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Abstract

The ability to accurately determine the location
within indoor settings is crucial for various appli-
cations such as indoor navigation, interactive floor
plans, and room-specific services. While GPS tech-
nology has revolutionized outdoor positioning, it
falls short in providing precise location informa-
tion within buildings due to signal blockage. To
address this limitation, specialized indoor position-
ing systems utilizing acoustic sensing have been ex-
plored, leveraging deep learning models. This pa-
per presents a comparative study of passive and ac-
tive acoustic sensing systems for room recognition.
Passive sensing involves capturing existing back-
ground noise in a room and using it as an identi-
fier, while active sensing emits acoustic signals and
analyzes the resulting echoes. Previous research
has primarily focused on active sensing, achieving
high classification accuracy but facing challenges
related to device orientation and the presence of
multiple individuals. Moreover, the emission of
high-frequency chirps used in active sensing may
cause discomfort to pets.
The results indicate that passive sensing achieves
an accuracy of 73.7%, slightly outperforming ac-
tive sensing at 63.5% in baseline conditions. How-
ever, in the presence of constant background noise,
passive sensing accuracy drops to 21.7%, while ac-
tive sensing exhibits better resilience with an accu-
racy of 59.7%. Furthermore, when the device ori-
entation is altered by 90 degrees, active sensing re-
sults in a lower in accuracy (45.5%), while passive
sensing maintains better performance at 71%. The
impact of multiple individuals in the room had a
relatively minor effect on passive sensing systems,
achieving an accuracy of 72.2%. Active sensing
was shown to be not as resilient, reaching an accu-
racy of 44.2%

1 Introduction
Since the introduction of smartphones, determining one’s lo-
cation through GPS has become more accessible than ever
before and is currently an indispensable feature of a mobile
phone. While GPS works well to determine the general loca-
tion in outdoor areas, it leaves much to be desired in indoor
settings where GPS signals are blocked by the building itself,
providing insufficient accuracy to differentiate between dif-
ferent rooms and floors[5].

The recognition of rooms in a building has countless use-
ful applications ranging from indoor tours to interactive floor
plans. In such scenarios specialized indoor positioning sys-
tems are required. Recently, various research has been con-
ducted to solve this problem by using the acoustic systems of
the smartphone in conjunction with a deep learning model. In
such systems acoustic data is transformed into a spectrogram
and then used as a fingerprint for classification by the model.

Acoustic sensing can be performed either passively or ac-
tively. Passive sensing collects the existing background noise
that is present a room and uses that as the identifier. Active
sensing on the other hand involves sending acoustic signals of
which the echoes are than captured by the device. The spec-
trogram of the echoes is than used as a fingerprint to identify
the room.

2 Related work
Indoor positioning systems using acoustic sensing have
gained significant attention in recent years due to their poten-
tial for accurate infrastructure-free indoor localization. Nu-
merous studies have explored the use of both passive and
active acoustic sensing techniques for room recognition and
indoor positioning. In this section, the key findings and ap-
proaches from relevant literature are discussed.

Recent work that is most similar to this research include
”Batphone”[9] and ”RoomRecognize”[8]. Batphone uses a
passive acoustic sensing system and listens to the acoustic
background spectrum in a 0-7kHz frequency band for 10 sec-
onds. Fingerprints are extracted from a power spectrum. To
reject transient noises the data points in the power spectrum
are sorted by ascending magnitude and only the 5th percentile
of each frequency bin is considered for the fingerprint. Bat-
phone achieves an classification accuracy of 69%. Narrower
low frequency bands achieved greater accuracy’s in the pres-
ence of noise but performed worse in silent classification.
Classification is done by a nearest neighbour classifier [9].
RoomRecognize and utilizes an active sensing system and re-
lies on a Convoluted Neural Network (CNN) for classifica-
tion. RoomRecognize emits inaudible chirps for a duration
and frequency of 2ms and 20kHz respectively every 100ms
and records the echoes in a 19.5kHz to 20.5kHz frequency
band, collecting 97.5ms worth of usable data every interval.
RoomRecognize achieved accuracy’s of over 99% in silent
environments and was shown to be significantly more robust
than Batphone in the presence of background noise[8].

SoundSignature is a passive acoustic fingerprinting model
that utilizes Support Vector Machines (SVM) for room recog-
nition [6]. Similarly to Batphone, SoundSignature extracts
the fingerprint from the 5th percentile of the power of each
frequency in a spectrogram sorted by magnitude. The dura-
tion of each sample is 5 seconds. The features considered
include the Mel Frequency Cepstral Coefficients (MFCC) as
well as centroid, spread, skewness, kurtosis, slope, decrease
and roll-off. Sequential Forward Feature Selection was used
to select smaller subsets of the feature space. SoundSigna-
ture was able to achieve a 10-fold cross validation score of
90.28% in classifying 16 rooms but was only able to achieve
an accuracy of 48.08% on new data collected the next day.

Similarly to SoundSignature, RoomSense utilizes the SVM
classifier with MFCC features. RoomSense however, uses ac-
tive acoustic sensing [7]. RoomSense emits 0.68s long Max-
imum Length Sequences (MLS) signals, and the echoes are
then recorded in a frequency band of [0-24]kHz. RoomSense
was able to realize an accuracy of 98% across 20 different
rooms. MFCC features were found to be the most effec-
tive among various other feature extraction methods for SVM



classifcation. RoomSense was shown to be fairly noise ro-
bust, achieving a 66.6% accuracy with a signal to noise ratio
of 10 dB.

Other MLS-based active acoustic fingerprinting include
SoundLoc[4]. SoundLoc combines several features obtained
from the echo responses such as the kurtosis, spectral stan-
dard deviation and reverberation time. SoundLoc was tested
with multiple classifiers, more specifically Multilayer Per-
ceptron (MLP), Random Forrest (RF), Logistic Regression,
Naive Bayes, J48, RBF Network and RIDOR. MLP and RF
were found to be the most efficient, achieving a 95.33% and
91.67% accuracy respectively with only 10 samples. Sound-
Loc was able to classify 10 rooms with 97.8% overall accu-
racy with 1000 samples. SoundLoc was also tested for noise
robustness. The data of one of the 10 quiet rooms was ex-
changed for noisy data. SoundLoc was found to be noise ro-
bust after feature re-selection, resulting in a 98% accuracy for
classifying the noisy room. Without re-selection however, the
accuracy was only 24%.

Problem statement
While many advances were made in room classification using
active sensing, passive sensing has not been as fruitful.

”RoomRecognize” achieved excellent accuracy’s but was
found to be susceptible to the orientation of the device and
to the fluctuation of the number of people in the room [8].
Additionally ”RoomRecognize” uses active sensing, emitting
20kHz chirps with a high volume. While not audible to the
human ear, dogs were found to perceive frequencies around
20kHz as especially loud [3], making active sensing solutions
undesirable in the presence of pets.

Passive acoustic fingerprinting models that use deep learn-
ing methods are yet to be explored. This paper will contribute
a CNN-based classifier for both passive and active acoustic
fingerprints and explore under which circumstances one sens-
ing mode could be preferred over the other.

In this paper 4 different conditions will investigated. These
include a baseline silent condition, a noisy condition, orien-
tation change of the device and having multiple individuals
present in the room. A detailed description of the conditions
can be found in section 4.1.

3 Measurement Study
Research has been performed to support the study incentive,
this section will cover the findings and elaborate on their sig-
nificance to the study.

3.1 Active sensing responses
Previous works have shown that acoustic data serves as an
effective fingerprint for the identification of rooms in both
passive and active sensing modes [8], [9]. Measurements
were performed and were shown to be consistent with pre-
vious findings. Figure 1 and 2 show spectrograms of active
sensing measurements taken in room A and B respectively.
They are consistent when measured in the same rooms while
being distinctive between different rooms.

Figure 1: Two Active sensing spectrograms of room A

Figure 2: Two Active sensing spectrograms of room B

3.2 Passive sensing responses

When comparing passive sensing fingerprints on the other
hand, consistency is not as visibly present in the spectrograms
of 0.1 second samples. A small scale test was performed be-
tween 4 different rooms with 500 samples each, which re-
sulted in an accuracy of 70% after 50 epochs, after which the
accuracy drops down to 61%. The result can be seen in figure
3. While it is still significantly better than random guess-
ing, the accuracy is unsatisfactory. Longer samples seem to
be desired. Research has shown increasing performance with
longer sample length [9].

Figure 3: Passive sensing performance across 4 rooms

3.3 The effect of background noise

Active sensing was shown to be a lot more robust than pas-
sive sensing in the presence of background noise in [8]. The
noise robustness of active sensing was clearly visible in the
spectrogram responses in figure 4. Since most common noise
is of lower frequencies, it does not significantly impact active
sensing as all frequencies outside of the small high frequency
band are filtered out.



Figure 4: Active spectrogram responses in silent (left) and noisy
(right) conditions

3.4 The effect of orientation of the device
The orientation of the phone was found to have an effect in
the performance of active sensing [8]. Changes on the spec-
trogram when the phone is rotated 90 degrees from its origi-
nal orientation can be observed in figure 5. This is likely due
to the change in the echo path. Since passive sensing does
not rely on such echoes directly the hypothesis is that passive
sensing is more robust to changes in orientation.

Figure 5: Active sensing spectrograms responses with 0◦(top-left),
45◦(top-right), 90◦(bottom-left) and 180◦(bottom-right) rotation.

3.5 The effect of multiple people in the room
It was shown that having multiple people present in a room
could affect the results of active sensing [8], presumably due
to the human body absorbing echoes. Human bodies were
found to absorb low frequency sounds as well with an increas-
ing absorption rate of as the frequency increased [1]. This
could impact both performance of passive and active sensing.
A test was performed to explore the effects of the number of
individuals in the room. Figure 6 shows the effect on the spec-
trogram when multiple individuals are present in the room.

4 Methodology
In order to compare passive sensing with active sensing both
models were implemented and the results of the models were
then compared under various situations. The steps taken can
be summarised as follows:

Figure 6: Active spectrogram responses with one person (left) and 3
people (right) present in the room

1. An application supporting the two sensing modes was
created. Passive mode exclusively records audio, while
active mode emits high frequency chirps and records au-
dio at the same time.

2. A preprocessing pipeline was created to transform and
filter data according to the sensing mode to obtain spec-
trograms which were used as input for the deep learning
model.

3. Data was collected for both sensing modes for training
and testing of their respective models.

4. The models were tested in various conditions.

4.1 Testing baseline
To find out in which situations passive sensing is favourable
over active sensing and vice versa, both sensing modes had
to be tested in various conditions. The conditions explored in
this study include:

• A baseline in an optimal condition which is most similar
to the condition in which the training data was collected
in. This implies a silent condition a single person in the
room with the phone located in the same position and
orientation.

• A condition in which constant acoustic background
noise is present. With everything else being consistent
with the baseline condition.

• A condition in which multiple people are present at the
same time in the room, including one person standing
between the microphone and the wall. With everything
else being consistent with the baseline condition.

• A condition in which the orientation of the phone is
turned 90 degrees around the vertical axis. With every-
thing else being consistent with the baseline condition.

4.2 Evaluation metric
For each sensing mode and condition a confusion matrix was
created and the accuracy is calculated as the number of cor-
rectly predicted labels over the total number of predictions in
that respective condition. By comparing the baseline accu-
racy’s of the two sensing models it was possible to determine
which model performs better under ideal circumstances. By
comparing the accuracy’s of the two sensing modes in sub-
optimal conditions with their respective baseline accuracy the
effect of the different interference conditions were measured
and compared.



5 Implementation
This section covers the implementation of the model and the
data collection and processing pipeline.

5.1 Data collection
All data was collected in a single building with 6 different
rooms on a Pocophone X3 Pro with maximum volume set-
tings. Audio was sampled at a frequency of 44100Hz with a
duration of 100ms and active sensing chirps were emitted at
a 20000Hz frequency for 2ms as done in [8]. The device was
held with a fully stretched arm as far away from the body as
possible with the speaker and microphone pointed away from
the user. 500 samples of 0.1 seconds each were collected per
room for active sensing. Passive sensing used 1 second long
samples, this was balanced by reducing the sample size to
50 per room, keeping the total recording duration consistent
at 50 seconds. Testing consisted of a sample size of 100 for
each room per special condition. Passive and active sensing
data was collected separately to avoid potential interference
on passive sensing produced by the chirps.

5.2 Preprocessing
Audio data was transformed into spectrograms using hann
windows of size 256 with 128 overlapping points as in [8].
Narrow-band frequencies were used for both passive and ac-
tive sensing. Passive sensing filtered out all frequencies out-
side of a [0-1000]Hz range. Active sensing only considered
frequencies in the [19500-20500]Hz range. This resulted in
an image of 5x32 pixels and 5x342 pixels for active and pas-
sive sensing respectively.

5.3 Convolutional neural network
A convolutional neural network is used for classification. The
model consists of 7 layers as described in [8]. This includes:

1. A convolutional layer of 16 4x4 filters with a stride of 2
and padding to retain the same size.

2. A max pooling layer with a 2x2 filter.

3. A second convolutional layer of 32 4x4 filters with a
stride of 2 and padding to retain the same size.

4. Another max pooling layer after which the output is flat-
tened.

5. A dense layer with 1024 nodes and a dropout factor of
0.4.

6. A dense layer with 6 nodes corresponding to the number
of rooms.

7. An output layer with a softmax activation function.

6 Results
This section will cover the findings of the experiments.

This includes the baseline performance, performance in noisy
conditions, the effect of device orientation as well as the im-
pact of the presence of people in the room. A comprehensive
table of the results can be found below in table 1. Confusion
matrices can be found in appendix A and appendix B

Testing Environment Active Sensing Passive Sensing
Baseline 0.6350 0.7367

Noisy Environment 0.5967 0.2167
Orientation Change 0.4550 0.7100
Presence of people 0.4417 0.7218

Table 1: Accuracy of active and passive sensing in the classification
of 6 different rooms.

6.1 Baseline performance
The passive and active sensing classifiers performed simi-
larly in classifying new data with passive and active sens-
ing reaching an accuracy of 73.6% and 63.5% respectively.
Both models performed extremely well in distinguishing the
closet room from the other rooms, likely due to it being con-
siderably smaller in size. The active sensing model was able
to classify the living room but was unable to recognize the
master bedroom. The passive sensing model was able to rec-
ognize rooms more consistently but had some difficulties in
distinguishing the master bedroom from the living room.

6.2 Noisy environment
In a noisy environment passive sensing was unable to recog-
nize rooms. Achieving an accuracy of 21.7%, only slightly
ahead random guessing. Further proving the unsuitability of
passive sensing in noisy conditions. Active sensing seemed
largely unaffected by the noise and was still able to reach an
accuracy of 59.7%, less than a 4% point drop from the base-
line.

6.3 Device orientation
When the device was turned 90 degrees counterclockwise
both sensing methods lost considerable performance. Active
sensing reached an accuracy of 45.5% while passive sensing
was able to reach 71.0%. An 18% and 1.5% point drop re-
spectively from their baselines. Passive sensing was shown to
be very robust to any orientation change of the device. While
active sensing was not as robust to orientation change, the
performance gap was smaller than predicted and the change
did not result in a drastic accuracy loss as was seen in the
background noise experiment with passive sensing. What is
notable however, is the high consistency of active sensing in
classifying the new data. It was able to clearly distinguish
between the new data but failed to label the hallway correctly
due to the orientation change. This is likely due to the shape
of the hallway, where an 90◦orientation change has a signifi-
cant impact on the distance between the microphone and the
wall.

6.4 Presence of multiple individuals
The effect of the presence of multiple individuals in a room
had a relatively small impact on passive sensing. The pres-
ence of people and blocking of the signal with the body had
a moderate impact on active sensing performance. It signif-
icantly increased the likelihood of the master bedroom be-
ing predicted. A potential cause for this is the higher sound
absorption profile of the master bedroom due to the large



bed present in the chamber, absorbing a large amount of the
echoes. Passive sensing had no clear visible change in classi-
fication behaviour and was overall unaffected.

7 Responsible Research
This section covers the actions taken with regards to the ethi-
cal and conscientious conduct of the scientific investigation.

7.1 Ethical Considerations
This research collected audio data in a private residence. In
such scenarios privacy of all parties involved is of upmost
importance. Prior to the collection of audio data, informed
consent was obtained from each resident for the use of audio
data recorded in the building. Additionally the audio data will
not be made public as an additional precaution.

7.2 Reproducibility
For reproducibility, data integrity is of upmost importance.
The collection as well as the handling of data was consistent
with the procedure outlined in the methodology and imple-
mentation sections. The source code is also made publicly
available to aid in the reproducibility of the study [2].

8 Discussion
The results have shown that passive and active sensing have
their own set of challenges. Active sensing was found to be
significantly more robust to noise compared to passive sens-
ing. However, it was more susceptible to the orientation of
the device and change in the number of people present in the
environment. Active sensing was also able to classify rooms
with 10 times smaller data samples, resulting in a higher de-
gree of privacy as well as faster classification. The over-
all prediction behaviour was more consistent across samples
with the same label.

Passive sensing was shown to be more robust to change
in environment while no additional sounds are introduced.
Noise had a large impact on the prediction capabilities of the
model and could potentially be alleviated through more thor-
ough data preprocessing.

While the overall accuracy of passive sensing in the base-
line condition was greater than active sensing in this exper-
iment, this could be attributed to hardware and data prepro-
cessing flaws. Additionally, time invariance was not consid-
ered in this experiment. Previous works have shown great
decreases in passive sensing performance with testing data
captured at a later point in time [9], [6]. Nevertheless, the
relative performance of the model can still provide valuable
insights.

9 Conclusions and Future Work
Classification through passive and active acoustic sensing are
both shown to be a feasible method of room recognition. Both
models respond differently to changes in environment, with
active sensing being more sensitive to geometrical changes
but noise robust and passive sensing being highly susceptible
to noise but robust to any geometrical changes.

The models were shown to have different prerequisites.
Active sensing systems requires environments in which the

emission of high volume ultrasound is permissible. Passive
sensing requires longer audio samples to function which can
lead to privacy concerns.

Future considerations for both sensing methods may in-
clude the fusion of both sensing systems. As both methods
were shown to have different strengths and weaknesses, both
systems could be able to complementary to each other. As
both systems are infrastructure free and audio data recording
can theoretically be performed for both models at once, little
overhead is introduced by doing so, given that their prereq-
uisites are met. Such a combined system could prove to be
more robust overall to changes in environment.



A Confusion Matrices Active Sensing

Figure 7: Confusion matrix active sensing baseline

Figure 8: Confusion matrix active sensing noisy

Figure 9: Confusion matrix active sensing rotated

Figure 10: Confusion matrix active sensing multiple individuals



B Confusion Matrices Passive Sensing

Figure 11: Confusion matrix passive sensing baseline

Figure 12: Confusion matrix passive sensing noisy

Figure 13: Confusion matrix passive sensing rotated

Figure 14: Confusion matrix passive sensing baseline multiple indi-
viduals
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