor (62) is formulated to measure the reduction in the max-
imum value y (/p,,). The more the angle 6;; deviates from
the between-satellite SD functions, the larger the reduction
factor ry, thus the smaller the gain number y becomes.
Both of the satellite and receiver phase-bias gain num-
bers can be expressed as a convex combinations of their GF
and GFi counterparts (cf. 63). For the satellite phase biases,
the same deviation angle V4, as that of (50) is given. This
angle measures the dependency of the phase-bias solutions

on the DD-range solution 17» thereby its dependency on
the strength of the model’s geometry. For the receiver phase
biases, the deviation angle vy is given (cf. 65). This angle
depends on the constant vector v; corresponding to the refer-
ence satellite s = 1. This dependency is driven by the choice
of S-basis (see the term z%r’j in S,’j of Table 1). This shows
that a change in the model’s S-basis can change the interpre-
tation of the receiver phase biases and ditto their precision
gains.

Similar to its satellite clock counterpart (51), the geometry-
free gain number yg(S;F , in (64), is bounded from above as

ySF <1+ klk]n (66)
The above upper-bound is reached for the dual-frequency
case (f = 2) and is sharp when the number of receivers n is
not too large. In the single-epoch case, the GF gain number
becomes n. This can be understood from the satellite phase
biases’ constituent components as follows (Fig. 5)

. :1s__51s 2ls  _ _*ls
Float : 6,j = —a;; +a];’j =—a;’; 67)
: . N _ Z1s v ls
Fixed: § = —a;’; +ay; j

The fixed solution o Pir IS has a zero variance (i.e., non-random).
We therefore have

D(5%) =D(-4k) =ip(=al) = o (5%) @

On the other hand, for the stochastic model Cy = aqf Iy and
C,= 01% 17, the geometry-fixed gain number ygF I in (64),
is bounded from below as follows

2
—1 . o
1~ 1+Le <yGFi with € = -2 (69)
(el " 7
X

Since the phase-to-code variance ratio € is very small, the
above lower-bound is close to 1. The lower-bound is reached
for the ‘between-frequency’ phase-bias combinations that are
uncorrelated with the DD float ionospheric solutlons L}‘IS;, i.e.,

those characterized by the choice g = A(ey — [cp;/ cp] 1)

(Table 2). The reason is as follows. For argument sake,
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Fig. 12 Square root of the maximum gain numbers of the satellite
phase biases (L1 in black, wide-lane in green) as a function of the devi-
ation angle v4;. This angle measures the dependency of the solutions
on the strength of the model’s geometry. Left: A network of n = 30
receivers, right: a network of n = 100 receivers. In case of L1 phase

assume that 2%% are completely known. In the ge?metry-
fixed case, the precision of the float ambiguities &f; i in

(67), would then already be at the phase-level, as both ,ollf
and L}; are absent in the DD model (2). Switching from

§ 1; to § ljs would therefore only eliminate the randomness

of als

17, which is very small (see 67). Now assume that the

DD ionosphere parameters t%i are present. As the stated

‘between-frequency’ phase-bias combinations are uncor-
related with Z}}z, the corresponding combinations of the
float ambiguities 5111; j are of phase-level precision in the
geometry-fixed case. Thus, small precision gain by these
combinations is experienced after ambiguity fixing.

The bounds (66) and (69) show that the float phase bias
solutions have different precision gains ranging from 1 (the
geometry-fixed case) to the number of network receivers n
(the geometry-free case). This may suggest, similar to the
clock parameters, that the precision gain of the phase biases
do also very much depend on the strength of the model’s
geometry. In Fig. 12 we plot square root of the maximum gain
numbers of the satellite phase biases (L1 in black, wide-lane
in green) as a function of the deviation angle ¥4,. Compare
the results with those in Fig. 10. While the L1 phase bias
gain numbers have a similar behavior as that of the clock
gain numbers, the wide-lane phase-bias gain numbers are
almost insensitive to the strength of the model’s geometry
and behave rather constant for different values of v;4;. This
follows from the term (see Table 2)
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biases, the precision gains decrease as the deviation angle 4, gets
closer to 90° (i.e., the model’s geometry gets stronger). In case of wide-
lane phase biases, however, the precision gains are almost insensitive
to the strength of the model’s geometry and behave rather constant for
different values of ¥,

aT 01,4 N 0.01, g =[1,01" (L1)

T . (70)

q" O2q 0.88, ¢ =1[1,—1]" (wide-lane)

in the GFi expression (64). It shows, in case of L1 phase

biases, that y 9F7 weakly depends on the number of receivers
GFi o

8
n and epochs k, i.e., Vis
biases, however, VS(S;F ! approximates its geometry-free coun-

terpart ny;F . The conclusion reads therefore that there exist
combinations of the phase biases, like the wide-lane ones,
that can benefit from IAR irrespective of the model’s strength.

1. For the wide-lane phase

6 Summary and concluding remarks

In this contribution, we introduced a novel four-block canon-
ical decomposition of the multivariate GNSS model to
analyze the IAR impact on the parameters (Fig. 3). The
four-block decomposition allows one to address how the DD
ambiguity-resolved phase data propagate into the estimable
parameters, thereby enabling one to measure the precision
gain of the parameters due to ambiguity fixing. Apart from
the DD block, the three satellite- and/or receiver-averaged
blocks are uncorrelated with DD float ambiguities, requiring
code for their estimation even after IAR. It is the presence
of these blocks that prohibits the precision gain of the other-
than-DD functions to reach the two orders of magnitude level.
Thus, any function of these three blocks remains unaffected
by IAR. We employed this strategy and conducted a qualita-
tive analysis with the following conclusions (cf. Fig. 5):



On the impact of GNSS ambiguity resolution: geometry, ionosphere, time and biases 655

e Estimable receiver and satellite code biases do not
depend on the DD block and therefore on the DD float
ambiguities. These parameters do not benefit from IAR.
If one is interested to determine such parameters, no extra
ambiguity-fixing step is required.

e Slant ionospheric parameters benefit from IAR only
through their DD components. For the short-baseline
scenarios where the DD ionospheric delays are a priori
known to be absent, the other components of the iono-
spheric parameters (e.g., UD and SD components) do not
improve in precision by IAR.

e Clock parameters benefit from IAR only through the
position and ZTD parameters. In case the stated param-
eters are a priori known, the clock solutions become
uncorrelated with the DD float ambiguities, thus remain-
ing unchanged after ambiguity fixing.

e Estimable receiver and satellite phase biases benefit from
IAR through the DD float ambiguities, thus always being
correlated with them. Due to the presence of their code-
driven satellite- and receiver-averaged components, the
UD phase biases are less correlated with the DD float
ambiguities compared to their SD counterparts.

To further quantify the precision gain of the parameters,
we used the concept of gain numbers and took a geomet-
ric approach. The corresponding results are:

e Slant ionospheric parameters: While the DD ionospheric
solutions experience two orders of magnitude precision
improvement, the other-than-DD solutions have quite
distinct responses to IAR. Depending on their deviation
angle from the DD functions, their standard deviation can
improve by factors of 1 to 7 (for the UD components) and
8 to 19 (for the SD components), cf. Fig. 9. The larger
the numbers of receivers and satellites, the smaller their
deviation angle from the DD functions becomes, thereby
more precision gains are experienced by the UD and SD
ionospheric solutions (cf. 46).

e Clock parameters: Their precision gains do very much
depend on the strength of the model’s geometry. The
weaker the model’s geometry, the more the precision gain
is experienced by the clock solutions. When the model’s
geometry is weakest (i.e., geometry-free scenario), the
variance of the satellite clock solutions gets smaller by
a factor of n (the number of receivers). In this case, the
precision gain of the satellite clock solutions increases as
the number of network receivers increases (cf. 51).

e Phase biases: The between-frequency combined phase
biases can have different responses to IAR. For instance,
the L1 phase biases very much depend on the strength
of the model’s geometry. When the model’s geometry is
strongest (i.e., the geometry-fixed scenario), they hardly
benefit from IAR as the corresponding gain number is

close to 1. Other combinations such as wide-lane, how-
ever, can considerably benefit from IAR irrespective of
the model’s strength (cf. Fig. 12). Similar to the satel-
lite clock solutions, the precision gain of the satellite
phase-bias solutions increases as the number of network
receivers increases (cf. 66).
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Appendix
In this appendix we denote the variance matrix of a random

matrix, say X, by D(X) just for the sake of presentation. It
should be interpreted as

D(X) := D(vec(X)) (71)
Variance matrices of the DD parameters Applying the con-
ditional least-squares adjustment to the DD model (19), the
float variance matrices of the DD parameters are shown to

read (Khodabandeh and Teunissen 2015)
Float variance matrices:

o () = (1 + “73)
<{(prckna) ® (DhCsDu)|
“(ila-a) 5 e-a))

x {(D,,T CRD,,) ® (D;CSPDW) Dm)} (72)
o (318) = (3 + )
x {(D,,T Cr D,,) ® (D,ﬁ CsPb,, Dm)} (73)

1
o(i12) - (rcun) oo, o (Lesns)
+(Q = 09) & (D} C5Pp,, D) | (74)
Their fixed counterparts follow by setting k — oo. This

yields
Fixed variance matrices:

D (&%) =<2, {(Prcrpa) @ (DhcsDa))

-] {(oEcsm)o (okcsm )|
(75)
D(pll;§> e [(DTCRD,,) ® (D},CsPp,, D )] (76)
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The cofactor matrices Q and Q), are given in Table 2. The
projector Pp,,, is expressed as

—1
Po,, = Dup (DuhCsDuy)  Duf Cs (77)
where
—1
Dyp = Dy (Dgcst) DIGS (78)

Proof of Lemma 1 We use the definition of gain number (25)
as

(79)

in which use is made of the identity (38). Substitution of (72)
and (75) into the second expression of (79) gives

1.2 k=12 1.2 2 k=112 2 2
(E‘z\p + T‘np> + (E [‘z - Lf\pj| +7 [‘r - ‘npD cos”(¥)

2 [‘[2 —2 ]c052 W)

c;
ip ip

y(Upp) =
(80)

from which (40) follows. The cosine-squared term of the
deviation angle ¢, = L;g” follows as
o

15, Clp,

cos* () = Ip, = Pp,lpp (81)

15, Clpp’
where C = Cg ® Cy. The projector Pp, reads (cf. 77)

Pp, =Pp, ® Pp,, (82)
O

Proof of Lemma 2 Since only the integer ambiguities are
assumed to be constant and the remaining parameters are
considered unlinked in time, the other-than-DD models (16)—
(18) have no redundancy. Thus, the number of observations
is as many as the number of unknowns. The other-than-DD
solutions follow then by inverting the 2 f x 2 f design matrix

efv —HM, Av O (83)
ef, +u, 0, E

for each model. Applying the error propagation law to their
corresponding mutually uncorrelated ionospheric solutions
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gives

D(emfi:e,{> +D(emf§RD2'> —I—D(DntTf}SeZ>
= ¢, (Cr ® C5)Ppp (84)

where PLL)D = I — Ppp. This, together with the canonical
decomposition

B .he || el

~S __ +T ro n

5 = en D37 w5 s || o | (85)
shows that

D (fi) = 2(Cr®Cs)Php +D (D;Tf}iD;) (86)

With the role of A taken by the DD subspace, substitution of
(86) into the definition of reduction factor (34) gives

2
1 2 s
= L v = 2 tan’(6,)
14+ 2 2 2 2 2
7o) o TG~ C1p ) 05" (W)
87)

which is equal to (45). The deviation angle 6, = 4[)1) follows
from the cosine-squared term

1T C Pppl
2
)= —, C=C C 88
cos”(0) = — 7 & ® Cs (88)
For the special case C = I, (i.e., when Cgp = I, and

Cs = I,), the DD projector (38) is reduced to
17 1 T

PDD = In — —éne, ® Im - —€m€y, |, (89)
n m

proving the equality (46). O

Proof of Lemma 3 With Ax = 0, an application of the CD-
transformation gives

—di'S = p15 + 518 Dfuy (90)
Thus,
2 1S 218
Ddi'"$) =D (p; ) +D (le Dn+”1>
on
M 218 X
DWi'$) =D (pf ) +D (p}g D;rul)

Similar to (84), applying the error propagation law to the
non-dispersive solution of (18) results in

D(3) = % (phcsDm) ©2)
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in which the receiver-specific cofactor matrix Cr, is assumed
to take the special form Cg = I,,. The float and fixed variance
matrices of the SD satellite clocks are obtained by substitut-
ing (92), (73) and (76) into (91). This yields

. 2
D(i'S) = “2 (DI CsD,,)
+| e+ e | [ (D CsPo,, Dn)

v 2
D(i"$) = 2 (D},CsD) + 3 [%5] (D},C5Pb,, D)

93)
The gain number (48) follows then from
1T D(di%)1p,
7o) = e D,
t
D, ( ) Dy, (94)

_ ITD@i'i

= - ——. [=D}Ip,
IT D(di'5)1

The cosine-squared term of {4, = 455 " is given by (cf. 77)
mp

1T csip
Dy, m,

cos”(Yar) = —*————. Ip,, = Pp,,Ip, 95)
1}, Cslp,

O

Proof of Lemma 4 Similar to (92), applying the error propa-
gation law to the non-dispersive solutions of (16)-(17) results
in

D (e 75) + D (em g D 1) =, CsPB, (96)

with Pj)_,,, = I —"Pp,,. This, together with (93), gives the float
and fixed variance matrices of the satellite clocks through

D@i%) =D (en /) +D (en 1 Dt ) +D (D57di'S)
D(i%) = Dien ) + D (en 1 Dt ) +D (D57di"S)
97

[T

With the role of A taken by the SD subspace D,,, substitution
of D(d73) into the definition of reduction factor (34) gives

2

1+v? ) S s

T R n—11.2 .2 tan”(0qr)
o) €%, [  eg cos?(Yar)

(98)

which is equal to (55). The deviation angle 64; = KfD fol-
lows from the cosine-squared term

T Cy Pp,,!

2
9 =
cos” (0ar) ITCsl

99)

For the special case Cs = I,,, the SD projector (37) is
reduced to

1

Pp, = In — —emep, (100)
m

proving the equality (56). O

Proof of Lemma 5 Given the decomposition (Ax; = 0)
diig = pig — GiAZ 1R, (101)

the proof goes along the same lines as that of Lemma 3. The

+T
deviation angle ¥, = 42’” follows from the cosine-squared
term

+ +T
e CsPg e,

_ T -1 T

cos? () = v PG:cSlGIS(G,S cslcf) G}
m m

(102)

|

Proof of Lemma 6 The proof goes along the same lines as
those of Lemmas (1) —(5). O
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