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ABSTRACT

We are living in a connected world and failures can occur anywhere at any time
probabilistically. In this thesis, we consider networked systems whose links are perfectly
reliable and nodes are subject to failure. The probability of a network subjecting to
failure to remain connected is named the node reliability of a graph. The node reliability
naturally gives rise to a polynomial in the node operational probability p. We call this
polynomial node reliability polynomial. The research aims to explore the properties of
the node reliability polynomial.

Python tools were developed to compute the exact solutions of node reliability
polynomial by enumerating all possible connected sets in graphs. Monte-Carlo
simulation software in Python was also developed for approximate solutions of graphs
that are too large for enumeration. We took advantage of the developed Python tools to
investigate the combinatorics aspect of graphs.

The most important result is that we provide a construction method based on
the lexicographic product of graphs such that the node reliability polynomials of two
graphs, with the same number of nodes and links, can have an arbitrary number of
intersection points. In addition, we have discovered that a fully-joint graph’s connected
sets are composed by the addition of the connected sets of all partitions along with
the connected sets of the complete multi-partite graph that corresponds to the full
interconnection between partitions. Later, we propose a conjecture that complete
bipartite graphs that are κ-optimal in their class are node reliability optimal in their
class. Last but not least, by enumeration of all non-isomorphic graphs of the order
less than 10, we have discovered the minimum orders of graph pairs that their node
reliability polynomials intersect one, two, and three times. The performance of the crude
Monte-Carlo simulation in simulating node reliability polynomial is discussed as well.
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1
INTRODUCTION

Uncertainty is the only certainty there is,
and knowing how to live with insecurity

is the only security.

— John Allen Paulos

We are currently living in a connected world.
Connected, not just in the sense between human beings, but in a much much

broader sense. People all over the world, are connected by social acquaintances, phones,
online social apps, etc. Cities and countries are connected by infrastructures, technical
systems are connected by cables and electronics, neurons are connected to form brains,
amino acid residues are connected by peptide bonds to form protein molecules, etc.
Networks are everywhere and can be used to model almost everything.

Another essential fact of our world, failures occur everywhere at any time. Although
undesired, failures are essential considerations for a system. It is often required in
networked systems that its components should be able to reach each other within the
network for the system to function normally. In this thesis, we study the probability
that the networks remaining components are still able to reach each other, or in other
words are still connected, under the condition that components can fail probabilistically.
Conventionally, we refer to this probability of a network to remain connected after
failures occur as network reliability. Reliability can act as a key indicator of the
resilience of a network, especially for critical networks like communication networks,
infrastructure networks, financial networks, and military networks.

1.1. SETS AND GRAPHS
For the convenience of properly introducing graphs and their connectedness-related
topics later in the following chapters, some basic definitions in set theory and graph
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theory must be introduced beforehand. Here the set theory definitions are placed in the
context of von Neumann–Bernays–Gödel set theory (NBG). The intention is to provide
a relatively rigorous, clear, and concise introduction of basic terms as the foundation of
this thesis instead of digging into the details of the terms and definitions.

A set is a collection of distinct elements, in which no element is the set itself. If every
element in the set X is an element in the set Y, then set X is a subset of set Y, denoted by
X ⊆ Y. A null set is a set with no element, denoted by ;.

The purpose of second half of the definition for set is to avoid the famous Russell’s
Paradox.[1] If set is defined with only the first half stating: a set is a collection of distinct
elements, then naturally in such context a set A can be an element in itself, for instance
A = {x, y, z,1,2,3,A}. Following this rule, it is stated that a set containing itself as an
element is called an extraordinary set, where the opposite that a set does not contain
itself as an element is called an ordinary set. Now, Russell’s Paradox reveals that the
set S that contains all ordinary sets is neither an ordinary set nor an extraordinary set.
Because, assume S itself is an ordinary set, it should then contain itself otherwise it is
not the set of all ordinary sets. Thus, following the aforementioned statements S should
be extraordinary and this contradicts the initial assumption that S is an ordinary set. It
is obvious that S is not an extraordinary set following the similar argument.

To deal with this paradox, class is introduced to get rid of the extraordinary sets. A
simplified definition of class can be a collection of sets that the sets within a class follows
a set-level property. A class that is not a set is called a proper class while a class that is a
set is called a small class. The elements of a class are supposed to be sets only.

One important axiom about class is needed later on when the class of graphs is
introduced. The axiom of limitation of size states that a class C is a proper class if and
only if all members of the class of all sets V (the von Neumann universe) can be mapped
one-to-one into class C. To put it in a easily comprehensive way, a ’set’ that is too large
even the class of all sets V can be mapped into that ’set’ should be regarded as a proper
class instead of a ’set’. [2]

After sets and classes are defined, it is time to take a look at graphs and related terms
and definitions.

Figure 1.1: Graph example: path graph of order seven G(7,6)

A graph is a structure that is composed by a set of vertices(nodes) V interconnected
by a set of edges(links) E.[3] Let N = |V(G)| denote the number of nodes and L = |E(G)|
denote the number of links in graph G . This way a graph G with N nodes and L links can
be denoted as G(N ,L). Figure 1.1 gives an example graph G(7,6) with 7 nodes and 6 links
which is also called an order seven path graph. A graph H(N ′,L′) is called a subgraph of
G(N ,L) if V(H) ⊆ V(G) and E(H) ⊆ E(G).

A path of length k−1 from node A to node B in graph G is the node list P A→B = nA →
n2 → ... → nk−1 → nB , in which ni ⊆ V(G), and for any two different nodes ni and n j in
P A→B , ni ̸= n j . Then, a graph G is called connected if there exist a path between any pair
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of nodes in the graph. Following the connectedness of a graph, the minimum number
of removed links to disconnected a graph is called link connectivity, denoted as λ(G).
Similarly, the minimum number of removed nodes to disconnect a graph is called node
connectivity, denoted as κ(G).

In this thesis, it is desired to focus on connected, unweighted, simple, undirected
graphs. This implies that the links are unweighted, no more than one link can exist
between any pair of nodes, no self-loops, and the links have no direction.

Another important concept is called graph isomorphism. It is stated that two graphs
G and H are isomorphic if there exist a one-to-one mapping between V(G) and V(H)
that the adjacent property in V(G) preserves for any node pair after mapped to V(H) and
vice versa. Figure 1.2 gives a simple example of graph isomorphism. In which the nodes
can be mapped as follows: {a ↔ p,b ↔ q,c ↔ y,d ↔ x}.

Figure 1.2: An example of isomorphism between two graphs

Finally, one last fundamental concept to complete this section, is the class of
connected graphs with the same number of nodes and links. We denote this asΩ(N ,L).
One might wondering, why this is a class instead of a set. This is because that even for a
graph with a certain determined topology, the node set is not specified and can be any.
So, we can easily imagine, for the example of graphs with only a single node, the graph
with node 1 can be isomorphic to the graph with node 2,3,4,5... and infinitely many.
According to the axiom of limitation of size, such graphs sets (one single graph within
each set) should belong to the classΩ(1,0). The same argumentation process stands for
any class of connected graphsΩ(N ,L) with the same number of nodes N and links L.

1.2. NETWORK RELIABILITY
After the fundamental concepts about graphs and sets are depicted, it is time to dive
into the probabilistic graph models. It is assumed that the components, i.e. nodes and
edges, should work(operate) or fail at a certain probability. In this thesis, it is assumed
that the status of the components are independent of each other and have uniform
operating/failing probabilities.

The most commonly researched model of graph reliability is when nodes are perfect
in a graph and links would fail independently at a probability 1−p. Then the probability
of the graph remains connected after link failures is called all-terminal reliability,
denoted as Rel (G , p). Here p denotes the link operating probability. When a node
has no link attached after the link failure process, the node is removed in the graph.
A connected remaining node set with k nodes of graph G after node or link failures is
called a connected set. We denote the set of all k-ordered connected sets of graph G as
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Ck (G). The definition of all-terminal reliability naturally leads to a polynomial.

Rel (G , p) =
|V (G)|∑

k=1

∑
S∈Ck (G)

p |S|(1−p)|V (G)|−|S| (1.1)

According to [4] the all-terminal reliability is a coherent set system, which indicates that
all subsets of a connected set should still remain connected. [5] pointed out that the
all-terminal reliability polynomial is monotonously increasing in (0,1). In Figure 1.3, the
all-terminal reliability of the order seven path graph is shown as an example. The highest
order of the all-terminal reliability of P7 is 6.

From the computational aspect, it was proven in [6] that computing all-terminal
reliability for an arbitrary graph is a NP-hard problem. Yet, many reduction techniques
[7, 8, 9, 10] could be applied to reduce the computation time. For series-parallel
graphs, the (all-terminal) reliability-preserving series-parallel reductions enables the
all-terminal reliability to be computed in linear time [11, 12].

Figure 1.3: All-terminal reliability of order 7 path graph Rel (P7, p)

In this thesis, the focus is on the ’opposite’ of all-terminal reliability. It is assumed
that links are perfect and nodes are subject to failure with probability 1 − p. The
probability that the graph remains connected after node failure is called node reliability,
denoted as nRel (G , p). Sometimes the node failure reliability model is also called
residual node connectedness reliability. The node reliability model is first introduced
in [13]. Let p denote the node operating probability. The definition of node reliability
automatically also leads to a polynomial in p. Compared to the all-terminal reliability
polynomial, we alter the equation of node reliability polynomial for it to be easier to use.

nRel (G , p) =
N∑

k=1
ck (G)pk (1−p)N−k (1.2)

where, ck (G) represents the total number of connected set of order k: |Ck (G)|, we
call ck (G) the connected-set coefficient of order k. When used in the node reliability
polynomial for a given graph, ck is used and ’(G)’ can be left out for convenience. N
is the number of nodes in graph G, while p is the node operating probability.

It is possible to determine some of the connected-set coefficients from graph
topological metrics. According to [14], for a connected graph G ,

• c1(G) = |V (G)|
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• c2(G) = |E(G)|
• c3(G) = (

∑
v∈V (G)(

(dv
2

)
))−2∆

• cN−1 = N −NC

• cN = 1

in which dv denotes the degree of node v , ∆ is the number of triangles in G , NC is the
number of cut nodes of G .

Compared to the all-terminal reliability model, although in a similar model setting,
node reliability did not receive as much research attention as all-terminal reliability [15].
Like all-terminal reliability, it is proved in [16] that computing node reliability for an
arbitrary graph is also a NP-hard problem. Unfortunately, node reliability does not lead
to a coherent system. For example, if all the nodes of degree 2 in a path graph forms a
connected set, then it is obvious that not all subsets of this connected sets are connected.
This also leads to the non-monotone property of the node reliability polynomial. Again,
the node reliability of order-7 path graph in Figure 1.1 is computed. It can be clearly
observed in Figure 1.4 that there exist an interval of decrease. According to [4], for a
graph G(N,L) that satisfies L ≤ 0.0851N 2, then the node reliability polynomial nRel (G , p)
of this graph G has an interval of decrease in (0,1). Brown[17] provided a construction
method and proved that there can be arbitrary number of inflection points as well as
decreasing intervals for node reliability polynomials.

Figure 1.4: Node reliability of order 7 path graph nRel (P7, p)

The (all-terminal) reliability network reduction and factoring algorithms in [7, 8, 9,
10, 11, 12] are not node reliability preserving due to the non-coherency of the node
reliability model. To the best of the author’s knowledge, there is not much results on
reducing the complexity of node reliability. One result worth mentioning is that some
restricted graph classes can be computed efficiently in polynomial time such as trees,
cographs and permutation graphs [18].

1.3. MAIN CONTRIBUTIONS
The main contributions of this thesis are:

1. Discovered the property of node reliability that when m graphs {Hi }, i = 1,2, ...,m,
are fully connected together to form a large graph G , the connected-set coefficients
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of G equals to the sum of the connected-set coefficients of those m graphs plus
the connected-set coefficients of a complete m-partite graph that represents the
interconnection.

2. Provides exact solutions for several graph families’ node reliability polynomial.

3. A construction method is provided such that it is possible to construct two graphs,
with different topology but having the same number of nodes and links, such
that their node reliability polynomials can have arbitrary number of intersection
points.

1.4. THESIS OUTLINE
This thesis is organized in the following manner:

• Chapter 2 presents the aforementioned first main contribution that fully joint
graphs’ connected sets are composed by the addition of all partitions with the
full interconnection. Then the concept and related works of optimal graphs
are introduced, we propose a conjecture that complete bipartite graph that are
κ-optimal in their class are node reliability optimal in their class. Later in this
chapter we also provide an upper bound for the node reliability polynomial and
some exact solutions for some graph families.

• Chapter 3 describes the construction method that two graphs with the same
number of nodes and links whose node reliability polynomials can have arbitrary
number of intersection points.

• Chapter 4 presents some interesting statistics of brute-forcing non-isomorphic
graphs over the graph classes G(N ,L) and discusses how crude Monte-Carlo
simulation performs in the context of node reliability.

• Chapter 5 summarizes the main achievements of our work and draw the
conclusions. Future scope of research are also discussed here.



2
PROPERTIES OF NODE RELIABILITY

POLYNOMIALS

In this chapter, main topics related to the general property of node reliability
polynomials during this thesis research are discussed. Firstly, we briefly discuss the few
related works on the node reliability problem. Then we dive into the most important
discovery of this chapter. We prove that for fully joint graphs, the connected-set
coefficients are computed by summing the connected-set coefficients of m individual
partitions with the connected set coefficients of a complete m-partite graph which
represents the interconnection between these k individual partitions. Thirdly, we
propose a conjecture on the topic of optimal graphs. Lastly, we end this chapter by giving
some exact solutions for several graph families.

2.1. RELATED WORKS WITH RESPECT TO NODE RELIABILITY

POLYNOMIAL
Despite the fact that not much research attention was paid to the node reliability
polynomial, there are a few related works and results that are worth mentioning which
the reader might find interesting and could be inspired by these results.

2.1.1. MONOTONICITY AND CONCAVITY
Due to the non-coherent nature of the node reliability problem, it is natural that the node
reliability polynomials of many graphs are not monotonic, as we have shown in Figure
1.4 as an example. It was proved in [4] that for a graph G(N ,L), if G is sufficiently sparse
such that L < 0.0851N 2, then nRel (G , p) has an interval of decrease in (0,1). However,
G is required to be very very dense to ensure that its node reliability polynomial is
monotonously increasing in (0,1). Even complete graphs with one pendant node Kn+P1,
whose exact formula will be given in section 2.6.2 Eq.(2.17), has an interval of decrease
in (0,1). It is known for sure that the node reliability polynomials of complete graphs and
complete bipartite graphs are monotonously increasing.

7
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In addition, the node reliability polynomial nRel (G , p) of a graph G is concave for
p sufficiently close to 0 if |V (G)| ≥ 2. When p is close to 1, the node reliability may be
convex or concave. The node reliability of any tree is convex when p is close to 1. Thus,
one natural extension is that any tree’s node reliability polynomial possesses at least one
inflection point in (0,1). When a graph G(N ,L) is sufficiently sparse that L < 0.0851N 2,
when κ(G) ≥ 2, nRel (G , p) has at least two distinct points of inflection in (0,1). [4, 19]

It is proven in [17] that the maximum number of decreasing intervals in [0,1] is
unbounded for connected graphs, A connected graph with an arbitrary number of
inflection points in [0,1] can be constructed with the construction method provided in
[17].

2.1.2. OPTIMAL GRAPHS
The search for optimal graphs has been an important topic for link failure system.
For node failure situation, the topic also received some attention. Currently, whether
optimal graphs exist inΩ(N ,L) for any N and L is far from being known. Here we present
some of the known results in literature.

For a graph to be the most reliable when the node operation probability is close to
1, the graph needs to have the largest node connectivity: κ-optimal. When the node
operation probability is close to 0, the graph needs to be c3-optimal to be the most
reliable graph. Where c3-optimal indicates that the graphs should induce the most
connected subgraphs of order 3. [20]

Most optimal graphs are found to be complete bipartite graphs. According to
Stivaros [21] and Mol [19], star graphs K1,n2 are optimal graphs in their class.Boesch[22]
mentioned that Bermond discovered that the almost regular complete bipartite graphs
Kn,n+1 are optimal in their class. Goldschmidt et al.[20] proved the result discovered by
Bermond. The almost-almost regular complete bipartite graphs Kn,n+2 are also proved
to be optimal graphs in their class in [20]. When Kn,n+b and b > 2, the complete bipartite
graphs are not optimal graphs in their class. And for sparse classes Ω(N ,L) where
L < N 2/4,L ̸= N −1, optimal graphs do not exist.

Liu et al.[23] proved that complete tri-partite graphs Kn,n+1,n+2 are optimal in their
class. Later, Yu et al.[24] proved that the complete multi-partite graphs Kn,n+1,...,n+1,n+i

are optimal graphs in their class when i = 2. When i > 2, the multi-partite graphs
Kn,n+1,...,n+1,n+i are not uniformly optimal.

2.1.3. A COHERENT MODEL WITH RESPECT TO NODE FAILURES
Boesch et al. [25] proposed an alternative definition to node reliability with the
motivation to make a coherent system when nodes can fail and links are perfect. Boesch
et al. defines a ’k-node operating-component reliability’ as the situation that the
subgraph of surviving nodes contains at least one connected component having at least
k nodes. The ’k-node operating-component reliability’ is denoted as Rk

oc (G).
In this system, when Boesch proves that when a graph G is connected, and the

complement graph Gc do not contain triangles, then this graph G is R2
oc optimal. While

the node failure probability 1−p is large, the star graph optimizes Rk
oc (G). For n > 4, the

complete bipartite graph (star graph) K1,n−1 is Rn−1
oc (G) and Rn−2

oc (G) optimal. Lastly, the
path graph Pn is uniquely R2

oc (G) optimal.
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2.2. GRAPH COMBINATIONS: ADDITIVE CONNECTED SETS OF

MULTIPLE FULLY JOINT GRAPH PARTITIONS
In this section, we consider two graph operations: disjoint union and (full) join and their
impacts on node reliability. Firstly, we observe the impact through giving examples.
Then we propose theorems from the observations the example and give mathematical
proofs.

Now we take 2 graphs, H1 an order 5 path graph and H2 an order 4 star graph as
example. G1 is the disjoint union of H1 and H2, shown in Figure 2.1. G2 is the fully joint
graph of H1 and H2, shown in Figure 2.2. The interconnection between P5 and S4 can be
described by a complete bipartite graph K5,4. The connected-set coefficients of P5, S4,
K5,4, G1, and G2 are computed and shown in Table 2.1.

Figure 2.1: G1 = P5 ∪S4

Figure 2.2: G2 = P5 ⊗S4

We can observe from Table 2.1 that:

• ck (P5)+ ck (S4) = ck (G1) = ck (P5 ∪S4), for all k = 1,2,...,9

• ck (G1)+ ck (K5,4) = ck (G2), for k = 2,3,...,9
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k 1 2 3 4 5 6 7 8 9

H1 = P5 5 4 3 2 1 0 0 0 0
H2 = S4 4 3 3 1 0 0 0 0 0

K5,4 9 20 70 120 125 84 36 9 1
G1 = P5 ∪S4 9 7 6 3 1 0 0 0 0
G2 = P5 ⊗S4 9 27 76 123 126 84 36 9 1

Table 2.1: Connected-set coefficients of P5, S4, K5,4, G1, and G2

Two additive patterns can be discovered. One is the connected-set coefficients of the
disjoint union equals to the sum of its disjoint subgraphs. The other is the connected-set
coefficients of the fully joint graphs equals to the sum of the connected-set coefficients
of the original graphs with their interconnection, which is a complete 2-partite(bipartite)
graph K|V (H1),V (H2)|.

Fortunately, when disjoint uniting or fully joining arbitrary number of graphs, the
additive pattern for the connected-set coefficients should still hold.

Theorem 2.1. Given a disconnected graph G constructed by the disjoint union of m
simple graphs Hi , i = 1,2, ...m. V (H1) ∩V (H2) ∩ ... ∩V (Hm) = ;. The connected-set
coefficients ck (G):

ck (G) =
m∑

i=1
ck (Hi ) (2.1)

for all k = 1,2, ..., |V (G)|. For any graph H , it is defined that ck (H) = 0 if k > |V (H)|.
Proof. It is trivial due to the fact that V (H1)∩V (H2)∩ ...∩V (Hm) =;,

Ck (H1)∩Ck (H2)∩ ...∩Ck (Hm) =;
And the disjoint union of graphs preserves the original connectedness in the separate
m graphs and does not introduce new connected sets because no new links are created.
Ck (Hi ) ⊆Ck (G) for all i ,

Ck (G) \ {Ck (H1)∪Ck (H2)∪ ...∪Ck (Hm)} =;
And the theorem follows.

Theorem 2.2. Given a graph G constructed by fully joining m simple graphs Hi , i =
1,2, ...m. V (H1)∩V (H2)∩ ...∩V (Hm) =;. The connected-set coefficients ck (G):

ck (G) = ck (K|V (H1)|,|V (H2)|,...,|V (Hm )|)+
k∑

i=1
ck (Hi ) (2.2)

for k = 2, ..., |V (G)|. K|V (H1)|,|V (H2)|,...,|V (Hm )| denotes the complete m-partite graph with
each partition size corresponds to the order of H1, H2, ..., Hm . For any graph H , it is
defined that ck (H) = 0 if k > |V (H)|. While k = 1,

c1(G) =
m∑

i=1
c1(Hi )
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Proof. To prove ck (G) = ck (K|V (H1)|,|V (H2)|,...,|V (Hm )|) +∑k
i=1 ck (Hi ), we can examine the

inequalities:

1.

ck (K|V (H1)|,|V (H2)|,...,|V (Hm )|)+
k∑

i=1
ck (Hi ) ≤ ck (G) (2.3)

2.

ck (K|V (H1)|,|V (H2)|,...,|V (Hm )|)+
k∑

i=1
ck (Hi ) ≥ ck (G) (2.4)

The first inequality implies that there should exist a set X consisting of
the connected-set of G that X do not intersect with {Ck (Hi ), i = 1,2, ...,m} ∪
Ck (K|V (H1)|,|V (H2)|,...,|V (Hm )|) for all m partitions in graph G when k ≥ 2. For every
connected-set in X , there are two possibilities:

1. Nodes in any connected-set S ∈ X are from one single partition V (Hi )

2. Nodes in any connected-set S ∈ X are from multiple partitions V (Hi )∪V (H j )∪ ...

In the first case, S ∈ C (Hi ), where S ⊆ V (Hi ) and Hi ∈ {H j | j = 1,2, ...,m}. This
conflicts with the condition that X ∩ {Ck (Hi ), i = 1,2, ...,m} = ;. In the second case,
S ∈ Ck (K|V (H1)|,|V (H2)|,...,|V (Hm )|), where S ⊆ V (K|V (H1)|,|V (H2)|,...,|V (Hm )|). This conflicts with
the condition that X ∩Ck (K|V (H1)|,|V (H2)|,...,|V (Hm )|) =;.

Since we discover no additional connected-set in the only two possibilities, X = ;.
But so far this is insufficient to say the inequality does not hold. The final step also relates
to the second inequality.

Examining the second inequality, this indicates that,

Ck (H1)∩Ck (H2)∩ ...∩Ck (Hm)∩Ck (K|V (H1)|,|V (H2)|,...,|V (Hm )|) ̸= ;

Because it is given that Ck (H1)∩Ck (H2)∩ ...∩Ck (Hm) = ;, and the connected sets
in Ck (K|V (H1)|,|V (H2)|,...,|V (Hm )|) when k ≥ 2 always contain nodes from different partitions,
thus

Ck (H1)∩Ck (H2)∩ ...∩Ck (Hm)∩Ck (K|V (H1)|,|V (H2)|,...,|V (Hm )|) =; (2.5)

With Eq.(2.5), neither of the inequalities 2.3 and 2.4 hold. So we must take the
equality and this completes the proof.

Theorem 2.1 can be used to reduce the computational efforts of disconnected
graphs. By computing the connected sets of the connected components, the size of
enumeration can be reduced.

Theorem 2.2 can also be applied to reduce the computational efforts of some
connected graphs. If a graph can be divided into k components that all k components
are fully connected with each other, then the problem is reduced to only computing the
connected-sets of these k components and the connected sets of a complete k-partite
graph.
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However, the graph partitioning process that seeks for full interconnection between
partitions is related to the maximum-cut problem. Unfortunately, it is one of the earliest
problems that were shown to be NP-hard [26, 27]. To the author’s best knowledge, there
does not exist an efficient algorithm that reduces the computational complexity of the
maximum-cut problem in the general case.

2.3. CONJECTURE: κ-OPTIMAL COMPLETE BIPARTITE GRAPHS

ARE OPTIMAL IN THEIR CLASS
According to [20, 23], an optimal graph in its class requires this graph to be c3-optimal
and κ-optimal. Stivaros [21] states that complete bipartite graphs are c3-optimal in their
class. It is also possible to observe from the formula of c3:

c3(G) = (
∑

v∈V (G)

(
dv

2

)
)−2∆

Where ∆ is the number of triangles in a graph. The complete bipartite graphs does not
contain any triangle. Here we propose a conjecture:

Conjecture 2.3.1. κ-optimal complete bipartite graphs are optimal in their class

Lemma 2.3. Ω(N ,L) with determined node number N = n1 +n2 and link number L =
n1n2, there exist only one unique pair of cardinalities (n1,n2) for complete bipartite graph
constructions.

Observation 2.4. Not all complete bipartite graphs are κ-optimal.

To illustrate Observation 2.4 and discover under what condition the complete
bipartite graphs are κ-optimal, we do the following analysis.

For all graphs, the node connectivity is bounded by the minimum degree.

κ≤ dmi n (2.6)

For complete bipartite graphs Kn1,n2 , assume n1 ≤ n2, the node connectivity
κ(Kn1,n2 ) = n1. If we desire the complete bipartite graph to be κ-optimal in its class
Ω(n1 +n2,n1n2), one trivial way to guarantee this optimality is:

κ(G) ≤ d (G)
mi n ≤ κ(Kn1,n2 ) = min{n1,n2} = n1, ∀G ∈Ω(n1 +n2,n1n2) (2.7)

Considering the degree sequence of complete bipartite graphs,∑
v∈V (Kn1,n2 )

dv = 2n1n2

The degree sum should not be able to allow Kn1,n2 to be rewired in a way that the
minimum degree of the rewired graph is larger than n1. Because we have assumed
n1 ≤ n2, the bottom-line requirement for the degree sum is that the sum should not
be able to allow the existence of a regular graph with n1 +n2 nodes of uniform degree
distribution n1 +1, as described in .

2n1n2 ≤ (n1 +1)(n1 +n2) (2.8)

Simplifying inequality Eq.(2.8), we obtain the following:
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Lemma 2.4. Given a complete bipartite graph Kn1,n2 with n1 ≤ n2, if n1 and n2 satisfy the
condition:

n2 ≤
n2

1 +n1

n1 −1
= n1 + 2n1

n1 −1
, (2.9)

then Kn1,n2 is κ-optimal in its classΩ(n1 +n2,n1n2).

Because the cardinalities n1 and n2 of complete bipartite graphs must be positive
integers. The condition in Eq.(2.9) is asymptotically equivalent to:

n2 ≤ n1 +2, when n1 ≥ 3

When n1 = 1, all positive n2 satisfy the condition in inequality Eq.(2.9) because
2n1

n1−1

∣∣∣
n1=1

→∞.

When n1 = 2, n2 = n1 +3 = 5 also satisfies inequality Eq.(2.9).
Concerning the known results we mentioned in section 2.1.2, the remaining parts to

be proved for condition Eq.(2.9) are:

1. K2,5 is optimal inΩ(7,10)

2. regular complete bipartite graphs Kn,n are optimal in their classΩ(2n,n2)

Computer programs are utilized to generate all non-isomorphic connected graphs
in Ω(7,10) for enumeration of the node reliability polynomials. The enumeration result
verifies that K2,3 is optimal inΩ(7,10).

Besides, the non-isomorphic connected graph inΩ(2n,n2) where n = 1, 2, 3, 4, 5 are
enumerated by the same computer programs. The enumeration result matches the
unproved part 2 above. Unfortunately, the number of non-isomorphic connected graphs
grows exponentially and it is never possible to enumerate all possible graphs. A proof is
not yet know by the author of the thesis. Now we propose the following conjecture:

Conjecture 2.4.1. Regular complete bipartite graphs Kn,n are optimal in their class
Ω(2n,n2)

Thus conjecture 2.3.1 can be established by proving conjecture 2.4.1.

2.5. AN UPPER BOUND FOR THE NODE RELIABILITY

POLYNOMIAL
For an arbitrary connected graph G(N ,L), if we enumerate through all possible node
combinations, we can obtain a full combination set of order k denoted as Ak (G) where
k = 0,1, ..., N . The connected sets are denoted as Ck (G), and the disconnected sets are
denoted as Fk (G).

Ck (G)∪Fk (G) = Ak (G)

|Ck (G)|+ |Fk (G)| = |Ak (G)| (2.10)

From the perspective of disconnected sets, we can provide a lower bound for the number
of disconnected sets given the degree sequences {dv |v ∈ V (G)}. For an arbitrary node v
in graph G , to disconnect this graph, one straightforward decision is to disconnect that
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node v by failing all v ’s adjacent nodes. So, if we want to guarantee that node v is in
the disconnected set, if dv is smaller than k, then k −dv nodes can be selected. Because
we are selecting |V (G)| −k nodes from V (G), the worse case is that one set is repeated
|V (G)|−k times. A lower bound can be obtained for the disconnected set following the
selection process above:

|Fk (G)| ≥ 1

N −k

∑
v∈V (G)

(
N −dv −1

k −dv

)
(2.11)

When N −k, we define the result of Eq.(2.11) to be zero instead of ∞.
Before we continue, it is necessary to define a very important alternation to the

formula of the binomial coefficient used only in this section.

Definition 2.1. For any integer K ≥ 0: (
K

0

)
= 0 (2.12)

This alternation in Definition 2.1 in crucial with respect to the actual meaning of
graph combinatorics. Selecting zero nodes indeed creates an empty set but this empty
set is of no meaning to the counting of sets that cuts the graph (unless the graph itself
is disconnected which violates our initial assumption). In Eq.(2.11), k = dv means that
the neighbors of node v already filled a set with k nodes that perhaps would cut the
graph, we do not need to choose another node. One may argue that in this case the
set of the neighbors of node v should be accounted. But since it is a lower bound of
|Fk (G)|, removing all neighbors of a node does not guarantee the remaining subgraph is
disconnected. One trivial example is the star graph, if all neighbors of the hub node is
removed, the remaining subgraph is still considered as connected.

Now we proceed following Eq.(2.11), naturally, the all possible node combinations
|A(G)|:

|A(G)| =
(
|V (G)|

k

)
(2.13)

Combining Eq.(2.10), Eq.(2.11) and Eq.(2.13), an upper bound can be obtained.

Theorem 2.5. An upper bound for the k-ordered connected set given the degree
sequence {dv |v ∈V (G)} of graph G is:

|Ck (G)| ≤
(
|V (G)|

k

)
− 1

N −k

∑
v∈V (G)

(
N −dv −1

k −dv

)
(2.14)

Our bound corresponds to the result in [20]. The equality holds for Eq.(2.11) and
Eq.(2.14) only when there does not exist a set of nodes that does not contain node v and
not all the adjacent nodes of v that cuts the graph G for any v ∈V (G).

We end this section by providing some examples in Table 2.2 to illustrate the upper
bound in Eq.(2.14).
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Graph
Path graph

P5

Star graph
S5

Cycle graph
C5

Complete bipartite
graph K2,5

Complete graph
K5

Degree
Distribution

{1,2,2,2,1} {4,1,1,1,1} {2,2,2,2,2} {2,2,3,3,3} {4,4,4,4,4}

Order k |Ck | Upper
Bound

|Ck | Upper
Bound

|Ck | Upper
Bound

|Ck | Upper
Bound

|Ck | Upper
Bound

5 1 1 1 1 1 1 1 1 1 1
4 2 5 4 5 5 5 5 5 5 5
3 3 10 6 10 5 10 9 10 10 10
2 4 8 4 6 5 10 6 10 10 10
1 5 5 5 5 5 5 5 5 5 5

Table 2.2: Exact number of k-ordered connected sets versus the upper bound in Eq.(2.14) for some connected
graphs with order 5

2.6. EXACT SOLUTIONS

In this section exact solutions are computed for some graph families.

2.6.1. COMPLETE GRAPH

Figure 2.3: Complete graph of order 5 K5

The node reliability polynomial equation for the complete graph (denoted as Kn) is
given as follows:

nRel (Kn , p) = 1− (1−p)n (2.15)

It is obvious for complete graphs where all nodes are connected to each other, that as
long as there is one operating node, the graph stays connected. It is only possible to
disconnect this graph by failing all nodes, which transforms this graph to a null graph.

An example K5 is given in Figure 2.3, whose node reliability polynomial is depicted
in Eq.(2.16) and Figure 2.4.

nRel (K5, p) = p5 −5p4 +10p3 −10p2 +5p (2.16)
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Figure 2.4: A plot of node reliability polynomial of graph K5

Figure 2.5: Complete graph of order 5 with one pendant node K5 +P1

2.6.2. COMPLETE GRAPH WITH ONE PENDANT NODE
The node reliability polynomial equation for complete graph with a pendant
node(denoted as Kn +P1) is given as follows:

nRel (Kn +P1, p) = (1−p)(1− (1−p)n)+p2 +p(1−p)n (2.17)

When that pendant node fails, we are left with the complete graph Kn . When
the pendant node and the adjacent node are both operating, then the graph remains
connected no matter the status of other nodes. When the pendant node is operating
and the adjacent node is not operating, it is required that none of the other nodes in the
complete graph Kn are operating for the entire graph to remain connected.

An example K5 + P1 is given in Figure 2.5, whose node reliability polynomial is
depicted in Eq.(2.18) and Figure 2.6.

nRel (K5 +P1, p) =−2p6 +11p5 −25p4 +30p3 −19p2 +6p (2.18)

2.6.3. STAR GRAPH
The node reliability polynomial equation for the star graph of order n (denoted as Sn) is
given as follows:

nRel (Sn , p) = p + (n −1)p(1−p)(n−1) (2.19)
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Figure 2.6: A plot of node reliability polynomial of graph K5 +P1

Figure 2.7: Star graph of order 6 S6

When the hub node in star graph is operating, the graph remains connected
regardless of the status of other leaf nodes. When the hub fails, there should be only
one leaf node that is operating and other leaf nodes should fail for the graph to remain
connected. There are in total n −1 leaf nodes.

An example S6 is given in Figure 2.7, whose node reliability polynomial is depicted in
Eq.(2.20) and Figure 2.8.

nRel (S6, p) =−5p6 +25p5 −50p4 +50p3 −25p2 +6p (2.20)

2.6.4. PATH GRAPH
The node reliability polynomial equation for the path graph of order n (denoted as Pn)
is given as follows:

nRel (Pn , p) = np(1−p)n+1 − (n +1)p2(1−p)n +pn+2)

(2p −1)2 (2.21)

An example P9 is given in Figure 2.9, whose node reliability polynomial is depicted
in Eq.(2.22) and Figure 2.10.

nRel (P9, p) = 5p9 −40p8 +150p7 −320p6 +430p5 −372p4 +203p3 −64p2 +9p (2.22)
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Figure 2.8: A plot of node reliability polynomial of graph S6

Figure 2.9: Path graph of order 9 P9

Figure 2.10: A plot of node reliability polynomial of graph P9

2.6.5. CYCLE GRAPH

Figure 2.11: Cycle graph of order 6 C6

The node reliability polynomial equation for the cycle graph of order n (denoted as
Cn) is given as follows:

nRel (Cn , p) = np(pn − (1−p)n)

2p −1
− (n −1)pn (2.23)
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An example C6 is given in Figure 2.11, whose node reliability polynomial is depicted
in Eq.(2.24) and Figure 2.12.

nRel (C6, p) =−5p6 +18p5 −36p4 +42p3 −24p2 +6p (2.24)

Figure 2.12: A plot of node reliability polynomial of graph C6

2.6.6. CYCLE GRAPH WITH ONE PENDANT NODE

Figure 2.13: Cycle graph of order 7 with one pendant node C7 +P1

The node reliability polynomial equation for the cycle graph of order n with one
pendant node (denoted as Cn +P1) is given as follows:

nRel (Cn +P1, p) =

(1−p)(
np(pn − (1−p)n)

2p −1
− (n −1)pn)+p(1−p)n

+ p2

(2p −1)2 ((2pn −n +p −1)pn + (1−p)n+1)− (n −1)pn+1 (2.25)

An example C7+P1 is given in Figure 2.13, whose node reliability polynomial is depicted
in Eq.(2.26) and Figure 2.14.

nRel (C7 +P1, p) =−4p8 +29p7 −99p6 +181p5 −195p4 +129p3 −48p2 +8p (2.26)
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Figure 2.14: A plot of node reliability polynomial of graph C7 +P1

2.6.7. COMPLETE BIPARTITE GRAPH
The node reliability polynomial equation for complete bipartite graph Kn,m)is given as
follows:

nRel (Sn , p) = (1− (1−p)n)(1− (1−p)m)+ (n +m)p(1−p)(n+m−1) (2.27)

The graph remains connected either at least one node in each partition do not fail,
or only one node in the entire graph is operating and the others all fail.

2.6.8. DISJOINT UNION OF GRAPHS
Consider two graphs G1 and G2 that are combined together without interconnection to
form a disconnected new graph G1 ∪G2.

nRel (G1 ∪G2, p) = nRel (G1, p) (1−p)|V (G2)|+nRel (G2, p) (1−p)|V (G1)| (2.28)

The new graph is connected only when one partition’s node all fail and the surviving
nodes of the other partition induce a connected subgraph.

2.6.9. FULLY JOINT GRAPHS
Consider two graphs G1 and G2 that are combined together with full interconnections
between V (G1) and V (G2) to form a connected new graph G1 ⊗G2.

nRel (G1 ⊗G2, p) =
1−(1−nRel (G1, p))(1−p)|V (G2)|−(1−nRel (G2, p))(1−p)|V (G1)|+(1−p)|V (G1)|+|V (G2)| (2.29)

Because we are looking at complete connection between two graphs, the graph is
disconnected either all nodes are failed or one partition’s node completely fail the the
other part’s surviving nodes does not induce a connected graph.
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INTERSECTIONS OF NODE

RELIABILITY POLYNOMIALS

In this section, a construction method is shown such that we can construct 2 graphs
with the same numbers of nodes and edges while their node reliability polynomials
have an arbitrary number of intersections.

When considering the system of link failures and perfect nodes, Brown[28] shows
that the all-terminal reliability polynomials can have an arbitrary number of intersection
points. although the two systems have different coherency, the analogy between the
definition of all-terminal reliability and node reliability brings the question:

Can node reliability polynomials of 2 graphs, with the same number of nodes
and links, intersect an arbitrary number of times?

Brown [17] proved there can be arbitrarily many inflection points in (0,1) for node
reliability polynomials. This result made it theoretically possible for node reliability
polynomials to intersect an arbitrary number of times. Then the following problem is
how to construct such two graphs.

Since node reliability polynomials and graphs are not one-to-one correspondence, it
is not hard to find 2 graphs mapped to the same node reliability polynomial coefficients.
One example graph pair is given in Figure 3.1. The exact node reliability polynomial of
the graph pair is depicted in Eq.(3.1) and Figure 3.2. We can say that these graphs have
infinitely many intersection points.

nRel (C4 +P1) = nRel (C3 +2×P1) = 3p5 −13p4 +21p3 −15p2 +5p (3.1)

We are more interested in the case of finite number of intersections. To generate
intersections, one may think of one of the seven requirements for defining the
intersection numbers of plane curves. The intersection numbers should add when

21
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Figure 3.1: Two graphs with the same number of nodes and links that maps to the same node reliability
polynomial

Figure 3.2: A plot of the node reliability polynomial of the example graph pair in Figure 3.1

we take unions of curves[29]. Taking unions of curves from the polynomial aspect
refers to the multiplication of polynomials. However, when we place our context in the
node reliability polynomial, we find no known graph operation that directly involves
multiplying the node reliability polynomials. If we inspect the graph combination
solutions given in section 2.6, the disjoint union does not provide a connected graph
and the fully joint union process is more ’additive’ than ’multiplicative’.

To clearly illustrate how this graph union problem keeps us from creating
intersections, we consider 6 connected graphs G1(N1,L1), G2(N2,L2), G3(N3,L3),
H1(N1,L1), H2(N1,L1), H3(N1,L1). In each pair of graphs, G1 and H1, G2 and H2, G3

and H3, have the same number of nodes and links in order to guarantee we eventually
have 2 graphs with same number of total nodes and links. Now we perform the fully joint
process:

G =G1 ⊗G2 ⊗G3

H = H1 ⊗H2 ⊗H3

According to Eq.(2.29), one can easily derive:

nRel (G , p)−nRel (H , p) =
(nRel (G1, p)−nRel (H1, p))(1−p)N2+N3

+(nRel (G2, p)−nRel (H2, p))(1−p)N1+N3

+(nRel (G3, p)−nRel (H3, p))(1−p)N1+N2

It is even difficult to retain the existing intersection points even if the node reliability
polynomials in the above mentioned 3 graph pairs intersect at the same position. It is an
almost impossible task to generate more intersection points by only fully joining more
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graphs to existing graphs. The multiplication of the exponent of (1−p) made satisfying
nRel (G , p)−nRel (H , p) = 0 difficult.

Now, we propose one construction method based on the lexicographic product of
graphs.

Definition 3.1. The lexicographic product of graph G with graph H is defined to be
replacing every node in graph G by graph H, denoted by G[H ]. If 2 nodes v1, v2 ∈
V (G) are adjacent, then the nodes in the copies of H that replaces v1 and v2 have full
interconnection.

Concerning the lexicographic product, we expand Lemma 1 in [17]:

Theorem 3.1. For any connected graphs G and H ,

nRel (G[H ], p) = nRel (G ,nRel (H , p) ) (3.2)

Proof. Consider a surviving non-empty node set S ⊆V (G[H ], then the subgraph induced
by S is connected if and only if the graph copy that is replacing each node in V (G[H ]) is
connected.

Lemma 1 in [17] is a special case of Theorem 3.1 with H being the complete graph
Km .

Although there does not exist a known direct multiplicative relation for graph
operations in the context of node reliability, we can easily factor nRel (G[H ], p) and
create a multiplicative relation from the lexicographic product of graphs. Because when
all nodes in a graph fail, we consider the graph fail, so the constant coefficients c0 in node
reliability polynomials are always zero. Here for the convenience of readers we define a
function X for any graph G :

X (G , p) = nRel (G , p)

p

Obviously, by factoring out a p, the function X retains the numbers and types of
intersections of node reliability polynomials for determined graph pairs. Then naturally,
when we perform the lexicographic product of graph G0 with graph H1, we can obtain
the node reliability polynomial of G0 and G1 =G0[H1]:

nRel (G0, p) = p X (G0, p)

nRel (G1, p) = nRel (G0[H1], p) = nRel (G0,nRel (H1, p))

= nRel (H1, p)X (G0,nRel (H1, p)) = p X (H1, p)X (G0,nRel (H1, p))

If we continue this process, let G2 = G1[H2] and we can factor another p from
nRel (H1, p):

nRel (G2, p) = nRel (G1[H2], p)

= nRel (H2, p)X (H1,nRel (H2, p))X (G0,nRel (H1,nRel (H2, p)))

= p X (H2, p)X (H1,nRel (H2, p))X (G0,nRel (H1,nRel (H2, p)))
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A multiplicative relation of polynomials can be established in this way, representing
the union of certain curves. If we can construct two graphs with lexicographic product
operations that have the same number of nodes and links, it is hopeful that we can
construct more intersection points between graphs. We then take a different graph
G ′

0 and conduct the lexicographic operation with H ′
1, such that G ′

1 = G ′
0[H ′

1]. Then we
continue to replace every node in G ′

1 with H ′
2 to obtain G ′

2 = G ′
1[H ′

2]. To enlarge the
chance that we produce more intersection points, the node reliability polynomials of Hi

and H ′
i graphs with the same i need to intersect with each other.

Observation 3.1. Cycle graph CN and cycle graph with one pendant node CN−1+P1 have
one intersection in the interval (0,1).

Figure 3.3: C7 and C6 +P1

Figure 3.4: The node reliability of C7 and C6 +P1

nRel (C7, p) = p7 −21p6 +63p5 −91p4 +77p3 −35p2 +7p (3.3)

nRel (C6 +P1, p) = 4p7 −26p6 +66p5 −93p4 +78p3 −35p2 +7p (3.4)

The cycle graph of order 7 and the cycle graph of order 6 plus one pendant node
is displayed as an example in Figure 3.3. Their node reliability polynomials are plotted
in Figure 3.4, the exact formulae are depicted in Eq.(3.3) and Eq.(3.4). We can spot at
approximately p = 0.7839 their node reliability polynomials intersect once. For CN and
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N Position of intersection N Position of intersection

5 0.5 13 0.9082
6 0.7071 14 0.9160
7 0.7839 15 0.9225
8 0.8256 16 0.9281
9 0.8528 17 0.9330

10 0.8723 18 0.9372
11 0.8871 19 0.9409
12 0.8987 20 0.9443

Table 3.1: Intersection points between CN and CN−1 +P1

Figure 3.5: Node reliability polynomials of G0 =C5 and G ′
0 =C4 +P1 intersect once

CN−1 +P1 of order N ∈ [5,20], the positions of intersections are listed in Table 3.1. As the
order increases, the intersection points between CN and CN−1 +P1 become closer to 1.

Now we present two examples:

1. we started from 2 intersecting graphs G0 =C5 and G ′
0 =C4 +P1 and created graph

pairs with an odd number of intersections

2. we started from 2 non-intersecting graphs and created graph pairs with an even
number of intersections.

Example 3.1. In this first example, we start from 2 intersecting graphs G0 =C5 and G ′
0 =

C4 +P1. Table 3.1 specifies that they have one intersection point at p = 0.5 as shown in
Figure 3.5. Their exact node reliability polynomials are depicted in Eq.(3.5) and Eq.3.6.

nRel (C5, p) = nRel (G0, p) = p5 −10p4 +20p3 −15p2 +5p (3.5)

nRel (C4 +P1, p) = nRel (G ′
0, p) = 3p5 −13p4 +21p3 −15p2 +5p (3.6)
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Figure 3.6: Node reliability polynomials of G1 and G ′
1 intersect 3 times

Figure 3.7: Node reliability polynomials of G2 and G ′
2 intersect 5 times

We begin the first lexicographic product by setting:

H1 =C6 , H ′
1 =C5 +P1

Thus,
G1 =G0[H1] , G ′

1 =G ′
0[H ′

1]

In Figure 3.6, the node reliability polynomials of G1 = G0[C6] and G ′
1 = G ′

0[C5 +P1] are
plotted. We can clearly spot there are 3 intersection points at p = 0.168, 0.291, 0.613.

Continuing with the lexicographic product by:

G2 =G1[C8] , G ′
2 =G ′

1[C7 +P1]

In Figure 3.7, we can see that the node reliability polynomials intersect 5 times at p =
0.0249, 0.0494, 0.340, 0.650, 0.804.

We repeat the process again with:

G3 =G2[C7] , G ′
3 =G ′

2[C6 +P1]
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Figure 3.8: Node reliability polynomials of G3 and G ′
3 intersect 7 times

Lexicographic operations |V (Gi )| |V (Hi+1)| |V (Gi+1)|
1st operation 5 6 30
2st operation 30 8 240
3st operation 240 7 1680

Table 3.2: Graph sizes in Example 3.1

Figure 3.8 shows that now the node reliability polynomials of G3 and G ′
3 have 7

intersection points, which are p = 0.003, 0.007, 0.069, 0.400, 0.566, 0.776, 0.843.
It is believed that starting from a graph pair whose node reliability polynomials have

one intersection point, and repeating such lexicographic product operations with CN

and CN−1 +P1 that have an ’appropriate size’ of N , we can generate 2 more intersection
points in each operation. Thus we can create two graphs, with the same number of nodes
and links, depicted in Table 3.2, that their node reliability polynomials have an arbitrary
odd number of intersection points.

Example 3.2. In this second example, we start from two 5-node-5-link graphs G0 and
G ′

0, as shown in Figure 3.9, whose node reliability polynomials do not intersect, see
Figure 3.10. The exact node reliability polynomials of G0 and G ′

0 are shown in Eq.(3.7)
and Eq.(3.8)

nRel (G0) = 3p5 −12p4 +20p3 −15p2 +5p (3.7)

nRel (G ′
0) = 2p5 −10p4 +19p3 −15p2 +5p (3.8)

Similarly, as in the first example, we conduct the lexicographic products as follows:

• Lexicographic product 1:
H1 =C8 , H ′

1 =C7 +P1

G1 =G0[H1] =G0[C8] , G ′
1 =G ′

0[H ′
1] =G ′

0[C7 +P1]



3

28 3. INTERSECTIONS OF NODE RELIABILITY POLYNOMIALS

Figure 3.9: G0 and G ′
0, two 5-node-5-link graphs whose node reliability polynomial do not intersect

Figure 3.10: Node reliability polynomial of G0 and G ′
0

Figure 3.11 shows that node reliability polynomials of G1 and G ′
1 have 2

intersection points at approximately p = 0.4050, 0.5919.

• Lexicographic product 2:

H2 =C7 , H ′
2 =C6 +P1

G2 =G1[H2] =G1[C7] , G ′
2 =G ′

1[H ′
2] =G ′

1[C6 +P1]

Figure 3.12 shows that node reliability polynomials of G2 and G ′
2 have 4

intersection points at approximately p = 0.0937, 0.3172, 0.6369, 0.7467.

• Lexicographic product 3:

H3 =C7 , H ′
3 =C6 +P1

G3 =G2[H3] =G2[C7] , G ′
3 =G ′

2[H ′
3] =G ′

2[C6 +P1]

Figure 3.13 shows that node reliability polynomials of G3 and G ′
3 have 6

intersection points at approximately:
p = 0.0153, 0.0124, 0.4525, 0.5192, 0.7683, 0.8213.
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Figure 3.11: Node reliability polynomials of G1 and G ′
1 intersect 2 times

Figure 3.12: Node reliability polynomials of G2 and G ′
2 intersect 4 times

Figure 3.13: Node reliability polynomials of G3 and G ′
3 intersect 6 times
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Lexicographic operations |V (Gi )| |V (Hi+1)| |V (Gi+1)|
1st operation 5 8 40
2st operation 40 7 280
3st operation 280 7 1960

Table 3.3: Graph sizes in Example 3.2

From the results of this example, it is believed that starting from a graph pair whose
node reliability polynomials do not intersect, and repeating such lexicographic product
operations with CN and CN−1 + P1 that have a ’appropriate size’ of N, we can also
generate 2 more intersection points in each lexicographic operation. Thus we can create
two graphs, with the same number of nodes and links, depicted in Table 3.3, such that
their node reliability polynomials have an arbitrary even number of intersection points.



4
NODE RELIABILITY VIA

ENUMERATION AND SIMULATION

In this chapter, using the Python tool developed by the author, we first present some
interesting results in brute-force enumeration of small graphs classes. Later in this
chapter, we apply crude Monte-Carlo(CMC) simulation to node reliability problems. The
performance of CMC is evaluated in the context of simulating node reliability problems.

4.1. ENUMERATION RESULTS
With tools in nauty & traces [30], we are able to efficiently generate all non-isomorphic
graph constructions in a graph class Ω(N ,L). The self-developed Python enumeration
tool enumerates all possible subsets of an inputted graph’s node set. The connected
subgraphs induced by these node subsets are counted with respect to the order, such
that we can obtain the connected-set coefficients ck for all possible orders k. Applying
the binomial theorem, the enumeration tool finally gives the node reliability polynomial
of a graph. We have enumerated the node reliability polynomials of all non-isomorphic
graphs of N ≤ 10.

In Chapter 3, we have discussed about the intersections of node reliability. In the
enumeration process, we have discovered the smallest graph pairs that have 1, 2, and 3
intersections points presented in Table 4.1. We know from the enumeration that when
graph size is smaller than 5, there does not exist a graph pair, with the same number of
nodes and links, whose node reliability polynomial intersect.

Intersection points Minimum graph size

1 intersection 5 nodes 5 links
2 intersections 8 nodes 7 links
3 intersections 9 nodes 12 links

Table 4.1: Smallest graph pairs that have 1, 2, and 3 intersection points
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Taking Ω(7,10) and Ω(10,12) as example, we provide some statistics about graph
class in Table 4.2.

Ω(7,10) Ω(10,12)

Number of non-isomorphic graphs 132 8548
Number of inflection points 1: 54; 2: 78 1: 6115; 2: 2433

Number of local extrema 0: 30; 2: 102 2: 8548
Number of fixed points 0: 88; 1: 44 0: 2; 1: 8424; 2: 122

Number of intersection points* 0: 6652; 1: 1994 0: 42581; 1: 16919; 2: 200

Number of intersection points*: the number of intersection points inΩ(10,12) is not the full data. The number
of all possible graph pairs inΩ(7,10) is

(132
2

)= 8646 while inΩ(10,12) there are
(8548

2

)= 36529878 possible
pairs. Due to the large computational load ofΩ(10,12), we have sampled 200 graphs from all 8548
non-isomorphic graphs and inspected the number of intersection points. The process repeated 3 times with no
repeatedly sampled graph in order to obtain more trustworthy statistics. The total number of graph pairs
considered is

(132
2

)×3 = 59700.

Table 4.2: Statistics about graph classesΩ(7,10) andΩ(10,12)

Over the entire simulation, we have observed that the number of non-isomorphic
graphs increases exponentially as the graph order increases. And as the graph order
increases, the behavior of graphs becomes richer: more fixed points, more inflection
points, more intersection points, more extrema.

4.2. CRUDE MONTE-CARLO SIMULATION IN NODE

RELIABILITY
We have implemented a CMC simulator in Python with the iGraph package. The
simulation is run on a moderate performance laptop with Intel(R) Core(TM) i7-8565U
CPU @ 1.80GHz and 12GB RAM. The simulation platform was chosen to be jupyter
notebook on a Windows 10 operating system in convenience of the author. To
understand the basic performance of the CMC simulation, we have set the graph order
to be 20 nodes. Due to the limited computational power and the exponential growth
of the enumeration time needed with respect to the number of nodes in a graph, 20
nodes is a size that is relatively large and stable enough to run on the author’s computer.
Besides, we have simulated different graph families: star graph, path graph, ring(cycle)
graph, full(complete) graph, and Erdős–Rényi random graph when the link probability is

set to be 1.05l̇ og 20
20 , slightly above the critical probability to ensure that the random graph

is connected but not too dense. A plot of the node reliability polynomials of the above
mentioned graphs of order 20 is presented in Figure 4.1.

We have sampled 19 ’p’ values in the simulation: 0.1, 0.2, ...,0.8, 0.9, 0.91, 0.92, ...,
0,98, 0.99. Because in real-life networks, usually the components are designed to be
very reliable hence we densify the samples in (0.9,1). The rounds of simulation is also a
usual concern in Monte-Carlo simulation, hence we have 41 different simulation round
samples in the range (1e2,1.25e5). Due to the random nature of many aspects of this
CMC simulation process, the experiment is repeated 10 times and here in figures 4.2,
4.5, 4.3, 4.4, 4.8, 4.6, 4.7 we present the averaged results.
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Figure 4.1: Sampled true values of the node reliability polynomials of the simulated graphs

Figure 4.2: Time consumption for CMC simulations of different rounds

Figure 4.2 presents the time consumption for our crude Monte-Carlo simulator over
different simulation rounds. We can see in the graph, as expected, the simulation time
increases linearly with respect to the number of simulation rounds.

Figure 4.3, Figure 4.4, and Figure 4.5 present the precision performance of the CMC
simulator over all p values. We can see that the error in complete graph simulation is very
small compared to other graphs, this is what is expected due to all non-empty subgraphs
of the complete graph is connected. Overall, the precision performance for different
graph families are similar. It is noticed that in Figure 4.4, the relative error of path graph
and ring(cycle) graph is higher than the other graph families. This is due to the long
decreasing interval in the node reliablity of these two graphs shown in Figure 4.1.

With 10000 rounds of simulation, which only cost approximately 10 seconds from
Figure 4.2, we can obtain an averaged error of 2e-3 over the entire interval of p ∈ (0,1).
With 70000 rounds of simulation, which would cost approximately 1 minute from Figure
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Figure 4.3: Mean absolute errors for CMC simulations of different rounds averaged over all p values

Figure 4.4: Relative errors for CMC simulations of different rounds averaged over all p values

Figure 4.5: Standard deviation for CMC simulations of different rounds averaged over all p values

4.2, we can obtain an averaged error of 1e-3 over the entire interval of p ∈ (0,1).
This shows that it is indeed costly to improve the precision performance of a crude
Monte-Carlo simulator.

It is also interesting to look at the performance of the crude Monte-Carlo simulator
for different p values as the node reliability value ranges from zero to one. Due to the
terrible performance of crude Monte-Carlo simulator over small rounds of simulations,
we filter out the data whose rounds of simulation is smaller than 1e4 to obtain
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Figure 4.6: Mean absolute errors with respect to different p values

Figure 4.7: Relative errors with respect to different p values

Figure 4.8: Standard deviation with respect to different p values

more meaningful results. Figure 4.6, Figure 4.7, and Figure 4.8 present the precision
performance of the CMC simulator for different p values. As expected, the relative error
is very high for path graph and ring graph for p values close to zero.

In fact, as we compare the true values and the errors of the CMC simulator, we can
spot a reversed tendency. However, theoretically speaking, it is well know that CMC
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simulators are not so good at simulating rare events. According to the data we have
obtained, for very unreliable cases, the graph remaining connected tends to become
a rare event and indeed the error rises. But for very reliable cases, when the graph
becoming disconnected tends to become a rare event, and the error does not rise.
Especially for complete graphs, which is an extreme case that the graph becoming
disconnected is almost impossible, but still has the lowest error in simulation. However,
the complete graph is a very special construction, the node reliability polynomial values
are too close to 1, such that the minor failure probability does not matter for precision
thresholds that are normally accepted by researchers.



5
CONCLUSIONS

This last chapter summarizes our findings and suggests future research direction.
In this thesis, we have looked into four aspects of the properties of node reliability

polynomials:

1. graph combination,

2. graph optimality,

3. intersection,

4. simulation.

In Chapter 2, we have presented the discovery and proofs of the additive properties
of connected-sets in fully joint graphs and disjoint union graphs in Theorem 2.2 and
2.1. These properties have the potential to contribute to a node-reliability preserving
graph reduction algorithm that reduces the computation load. However, the discovery of
such an algorithm also relies on the further research on the graph partitioning problem,
which, unfortunately, is generally a NP-hard problem. Besides, based on the optimality
of the combinatorics of connected sets of different orders, we propose a conjecture that
node-connectivity optimal complete bipartite graphs are optimal graphs. The analysis
of this conjecture narrows the unproven problem to another conjecture that regular
complete bipartite graphs Kn,n are optimal graphs in class Ω(2n,n2). Besides, we have
shown that an upper bound of the node reliability of a graph can be derived when the
degree sequence of the graph is known. Lastly, the exact solutions of some commonly
used graph families are given in the last section of this chapter.

In Chapter 3, we have presented a construction method relying on the lexicographic
operations to construct two graphs, with the same numbers of nodes and links, such
that their node reliability polynomials intersect an arbitrary number of times. We
further provided examples that contains graph pairs such that their node reliability
polynomials intersection points range from 0 to 6, and one example with infinitely many
intersections.

37
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Chapter 4 presents the smallest graph sizes for graph pairs whose node reliability
polynomials with 1, 2, and 3 intersections points. The performance of the crude
Monte-Carlo simulation is discussed. It is shown that improving the precision of the
crude Monte-Carlo simulator through increasing rounds of simulation is very costly
indeed. And the simulator tends to perform worse when the true node reliability values
are closer to zero, which often happens in large path graphs and cycle graphs. Overall,
when the node operational probability gets closer to one in a connected graph, the
precision performance of the crude Monte-Carlo simulator becomes better.

Still, there are many things unsolved and undiscovered in the field of node reliability
polynomials. Here we propose some of the potential future work directions:

1. Are regular complete bipartite graphs Kn,n optimal graphs?

2. An algorithm to reduce the computational load for node reliability polynomial is
still unknown for general graphs or even for most graph families. It is interesting
to see if, by any means, that there will be such an algorithm that would speed up
the computations.

3. An efficient variance reduction technique for Monte-Carlo simulation of node
reliability polynomial is still unknown. Most techniques and algorithms used in
simulating all-terminal reliability are based on the coherency of the system, which,
makes it impossible to apply them to the node reliability case.
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APPENDIX: THE COMPLETE

PYTHON MODULE FOR

ENUMERATING AND SIMULATING

NODE RELIABILITY POLYNOMIALS

1 # **** Documentation ****
2 #
3 # This python module contains several tools for users to
4 # compute Node reliability polynomials and relevant results.
5 #
6 # For more information concerning input output,
7 # look at the detailed description in the function code blocks.
8 #
9 # List of functions:

10 #
11 #
12 # ***Main functions***
13 #
14 # NRel
15 # ...Get the numerical number sequence of node reliability
16 # ...according to the input graph and probability sequence
17 #
18 # simulation
19 # ...Get the numerical number sequence of node reliability
20 # ...by Monte-Carlo simulation in user defined number of rounds
21 # ...according to the input graph and probability sequence
22 #
23 # NRelpolycoeff
24 # ...Get the (residual)node reliability polynomial coefficients

41
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25 # ...Where the variable is p, the node operational probability
26 #
27 # NRelpolycoeff_F
28 # ...Get the (residual)node reliability polynomial coefficients
29 # ...Where the variable is q, the node failure probability
30 #
31 # connected_set_poly
32 # ...Get the node connected set polynomial coefficeints of a graph
33 #
34 # NRelpolycoeff_K_def1 (No longer updated!!!)
35 # ...Get the k-connected component node reliability polynomial
36 # ...(definition 1) of a graph
37 # ...
38 # ...Definition 1:
39 # ...Perfect links, nodes operates independently with probability p.
40 # ...At least k nodes operational, all operational nodes are connected.
41 #
42 # NRelpolycoeff_K_def1 (No longer updated!!!)
43 # ...Get the k-connected component node reliability polynomial
44 # ...(definition 2) of a graph
45 # ...
46 # ...Definition 2:
47 # ...Perfect links, nodes operates independently with probability p.
48 # ...At least k nodes operational,
49 # ...theres a connected subgraph of at least k nodes.
50 #
51 #
52 # ***Auxillery functions***
53 #
54 # combi
55 # combi_all
56 # PolySolve
57 # SecondDerivative
58 # FirstDerivative
59 # extrema_count
60 # inflection_count
61 # fixedpoint_count
62 # intersection_count
63 # examine_clusters
64 # load_adjacency
65 #
66 #********************************************************************
67
68
69 import math
70 import statistics
71 import networkx as nx
72 import itertools as it
73 import numpy as np
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74 import matplotlib.pyplot as plt
75 import random as rand
76 import scipy.special
77 import igraph as ig
78
79
80
81 def simulation(probability_seq,H,rounds):
82 """
83 Calculate the numerical result of the node reliability of a graph
84 Input:
85 p: node operation probability sequence, all values must belong to [0,1]
86 H: a networkx graph or a list of tuples
87 that describes the edges of a graph
88 rounds: the number of rounds you want to simulate
89 Output:
90 The simulated numerical result of node reliability of the input graph
91 """
92
93 if type(H) is nx.classes.graph.Graph:
94 G = ig.Graph.from_networkx(H)
95 if type(H) is ig.Graph:
96 G = H.copy()
97
98 kappa = G.cohesion()
99 N = G.vcount()

100 result = np.zeros(len(probability_seq))
101 for i in range(rounds):
102 for k,pp in enumerate(probability_seq):
103 states = np.random.choice([0, 1], size=(N,), p=[1-pp, pp])
104 failed_nodes = np.array(np.where(states==0))[0]
105 if len(failed_nodes) < kappa:
106 result[k] += 1/rounds
107 else:
108 GG = G.copy()
109 GG.delete_vertices(failed_nodes)
110 if len(failed_nodes) != N and GG.is_connected() == True:
111 result[k] += 1/rounds
112 return result
113
114 def polyplot(R):
115 x = np.linspace(0,1,100)
116 plt.plot(x,PolySolve(x,R))
117
118 def combi(N,num):
119 """
120 Find all comibinations of ’num’ elements for int in [0,N-1].
121
122 Input:
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123 N total number of elements (numbering starts from zero!)
124 num number of elements in one combination
125
126 Output:
127 C the list with all combinations
128 """
129 return tuple(it.combinations(tuple(range(N)),num))
130
131
132 def combi_all(N):
133 """
134 Find all comibinations for int in [0,N-1].
135
136 Input:
137 N total number of elements (numbering starts from zero!)
138
139 Output:
140 AC the list with all combinations,
141 arranged from the empty set to N-element sets
142 """
143 return tuple(map(combi,it.repeat(N),range(N+1)))
144
145
146 def connected_set_poly(H):
147 """
148 This function generates the connected set node polynomial of a graph
149 Input:
150 H H can be a list of tuples that describes all edges in a graph,
151 or a networkx graph.
152 Output:
153 s The node connected set polynomial coefficients,
154 begins with the leading coefficient and ends
155 with the constant coefficient
156 """
157
158 if type(H) is nx.classes.graph.Graph:
159 G0 = H.copy()
160 N = G0.order()
161 mapping = dict(zip(G0, range(N)))
162 G0 = nx.relabel_nodes(G0,mapping)
163 G = ig.Graph.from_networkx(G0)
164 elif type(H) is ig.Graph:
165 G = H.copy()
166 N = G.vcount()
167 else:
168 N = len(np.unique(H)) #number of nodes
169 # G = nx.Graph(H)
170 G = ig.Graph(N,H)
171
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172 s=[0]*(N+1)
173 if N>0:
174 s[1] = N
175 if N>1:
176 s[2] = G.ecount()
177 kappa_det = G.cohesion()
178 for i in range(kappa_det):
179 s[N-i] = math.comb(N,N-i)
180 AC = []
181 for i in range(kappa_det,N+1-3):
182 AC.extend(combi(N,i))
183 for t in AC:
184 GG = G.copy()
185 GG.delete_vertices(t)
186 if GG.is_connected() == True:
187 l = N-len(t)
188 s[l] += 1
189 s.reverse()
190 return s
191
192 def load_adjacency(filename):
193
194
195 g = open(filename,’r’)
196 lines = g.readlines()
197 lines = [x for x in lines if x!=’\n’]
198 G = []
199 A = []
200 for i in range(len(lines)):
201 if ’Graph’ in lines[i]:
202 lines[i] = ’G’+lines[i][lines[i].index(’ ’)+1:lines[i].index(’,’)]
203 if i != 0:
204 G.append(nx.Graph(np.array(A)))
205 A = []
206 else:
207 lines[i] = lines[i][0:lines[i].index(’\n’)]
208 A.append(list(map(int,lines[i].split(’ ’))))
209 G.append(nx.Graph(np.array(A)))
210
211 return G
212
213 def NRel(p,H):
214 """
215 Calculate the numerical result of the node reliability of a graph
216 Input:
217 p node operation probability sequence, all values must belong to [0,1]
218 H a networkx graph or a list of tuples that describes the edges of a graph
219 Output:
220 The numerical result of node reliability of the input graph
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221 """
222
223 if type(H) is nx.classes.graph.Graph:
224 G0 = H.copy()
225 N = G0.order()
226 mapping = dict(zip(G0, range(N)))
227 G0 = nx.relabel_nodes(G0,mapping)
228 G = ig.Graph.from_networkx(G0)
229 elif type(H) is ig.Graph:
230 G = H.copy()
231 N = G.vcount()
232 else:
233 N = len(np.unique(H)) #number of nodes
234 # G = nx.Graph(H)
235 G = ig.Graph(N,H)
236
237 s = connected_set_poly(H)
238 s.reverse()
239 R_tot = [0]*len(p)
240 for j,q in enumerate(p):
241 R_temp = 0
242 for i,ss in enumerate(s):
243 R_temp += ss*(q**i)*((1-q)**(N-i))
244 R_tot[j] = R_temp
245 return R_tot
246
247
248 def get_subsets(fullset):
249 """
250 This function gives the power set of of link; the size of power set is 2^L
251 """
252 listrep = list(fullset)
253 n = len(listrep)
254 return [[listrep[k] for k in range(n) if i & 1 << k] for i in range(2 ** n)]
255
256
257 def NRelpolycoeff(H):
258 """
259 This function generates the (residual)node reliability polynomial of a graph
260 With p --- the node operation probability, as the variable of the polynomial
261 Input:
262 H H can be a list of tuples that describes all edges in a graph,
263 or a networkx graph.
264 Output:
265 R The (residual)node reliability polynomial coefficients,
266 with p --- the node operation probability,
267 as the variable of the polynomial begins with the
268 leading coefficient and ends with the constant coefficient
269 """
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270 if type(H) is nx.classes.graph.Graph:
271 G0 = H.copy()
272 N = G0.order()
273 mapping = dict(zip(G0, range(N)))
274 G0 = nx.relabel_nodes(G0,mapping)
275 G = ig.Graph.from_networkx(G0)
276 elif type(H) is ig.Graph:
277 G = H.copy()
278 N = G.vcount()
279 else:
280 N = len(np.unique(H)) #number of nodes
281 # G = nx.Graph(H)
282 G = ig.Graph(N,H)
283
284 s = connected_set_poly(G)
285 s.reverse()
286 s = tuple(s)
287 R = [0]*(N+1)
288
289 for k in range(N+1):
290 f = N-k
291 r_temp = [0]*(f+1)
292 for j in range(f+1):
293 r_temp[j] = (-1)**(j)*s[k]*math.comb(f, j)
294 R[k+j] += r_temp[j]
295 R.reverse()
296 # s.reverse()
297 return R
298
299
300 def PolySolve(x, coeffs):
301 """
302 Gives the numerical result of the polynomials
303 corresponding to the coefficent sequence of x.
304 Input:
305 x numerical sequence of the variable
306 coeffs coefficients of that polynomial
307 (starts from the leading coefficient)
308 Output:
309 y The numerical result of the coefficient sequence
310 corresponding to the input numerical sequence of the variable
311 """
312 y = 0
313 for i in range(len(coeffs)):
314 y += coeffs[-i-1]*x**i
315 return y
316
317
318 def FirstDerivative(R):



A

48
A. APPENDIX: THE COMPLETE PYTHON MODULE FOR ENUMERATING AND SIMULATING

NODE RELIABILITY POLYNOMIALS

319 """
320 Find the coefficients of the first derivative of a polynomial function
321 The polynomial coefficients start from the leading
322 coefficient to the constant coefficient.
323 Input:
324 R The input polynomial coefficient sequence
325 Output:
326 r The polynomial coefficient sequenceof the first
327 derivative of the input polynomial R
328 """
329 RR = R.copy()
330 l = len(RR)
331 r = [0]*(l-1)
332 for i in range(len(r)):
333 power = l-i-1
334 r[i] = RR[i] * power
335 return r
336
337
338 def SecondDerivative(R):
339 """
340 Find the coefficients of the second derivative of a polynomial function
341 The polynomial coefficients start from the
342 leading coefficient to the constant coefficient.
343 Input:
344 R The input polynomial coefficient sequence
345 Output:
346 r The polynomial coefficient sequence
347 second derivative of the input polynomial R
348 """
349 RR = R.copy()
350 l = len(RR)
351 r = [0]*(len(RR)-2)
352 for i in range(len(r)):
353 power = l-i-1
354 r[i] = power*(power-1)*R[i]
355
356 return r
357
358
359 def FindnumofRootsZeros2One(y):
360 """
361 This function finds the number of roots in (0,1)
362 ***Not used anymore***
363 """
364 x = np.linspace(0, 1, 10000)
365 count = 0
366 minus = 0
367 yy = y.copy()
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368 del yy[-1]
369 for i in range(len(yy)):
370 if i == 0 or i == 1:
371 continue
372 else:
373 if yy[i]*yy[i-1] <=0:
374 count += 1
375 if yy[i] == 0:
376 minus += 1
377 count = count - minus
378 return count
379
380
381 def extrema_count(R,p):
382 """
383 Statistics of the number of extemas of the input polynomials.
384 Input:
385 R List of polynomial coefficient lists.
386 The polynomial coefficients should start from leading
387 coefficient and ends with the constant coefficient.
388 p Print flag. Iff p is set to 1, then print the result, else no print.
389 Output:
390 cc The list contains the statistics of the
391 number of extremas of the input polynomials.
392 """
393 C = []
394 for r in R:
395 r1 = FirstDerivative(r)
396 c1 = len(list(set([np.round(np.real(x),4) for x in list(np.roots(r1))
397 if (np.isreal(x) == 1 and np.real(x)>0 and np.real(x)<0.99)])))
398 C.append(c1)
399 cc = [0,0,0,0,0,0]
400 for i in range(len(C)):
401 for k in range(len(cc)):
402 if C[i] == k:
403 cc[k] += 1
404 if p == 1:
405 print(’number of extremas’)
406 print(’ 0 1 2 3 4 5’)
407 print(cc)
408 return cc
409
410
411 def inflection_count(R,p):
412 """
413 Statistics of the number of inflection points of the input polynomials.
414 Input:
415 R List of polynomial coefficient lists.
416 The polynomial coefficients should start from leading
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417 coefficient and ends with the constant coefficient.
418 p Print flag. Iff p is set to 1, then print the result, else no print.
419 Output:
420 cc The list contains the statistics of the number of
421 inflection points of the input polynomials.
422 """
423 C = []
424 for r in R:
425 r1 = SecondDerivative(r)
426 c1 = len(list(set([np.round(np.real(x),4) for x in list(np.roots(r1))
427 if (np.isreal(x) == 1 and np.real(x)>0 and np.real(x)<0.99)])))
428 C.append(c1)
429 cc = [0,0,0,0,0,0]
430 for i in range(len(C)):
431 for k in range(len(cc)):
432 if C[i] == k:
433 cc[k] += 1
434 if p == 1:
435 print(’number of inflection points’)
436 print(’ 0 1 2 3 4 5’)
437 print(cc)
438 return cc
439
440
441 def fixedpoint_count(R,p):
442 """
443 Statistics of the number of fixed points of the input polynomials.
444 Input:
445 R List of polynomial coefficient lists.
446 The polynomial coefficients should start from leading
447 coefficient and ends with the constant coefficient.
448 p Print flag. Iff p is set to 1, then print the result, else no print.
449 Output:
450 cc The list contains the statistics of the
451 number of fixed points of the input polynomials.
452 """
453 step_size = 0.05
454 p0 = np.arange(0,1+step_size,step_size).tolist()
455 p = [round(num,2) for num in p0]
456 Cf = []
457 x = np.linspace(0,1,100)
458 for r in R:
459 rrr = r.copy()
460 rrr[-2] -= 1
461 c = len(list(set([np.round(np.real(x),4) for x in list(np.roots(rrr))
462 if (np.isreal(x) == 1 and np.real(x)>0 and np.real(x)<0.9999)])))
463
464 Cf.append(c)
465



A

51

466 cc = [0,0,0,0,0,0]
467 for i in range(len(Cf)):
468 for k in range(len(cc)):
469 if Cf[i] == k:
470 cc[k] += 1
471 continue
472 if p == 1:
473 print(’number of fixed points’)
474 print(’ 0 1 2 3 4 5’)
475 print(cc)
476 return cc
477
478
479 def intersection_count(R,p):
480 """
481 Statistics of the number of intersection points of all possible
482 2-combinations of the input polynomials.
483 Input:
484 R List of polynomial coefficient lists.
485 The polynomial coefficients should start from
486 leading coefficient and ends with the constant coefficient.
487 p Print flag. Iff p is set to 1, then print the result, else no print.
488 Output:
489 cc The list contains the statistics of the number of
490 intersection points of all possible 2-combinations of the input polynomials.
491 """
492 step_size = 0.05
493 Ci = []
494 for i in range(len(R)):
495 for j in range(len(R)):
496 if i != j:
497 r1 = R[i].copy()
498 r2 = R[j].copy()
499 r0 = [r1[x]-r2[x] for x in range(len(r1))]
500 c = len(list(set([np.round(np.real(x),4) for x in list(np.roots(r0))
501 if (np.isreal(x) == 1 and np.real(x)>0 and np.real(x)<0.9999)])))
502 Ci.append(c)
503
504 cc = [0,0,0,0,0,0]
505 for i in range(len(Ci)):
506 for k in range(len(cc)):
507 if Ci[i] == k:
508 cc[k] += 1
509 ccc = [int(i/2) for i in cc]
510 if p == 1:
511 print(’number of intersection points’)
512 print(’ 0 1 2 3 4 5’)
513 print(ccc)
514 return ccc
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515
516
517 def examine_clusters(selection,k,G,pr):
518 """
519 Input:
520 selection: select what to examine,
521 1 is the node reliability polynomial
522 with node operational rate p
523 2 is the node reliability polynomial
524 with node failure rate q
525 3 is the K-node operating componenet realibility
526 (definition 1*)
527 4 is the K-node operating componenet realibility
528 (definition 2**)
529 k: a list of k values to be examined
530 G: a list of networkx graphs
531 pr: print the result if pr equals to 1.
532
533 Output:
534 E: a list of the statistics***
535 of the number of extremas of each graph
536 I: a list of the statistics***
537 of the number of inflection points of each graph
538 F: a list of the statistics***
539 of the number of fixed points of each graph
540 IS: a list of the statistics***
541 of the number of intersection points
542 of all possible graph combinations
543
544
545 *Definition 1: Perfect links, nodes operates
546 independently with probability p.
547 At least k nodes operational,
548 all operational nodes are connected.
549
550 **Definition 2: Perfect links, nodes operates
551 independently with probability p.
552 At least k nodes operational,
553 there’s a connected subgraph of at least k nodes.
554
555 ***statistics: Currently a naive way of counting is used,
556 the counting starts from 0 and reaches 5.
557
558 If the output list is [10,20,30,40,50,60] for E(extremas),
559 this means there are 10 graphs with 0 extrema;
560 there are 20 graphs with 1 extremas;
561 there are 30 graphs with 2 extremas;
562 there are 40 graphs with 3 extremas;
563 ......
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564
565 The same goes for all E, I, F, IS.
566 """
567 E = []
568 I = []
569 F = []
570 IS = []
571 for x in k:
572 print(x)
573 R_t = []
574 for i in G:
575 if selection == 1:
576 R = NRelpolycoeff(list(i.edges()))
577 if selection == 2:
578 R = NRelpolycoeff_F(list(i.edges()))
579 if selection == 3:
580 R = NRelpolycoeff_K_def1(list(i.edges()),x)
581 if selection == 4:
582 R = NRelpolycoeff_K_def2(list(i.edges()),x)
583 R_t.append(R)
584
585 E.append(extrema_count(R_t,pr))
586 I.append(inflection_count(R_t,pr))
587 F.append(fixedpoint_count(R_t,pr))
588 IS.append(intersection_count(R_t,pr))
589 return E,I,F,IS
590
591
592
593
594
595
596
597
598 def NRelpolycoeff_F(H):
599 """
600 This function generates the (residual)node reliability polynomial
601 of a graph with q = 1-p --- the node failure probability,
602 as the variable of the polynomial
603 Input:
604 H H can be a list of tuples that describes all edges in a graph,
605 or a networkx graph.
606 Output:
607 R The (residual)node reliability polynomial coefficients,
608 with q = 1-p --- the node failure probability,
609 as the variable of the polynomial
610 begins with the leading coefficient
611 and ends with the constant coefficient
612 """
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613
614 if type(H) is nx.classes.graph.Graph:
615 G = H.copy()
616 N = G.order()
617 mapping = dict(zip(G, range(N)))
618 G = nx.relabel_nodes(G,mapping)
619 else:
620 N = len(np.unique(H)) #number of nodes
621 G = nx.Graph(H)
622 s = connected_set_poly(H)
623 s.reverse()
624 R = [0]*(N+1)
625 for k in range(N+1):
626 f = N-k
627 r_temp = [0]*(k+1)
628 for j in range(k+1):
629 r_temp[j] = (-1)**(j)*s[k]*scipy.special.comb(k, j, exact=True)
630 R[j+f] += r_temp[j]
631 R.reverse()
632 s.reverse()
633 return R
634
635
636 def NRelpolycoeff_K_def1(H,k):
637 """
638 This function generates the k-connected
639 component node reliability polynomial
640 (definition 1***)of a graph
641 With p --- the node operation probability,
642 as the variable of the polynomial
643 Input:
644 H H can be a list of tuples that describes
645 all edges in a graph.
646 Output:
647 R The k-connected component node reliability
648 polynomial coefficients, with p --- the node
649 operation probability, as the variable of the polynomial
650 begins with the leading coefficient and
651 ends with the constant coefficient
652
653
654
655 ***Definition 1: Perfect links,
656 nodes operates independently with probability p.
657 At least k nodes operational,
658 all operational nodes are connected.
659 """
660
661 if type(H) is nx.classes.graph.Graph:
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662 G = H.copy()
663 N = G.order()
664 mapping = dict(zip(G, range(N)))
665 G = nx.relabel_nodes(G,mapping)
666 else:
667 N = len(np.unique(H)) #number of nodes
668 G = nx.Graph(H)
669 s = connected_set_poly(H)
670 addition = [0]*k
671 s0 = [s[i] for i in range(N-k+1)]
672 s0.extend(addition)
673 s = s0.copy()
674 s.reverse()
675 R = [0]*(N+1)
676
677 for k in range(N+1):
678 f = N-k
679 r_temp = [0]*(f+1)
680 for j in range(f+1):
681 r_temp[j] = (-1)**(j)*s[k]*scipy.special.comb(f, j, exact=True)
682 R[k+j] += r_temp[j]
683 R.reverse()
684 s.reverse()
685 return R
686
687
688
689 def NRelpolycoeff_K_def2(H,k):
690 """
691 This function generates the k-connected
692 component node reliability polynomial
693 (definition 2***)of a graph
694 With p --- the node operation probability,
695 as the variable of the polynomial
696 Input:
697 H H can be a list of tuples
698 that describes all edges in a graph.
699 Output:
700 R The k-connected component node reliability
701 polynomial coefficients,
702 with p --- the node operation probability,
703 as the variable of the polynomial
704 begins with the leading coefficient
705 and ends with the constant coefficient
706
707
708
709 ***Definition 2: Perfect links,
710 nodes operates independently with probability p.
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711 At least k nodes operational,
712 there’s a connected subgraph of at least k nodes.
713
714 """
715
716 if type(H) is nx.classes.graph.Graph:
717 G = H.copy()
718 N = G.order()
719 mapping = dict(zip(G, range(N)))
720 G = nx.relabel_nodes(G,mapping)
721 else:
722 N = len(np.unique(H)) #number of nodes
723 G = nx.Graph(H)
724 s = connected_set_poly(H)
725 s.reverse()
726 R = [0]*(N+1)
727
728 for k in range(N+1):
729 f = N-k
730 r_temp = [0]*(f+1)
731 for j in range(f+1):
732 r_temp[j] = (-1)**(j)*s[k]*scipy.special.comb(f, j, exact=True)
733 R[k+j] += r_temp[j]
734 R.reverse()
735 s.reverse()
736 return R
737
738
739 def AllTerminalReliablility(p,edgelist):
740 N = len(list(np.unique(edgelist)))+1
741 M = len(edgelist)
742 all_states = combi_all(M)
743 R_tot = []
744 G = nx.Graph(edgelist)
745
746 for q in p:
747 R = 0
748 for i in range(len(all_states)):
749 GG = G.copy()
750 rem = [edgelist[x] for x in all_states[i]]
751 GG.remove_edges_from(rem)
752 if nx.is_connected(GG):
753 k = len(all_states[i])
754 x_k = (q**(M-k)) * ((1-q)**(k))
755 R = R + x_k
756 R_tot.append(R)
757 return R_tot
758
759 def allterminalpolycoeff(H):



A

57

760 L = len(H) #number of links
761 P = list(get_subsets(set(H)))
762 print(len(P))
763 N = len(np.unique(H)) #number of nodes
764
765 GG = nx.empty_graph(N)
766 GG.add_edges_from(H)
767 nx.draw(GG,with_labels = True,node_color=’yellow’)
768 plt.show()
769
770 s=[0]*(L+1)
771
772
773 for t in range(2 ** L):
774 G = nx.empty_graph(N)
775 l = len(P[t])
776 G.add_edges_from(P[t])
777 Gcc = sorted(nx.connected_components(G), key=len, reverse=True)
778 #ordered list containing all connected components
779 G0 = Gcc[0] #size of largest connected component
780 if (len(G0) == N):
781 s[l] += 1
782 R=[0]*(L+1)
783 for k in range(L+1):
784 som=0
785 for j in range(k+1):
786 som=som+(-1)**(j+k)*s[j]*scipy.special.comb(L-j, L-k, exact=True)
787 R[k]=som
788 R.reverse()
789 return R
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