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a b s t r a c t 

The correct prediction of a composite parts’ final performance is of paramount importance during the initial design 

phase of the manufacturing process. To this end the correct evaluation of the most effective process parameters 

and their influence on the parts performance is key for the success of the manufacturing process. Our aim with 

this paper is to provide methodologies for the prediction of the temperature field in thermoplastic composites 

during thermoforming and to propose a strategy for process parameter selection. We measured the temperature 

variations over the different thermoforming stages and compared these values with analytical and finite element 

results. Our results show the accuracy of the predictions and the importance of the correct laminate temperature 

with respect to the prediction of the parts’ spring-in angle. We discuss the essential features needed for accurate 

predictions of the temperature fields over the whole thermoforming process at an early design stage and the 

potential of a Machine Learning procedure based on Artificial Neural Network to aim for the optimum range of 

process parameters for a desired part performance outcome. In conclusion, we provide essential guidelines for 

blank temperature predictions, and the benefit of a machine learning-based tool over traditional approaches. 
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. Introduction 

Thermoforming of thermoplastic composites allows rapid transfor-

ation of flat laminates into the prescribed design by the combined

ction of heat and pressure [ 1 , 2 ]. 

The research conducted in thermoforming processes has been exten-

ive, and mainly focused on the influence of the manufacturing process

arameters on the resulting part characteristics. Table 1 lists some of

he studies present in the literature. 

The part development process starts typically with a conceptual de-

ign phase which results in the part manufacturing and testing. Unfortu-

ately, such process is often iterative, and required design modifications

re costly and time-consuming especially if deviations are detected at

he final stages of the product development [19] . In fact, the variation

f lay-up sequence, material, and processing parameters may introduce

ignificant variability in terms of the expected part performances. 

Predictions of thermoforming processes offered by finite element

odels (FEM) are useful to prevent trial and error testing so that ro-

ust and reliable process simulations can save costs and time during the

nitial design phase. Several deformation mechanisms take place during

orming of composite laminates amongst which trellis shear, friction and

ending are the most frequently implemented [20] . An overview of the

tudies on composite forming analysis can be found in [21] . However,

EM requires knowledge of the physical phenomena of the process, of
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he material constitutive models and often times a high computational

ost to obtain the required prediction is needed. A correct understanding

f the influence of different process parameters is missing since thermo-

orming is a complex, nonlinear multivariable process in which under-

tanding of the process parameters and of their interactions requires

ime-consuming experiments and simulations. Thus, there is a need for

aster and more reliable approaches for the design phase of thermoform-

ng of composites, so that final part characteristics, such as mechanical

roperties or void percentage, can be predicted with enough accuracy. 

Recently, data-driven approaches based on machine learning (ML)

echniques, such as Artificial Neural Network (ANN) have shown the

otential to influence the design phase in the composites manufactur-

ng industry [22] by means of detecting complex patterns relating the

rocess and material input to the process outcome, e.g. porosity and me-

hanical properties of the laminate [ 23 , 24 , 25 ] and optimization [26] .

his, especially in a design phase, can provide an effective tool to pre-

ict a specific output of the resulting composite, whereas the effects of

he involved phenomena are yet fully understood. A review on ANNs

pplied to polymer composites can be found in [27] . 

The objective of our paper is to provide a supporting tool for the

esign phase of thermoplastic composites produced via thermoforming

anufacturing. We focus on the prediction of the blank temperature

ver the process stages - blank heat-up in the heating stage, blank trans-

ort to the forming stage, and the blank forming - and the part spring-in
March 2021 
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Table 1 

State of the art of the effect of the influence of process parameters on the part characteristics. 

Authors (in alphabetical order) Process parameters Part characteristics 

Barnes et al. [3] Blank forming temperature, temperature-dependant material 

properties. 

Residual stresses. 

Chapman et al. [4] Cooling rate, crystallization, relaxation time. Residual stresses. 

de Luca et al. [2] Holding system, punch velocity, stacking sequence. Ply wrinkling, fibre reorientation. 

Dutta et al. [5] Dwell time, forming pressure, mould temperature, forming 

time. 

Thickness distribution, inner angles, voids, delaminations, 

fibre alignment. 

Friedrich et al. [6] Blank forming temperature, forming velocity, mould 

geometry. 

Out-of-plane fibre buckling, in-plane fibre wrinkling, 

thickness distribution. 

Han [7] Layup configurations, mould temperature. Spring-in angle. 

Hou [ 8 , 9 , 10 ] Die geometry, laminate dimension, blank forming 

temperature, mould temperature, forming pressure, holding 

time. 

Part shape, tensile strength, fibre buckling, spring-in angle, 

void content, flexural mechanical properties. 

Jain [11] Mould temperature, blank forming temperature. Void content, spring-in angle. 

Jar [12] Blank forming temperature. Mode I and II delamination resistance. 

Jeronimidis [13] Blank forming temperature, temperature-dependant material 

properties. 

Residual stress. 

Lessard [14] Preheating blank temperature, mould temperature, transfer 

time, stamping force. 

Part thickness, interlaminar shear strength, degree of 

crystallinity. 

McCool [15] Blank forming temperature, mould temperature, 

consolidation compaction ratio. 

Fibre volume fraction, surface roughness, manufacturing 

time, flexural strength, degree of crystallinity, cold 

crystallization temperature, reprocessing melt temperature. 

O’ Bradaigh [16] Blank forming temperature. Strength and stiffness. 

Tatsuno [17] Forming pressure, mould temperature. Void content, process time. 

Unger [18] Cooling rate, annealing. Residual stress. 
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perature. 
SI) angle induced upon cooling. The present work describes a holistic

pproach based on both analytical equations and FE simulations which

an be effectively used to understand the effect of process and material

ariables on the evolution of the blank temperature field. In addition, a

rst attempt to use ANN in thermoforming manufacturing is presented,

howing its potential as an effective tool for online monitoring and op-

imization of the thermoforming process. 

The article is organized as follow. Section II presents the method-

logies for the measurements and estimations of the temperature field

f the consolidated laminate during the thermoforming stages. Section

II reports the predicted temperature field obtaining via the previously

escribed methodologies. Section IV is devoted to the discussion of the

btained results. Finally, section V concludes the article with conclu-

ions and recommendations. 

. Methodology 

.1. General perspective 

Since we aim at developing a comprehensive approach to predict the

volution of the temperature field during thermoforming processes, we

o not limit our choice to a specific material. The selection we made

as based on the available materials for the experimental tests and on

he data present in the state-of-the-art. 

For the heating stage we investigated the effect of different infra-red

IR) heater temperature and number of plies in the blank. We used (1)

lass fibre reinforced polyetherimide (GF/PEI) woven composite 8 Har-

ess Satin supplied by Toray and (2) carbon fibre reinforced polyamide

2 (CF/PA12) woven prepreg with twill weave supplied by Schappe

echniques. PEI is an amorphous polymer with a glass transition tem-

erature (T G ) of 217 °C and a processing temperature in the range of

20–350 °C. PA12 is a semi-crystalline polymer with a melting temper-

ture of 176 °C and a processing temperature of 230 °C + /- 15 °C. 

For the temperature evaluation during the transport stages and the

emperature prediction during forming we used GF/PEI. For the predic-

ion of the spring-in angle developing upon cooling we considered plain

eave carbon fibre fabric reinforced polyetherimide (CF/PEI) from Ten

ate Advanced Composites. 

Two thermocouples were placed at the top and at the bottom of the

lank and temperatures were recorded by means of a Keithley Data Ac-
2 
uisition device from the heating to the forming stages. We used both

nalytical equations and FEM to predict the recorded temperature dur-

ng the experimental tests. We used FEM to predict the temperature dur-

ng forming due to the complexity of the contact interaction between the

lank and the forming dies. 

Table 2 gives an overview of the adopted strategy for the blank tem-

erature prediction for the thermoforming stages and the predictive ap-

roach employed. 

Although the blank temperature plays a critical role for the part qual-

ty and mechanical performances, other process parameters, such as the

orming pressure and the degree of cooling, can contribute to the op-

imization of the final component properties. Therefore, it is important

o have a tool that can also take into account the variation of multiple

nput parameters at the early design stage. McCool at al. [15] consid-

red three process control parameters for the thermoforming of carbon

bre/PPS thermoplastics laminate, namely the blank forming tempera-

ure, the mould tool temperature, and the mould tool consolidation com-

action ratio (CCR), which describes the ratio of the nominal closed tool

hickness over the nominal raw material thickness. They identified an

ptimal window for processing the part, along with the effect that the

rocess parameters selection had on seven final characteristics of the

anufactured parts, namely the variation of fibre volume fraction, the

ariation of surface roughness, the flexural strength, the degree of crys-

allinity, the cold crystallization temperature, and the reprocessing melt

emperature. We used the results reported in [15] to evaluate the ef-

ectiveness of the ANNs for thermoforming manufacturing optimization

n terms of the identification of the optimal processing parameters win-

ow. The comparison with the results obtained by [15] will be discussed

n the following section, along with the potential that our approach has

or both the early design stage and for inline process monitoring. 

.2. Experimental setup 

The used experimental setup is shown in Fig. 1 and consists of: 

• 21 ton pneumatic press; 

• Rig with integrated infra-red (IR) oven, blank holder, shuttle transfer

system and fume hood; 

• Press assembly with integrated soft-hard tool set with an omega

shape, and heating plate to keep the lower tool at a prescribed tem-
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Table 2 

Overview of the adopted strategy for the different stages. 

Stage Variable observed experimentally Sampling time (s) Material Predictive approach 

Heating Temperature 5 

2 

GF/PEI 

CF/PA12 

Analytical 

Transporting Temperature 0.2 GF/PEI Analytical 

Forming Temperature 10 GF/PEI FEM 

Cooling Spring-in angle / CF/PEI Analytical 

Fig. 1. Overview of the experimental setup [28] . 

Fig. 2. Blank holder positioned in the press assembly [28] . 
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Table 3 

Material properties of GF/PEI and CF/PA12 laminates. 

Material GF/PEI CF/PA12 

Density, 𝜌 [Kg/m 

3 ] 1910 1346 

Thermal conductivity (through 

thickness), k [W/m K] 

0.4 5.66 

Thickness, one ply [mm] 0.23 0.11 

Specific heat, C p [J/Kg K] 890 1052 
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A detailed report of the setup’s sub-components can be found in [28] .

The laminate is clamped using the blank holder (560 × 520) and

ositioned between the top and bottom IR lamps (500 × 500 mm). To

nsure a uniform heating of the laminate, the IR lamps were placed

t the same distance (150 mm) from the top and the bottom surface

f the blank to prevent the blank sagging upon heating. A pneumatic

ylinder was used to move the blank holder from the heating stage to

he forming stage, which is represented in Fig. 2 . Different volumetric

ow rates (litre/minute) were considered to evaluate the difference in

emperature drops resulting from the blank transport. The upper punch

nd the lower mould were 8 cm apart. 
3 
The use of a silicone rubber mould as the punch is preferred mainly

ue to the flexibility of the rubber which allows the adaptation to the

aminate thicknesses. Aluminium was used for the hard mould. Maxi-

um temperature for the aluminium when operating continuously was

imited to 220 °C, a value that the rubber could also withstand. 

.3. Prediction of the temperature field 

.3.1. Heating up stage 

We consider the following assumptions for the heat transfer problem

29] : (i) heat convection and radiation occur only in the thickness direc-

ion (no heat transfer around the edges), (ii) the thermal conductivity

 is isotropic, (iii) the ratio k/ 𝜌C P is temperature independent, where

is the density, and C P is the specific heat of the blank materials, (iii)

inearization of the thermal boundary conditions is acceptable. 

We use a coordinate system with the origin at the centre of the blank

aving the z-axis perpendicular to the blank plane. The governing dif-

erential equation for the heat conduction is 

𝜕 

𝜕𝑧 

[
𝑘 
𝜕𝑇 

𝜕𝑧 

]
= 𝜌𝐶 𝑝 

𝜕𝑇 

𝜕𝑡 
(1) 

The general solution for the temperature variation at the centre of

he blank ( z = 0) becomes 

 ℎ ( 0 , 𝑡 ) = 𝑇 𝐼𝑅 − 

(
𝑇 𝐼𝑅 − 𝑇 0 

) ∞∑
𝑛 =1 

4 sin 𝜆𝑛 
2 𝜆𝑛 + sin 2 𝜆𝑛 

𝑒𝑥𝑝 

( 

− 𝜆𝑛 𝑘𝑡 

𝜌𝐶 𝑝 𝑎 
2 

) 

(2)

here T IR is the heater temperature, T 0 the initial blank temperature, t

he elapsed time, a the half thickness of the blank, and 𝜆n are the roots

f the equation 

𝑛 tan 𝜆𝑛 − 

ℎ ℎ 𝑎 

𝑘 
= 0 (3)

ith h h the heat transfer coefficient for heating. To solve Eq. (3) we use

he values reported in Appendix B3 [30] selecting the 𝜆n in a range that

ould best fit the experimental data. The selected 𝜆n is associated to a

eported value of the Biot number (Bi) defined as 

𝑖 = 

ℎ ℎ 𝑎 

𝑘 
(4)

From Eq. (4) the h h value can be finally computed. 

The material properties required to compute Eq. (2) are reported

n Table 3 . We used the material properties at room temperature. For

F/PEI these properties were given in [31] , except for the density which

s provided in the product data sheet [32] . For CF/PA12 no material

ata were available from the supplier, except for the thickness [33] .

akeman et al. [34] used CF/PA12 provide by the same supplier and

hey reported a fibre volume fraction of 56%. We collect the data on the
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Fig. 3. Components of the FEM model in ABAQUS: mould (green), blank (red) 

and punch (blue). (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 
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A12 from [35] and we assume the use of T-300 carbon fibre [36] . We

hen performed a rule-of-mixture assessment to compute the material

roperties of the CF/PA12 laminate reported in Table 3 . 

.3.2. Transporting stage 

Similarly, the temperature variation at the centre of the blank ( z = 0)

uring the transporting stage ( T t ) can be expressed as 

 𝑡 ( 0 , 𝑡 ) = 𝑇 𝐼𝑅 − 

(
𝑇 𝐼𝑅 − 𝑇 ℎ 

) ∞∑
𝑚 =1 

4 sin 𝜆𝑚 
2 𝜆𝑚 + sin 2 𝜆𝑚 

𝑒𝑥𝑝 

( 

𝜆𝑚 𝑘𝑡 

𝜌𝐶 𝑝 𝑎 
2 

) 

(5)

here 𝜆m 

are the roots of the equation 

𝑚 tan 𝜆𝑚 − 

ℎ 𝑐 𝑎 

𝑘 
= 0 (6)

nd h c is the heat transfer coefficient for cooling, T h is the temperature

t the end of the heat-up stage and the other variables are the same

onsidered in Eq. (1) . We considered a [(0/90)(90/0)] blank of GF/PEI

aterial heated at 320 °C and then moved this blank to the forming

tage with a pneumatic actuator [37] with a prescribed volumetric flow

ate of 50 L/min. 

.3.3. Forming stage 

We performed a thermoforming test on a [(0/90)(90/0)] GF/PEI

aminate heated to 320 °C. We set the mould at 220 °C, just above the

 G of PEI, while the we kept the punch at room temperature since no

eating mechanisms was available for the upper tool. We set the pres-

ure of the punch actuator so that the punch would descend at a speed

f 4 mm/s. The forming step had a duration of approximately 220 s. 

We developed a finite element model in ABAQUS/Standard to pre-

ict the blank temperature field at the moment of closing of the mould.

ig. 3 shows the components of the FE model with different colours rep-

esenting the mould, the die and the punch, respectively in green, red

nd blue. Half of the geometries are considered due to the symmetry of

he problem. Symmetry boundary conditions on the displacements were

pplied on the left side of the components. The mould was constrained

n all the six degrees of freedom and the punch too, except for the verti-

al translation to allow the descending towards the mould. The laminate

as fixed on the right side allowing the translation in the vertical and

ateral directions. 

We employed a coupled structural/thermal analysis to simulate the

isplacement of the laminate towards the mould. We used 3D contin-

um elements (C3D8T) for both the blank and the tools. We modelled
4 
ach ply (0/90) as a single homogeneous solid. The orthotropic ther-

al properties as a function of the temperature were obtained from

31] . The orthotropic mechanical properties as a function of the tem-

erature were not available in literature. Hence, we assumed the ones

rom CF/PEI presented in [11] (see Table 4 ) due to the lack of influence

f the fibre material with respect to PEI for this kind of analysis. 

The key features of the simulation were the thermal properties of

he involved contacts, namely between the mould and the bottom ply,

etween the two (0/90) GF/PEI plies, and between the top ply and the

unch. The thermal contact properties are formulated in terms of con-

uctance (W/m 

2 K) and clearance (m) [38] . We selected the values of the

onductance and of the clearance that produced the best approximation

ith the experimental results. 

.3.4. Cooling stage 

We used a predictive analytical model based on the classical lami-

ation theory and we considered symmetric lay-ups subjected to a ho-

ogeneous change in temperature through the laminate thickness. The

ffect of viscoelasticity is considered by means of the variation of the

lastic and thermal properties as a function of the T G of the thermoplas-

ic matrix. We focused on the resulting curved portion of the formed part

ince for a symmetric lay-up the straight portions will remain straight

pon cooling if the cooling is uniformly. The effect of crystallinity is not

onsidered. 

The equation employed to compute the spring-in (SI) is [39] 

𝐼 = Δ𝑇 
(
𝜀 0 2 , 𝑇 , 𝑃 − 𝛼𝑍,𝑃 

)
(7)

here 

ΔT is the homogeneous temperature change along the laminate

hickness, 

𝜀 0 2 , 𝑇 , 𝑃 is the second component of the strain of the middle surface,

𝛼Z,P is the average thermal expansion coefficient of a laminate per-

endicular to the surface, computed as follow: 

𝑍,𝑃 = 

1 
ℎ 

[
Δℎ 𝑇 

(
ℎ 

2 

)
− Δℎ 𝑇 

(
− 

ℎ 

2 

)]
(8) 

here h is the laminate thickness, and Δh T represents the thickening of

he laminate which is the variation of the thickness due to the difference

etween the in-plane and out-of-plane strains in the plies which are due

o the variation of temperature [ 40 , 41 ], computed as 

ℎ 𝑇 ( 𝑧 ) = 

𝑧 

∫
0 
𝛼𝑧 𝑑𝑧 + 

𝑧 

∫
0 
𝑺 𝑛 𝝈

𝑥 
𝑇 
𝑑𝑧 (9)

here z is the coordinate normal to the surface, 𝛼z is the thermal expan-

ion coefficient in the thickness direction, S n is the normal component

f the compliance tensor and 𝝈𝑥 
𝑇 

is the vector representing the stress in

he laminate due to the temperature change. 

.3.5. ANN for thermoforming of thermoplastic composites 

ANN consists of many interconnected neurons in which one or more

calar inputs are multiplied by corresponding weights thus producing a

um of products that is used as input for a transfer function to produce a

calar output. In addition to the weights, a bias b is imposed to each neu-

on. Simply put, single neurons of such networks receive input signals

nd transform these input signals into output signals that are transmit-

ed to the next neuron along the processing direction. The functions that

etermine the input-output behaviour are called ’transfer functions’, i.e.

ctivation functions and output functions. The transfer function may be

hosen from a variety of available functions whose selection is based

ostly on trial-and-error tests of the ANN performance and results from

he literature [ 23 , 42 ]. 

The proposed methodology to predict one or more selected part char-

cteristics is based on (i) data preparation, (ii) ANN model building and

iii) evaluation. In the first step all the available data relevant to the

argeted aspect are gathered. We achieved this step considering data

orm the literature. Then we built the ANN model based on the training
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Table 4 

Material properties of CF/PEI [11] . 

Property E 11 = E 22 [GPa] E 33 [GPa] G 12 [GPa] 𝜈12 𝜈13 = 𝜈23 𝛼1 = 𝛼2 [ 𝜇𝜖/°C] 𝛼3 [ 𝜇𝜖/ °C] 

Below T G ( < 217 °C) 67 6 2.7 0.024 0.27 2.35 45.8 

Above T G ( ≥ 217 °C) 67 6 2.7 0.024 0.27 2.35 59.7 

Table 5 

Tests and process parameters overview [15] . 

Test 

Blank forming 

temperature [°C] 

Mould tool 

temperature [°C] CCR 

1 310 50 0.94 

2 310 110 0.97 

3 310 170 1.0 

4 340 50 0.97 

5 340 110 1.0 

6 340 170 0.94 

7 370 50 1.0 

8 370 110 0.94 

9 370 170 0.97 
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Fig. 4. ANOM for the effect of the blank forming temperature (a), the mould 

tool temperature (b), and the CCR (c) on the parts flexural strengths [15] . 

 

 

 

t  

a  

t  
ata selected form the available data from the previous step. Finally, a

elationship between the set of independent variables, i.e. process and

aterial parameters, and the targeted characteristics is inferred by ap-

lying the built relationship onto a new set of unseen data. 

Tables 5 and 6 show the overview of the tests [15] based on the

ariation of three process parameters and the results in terms of the

ffect on seven part characteristics of CF/PPS laminates, respectively. 

The authors conducted an analysis of means (ANOM) which allowed

hem to perform a series of virtual optimizations to predict the value

f the characteristics of the final parts. The influence of the values of

he process parameters within the chosen range, e.g. a blank forming

emperature of 330 °C, was assumed to follow a (piecewise) linear in-

erpolant function, as shown in Fig. 4 where the ANOM results of the

hree process parameters on the flexural strength are reported. 

We trained several ANNs considering the values reported in

ables 5 and 6 as input and output values for the models, respectively.

o evaluate the performance of the ANNs we considered 

a) different data allocation (%) for: Training (T), Validation (V), Test

(TT); 

b) hidden neurons number (HN). 

Nine combinations resulted from the considered approach, as re-

orted in Table 7 . 

We initially considered the optimization of process parameters to

btain the best output for the flexural strength. Then, we discussed the

nfluence of the data division and of the HN to obtain the best combi-

ation amongst the nine scenarios based on the comparison of the ANN

odels with the ANOM prediction performed by [15] . Lastly, we ap-

lied the best ANN model combination to the prediction of other three

art characteristics, namely (a) the derived production cycle time, and

f (b) the degree of crystallinity. Since the division of the data amongst

he three different sets (T, V, TT) was randomly performed, the ANN

as built five times for each scenario. For this investigation we used a

ayesian-Regularization and a sigmoid as training and transfer function,

espectively. The influence of these functions on the predictive capabil-

ty is beyond the scope of this work. 

Table 8 summarizes the architecture of the considered ANN models.

. Results 

.1. Heating up stage 

In the experimental tests we consider the influence of the following

arameters on the evolution of the temperature field: 
5 
1 The influence of different IR heaters temperatures - 300 °C, 400 °C

and 500 °C - for a [(0/90)(90/0)] GF/PEI consolidated blank. 

2 The influence of plies number N - 2, 4 and 6 - for a (0/90) N CF/PA12

consolidated blank. 

• Influence of IR heater temperature 

Fig. 5 shows the temperature increase at the top of the blank during

he heating up stage for the selected IR heaters temperatures. Firstly,

 larger temperature trend variation can be seen when the IR heaters

emperature was set at 500 °C with respect to trends observed for IR
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Table 6 

Results of the performed tests [15] . 

Test 

Variation of fibre 

volume fraction [ Δ%] 

Variation of Surface 

roughness [ Δ𝜇m] 

Derived production 

cycle time [s] 

Flexural Strength 

[MPa] 

Degree of 

crystallinity [%] 

Cold crystallization 

temperature [ °C] 

Reprocessing melt 

temperature [ °C] 

1 8.15 1.14 430 739 12.6 135 278 

2 5.39 1.05 522 765 20.8 132 278 

3 5.9 0.96 590 1015 29.4 113 280 

4 7.2 1.56 458 679 11.4 137 277 

5 7.07 1.58 533 721 12.5 137 279 

6 4.49 1.48 604 967 20.9 114 277 

7 5.11 1.16 483 645 8.9 134 275 

8 4.1 1.49 554 756 14.1 138 274 

9 5.81 1.18 624 955 20.8 114 274 

Table 7 

Overview of the ANN-based investigation. 

T 70%V 15%TT 15% T 70%V 25%TT 5% T 50%V 25%TT 25% 

HN 1 A B C 

HN 5 D E F 

HN 10 G H I 

Table 8 

Architecture of the ANN models. 

Hidden Layers number 1 

Hidden Neurons number - Input 1/5/10 

Hidden Neurons number - Output 3 

Training Function Bayesian-Regularization 

Transfer Function Sigmoid 

Fig. 5. Temperature variation at the top of the GF/PEI blank during the heat-up 

stage for prescribed IR heaters temperatures (300 °C, 400 °C and 500 °C). 
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Fig. 6. Comparison of experimental ( ◊) and estimated ( ∗ , o) temperature pro- 

files at the top of the GF/PEI blank for the resulting heat transfer coefficient 

h = 12.5 W/m 

2 K. 

Fig. 7. Temperature variation at the top of the CF/PA12 blank during the heat- 

up stage for IR heaters at 500 °C for blanks with 2, 4, and 6 plies. 

 

o  

d  

t  

c  

a

3

 

F  

t  

t  

4  

d  

t  

f  

s

emperatures of 300 °C and 400 °C. The heat transfer phenomena are

omplex and this might represent a possible reason for such temperature

ehaviour. Secondly, it can be seen that only when the temperature of

he IR heaters was set at 500 °C the temperature of the blank increased

bove the PEI glass transition temperature of 217 °C. The reason can be

ound in the dominance of the heat losses with the environment over

he provided heat. We hence focused our predictions only on the case

f the IR heater temperature of 500 °C. 

From Appendix B3 in [30] we chose the first root 𝜆1 to solve the

ranscendental Eq. (3) that produced the best fit with the experimental

ata. This 𝜆1 is 0.085. The resulting Biot number (Bi) is 0.0072. The

omputed heat transfer coefficient h h is 12.5 W/m 

2 K. Fig. 6 shows the

omparison between the experimental data and the estimated values of

he temperature profiles at the top of the blank using Eq. (2) . 

• Influence of plies number 

We considered the heating of three blanks with 2, 4 and 6 plies,

espectively, with a IR heaters temperature of 500 °C. Fig. 7 displays the

hree experimental temperature profiles. The measurements stopped at

50 °C which is the end of the processing temperature range for PA12. 
6 
We used the same procedure based on [30] to estimate the solution

f Eq. (3) . Figs. 8–11 show the comparison between the experimental

ata and the estimated values of the temperature profiles at the top of

he three considered blanks. The evaluation of the heat transfer coeffi-

ients via the previously described procedure led to values between 6

nd 7.9 W/m 

2 K. 

.2. Transporting stage 

The temperature recorded from the top of the blank is reported in

ig. 11 . It can be seen that after an initial plateau (0 - 0.7 s) due to the

ime lag between initializing the temperature recording and the actua-

ion of the pneumatic actuator the blank temperature drops for about

5 °C in about 3 s before reaching a new plateau and starting again to

rop with a lower rate. The trend is due to the fact that in the first 3 s

he blank is moved towards the forming station without any insulation

rom the open environment. After 3 s the blank has reached the forming

tation with a lower mould temperature of 200 °C. 
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Fig. 8. Comparison of experimental ( ◊) and estimated ( ∗ , o) temperature pro- 

files at the top of the 2-ply CF/PA12 blank for the resulting heat transfer coef- 

ficient h = 7.9 W/m 

2 K. 

Fig. 9. Comparison of experimental ( ◊) and estimated ( ∗ , o) temperature pro- 

files at the top of the 4-ply CF/PA12 blank for the resulting heat transfer coef- 

ficient h = 6.3 W/m 

2 K. 

Fig. 10. Comparison of experimental ( ◊) and estimated ( ∗ , o) temperature pro- 

files at the top of the 6-ply CF/PA12 blank with the resulting heat transfer co- 

efficient h = 6.0 W/m 

2 K. 

Fig. 12. Comparison of experimental ( ◊) and estimated ( ∗ ) temperature profiles 

at the top of the 2-ply GF/PEI blank with the resulting heat transfer coefficient 

h = 42.3 W/m 

2 K. 

Fig. 13. Evolution of the temperature field at the top and bottom of the GF/PEI 

laminate during the thermoforming cycle test; T mould = 220 °C. 

 

s  

F  

e  

e  

p  

h

3

 

t  

t  

a  

d  

7 
To predict the temperature variation during forming we adopted the

ame procedure used for the heating up prediction now using Eq. (4) .

ig. 12 shows the comparison between the experimental data and the

stimated values of the temperature profiles at the top of the blank. The

valuation of the heat transfer coefficients via the previously described

rocedure led to 42.3 W/m 

2 K, a much higher value than that for the

eating stage due to the movement of the blank. 

.3. Forming stage 

Fig. 13 shows the temperature evolution at the top and at the bot-

om of the blank during the whole process, namely heating up the blank,

ransport and forming. Focusing on the forming step (starting at t = 120 s

nd ending at t = 440 s), the top ply experiences a higher temperature

rop than the bottom ply due to the contact with the punch at room tem-
Fig. 11. Experimental temperature profile at the top of the 

2-ply GF/PEI blank transported from the heating stage to the 

forming stage; volumetric flow rate 50 L/min. 
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Fig. 14. Formed blank resulting from the FEA. 

Table 9 

Comparison between the temperature values at the forming stage of 

the experimental tests and the FEM; T mould = 220 °C. 

Position Experimental T [ °C] Numerical T [ °C] Variation (%) 

Top 205 205 n.a. 

Bottom 211 214 + 1.4 
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Fig. 15. Comparison between the experimental ( ◊) and estimated ( ∗ ) temper- 

ature values during forming at the top of the blank; T mould 220 °C. 

Fig. 16. Comparison between the experimental ( ◊) and estimated ( ∗ ) temper- 

ature values during forming at the bottom of the blank; T mould 220 °C. 

Fig. 17. Evolution of the experimental temperature field at the top and bottom 

of the GF/PEI laminate during the thermoforming cycle test; T mould = 240 °C. 
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erature. The temperature at the end of the forming stage was 211 °C

nd 205 °C at the bottom and at the top of the blank, respectively. In

erms of blank manufacturing such test would not be appropriate since

he blank temperature is below the T G of PEI. The modification of the

etup conditions for a proper thermoforming process, such as both the

ould and the punch made of steel to increase the allowable tools tem-

erature, is not within the scope of our current work. 

The conductive heat transfer between the contact surfaces is defined

y [38] 

 = 𝑘 
(
𝜃𝐴 − 𝜃𝐵 

)
(10)

here q is the heat flux per unit area crossing the interface from point

 on the first surface to point B on the other, 𝜃A and 𝜃b are the tempera-

ures of the points on the surfaces, and k is the gap conductance, which

s also dependant on the clearance between A and B, where a clearance

qual to zero means that the gap is closed, i.e. the two surfaces are in

ontact. are 

The values of the gap conductance and of the gap clearance for the

odelled contacts played a major role in the prediction accuracy. For

implicity, we kept the gap clearance fixed to 0.1 for all the contacts

nd then we varied the gap conductance value. The gap conductance

alues for the involved contacts were tuned so that the temperature at

he top of the blank was the same of the temperature resulted from the

xperimental test. 

Fig. 14 shows the FEA of the resulting laminate after the forming

tage, in which the colour represents the magnitude of the vertical dis-

lacement. Based on this simulation, the nodes in the centre of the blank

n top and on bottom were evaluated in terms of their temperature vari-

tion. 

Table 9 reports the experimental and numerical values of the temper-

ture for the top and the bottom surfaces of the blank with the relative

ariation (%). 

The gap conductance values that gave the best fit are reported in

able 10 . It can be seen that even if those values were obtained to fit

he numerical results they still retain a physical meaning. In fact, a lower

alue of the gap conductance represents a higher value of thermal re-

istivity. Hence, it is reasonable to expect a higher value of gap conduc-

ance between the plies, where ideally the contact between the layers is

erfect, a lower value of gap conductance between the top ply and the

unch, where the heat absorption capability of the rubber mould is poor,

nd an intermediate gap conductance value for the contact between the

ottom ply and the aluminium mould. 
8 
Figs. 15 and 16 show the comparisons between the experimental and

he estimated temperature profiles obtained via the FE analysis using the

eported values of gap conductance for the top and the bottom surfaces

f the blank, respectively. Only the forming stage was addressed in this

imulation. For both top and bottom side of the blank a temperature

rops well below the equilibrium temperature in the experimental tests

t the very beginning of the forming step is recorded by the thermocou-

les. The drop is more notable for the top of the blank than for the bot-

om. This behaviour is related to the rubber punch that came in contact

ith the top blank which is much colder with respect to the mould. The

lank temperature reaches its equilibrium at 205.5 °C and at 211.5 °C

or the surfaces at the top and the bottom of the blank, respectively. 

The equilibrium temperature at the top and at the bottom of the lam-

nate predicted by the FEA is in good agreement with the experimental

alues. However, to validate the model, we performed an additional test

n which the we set the mould temperature at 240 °C. 

Fig. 17 shows the temperature evolution at the top and at the bot-

om surfaces of the blank obtained in the experimental test with a higher

ould temperature of 240 °C. Figs. 18 and 19 show the comparison be-

ween the experimental and estimated values of the temperature at the
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Table 10 

Conductance value of the contacts of the FE simulation. 

Bodies in contact Mould-Bottom Blank Plies Punch-Top Blank 

Gap conductance [W/m 

2 K] 2600 10,000 100 

Fig. 18. Comparison between the experimental ( ◊) and estimated ( ∗ ) temper- 

ature values during forming at the top of the blank; T mould 240 °C. 

Fig. 19. Comparison between the experimental ( ◊) and estimated ( ∗ ) temper- 

ature values during forming at the bottom of the blank; T mould 220 °C. 

Table 11 

Comparison between the temperature values at the forming stage of 

the experimental tests and the FEA; T mould = 240 °C. 

Position Experimental T [ °C] Numerical T [°C] Variation (%) 

Top 227 221 - 2.6 

Bottom 232 233 + 0.4 
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Fig. 20. Spring-in angle evolution upon cooling. 
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op and at the bottom surfaces of the blank. The equilibrium tempera-

ures are 227 °C and 232 °C at the surface of the top and at the bottom of

he blank, respectively. A very good agreement with the experimental

alues is obtained, as reported in Table 11 . 

.4. Cooling stage 

Fig. 20 shows the evolution of the part spring-in (SI) angle upon

ooling for the considered material and layup. The values of the spring-

n angle at room temperature was 1.23°, in agreement with 1.2° reported

y [11] . 

Results show an expected linear trend with a different slope of the SI

ariation occurring at the glass-transition temperature due to the varia-

ion of the 𝛼3 value. 

.5. ANN for thermoforming of thermoplastic composites 

Table 12 reports the results of the ANOM approach performed by

15] . 

In Table 13 the predicted values of the flexural strength based on the

NN models for the optimal process parameters (310 °C/170 °C/0.94)
9 
re listed in terms of the mean value and the standard deviation (SD).

ig. 21 offers a graphic visualization of such results compared to the

NOM value. 

It can be seen that the predicted mean flexural strength values for ev-

ry scenario is consistent with the ANOM value (as reported in Table 11 ).

ocusing on the SD values, the lowest values are obtained for scenarios

, E, and H in which most of the data were devoted for the training and

alidation sets (70% and 25%, respectively). In terms of the effect of the

umber of hidden neurons a basic observation can be done by averag-

ng the SD values for the three considered cases, i.e. 𝑆𝐷 𝐴𝐵𝐶 , 𝑆𝐷 𝐷𝐸𝐹 ,

𝐷 𝐺𝐻𝐼 . Results show that the lowest average SD value is 𝑆𝐷 𝐷𝐸𝐹 which

efers to a number of hidden neurons equal to 5. A lower SD can be in-

erpreted as an ANN with a higher predictive performance. Hence, for

N = 5 the ANN models have improved the prediction performance but

or HN = 10 such performance is decreased. This phenomenon is called

verfitting. Determining a priori how many HN a model should have is

ot straightforward and ultimately it depends on the type of the analysed

ata. We can only conclude that for the selected scenarios the combi-

ation that offer the best predictive performance is the one with HN = 5

nd data allocated as 70% T, 25% V, and 5% TT, and we considered this

cenario (i.e. scenario E) for the prediction of the derived production cy-

le and the degree of crystallinity. The results are reported in Table 14

howing a good agreement with the ANOM values shown in Table 12 . 

. Discussion 

We measured the temperature evolution during the different thermo-

orming stages and we investigated traditional analytical and numerical

pproaches as well ML-based algorithms to predict the temperature vari-

tion of the blank. 

For both the heating up and the transport stages, it is crucial to mit-

gate the heat losses for both the heating and the transporting stages.

he main parameters that have to be taken into account at the design

hase are the number of plies of the blank and the convective heat trans-

er coefficient. We showed that for the employed setup when two more

lies were added, i.e. from 2 to 4, and from 4 to 6, the time needed to

each the forming temperature increased by about 20 s. The value of

he convective heat transfer coefficient was not measured but estimated

nd considered as a tuning parameters for the analytical investigation.

 more robust estimation can be provided by its direct measurement.

ore importantly, the adopted analytical model is based on several as-

umptions that although reasonable for the considered cases, i.e. heat

onvection and radiation occurring only in the thickness direction in a

hin laminate, they might not be suitable for a more general application.
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Table 12 

Optimized process parameters with ANOM [15] . 

Optimized part characteristic 

Optimal process parameters ANOM 

prediction Blank forming temperature [ °C] Mould tool temperature [ °C] CCR 

Flexural strength [MPa] 310 170 0.94 979 ± 87 

Derived production cycle time [s] 310 50 0.94 438 ± 15 

Degree of crystallinity [%] 310 170 0.97 27.8 ± 5.3 

Fig. 21. Comparison between the flexural strengths for the 

optimal process parameters: ANOM vs. ANNs. 

Table 13 

Predicted values of the flexural 

strengths based on the ANN models. 

Scenario Flexural Strength [MPa] 

A 944 ± 74 

B 976 ± 0 
C 915 ± 73 

D 986 ± 14 

E 994 ± 6 
F 1000 ± 39 

G 927 ± 94 

H 990 ± 0 
I 980 ± 54 

Table 14 

ANN predicted values for scenario E. 

ANN value 

Derived Production time [s] 430 ± 0 
Degree of crystallinity [%] 28.0 ± 0.4 

ANN value Variation ANN/ANOM (%) 

Flexural strength [MPa] 994 ± 6 1.5 

Derived Production time [s] 430 ± 0 1.8 

Degree of crystallinity [%] 28.0 ± 0.4 0.7 
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onetheless, they provide a starting point addressing the main physical

arameters involved in the thermoforming process. 

The prediction of the blank temperature during forming illustrated

he importance of the conductance values of the contact between the

lank and the forming tools, which depends on the involved materials. 

The effectiveness of the numerical model to predict the temperature

f the blank during forming is strongly dependant upon the thermal

ontact properties. The adopted values are empirical and their order

f magnitude well represent the conductivity properties of the differ-

nt materials. Nonetheless, a better understanding of such properties is

eeded to provide a more robust formulation for different materials that

ight be used in the forming process, e.g. steel. 

For the cooling stage, the temperature played a major role for the de-

elopment of the SI angle upon cooling. The analytical predictive model

e used is a Classic Laminate Theory-based analysis, valid for symmetric
10 
ay-ups and uniform variation of temperature through the blank thick-

ess. The model shows the importance of the variation of the stiffness

nd thermal properties of the polymer phase as a function of the polymer

 G . 

Lastly, we applied ANNs for the evaluation of the optimum values of

he process parameters to achieve maximum flexural strength, minimum

erived production cycle time and maximum degree of crystallinity for

he final manufactured part. The optimum values resulting from the

NN model well agree with the traditional ANOM analysis. It is im-

ortant to consider that: 

• In terms of the optimum processing parameters windows an ap-

proach based on ANN with respect to the traditional ANOM is not

necessarily better, 

• However, the ANN tool offers a higher capability to explore the

whole design space to relate process parameter inputs and mechan-

ical property outputs, 

• Ultimately, the ANN tool gives the capability to provide an inline

manufacturing control so that the value of multiple process parame-

ters can continuously be fed into the ANN model to obtain a real-time

prediction of the mechanical properties. 

• The number of experimental data samples are very minimal and

more data points are typically needed for any ML-based application.

To overcome such issue in manufacturing two strategies can be im-

plemented. The first one is based on validated FE models that can be

used as data generators, while the second one is based on techniques

based on virtual samples generators [43] . 

. Conclusion 

This work provides the strategy for the prediction of the temperature

volution of the blank during the thermoforming stages, i.e. heating,

ransporting, forming, and cooling down. The described methodologies

epresent an effective tool for accurate prediction of temperature espe-

ially at the initial design phase where the influence of different ma-

erial, thickness, layup, and setup on the blank temperature evolution

uring thermoforming have to be taken into account. These factors need

o be carefully considered at the initial design phase, 
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An optimization of the process is here proposed based on ANN mod-

ls. The approach has the potential to provide good estimations of se-

ected part characteristics as function of several process parameters. Al-

hough the application of ML-based approaches to manufacturing pro-

esses is still at an early phase, the potential are evident since predic-

ive models can be built even if complex relationships between the pro-

ess variables are unknown and then not analytically/numerically com-

utable. This capability will enable improved design choices and inline

onitoring capabilities for composites thermoforming leading to both

ime and material saving. Overall, it would enable the proper design of

omposite constituents, manufacturing processes and process parame-

ers to obtain a specific functionality for the manufactured part. Due to

he importance of the number of initial data with respect to the predic-

ion accuracy, more research is required to solve this challenge. Promis-

ng strategies can be found both in virtual samples and in FE models as

ata generators. 
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