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1 Abstract

The NV-center in diamond is a promising system for quantum information pro-
cessing. The typical qubits are the electron spin in the NV-center and the
surrounding 13C nuclear spins. Fast and precise control of many 13C spins is
desirable but challenging due to crosstalk. Crosstalk is the unwanted effect of
a control pulse on the other qubits. The coupled NV-13C system is explored,
and numerical techniques to optimize the control of multiple and single qubits
are used. In this report the effect of the Bloch-Siegert shift in the weak driving
regime is investigated first. This is done by studying the effect of a π-pulse
when two carbon qubits are driven at the same time on resonance. It turns out
that in this weak driving regime the effect of the off resonance is very small, and
changes the fidelity not more than 0.3%. Furthermore the effect of a square π-
pulse on 4 nearby qubits is studied. If the pulse is not optimized (thus square),
the pulse cannot be done in less than 100µs while retaining at least 99% fidelity.
By optimizing the envelope of the driving field using constrained optimization
the pulse can be done in 22µs while retaining at least 99% fidelity.
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3 List of constants

Constants

Constant Short description value
D Zero field splitting strength 2π × 2.878 GHz
Q Quaddrupolar splitting strength 2π × 4.946 MHz
AN Hyperfine interaction strength electron Nitrogen 2π × 2.186 MHz
γN Gyromagnetic ratio nitrogen 2π × 3.077× 10−4 MHz/G
γe Gyromagnetic ratio electron 2π × 2.802 MHz/G
γC Gyromagnetic ratio carbonspin 2π × 10.705× 10−4MHz/G

Experimental constants
Constant Short description value
A1
⊥ Hyperfine interaction between NV centre and Carbon 1 2π × 55.0 kHz
A1
‖ Hyperfine interaction between NV centre and Carbon 1 2π ×−11.0 kHz

A2
⊥ Hyperfine interaction between NV centre and Carbon 2 2π × 43.0 kHz
A2
‖ Hyperfine interaction between NV centre and Carbon 2 2π × 21.2 kHz

A3
⊥ Hyperfine interaction between NV centre and Carbon 3 2π × 26.0 kHz
A3
‖ Hyperfine interaction between NV centre and Carbon 3 2π × 24.7 kHz

A4
⊥ Hyperfine interaction between NV centre and Carbon 4 2π × 25.0 kHz
A4
‖ Hyperfine interaction between NV centre and Carbon 4 2π ×−36.0 kHz

A5
⊥ Hyperfine interaction between NV centre and Carbon 5 2π × 12.0 kHz
A5
‖ Hyperfine interaction between NV centre and Carbon 5 2π ×−48.7 kHz
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An overview of the (standard) matrices/operators used in this report

In =


1 0 · · · 0
0 1 0
...

. . .
...

0 0 · · · 1

 With n denoting the size of the (identity) matrix

Sx =

0 1 0
1 0 1
0 1 0


Sy =

0 −i 0
i 0 −i
0 i 0


Sz =

1 0 0
0 0 0
0 0 −1


Cx =

[
0 1
1 0

]
Cy =

[
0 −i
i 0

]
Cz =

[
1 0
0 −1

]
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4 Introduction

One of the big challenges nowadays is to create a prototype of the quantum com-
puter. The quantum computer in itself has a huge potential to solve important
computational problems in polynomial time. The most important difference
between a classical computer and the quantum computer is the qubit. Whereas
the classical computer uses bits which can only be in one of two states, the
qubits in the quantum computer can take on any superposition of two measur-
able states.
Although the advantages of the quantum computer are very clear there is still
no working prototype today. This is because of some big technical difficulties in
the way the quantum computer should be operated. One of them is that, unlike
its classical counterpart, the quantum computer is very prone to disturbances
in its states due to ambient energy. To reduce these effects experimental setups
are cooled to low temperatures. Nevertheless the qubits still get corrupted. In
order to detect if the state got corrupted a quantum error correction algorithm
can be implemented.
Most quantum error correction algorithms require multiple qubits that are
highly entangled. These algorithms would be speeded up if operations could
be done on several qubits at the same time without undesired cross talk. A
promising approach to this problem is to look at the nuclear spins of 13C atoms
near a NV center. Due to the interaction between the nuclear spins and the NV
center, these nuclear spins are a good qubit candidate.
In this report a method of manipulating a qubit is derived. However, one can
never prevent that nearby qubits are exposed to the control fields that were
meant to manipulate another qubit. In order to avoid unwanted effects the
control field is numerically optimized to avoid, cancel out, or minimize these
effects. Therefore creating a fast and precise quantum operation. These opti-
mized control fields could help to speed up processes in the quantum computer
and thus could help to unleash the huge potential of the quantum computer
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5 Theory

5.1 Nitrogen-vacancy centre

5.1.1 Molecular structure

A diamond consists of carbon atoms arranged in a cubical lattice. Imperfections
in this crystal lattice are common. One of these imperfections is the so called
nitrogen-vacancy centre (NV). This defect is the result of an impurity (a nitrogen
atom) introduced during the growth of the diamond. One carbon atom will be
substituted by a nitrogen atom, and one adjacent spot in the lattice will be
left empty, the vacancy. Here we consider the negatively charged NV center, in
which one extra electron is captured from the environment. A schematic view
of the NV-centre can be found in figure 1.

Figure 1: The NV-centre

In the setup used in this report the diamond is placed in a static magnetic field.
The direction of the magnetic field is along the axis connecting the nitrogen to
the vacancy.

5.1.2 Hamiltonian of the nitrogen-vacancy centre

It is necessery to know what the system Hamiltonian is. The Hamiltonian de-
scribes how the system evolves in time. Here the Hamiltonian consists of three
parts. The first part describes the behaviour of the electron in the vacancy
and its interaction with the static magnetic field. The second part describes
the behaviour of the nitrogen atom and its interaction with the static magnetic
field (Bz). The last part describes the interaction between the nitrogen atom
and the electron in the vacancy. The system Hamiltonian is the sum of these
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parts. Each of the parts is discussed in depth below.

The electron in the vacancy

The electronic spin of the NV center in the vacancy forms a S = 1 spin. This
leads to it behaving like a spin triplet, with 2 distinct energies. They are sepa-
rated by a zero field splitting of D = 2π×2.878 GHz. The electron also interacts
with the static magnetic field. This interaction is better known as the Zeeman
splitting. The strength of this interaction is determined by the gyromagnetic
ratio of the electron of γe = 2.802 MHz/G. These effects combined yields part
one of the system Hamiltonian (equation 1).

H1/h̄ = DS2
z + γeBzSz (1)

The nitrogen atom

The nitrogen atom considered in this report is a nitrogen-14 atom. This atom
is also S = 1. The quadrupolar splitting is responsable for the splitting of the
energy levels by Q = 2π × 4.946 MHz. Here too the magnetic fields interacts
with the nitrogen atom. The strength of this ineraction is again given by the
gyromagnetic ratio of the 14N atom, which is γN = 2π × 0.3077 kHz/G. These
effects combined yields part two of the system Hamiltonian (equation 2).

H2/h̄ = QS2
z + γNBzSz (2)

Hyperfine interaction

The last term of interest is the hyperfine interaction in the NV centre. The
hyperfine interaction is given by AN = 2π× 2.186 MHz. In a later stage of this
report a closer look is taken at the hyperfine interaction. Interested readers can
skip to equation 8 and read from there. The third part of the Hamiltonian looks
like equation 3.

H3/h̄ = ANSz ⊗ Sz (3)

The system Hamiltonian

From this we can conclude the system Hamiltonian of the NV centre.

H = H1 ⊗ I3 + I3 ⊗H2 +H3 (4)

H/h̄ = DS2
z ⊗ I3 + γeBzSz ⊗ I3 + I3 ⊗QS2

z + I3 ⊗ γNBzSz +ANSzSz (5)
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Or as physicists often like to put it shortly (writing S for the electron operators
and I for the nitrogen operators. I is mathematically the same as the S)

H/h̄ = DS2
z + γeBzSz +QI2

z + γNBzIz +ANSzIz (6)
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5.2 Carbon qubits

In the crystal lattice of diamond almost all of atoms are carbon atoms (aside
from the impurities). Those carbon atoms are made up of 12C (98.9%) which is
spinless (S = 0) and 13C (1.1%) which has spin (S = 1/2). Because the latter
has S = 1/2 it interacts with (static) magnetic fields. Because the particle
is a S = 1/2 particle, it has two distinctive eigenstates. Therefore they are
a candidate for a qubit. From now on if carbon atoms or carbon qubits are
mentioned, the 13C atom is meant. In order to be a good qubit, it should be
possible to manipulate the state of each qubit individually without altering the
state of any other qubit. Right now, if we would place a few carbon qubits in
empty space (with a static magnetic field along the z-axis), it would be quite
impossible to change the state of one qubit without altering the other qubits.
This problem is caused, because all the qubits have the same quantization axis
and the energy levels are equal. Luckily the carbon qubits are not in empty
space, but in a diamond lattice close to an NV centre. The interaction between
the NV centre and the carbon qubit alters the eigenstates.

5.2.1 Hamiltonian of the carbon qubit

The interaction of the carbon atoms and a (static) magnetic field can be de-
scribed by a Hamiltonian. Again the Zeeman effect is the one that governs the
Hamiltonian. The strength of the interaction is given by the gyromagnetic ratio
γC = 2π × 1.071 kHz/G. The Hamiltonian is given in equation 7.

H/h̄ =
1

2
γCBzCz (7)

Here Ci is the spin-i operator of the carbon qubit. The exact form of the
operators can be found in the list of constants. From this equation can easily
be seen that if only a static magnetic field is present all carbon qubits have the
same Hamiltonian. Therefore they all have the same time evolution.

5.2.2 Hyperfine interaction

The interaction between the NV centre and the carbon qubits are hyperfine
interactions. There are also interactions between the nitrogen atom and the
carbon spin, and even interactions between two different carbon spins. However
only the interaction between the electron and the carbon atom are considered.
Because this interaction is much stronger because µe >> µN , µC . Here µ is
the magnetic moment which is defined as µ = γS. Thus the other interactions
can be safely omitted. The hyperfine interaction between the NV center and a
carbon atom is given by equation 8.

Hhf/h̄ = µeµC
∑

µ,ν=x,y,z

[(
−8π

3
|ψ(rC)|2 +

〈
1

|re − rC |3

〉)
δµ,ν − 3

〈
nµnν

|re − rC |3

〉]
Sµ⊗Cν

(8)
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Here the Fermi contact and the dipolar coupling are both included in this equa-
tion. Because in diamond the distance between the nuclear and the electron
spin is relatively large, we can safely assume that |ψ(rn)|2 ≈ 0. Furthermore we
can drop the average sign for the same reasoning. This simplifies equation 8 to

Hhf/h̄ = µeµC
∑

µ,ν=x,y,z

[
1

|re − rC |3
δµ,ν − 3

nµnν

|re − rC |3

]
Sµ ⊗ Cν (9)

In this equation δµ,ν is the Kronecker delta. ni is a component of the unit vector
n in the direction of r − rn. µe is the magnetic moment of the electron and
µC is the nuclear magnetic moment of the carbon atom. In the case that the
magnetic field is relatively small, the zero field splitting is the largest energy
involved. Since this energy is in the z-direction, the Sx and Sy terms (of the
electron) in the Hamiltonian can be neglected. This approximation is called the
secular approximation and is further explained in Appendix A. The hyperfine
interaction can now be described by equation 10

Hhf/h̄ = µeµn
1

|re − rC |3
Sz ⊗ [−3nznxCx − 3nznyCy + (1− 3n2

z)Cz] (10)

This equation tells that the hyperfine interaction is only non-zero if the electron
is in the ms = 1 or ms = −1 state. From now on we assume the NV-centre is
placed in the ms = 1, mN = 0 state (mN is the state of the nitrogen spin). It
is later shown that the control pulses used will not disturb this configuration.
A schematic impression of the system is given in figure 2

Figure 2: A schematic impression of a experimental setup with 3 carbon atoms

The effects of the hyperfine interaction can be captured in two components.
The component parallel to the z-axis (A‖) and the component perpendicular
to the z-axis (A⊥). These values have been measured in an existing NV-centre
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and tabulated in the list of constants. The part of the Hamiltonian due to the
hyperfine interaction can now be written in equation 11

H/h̄ = A‖Cz +A⊥(cos(θ)Cx + sin(θ)Cy) (11)

Here θ is the angle in the x-y plane, measured from the positive x-axis to the
positive y-axis. Therefore the total Hamiltonian for an (undriven) 13C atom
near a NV-centre can be written as

H/h̄ = (A‖ + γCBz)Cz +A⊥(cos(θ)Cx + sin(θ)Cy) (12)

5.2.3 Spatial orientation

In this report it is supposed that all carbon atoms have θ = 0 and thus lie in
the x-z plane. It is now possible to define a new axis that is parallel with the
eigenstates. This new axis is called z’ and makes an angle φ with the original
z-axis. In figure 3 it is made clear how this transformation works. The energy
of the eigenstate is given by

P = h̄
√

(γCB0 +A‖)2 +A2
⊥ (13)

Now the Hamiltonian can be rewritten to

HC/h̄ = PCz′ (14)

Figure 3: Transformation by rotating over an angle φ
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5.3 Rabi oscillations

We observe the behaviour of a carbon two level system. The Hamiltonian is
already derived in equation 14. The energies of the eigenstates are

±h̄
√

(γB0 +A‖)2 +A2
⊥ ≡ ±h̄ε (15)

We now apply a magnetic driving field with frequency ωd. The angle between
the plane in which the magnetic field oscillates and the z’-axis we call φ. The
strength of the driving field is much lower than ε in order to use the rotating
wave approximation. The rotating wave approximation is further explained in
appendix B. In order to simplify calculations and improve understanding the
system is studied in a rotating frame (more information in appendix B), rotating
with frequency ωd. The Hamiltonian in the rotating frame (including the driving
field) equals

Hrot/h̄ = (ε− ωd + γB1 sin(φ) cos(ωdt))Cz + γB1 cos(φ)Cx (16)

The quantity ε− ωd is called the detuning (δ) and tells how far from resonance
the driving field is. If φ = 0 the problem can be easily solved analytically, and
will give a good indication of how to use a driving magnetic field to manipulate
the spin state of a carbon spin.

5.3.1 φ = 0

If φ = 0 the Hamiltonian loses its time dependence. The Hamiltonian is given
by

Hφ=0/h̄ = δCz + γB1Cx (17)

The behaviour of a quantum state over time is always given by the Schrödinger
equation.

ih̄
∂

∂t
|ψ(t)〉 = H |ψ(t)〉 (18)

In this time independent case the evolution is given by

|ψ(t)〉 = exp

{
−i
h̄
Hφ=0t

}
|ψ(0)〉 (19)

We first look at an analytic derivation of the evolution of a arbitrary state |ψ〉.
After that we show how to use the results in order to manipulate the state
of single carbon spin. In order to evaluate the matrix exponential we have to
diagonalize the matrix −ih̄ Hφ=0t. The eigenvalues of the Hamiltonian are given

by µ↑,↓ = ±
√
δ2 + (γB1)2. The up and down arrows indicate the positive or the

negative value. Therefore the eigenvalues of the matrix we want to diagonalize
are λ↑,↓ = −itµ↑,↓. The corresponding eigenvectors can be found by solving the
corresponding linear equations.

−it
h̄
Hφ=0v↑,↓ = λ↑,↓v↑,↓ (20)
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We now solve this for v↑. v↓ can be calculated in the same fashion.

v↑(2) = − (δ − µ↑)
γB1

v↑(1) (21)

Here v↑(i) is written to denote the ith component of the vector. Let sin(θ) =
γB1

µ↑
, cos(θ) = δ

µ↑
and tan(θ) = γB1

δ . We plug this in equation 21.

v↑(2) = − (δ − µ↑)
γB1

v↑(1) (22)

v↑(2) =

(
µ↑
γB1

− δ

γB1

)
v↑(1) (23)

v↑(2) =

(
1

sin(θ)
− 1

tan(θ)

)
v↑(1) (24)

v↑(2) = tan

(
θ

2

)
v↑(1) (25)

We now find the following eigenvectors.

v↑ =

[
cos
(
θ
2

)
sin
(
θ
2

)] v↓ =

[
− sin

(
θ
2

)
cos
(
θ
2

) ] (26)

Since we have found the eigenvalues and respective eigenvalues we can now take
the exponential of the matrix, and derive an expression for the evolution of the
system (µ =

√
δ2 + (γB1)2).

exp

{
−iHφ=0t

h̄

}
= exp

{[
v↑ v↓

] [λ↑ 0
0 λ↓

] [
v↑ v↓

]−1
}

(27)

=
[
v↑ v↓

]
exp

{[
λ↑ 0
0 λ↓

]} [
v↑ v↓

]−1
(28)

=
[
v↑ v↓

] [eλ↑ 0
0 eλ↓

] [
v↑ v↓

]−1
(29)

=

cos(µt) +
iδ

µ
sin(µt)

iγB1

µ
sin(µt)

iγB1

µ
sin(µt) cos(µt)− iδ

µ
sin(µt)

 (30)

Since we have found the analytic solution of the Schrödinger equation we can use
this to manipulate a single carbon qubit. When this qubit is measured, there

are two possible outcomes (the eigenstates). Either mC = 1/2 →
[
1
0

]
≡ |↑〉

or mC = −1/2 →
[
0
1

]
≡ |↓〉. Now say we know that the system is in one

of its eigenstates at t = 0 (say the system is in the upstate). Then we know
that |ψ(0)〉 = |↑〉. Now the evolution of this state is given by the Schrödinger

14



equation (equation 19). Since we have solved the equation we find:

|ψ(t)〉 = exp

{
−i
h̄
Hφ=0t

}
|↑〉 =

cos(µt) +
iδ

µ
sin(µt)

iγB1

µ
sin(µt)

 (31)

From this we can calculate the probability of finding the up or down state after
a certain amount of time.

P↑→↑(t) = |〈↑|ψ(t)〉|2 = 1− (γB1)2

µ2
sin2(µt) (32)

P↑→↓(t) = |〈↓|ψ(t)〉|2 =
(γB1)2

µ2
sin2(µt) (33)

A very useful quantum operation is the π-pulse. This is the operation that
takes |↑〉 to |↓〉 and vice verse. We want this operation as precise and as quick
as possible. For this system that means we want γB1

µ as close to one as possible.
For that we need µ = γB1 so that means δ = 0 and that means ωd = ε. In
physical terms: we want the driving field on resonance. Thus if we choose ωd = ε
we find the first maximum of equation 33 at t = π

2µ . This is the typical pulse
time, rewritten in equation 34

T =
π

2
√
δ2 + (cos(φ)γCB1)2

(34)

If it happens to be that, for example due to technical limitations, the driving
field is not exactly on resonance a good pulse can still be made by choosing
γCB1 >> δ.

Example of single qubit control

In this section we use data of an existing NV-centre and carbon spin. Then
we calculate the probabilities derived in the previous section. We also introduce
a quantity to describe the closeness of two quantum states. This quantity is
called the fidelity. The fidelity is defined as

F (σ, ρ) = tr

[√√
ρσ
√
ρ

]2

(35)

Here σ and ρ are density matrices. Since we are dealing with pure states, density
matrices can be written as an outer product of a state with itself. Therefore we
can say that σ = |φ〉 〈φ| and ρ = |ψ〉 〈ψ|. If we now want to express the fidelity
of two pure states, we can plug this into eq (35).

F (|φ〉 〈φ| , |ψ〉 〈ψ|) = |〈φ|ψ〉|2 (36)

Now we have all the tools to describe a existing system. The parameters used
in this example will be summarized in table 1
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B0 B1 φ ωd |ψ(0)〉
400G 1G 0 2.69 MHz |↑〉

Table 1: Used constants and initial condition (example 1)

Using these values we find δ = 0 and we expect our first flip (state |↓〉) to happen
at t = π

2γB1
= 234µs. This is confirmed by the following figures. In figure 4

we see the fidelity between the state at time t and the down state. in figure 4
we also see the probability of measuring up or down as a function of the time.
both figures run for 234µs

Figure 4: Fidelity of the π-pulse as function of time

5.3.2 φ 6= 0

If φ 6= 0 the Hamiltonian contains a time dependence. In this section we investi-
gate the influence of this time dependence on the evolution of the system. First
the Hamiltonian is investigated, to make an estimate of the effect. The Hamil-
tonian describing this problem should be written in terms of Cz′ and Cx′ . Since

the angle between the z-axis and the z’-axis is known (= φ = arctan
(

A⊥
γCB0+A‖

)
),

we can write the Hamiltonian as

Hφ 6=0/h̄ = (δ + sin(φ)γCB1 cos(ωdt))Cz′ + cos(φ)γCB1Cx′ (37)

Now ωd is chosen is such a way that δ = 0. To see if the time dependant
part has any effect on the evolution we first make a rough estimate. If we set
cos(ωdt) = 1 is the result is expected to be obviously worse than if we had not
made this estimation. However, from the previous section it is clear that the
fidelity of this evolution is

Fmax =
(cos(φ)γCB1)2

(sin(φ)γCB1)2 + (cos(φ)γCB1)2
= cos2(φ) (38)
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B0 B1 A⊥ A‖ ωd |ψ(0)〉 ∆t
400G 1G 55 kHz -11 kHz 2.69 MHz |↑〉 10−10s

Table 2: used constants and initial condition (example 2)

Figure 5: Fidelity of the pi-puls as function of time

If φ < 0.100 rad, then the fidelity already is higher than 0.99. Since γCB0 is
much larger than the typical values of A⊥ and A‖ this is often the case. However
it is plausible to assume that the effect is much smaller. In the slow driving limit
(ωd >> γCB1) cos(ωdt) changes sign very often. This leads to the expectation
that the effect of this detuning averages to zero over the time of the pulse.
To see the difference between using and omitting the time dependent term we
simulate the evolution of a existing state using the backward Euler technique.
The constants used are given in table 5.3.2. The backward Euler technique finds
the next state using

|ψ(t+ ∆t)〉 = −
[
H(t+ ∆t)− ih̄

∆t
I

]−1
ih̄

∆t
|ψ(t)〉 (39)

Here I is the identity matrix with the same size as H. We can be sure that this
technique is stable. Again the fidelity between |ψ(t)〉 and |↓〉 is plotted together
with the probability of finding the up and the down state. The figures again
show a period of 234µs

It looks like this figure is exactly the same as the one with φ = 0. The
maximum fidelity in this plot is 0.9999 so it we could have omitted the time-
dependant term. From now on we assume the time-dependant oscillation in the
detuning can be omitted if either the rotation of the atom is small or if the
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driving strength is small.

5.3.3 Influence on the NV-center

As previously stated, the effect of the driving magnetic field (meant to change
the carbon atoms state) on the NV-center itself is neglectable. Now we have also
have some tools to reinforce that statement. The transition in the total system
that is closest to that of a carbon spin, is the transition between ms = 1,
mN = 0 to ms = 1, mN = 1. We can now estimate the probability that this
transition is successfully driven with equation 33. If we take ωd = 2.65MHz and
AN = 2π× 2.186MHz and take B = 1G for the driving field. The probability is
estimated by

PNV,flip =
(γNB)2

(AN − ωd)2 + (γNB)2
≈ 0 (40)

So we don’t have to worry about the state of the NV-centre changing during
the calculations in this report.

5.4 Manipulating two 13C spins simultaneously

5.4.1 Bloch-Siegert shift

In quantum computation it is beneficial to be able to control multiple qubits
simultaneously. An analytical solution to the Schrödinger equation was derived
in the previous section. One way to manipulate multiple qubits at the same
time would be to calculate a control wave for the first carbon atom to flip in
time T , and then calculate a control wave for the second atom to flip in time T .
Now we send the superposition of both fields. Since the carbon qubits lie close
to each other and the wavelength of the oscillating magnetic field is relatively
big (λ >> |r1 − r2|), the magnetic field meant for carbon 1 will also be felt by
atom 2 and vice versa. The effect of field 2 on carbon 1 can be approximated
by the Bloch-Siegert shift. The Bloch-Siegert shift is an approximation how
the off resonance field affects an carbon spin. If the driving pulse is not to
strong (γB < δ), the effect of the off resonance field can be described as a small
detuning. This detuning is what is called the Bloch-Siegert shift.

δBS =
(γCB2)2

ω1 − ω2
(41)

Here the index 2 is used to indicate the off-resonant field.

5.5 GRAPE

In this report numerical methods are used to find optimal parameters for several
problems. All optimizations are performed to maximize a given fidelity. The
methods in this report all depend on finding a good approximation for the
gradient of the performance function (fidelity).
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5.5.1 Discretized Hamiltonian

If the Hamiltonian has a time dependency that can not be omitted, one has
to choose discrete time steps to estimate the Hamiltonian over a set interval.
If a pulse take time T to complete, the interval is cut into N steps each of
length ∆t = T/N . When the simulation is actually performed a suitable num-
ber N is chosen. Within these time steps the Hamiltonian is assumed to be
time-independant. The value of the Hamiltonian is H(ti) for the whole inter-
val. Also the magnitude of the oscillating field is taken constant for that time
interval. It is now possible to see that at each time interval there is a specific
(constant) Hamiltonian. The Hamiltonian at a specific time interval is called
a propagator. In this report the Hamiltonian is dependant on a magnetic field
strength. This magnetic field strength is also discretized and taken constant
in the time intervals. If there are multiple driving fields the field strength is

contained in a vector Bj =

B(1)j
...

B(n)j

 where Bj resembles the magnetic field of

all n fields at time interval j. The propagator at time j looks like

Uj = exp{−i∆tH(tj ,Bj)} (42)

In this report H(tj ,Bj) can be written as equation 43 for every problem. The
Hamiltonian is made explicit in the chapter ”Simulations and results”.

H(tj ,Bj) =

n∑
k=1

H0 +B(k)jH1,k +B(k)2
jH2,k (43)

To calculate the evolution of a state during a pulse, the following relation is
used

|ψ(tj + ∆t)〉 = Uj |ψ(tj)〉 (44)

5.5.2 Performance function

The function that is maximized is called the performance function. In this
report the performance is described by the fidelity of the end state, so

Φ = |〈ψd|ψT 〉|2 (45)

Here |ψT 〉 = UN . . . U1 |ψ0〉 and |ψd〉 is the desired outcome. Now the gradient
of this performance function is calculated. For more in depth derivation of these
equation one could look in appendix C. In order to calculate the gradient of the
performance function, the derivative of the propagator is calculated first. The
derivative of the propagator is given by equation 46

∂Uj
∂B(k)j

= −i∆t(H1,k + 2B(k)jH2,k)Uj (46)

Now it is possible to calculate the gradient of the performance function
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∂Φ

∂B(k)j
= 2 Re(〈ψd|−iλj∆t(H1,k + 2B(k)jH2,k)ψj〉 〈ψT |ψd〉) (47)

with λj = UN · · ·Uj+1

5.5.3 Pulse Engineering

If the performance function (Φ) and its gradient (∇Φ) are known, it is possible
to use GRAPE to engineer an optimal pulse. A general outline of the algorithm
is stated below.

• Step 1) Define a stepsize ε that dictates the maximal change in the pa-
rameters

• Step 2) Calculate the gradient of the performance function

• Step 3) Update the vector with paramaters (B) according to Bnew =
Bold + ε∇Φ

• Step 4) Repeat step 1 to 3 for M times

• Step 5) Calculate the value of the performance function and return the
value of the performance function and the optimized parameter vector B

The choice of ε is important in this algorithm, since it determines the perfor-
mance of the algorithm. If ε is large the algorithm can overshoot the optimum
and therefore may not find good results. If ε is small the chance of finding a
good result is better, but the convergence of the algorithm can be very slow.
Because the next section is basically an enhancement of GRAPE, it is not used
to create do simulations in this report.

5.6 Constrained Optimization

If the the performance function (Φ) and its gradient (∇Φ) are known, it is also
possible to use other algorithms to find an optimal solutions. One of the flaws of
GRAPE as it is defined above, is that it is impossible to set bounds for the values
of B. The Matlab toolbox constrained optimization allows such bounds. Also
the optimization algorithms tend to converge faster and closer to an optimum.
It is possible to use the derivative calculated for the GRAPE algorithm as an
explicit input for the constrained optimization algorithms.

5.6.1 the constrained optimization algorithm

The constrained optimization algorithm tries to minimize a function f(b) in
such a way that the parameters are within a set range.

min
b
f(b) such that lb < b(i) < ub for all i (48)
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Here lb is the lower bound of the variable and ub is the upper bound of the
variable. An algorithm that handles this problem fast and accurately is the
interior point algorithm. This algorithm uses a logarithmic barrier function in
order to not converge to a value out of bounds. Another advantage of using
this algorithm is that the performance stays good if the problem becomes more
complex. This might be useful in further research. A detailed explanation of
the algorithm can be found in [5]. The number of time intervals (N) is chosen
in such a way that the solution does not change significantly anymore.

21



6 Simulation and results

In this chapter, two different experiments are investigated. The first one takes
a closer look at the effect of the Bloch-Siegert shift in weakly driven carbon
atoms. After that we try to use GRAPE and constrained optimization methods
to explore the options of calculating a better pulse. The second experiment tries
to find an (optimal) pulse to do a π-pulse on exactly one out of 5 carbon atoms.
For these simulations the parameters of an existing NV center are used. These
are tabulated in the list of constants.

6.1 Bloch-Siegert shift in weakly driven qubits

The first simulation experiments looks at the effect of the Bloch-Siegert shift
in the weak driving regime. A superposition of two magnetic fields, each on
resonance with one of the two qubits, is send to the system. In the weak driving
regime the strength of the magnetic driving field is so small that 30γCBi ≈ δ.
In this regime the Bloch-Siegert shift is the only significant effect of the off
resonance field, and the Hamiltonian van be written as

HweakBS = HC1 ⊗ I2 + I2 ⊗HC2 (49)

In this equation HC1 and HC2 are given by

HC1/h̄ =

[
cos(φ)

(γB2)2

2(ω1 − ω2)

]
Cz + cos(φ)B1γCx (50)

HC2/h̄ =

[
cos(φ)

(γB1)2

2(ω2 − ω1)

]
Cz + cos(φ)B2γCx (51)

First we test how the (non-optimized) block wave works. As an example we
use qubit 1 and 2 from the list of constants. To this end we set the magnetic
field strength for the field resonant with qubit 1 to a range of values between 3δ
and 30δ. Then we calculate the pulse time with equation 34. Next the driving
strength of field 2 is calculated in order to give it the same pulse time. the
results are plotted in figures 6
Two things are apparent from this figure. The first thing is that the fidelity tends
to increase as the pulse time becomes longer. This was an expected effect. The
spatial orientation of both spins forces the amplitude of the magnetic field to be
roughly the same. Therefore the driving effect (order 1 in Hamiltonian) becomes
more and more dominant over the Bloch-Siegert shift (order 2 in Hamiltonian)
the longer the pulse time becomes. The second thing that can be seen in the
figure is that even though the Bloch-Siegert shift has an effect (if it did not
have an effect, the fidelity would be one for all pulse times) the effect is not that
big. Even at the lowest pulse times possible in this driving regime, the overall
fidelity stays above 99% with margin.
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Figure 6: The fidelity of the naive square pulse for different pulse times

6.2 Improved π-pulse

In this section a π-pulse on one qubit is engineered, while leaving up to 4
other states untouched. This π-pulse is being driven by a magnetic field with
one frequency. This frequency is chosen on resonance with the qubit we want
to flip. It is important to look at the system Hamiltonian first. The system
Hamiltonian looks like

Honeflip = HC1⊗I16+I2⊗HC2⊗I8+I4⊗HC3⊗I4+I8⊗HC4⊗I2+I16⊗HC5 (52)

With for each HCi

HCi
= δiCz + cos(φi)γCB1Cx (53)

6.3 Square pulses (Rabi)

First we calculate a square pulse amplitude to flip to the desired state as if
the other carbon atoms were not there. From the Rabi equation (equation 33)
a high fidelity is expected when the time is very long (and thus the magnetic
field weak). It is also expected that the fidelity goes down as the time for the
pulse becomes shorter. To see how the fidelity deteriorates as the field becomes
stronger, the flipping probabilities are plotted for increasingly smaller T (and
thus increasingly higher B). The time T is divided by two every next figure.
The results can be seen in figure 7
From the figure can be seen that the first qubit always is flipped at the end. This
is exactly what was expected, since the magnetic field and time where chosen
in such a way that would be exactly flipped at the end. However, if the pulse
time becomes smaller there is a significant chance some other states would have
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Figure 7: Flipping probablities for each qubit. The pulse time is halved between
each figure.

flipped too. This simulation is made for a lot of different times and the results
can be seen in figure 8.
Since a fidelity of > 0.99% is considered good, and anything below as bad,
it looks like a good idea to start looking for optimal pulses in the region
10 µs < T < 90 µs. In this region the square wave solution starts giv-
ing unacceptable results. We do this the constrained optimization method. In
the method of constrained optimization we use Bmax = 2Bref , where Bref is
the amplitude of the square pulse.

6.3.1 Constrained optimization

With the method of constrained optimization the shortest pulse with an fidelity
higher than 99% was 22µs long. The amplitudes of the optimal pulse are given
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Figure 8: Fidelity for different square pulses

in figure 9
If that pulse is done on the system, we can again look what the probability of
flipping of each individual qubit in time is. Those probabilities are plotted in
figure 10.
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Figure 9: Optimal amplitudes for a π-pulse in 22µs

Figure 10: flipping probabilities for an optimal π-pulse in 22µs

.
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7 Conclusion and discussion

7.1 Conclusion of simulations

From the simulations performed in the previous chapter some things have be-
come clear. The first conclusion is that in the weak driving regime (30γCB < δ)
when driving two qubits simultaneously with same order fields, the impact of
the Bloch-Siegert shift is rather small. For further calculations in this regime
the effect of the Bloch-Siegert shift can be neglected. Therefore two carbon
spins can be driven at the simultaneously in this regime. The second conclusion
is that it is possible to generate a nearly perfect π-puls on one qubit (and leav-
ing the other states unchanged) in the driving regime where the simple square
pulses no longer give good results.

7.2 Recommendations for further research

In this report we only covered a small regime where the Bloch-Siegert shift hap-
pens. In further research other regimes can be investigated and a new Hamil-
tonian can then be optimized. Furthermore we only looked at the amplitude
of the magnetic control field. In further research one could also take the phase
of the control field into account, and try to use this parameter in optimization
routines in order to further enhance control fields.
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Appendices

Appendix A: Rotating wave approximation

The rotating wave approximation is made to, together with a rotating frame,
turn a linearly polarized oscillating magnetic field into a static magnetic field in
the rotating frame. At the hart of the approximation lies the fact that a linearly
polarized magnetic field with frequency ω can be written as the superposition
of two circularly polarized fields with frequency ω and −ω. In the case that
ω is chosen in such a way that it is very close to the splitting energy of two
eigenstates. That way the rotating wave approximation can be useful. The field
with frequency ω is said to be on resonance and will be dominant. The field
with frequency −ω is off resonance. If the driving of the field is not to strong
the off resonance field will average to zero fairly quickly. The rotating wave
approximation tells us we can omit these off resonance terms.

29



Appendix B: Secular approximation

The secular approximation is made if the energy splitting (due to hyperfine
interaction) in one direction is much smaller than in any other orthogonal di-
rection. The influence on the eigenvalues of the Hamiltonian by these smaller
energies can be neglected because they are only a second order effect. A simple
example is given below. Suppose a hypothetical system with Hamiltonian

H = aSz ⊗ I2 + bSz ⊗ Cz + cSx ⊗ Cz

With a >> b, c. The eigenvalues of this Hamiltonian (which define the en-
ergy splittings) are 0, 0,

√
(a+ b)2 + c2,

√
(a− b)2 + c2,

√
(a+ b)2 − c2 and√

(a− b)2 − c2. We use the Laurent series of
√
x2 + a to approximate these

eigenvalues.
√
x2 + a =

∑∞
0

(−1)n(2n)!an

(1− 2n)n!24nx2n−1
= x+

a

2x
−O(x−2) If In this

case x >> a we can approximate this root by
√
x2 + a ≈ x. In this example

a >> b, c so we could approximate the eigenvalues by 0, 0, a+ b, a− b, −a− b,
−a + b. The same could be done for all Sx,y,z ⊗ Ix,y,z. The general result is:
if the leading term aSz⊗2 is large enough only the terms containing Sz are of
importance. This is what we call the secular approximation.
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Appendix C: Derivation of GRAPE components

The derivation of
∂Uj

∂B(k)j
can be found below. Here a result from matrix analysis

is used. This result is written down below

d

dt
eX(t) =

∫ 1

0

eαX(t)X(t)

dt
e(1−α)X(t)dα (54)

If we now can write the Hamiltonian at time t = tj as

H(tj ,Bj) =

n∑
k=1

H0 +B(k)jH1,k +B(k)2
jH2,k (55)

For the readability of the proof we writeHj for
∑n
k=1H0+B(k)jH1,k+B(k)2

jH2,k.
Also the change of variables ∆tdα = dτ is made in the proof.

∂Uj
∂B(k)j

=
∂

B(k)j
e−i∆tHj (56)

=

∫ 1

0

eα(−i∆tHj) d(−i∆tHj)

dB(k)j
e(1−α)(−i∆tHj)dα (57)

=

∫ 1

0

eα(−i∆tHj)(−i∆t) dHj

dB(k)j
e(1−α)(−i∆tHj)dα (58)

=

∫ ∆t

0

e(−iτHj)(−i dHj

dB(k)j)
)ei(τ−∆t)Hjdτ (59)

= −i
∫ ∆t

0

e−iτHj
dHj

dB(k)j
eiτHjdτ · e−i∆tHj (60)

= −i
∫ ∆t

0

e−iτHj
dHj

dB(k)j
eiτHjdτ · Uj (61)

= −i
∫ ∆t

0

(I − iτHj +O(τ2))
dHj

dB(k)j
(I + iτHj +O(τ2))dτ · Uj (62)

= −i
∫ ∆t

0

(
dHj

dB(k)j
+ iτ [

dHj

dB(k)j
Hj −H

dHj

dB(k)j
] +O(τ2))dτ · Uj (63)

= −i
∫ ∆t

0

(
dHj

dB(k)j
+O(τ))dτ · Uj (64)

= −i∆t dHj

dB(k)j
Uj +O(∆t2) (65)

= −i∆t(H1,k + 2B(k)jH2,k)Uj +O(∆t2) (66)
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The derivation of
∂Φ

∂B(k)j
can be found below.

∂Φ

∂B(k)j
=

∂

∂B(k)j
|〈ψd|ψT 〉|2 (67)

=
∂

∂B(k)j
〈ψd|ψT 〉 〈ψT |ψd〉 (68)

=

〈
ψd

∣∣∣∣ ∂ψT
∂B(k)j

〉
〈ψT |ψd〉+ 〈ψd|ψT 〉

〈
∂ψT
∂B(k)j

∣∣∣∣ψd〉 (69)

= 2 Re(

〈
ψd

∣∣∣∣ ∂ψT
∂B(k)j

〉
〈ψT |ψd〉) (70)

= 2 Re(

〈
ψd

∣∣∣∣UN . . . dUj
dB(k)j

. . . U1ψ0

〉
〈UN . . . U1ψ0|ψd〉) (71)

= 2 Re(

〈
ψd

∣∣∣∣−iλj∆t dHj

dB(k)j
Uj . . . U1ψ0

〉
〈ψT |ψd〉) (72)

= 2 Re(

〈
ψd

∣∣∣∣−iλj∆t dHj

dB(k)j
ψj

〉
〈ψT |ψd〉) (73)

= 2 Re(〈ψd|−iλj∆t(H1,k + 2B(k)jH2,k)ψj〉 〈ψT |ψd〉) (74)

Here λj = UN . . . Uj+1
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