
SurTree: constructing optimal survival trees with MurTree

Tim Huisman1

Supervisor(s): Emir Demirović1, Jacobus G. M. van der Linden1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 20, 2023

Name of the student: Tim Huisman
Final project course: CSE3000 Research Project
Thesis committee: Emir Demirović, Jacobus G. M. van der Linden, Burcu Özkan

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
Survival analysis revolves around studying and pre-
dicting the time it takes for a particular event to
occur. In clinical trials on terminal illnesses, this
is usually the time from the diagnosis of a patient
until their death. Estimating the odds of survival
of a new patient can be done by analyzing survival
data from past patients in similar conditions. To
cluster similar patients based on a set of features,
survival trees may be employed, which act as deci-
sion trees that assign a survival distribution to each
cluster. Many algorithms exist for creating use-
ful survival trees, but not for creating optimal sur-
vival trees. In this paper, research on finding opti-
mal classification trees is applied to survival analy-
sis, by adapting the MurTree algorithm to construct
survival trees. We present SurTree, an algorithm
that applies many of MurTree’s techniques to cre-
ate globally optimal survival trees. Furthermore,
we compare the output quality and runtime perfor-
mance of SurTree to a state-of-the-art method for
constructing survival trees, showing its optimality
and its fast computation times on smaller datasets.

1 Introduction
In medical research, particularly in studies on terminal ill-
nesses, one of the most informative and studied outcomes of
an experiment is the time between the diagnosis of a disease
and the death of the patient, may it occur during the obser-
vation period. By comparing these interval lengths between
groups that have received different treatments, conclusions
can be drawn about the effectiveness of said treatments. This
field of research is called survival analysis, as it focuses on
analyzing survival rates. The field can, however, be general-
ized to other situations as well, as long as there is a clearly
defined point in time from which the experiment and timing
start, and a concrete and non-repeatable event of interest to
observe, like the termination of a contract or the malfunction-
ing of a machine.

Besides treatment trials, another common usage of survival
analysis is prediction. Estimates on the survival chances of a
patient after a certain amount of time can be made by ob-
serving how many others have survived for at least as long.
Based on certain attributes of a patient, like age, BMI, or pre-
vious diagnoses, these estimates can be made more accurate,
by comparing the patient to others who were similar to them.

A decision tree, also called a survival tree in this context,
is a model that can classify patients into one of a set of prede-
termined buckets by answering a small number of questions
about them (see Fig. 1). These questions are often binary
predicates (yes/no-questions), such as “Is the patient at least
50 years old?” or “Does the patient have a BMI of at most
25?” Due to their easily interpretable structure, decision trees
are a popular model. This is not just because humans can
use them to classify patients manually, but also because the
construction of a good decision tree can reveal important cor-
relations between patient data and their survival rates.

Figure 1: An example of a survival tree. In each leaf node, the
survival rate is calculated using the Kaplan-Meier estimator (Kaplan
& Meier, 1958).

While the traversal of decision trees is easy, the construc-
tion of such a decision tree can be quite complicated, as it is
not clear at first glance what attributes matter the most and
how exactly they affect the chances of survival. In fact, it
has been proven that when faced with certain size constraints,
constructing globally optimal decision trees, for which the
misclassification on a certain dataset is as small as it can pos-
sibly be, is an NP-hard problem (Hyafil & Rivest, 1976).

Because of the difficulty of the problem, efforts have
been made to construct non-optimal but still effective deci-
sion trees. The most popular method is the Classification
And Regression Trees (CART) algorithm (Breiman, 1984),
which uses greedy heuristic techniques to recursively parti-
tion a dataset to minimize the classification error or the mean
squared error, depending on the type of tree. This algorithm
has become quite popular, but cannot be directly translated to
survival analysis, due to its inability to support censored data,
which often occurs in survival analysis. This obstacle was
later tackled by Davis and Anderson (1989), who provided an
algorithm that applies recursive splitting of censored survival
data with an interface similar to CART. Further algorithms
based on CART would be developed by LeBlanc and Crow-
ley (1993), Su and Fan (2004), Bertsimas et al. (2022), and
others, each applying different splitting techniques. Despite
these efforts, research on globally optimal survival trees has
not yet become popular.

However, with hardware and algorithms having improved
significantly in the last decades, research on globally optimal
classification and regression trees, which optimize an error
function to its absolute minimum, has flourished. Instead of
heuristic methods, these algorithms tend to rely on exhaus-
tive search. This search can be optimized using techniques
such as dynamic programming (Aglin et al., 2020; Demirović
et al., 2022; Nijssen & Fromont, 2007), mixed-integer opti-
mization (Bertsimas & Dunn, 2017; Zhu et al., 2020) or SAT
(Narodytska et al., 2018).

The recent developments in optimal decision trees moti-

vate the study of whether its techniques can be translated
to the field of survival analysis. The aim is to extend an
algorithm to find globally optimal survival trees with re-
gard to a certain metric. The mixed-integer optimization and
SAT-techniques might prove difficult support survival anal-
ysis, due to many formulas and floating-point numbers in-
volved. The focus of this research therefore lies on MurTree
(Demirović et al., 2022), a state-of-the-art dynamic program-
ming algorithm, which implements several optimization tech-
niques to improve its scalability. These techniques might
prove to be useful in the search for the best survival tree for a
given dataset.

Main contributions. In this work, we aim to show that
MurTree can be adapted to construct optimal survival trees.
Pointwise, the main contributions offered in this paper are:

• A new algorithm called SurTree1, which adapts and op-
timizes MurTree for survival analysis.

• A numerical analysis on the objective score of the trees
generated by SurTree, comparing them to the trees gen-
erated by a state-of-the-art heuristic method and thereby
demonstrating the optimality of SurTree.

• A numerical analysis showing how an improvement of
the objective score correlates with an improvement of
Harrell’s C-index (Harrell et al., 1982), another metric
often used in survival analysis.

• A numerical analysis describing how the runtime of
SurTree scales with the number of instances, the max-
imum depth of the tree, and other attributes, while com-
paring it to a heuristic method’s runtime.

2 Preliminaries
To properly communicate the aim of this paper and the pro-
cess that was followed, it needs to be clear what terms and
symbols will be used to describe the concepts and which con-
crete objective function needs to be optimized. In Section 2.1,
the terminology that will be used in this paper will be intro-
duced and explained. Following that in Section 2.2, we will
derive the objective function that will be minimized by our
algorithm.

2.1 Terminology
A feature f is a piece of information that describes a certain
attribute of an entity. Similarly to MurTree (Demirović et al.,
2022), we will consider all features to be binary predicates,
i.e. statements about the entity which are either true or false.
F = {f1, f2, . . . , f|F|} is the set of all relevant features that
could apply to an entity. A feature vector fv is a list of fea-
tures that are considered true for a particular entity and can
be used to describe the entity as a whole. If a feature fj is
true, we write fj ∈ fv or say that the feature is present. If it
is false, we write fj ∈ fv or say that the feature is absent.

An event of interest is the non-repeatable event for which
the time until occurrence is measured within a certain trial. In
future text, this will also be referred to as event or death. The

1Publicly available at: https://github.com/TimHuisman1703/
surtree/tree/master

time-to-event is the amount of time between the start of the
observation of a particular entity and the occurrence of the
event of interest.

In trials, it might happen that the exact time-to-event is
unknown, possibly due to a patient leaving the trial before
the event of interest could be observed. This phenomenon
in which information after a certain timestamp is lacking is
called right-censoring, from now on referred to as just cen-
soring. Despite the ambiguity of censored data, it still pro-
vides useful information about an entity’s survival up until the
time of the last observation. Censored data and non-censored
data are therefore both used for training.

An instance (ti, δi, fvi) is an observation of one particular
entity within a trial. It is described by a feature vector fvi,
a binary censoring indicator δi stating whether the event of
interest was observed, and a strictly positive time ti. If the
observation is not censored (δi = 1), ti denotes the time-to-
event, otherwise (δi = 0) it denotes the latest time of obser-
vation. A dataset D is a list of instances from a certain trial.

A decision tree is a model that partitions instances based
on their features. In this setting, we consider decision trees
as full binary trees, where each node is either a decision node
with two children, or a leaf node with no children. Each de-
cision node is assigned a certain feature to split on, and each
leaf node is assigned a certain label. An instance that needs
to be classified is first passed to the root. Whenever it is at
a decision node, it is passed down to its left or right child,
depending on whether the feature that the node checks for
is present within the instance. Eventually, the instance will
reach a leaf node, at which point it will be classified with the
label of that node.

A survival tree (see Fig. 1) is a special type of decision tree
that can be used in survival analysis. A classified instance in
a survival tree is assigned not a numeric label, but a survival
distribution that describes their odds of survival after a certain
amount of time.

If a dataset D is split on feature fj , the subset of instances
for which fj is present is written as D(fj) and the subset for
which fj is absent is written as D(fj). As more splits are
made, more features are added in between the parentheses.
For example D(f1, f3, f4) denotes the set of all instances in
D for which f1 and f4 are present, but f3 is absent.

2.2 Objective function
In order to construct optimal survival trees, a definition of
optimality must be stated. Usually, a tree is considered op-
timal if it minimizes or maximizes a certain objective func-
tion when classifying a given dataset. Several different types
of metrics can be considered as an objective function, such
as Harrell’s C-index (Harrell et al., 1982) or the Integrated
Brier score (Graf et al., 1999). In this paper, we will follow
the example of the Optimal Survival Trees (Bertsimas et al.,
2022) algorithm, from now on referred to as OST, and make
use of the objective function defined by LeBlanc and Crowley
(1992).

The objective function assumes that for each leaf, the curve
indicating the survival rate over time is described by Eq. (1).
It is important to note that this formula only has to be used
to quantify the error of a split; once a tree has been created,

https://github.com/TimHuisman1703/surtree/tree/master
https://github.com/TimHuisman1703/surtree/tree/master

Figure 2: A visualization of how θ affects a survival distribution
S(t). Every plot uses the same Λ̂(t), but use θ = 0.5, θ = 1 and
θ = 2 respectively.

the actual survival curve can instead be estimated using the
Kaplan-Meier estimator (Kaplan & Meier, 1958).

S(t) = P (T ≥ t) = e−θΛ(t) (1)

In this equation, Λ(t), represents the baseline cumulative
hazard function, which can be interpreted as the cumulative
probability of dying at a given time, according to the dataset.
θ is a coefficient that can differ per class or instance. A higher
θ indicates a higher risk of dying sooner, an example being
shown in Fig. 2.

The true cumulative hazard function cannot be deduced
from samples alone, but it can be estimated using the Nelson-
Aalen estimator (Aalen, 1978; Nelson, 1972):

Λ̂(t) =
∑
i:ti≤t

δi∑
j:ti≤tj

1
(2)

While deciding the value of θ for a set of observations,
we are aiming to maximize the likelihood of these observa-
tions. The formula used for the likelihood of an observation
depends on whether it is censored or not. For non-censored
observations, we know the exact time t at which the event
took place, and can therefore calculate the likelihood using
s(t) = d

dx (1−S(x))|x=t. Here, 1−S(t) represents the prob-
ability of the event happening before the time t. For censored
observations, however, we only know the event takes place
later than a given time and we should therefore use S(t).

The likelihood for a given observation can thus be written
as follows:

L(t, δ) =

{
e−θΛ̂(t) δ = 0

(θ d
dt Λ̂(t))e

−θΛ̂(t) δ = 1
(3)

The likelihood for all observations in D within a certain
leaf can be generalized to:

L =
∏

(ti,δi,fv)∈D

(θ
d

dt
Λ̂(ti))

δie−θΛ̂(ti) (4)

By maximizing the likelihood, the following formula for
any coefficient for a leaf node is obtained:

θ =

∑
(ti,δi,fv)∈D δi∑

(ti,δi,fv)∈D Λ̂(ti)
(5)

If D were to contain only one instance (ti, δi, fvi), Eq. (5)
could be rewritten as Eq. (6). This formula gives the saturated
coefficient of the instance, i.e. the coefficient that perfectly
maximizes the likelihood for that one instance alone.

θsati =
δi

Λ̂(ti)
(6)

The error that a particular instance contributes is defined
as the difference between the log-likelihood of the chosen θ
for its leaf node and the log-likelihood of θsati . This func-
tion translates to Eq. (7). It is worth pointing out that if a
leaf node only classifies one instance from the dataset, then it
holds that θ = θsati . Consequently, the error for that instance,
and therefore for the entire leaf node, will be 0.

Error(D, θ) =∑
(ti,δi,fv)∈D

(−δi log Λ̂(ti)− δi log θ − δi + Λ̂(ti)θ) (7)

The error of the entire survival tree is calculated by sum-
ming the error at each of the leaves.

Error(D, T) =
∑

n∈Leaves(T)

Error(Dn, θn) (8)

This is the error function that will need to be minimized
during the construction of the survival tree T . OST uses this
error function as well, but it uses gradient descent to find local
optima for it. For that reason, it does not always manage to
minimize this error as much as possible.

3 Review of MurTree
In this section, a short overview will be given on the original
MurTree algorithm. Since the algorithm is used for classifi-
cation instead of survival analysis, there are a few differences
with regard to the problem description:

• Instead of a time t and a status δ, each instance is as-
signed a binary label l ∈ {0, 1}. A dataset D can then be
partitioned in D0 and D1 containing the instances with a
label of 0 and 1 respectively. It holds that D0 ∪D1 = D
and D0 ∩ D1 = ∅.

• Instead of being assigned a survival distribution, each
leaf node is assigned either the label 0 or 1, which will
be used to classify the instances that reach it.

• Instead of a particular survival analysis metric, the error
that has to be minimized is the number of instances that
are misclassified.

In Section 3.1 the general recursive structure of MurTree
will be explained. Following that, Section 3.2 will elaborate
on the terminal tree solver used to speed up base cases. Fi-
nally, Section 3.3 describes the computation of lower bounds
based on similar datasets.

3.1 Recursive definition
MurTree is a dynamic programming algorithm that constructs
optimal classification trees. applies an exhaustive search over
all possible decision trees by recursively splitting over every
possible feature at any node in the tree. Given a dataset D, a
maximum depth d, and a maximum number of decision nodes
n, the baseline recursive function for finding the error of the
best decision tree is described in Eq. (9) (Demirović et al.,
2022).

T (D, d, n) =

T (D, d, 2d − 1) n > 2d − 1

T (D, n, n) d > n

min{|D0|, |D1|} n = 0 ∨ d = 0

min{T (D(f), d− 1, n− i− 1)

+ T (D(f), d− 1, i)

: f ∈ F , i ∈ [0, n− 1]} n ̸= 0 ∧ d ̸= 0

(9)

The first and second cases in this equation enforce the
depth d and the number of nodes n to be consistent, since
there exist no trees for which n > 2d − 1 or d > n. The third
case is a base case, reached when the maximum depth or the
maximum number of nodes does not allow for more recur-
sions. At this point, a label needs to be assigned to the new
leaf node. The best strategy to minimize the error is to mis-
classify the smallest class among D0 and D1, resulting in an
error of min{|D0|, |D1|}. Finally, the fourth equation iterates
over every possible feature to split on and every distribution
among the two subtrees of the number of nodes that can still
be used. This ensures that every possible tree is observed,
guaranteeing optimality.

To prevent redundant calculations, dynamic programming
is employed, memoizing T (D, d, n) for later use. D can
be summarized by either hashing each instance (dataset-
caching) or by hashing the splitting features used to obtain
D (branch-caching).

3.2 Terminal solver
Instead of the base case where d = 0, shown in Eq. (9),
MurTree makes use of a specialized terminal solver that can
efficiently calculate trees with a maximum depth of 2. The
idea is to iterate over each label l ∈ {0, 1} and each pair
of features (fi, fj) ∈ F2, and calculate the frequency count
FQl(fi, fj), which is the number of instances in Dl for which
fi and fj are both present. FQl(fi, fj) can be interpreted as
the obtained error if the branch with D(fi, fj) is not assigned
the label l. FQl(fi, fi) will be abbreviated as FQl(fi).

Once these frequency counts are computed, similar counts
of other branches can be deduced using the following formu-
las:

FQl(fi) = |Dl| − FQl(fi) (10)

FQl(fi, fj) = FQl(fi)− FQl(fi, fj) (11)

FQl(fi, fj) = FQl(fj)− FQl(fi, fj) (12)

FQl(fi, fj) = |Dl| − FQl(fi)− FQl(fj) + FQl(fi, fj)
(13)

The error for a branch can be calculated if the FQ0- and
FQ1-value for that branch are known, by taking the mini-
mum of these two values. By iterating over each (fi, fj)-pair,
the tree with the smallest error can be found. This increases
performance drastically, as the algorithm spends a lot of time
constructing trees of this size and this method does not re-
quire any more actual splits to be made or recursions to be
done. A drawback of this method is its heaviness in terms of
space complexity, as storing these frequency counts requires
a matrix of O(|F|2)-size. However, if the number of features
stays below for example 103, no problems will occur.

3.3 Similarity lower bounds
If a lower bound is known for the error of a certain tree, that
lower bound can be used to determine whether it is still pos-
sible to improve on the smallest error known so far and prune
the search if it is not. MurTree determines lower bounds for
T (Dnew, d, n) by comparing it to a previously calculated er-
ror T (Dold, d, n). Each instance can contribute at most 1 to
the total error, making it possible to construct a lower bound
for the error yet to be calculated, using the following formula
(Demirović et al., 2022):

T (Dold, d, n)− 1 · |Dold \ Dnew| ≤ T (Dnew, d, n) (14)

4 SurTree
In the coming sections, we will discuss the changes that are
needed to develop a variant of MurTree for survival analysis,
from now on referred to as SurTree. This is considered to be
the main contribution of this research. Section 4.1 indicates
how instances are represented to support the new task. In
Section 4.2, the chosen objective function is analyzed, and
technical conclusions about the algorithm are drawn from it.
Section 4.3 describes how to adapt the terminal solver to fit
the new objective function. In the end, Section 4.4 explains
why the similarity lower bound does not translate to SurTree.

4.1 Instance representation
In MurTree, instances are defined as a combination of a fea-
ture vector and a binary label. In code, this label is not ex-
plicitly assigned as an integer stored together with the vector;
instead, the vectors are bucketed per class, with a list per class
containing all instances that have been assigned their label.

In SurTree, the binary label is replaced with a time and a
censoring indicator. The instances are no longer bucketed and
instead are stored unordered in one list.

Another important matter is the cumulative hazard func-
tion Λ̂(t). Once this function is estimated using Eq. (2), the
output of this function for each instance is precomputed and
stored within the instance itself. This precomputation is done
to prevent redundant method calls and calculations.

4.2 Objective function
As stated in Section 2.2, the error of a tree T can be calculated
using Eq. (5), Eq. (7) and Eq. (8). A major technical differ-
ence between MurTree’s misclassification and SurTree’s er-
ror is that the error is not defined as a natural number. This
means that the data type of any variable related to the error of

a tree must be converted from integers to floating-point num-
bers.

Since θ appears in a logarithm in Eq. (7), it is required that
θ is strictly positive for any leaf node. Otherwise, the error
would be an undefined number or negative infinity, neither
option being applicable in calculations. When observing Eq.
(5), it becomes clear that for θ to be positive, the following
condition must hold:

0 <
∑

(ti,δi,fv)∈D

δi

This means there must be at least one non-censored obser-
vation in each leaf node. For this reason, before a split is
made, the algorithm first verifies whether both sides receive
at least one instance for which δi = 1. If that is not the case,
no recursion takes place.

To encourage the algorithm to return less complex trees,
a complexity parameter α can be used to provide a bias to-
wards trees with fewer nodes. The objective function from
Eq. (8) may then be extended by including a function
Complexity(T), defined as the number of decision nodes in
T , which is multiplied by α. This turns the objective function
into Eq. (15).

Objective(D, T) = Error(D, T) + α · Complexity(T) (15)

There are two important properties of this error function
that allow it to be adapted to MurTree. Firstly, the error for
each leaf node can be independently calculated, given only
the instances that reach the node and nothing else; the error
function is separable, which is one of the assumptions that
MurTree relies on (Van der Linden et al., 2023). Secondly,
the error of a tree is the sum of the errors of its children; this
allows the errors to be easily merged, similarly to MurTree’s
misclassification score. These two properties indicate that
this objective function is fit to be utilized for SurTree as well
(Van der Linden et al., 2023).

4.3 SurTree’s terminal solver
The terminal solver from MurTree provides an enormous in-
crease in performance, and should therefore make a return in
SurTree. Van der Linden et al. (2023) provides a format to
generalize this solver, which is applied in this section.

Due to the complexity of the error function and the fact that
the error depends on the calculation of θ, more informative
values than the frequency count need to be precomputed in
order to obtain usable data. We can determine which values
to precompute by considering the formula for θ in Eq. (5) and
the error function in Eq. (7).

First, we split Eq. (7) into several summations:

Error =
∑
i

−δi log Λ̂(ti) +
∑
i

−δi log θ

+
∑
i

−δi +
∑
i

Λ̂(ti)θ

=
∑
i

−δi log Λ̂(ti)− log θ
∑
i

δi −
∑
i

δi + θ
∑
i

Λ̂(ti)

Then, by substituting Eq. (5) into the above formula, we
get the following:

Error =
∑
i

−δi log Λ̂(ti)− log(

∑
i δi∑

i Λ̂(ti)
)
∑
i

δi

−
∑
i

δi +

∑
i δi∑

i Λ̂(ti)

∑
i

Λ̂(ti)

=
∑
i

−δi log Λ̂(ti)− log(

∑
i δi∑

i Λ̂(ti)
)
∑
i

δi−
∑
i

δi+
∑
i

δi

=
∑
i

−δi log Λ̂(ti)− log(

∑
i δi∑

i Λ̂(ti)
)
∑
i

δi (16)

This redefinition of the error function is expressed as a
function of a few sums, which can be precomputed in the
same way the frequency counts FQ are in MurTree. There
are three values that need to be calculated, which can be re-
ferred to as the event sum ES, the hazard sum HS, and the
negative log hazard sum NLHS.

ES(fi, fj) =
∑

(tk,δk,fv)∈D(fi,fj)

δk (17)

HS(fi, fj) =
∑

(tk,δk,fv)∈D(fi,fj)

Λ̂(tk) (18)

NLHS(fi, fj) =
∑

(tk,δk,fv)∈D(fi,fj)

−δk log Λ̂(tk) (19)

To calculate similar values for other branches, Eq. (10),
Eq. (11), Eq. (12) and Eq. (13) may be used.

The definitions of the three values in Eq. (17), Eq. (18),
and Eq. (19) can be substituted in Eq. (16), which leaves us
with the following equation, used by SurTree to calculate the
error:

Error = NLHS − ES log(
ES

HS
) (20)

After this calculation, the same process from MurTree is
applied to find the optimal decision trees with a maximum
depth of 2.

4.4 Removal of the similarity lower bound
The similarity lower bound as it is implemented in MurTree
relies on the assumption that removing one instance can only
decrease the error at a leaf node by at most 1. For SurTree’s
objective function, however, the maximum error is not limited
to 1. Since the log-likelihood of a parameter is not bound be-
tween two values, the difference between two log-likelihoods
is not bound below a certain number. Therefore, the similar-
ity lower bound from MurTree cannot be transferred without
giving up the guarantee of optimality. Consequently, this fea-
ture has been removed from SurTree.

5 Computational Evaluation
To test SurTree on a variety of aspects, experiments have been
conducted on a collection of datasets. Section 5.1 describes
how the experiments were prepared. Section 5.2 shows how
SurTree improves on OST in optimizing the objective func-
tion. In Section 5.3, both algorithms are compared in run-
time, showing both the strengths and weaknesses of SurTree.
Finally, in Section 5.4, a new tree quality metric called Har-
rell’s C-index is introduced, to demonstrate how optimizing
the objective can also help in optimizing other metrics.

A summary of the experiment results can be found in Ap-
pendix B.

5.1 Setup
In order to test the performance of SurTree, datasets are
needed. Even though many datasets that are based on real
trials are publicly available, the decision has been made to
test the algorithm on synthetically generated datasets instead.
This is to better test the scalability of SurTree with regard to
certain adjustable parameters. These parameters include the
number of instances n, the number of binary features f , and
the fraction of censored instances c.

To generate the dataset, the following procedure was fol-
lowed:

1. Generate n feature vectors of size f such that each fea-
ture has a 50% probability of being 1, regardless of other
features.

2. Randomly generate a survival tree T of depth 5 with 25

leaf nodes that splits on random features, and assign a
random distribution to each leaf node (see Appendix A
for a list of used distributions).

3. For each of the n instances, classify the instance using
the tree and assign it a random time-to-event ti by sam-
pling from the corresponding leaf distribution. After
that, assign the instance a random value ui, uniformly
distributed between 0 and 1.

4. Choose the lowest value for k such that for at most c ·
100% of the observations it holds that k(1− u2

i) < ti.

5. For each observation for which k(1− u2
i) < ti, set ti =

k(1−u2
i) and δi = 0. For every other observation, leave

ti and set δi = 1.

Five datasets were generated for each combination of
the parameters n ∈ {100, 500, 1000, 5000, 10000}, f ∈
{10, 50, 100} and c ∈ {0.1, 0.5, 0.8}. The generated datasets
were run on both SurTree and OST for different maximum
depths d ∈ {2, 3, 4, 5}, without any limit being posed on the
number of nodes specifically, implicitly allowing 2d − 1 de-
cision nodes. This makes for a total of 900 experiments. The
code used to generate the datasets can be found in SurTree’s
repository2.

Both algorithms have been tested on the same personal
computer. The complexity parameter α has been set to 0, as
this parameter seems to be interpreted differently by MurTree
and OST, making a fair comparison difficult.

2See footnote 1.

Figure 3: The objective score of SurTree and OST over the maxi-
mum tree depth for one particular dataset. n is set to 5000, f to 50
and c to 0.5.

For SurTree, a time limit of 10 minutes was enforced for
each run. To save on time, whenever a test on a particular
dataset timed out on a certain depth, all tests that on paper are
at least as hard to compute were skipped. Formally, if a test
with settings (ni, fi, ci, di) times out, then any later test with
settings (nj , fj , cj , dj) such that ni ≤ nj ∧ fi ≤ fj ∧ ci =
cj ∧ di ≤ dj was skipped and assumed to time out as well.

For OST, a total of 100 starting positions were used for
each test. As all parameters were already defined from the
start, no parameter tuning has been done during runtime.

5.2 Objective score
The objective function as defined in Eq. (7) can be any num-
ber from 0 up to infinity. To normalize this, we will compare
the error of a tree T to the error of a tree without any decision
nodes, referred to as T0. T can then be assigned a score using
the formula in Eq. (21). Under the assumption that adding
new splits to T0 will never increase the error, this score is
limited between 0 and 1.

Score(D, T) = 1− Error(D, T)

Error(D, T0)
(21)

Since SurTree explicitly searches for global optima of
Error(D, T), whereas OST searches for local optima, the ex-
pectation is that SurTree’s score is never less than OST’s
score. The experiments that were run back up this claim, as
SurTree always seems to equal or outperform OST with re-
gard to the objective function. In Fig. 3 an example of the
difference between the scores is visualized. For lower max-
imum depths, generally up to 2 or 3, the algorithms tend to
find the same tree with naturally also the same score. As the
maximum depth increases, however, SurTree starts surpass-
ing OST in score, as OST cannot easily find the best tree any
longer.

5.3 Runtime
The difference in approach between SurTree and OST be-
comes even more apparent once their runtime is observed. As

Figure 4: The average runtime of SurTree and OST over the maxi-
mum tree depth. n is set to 5000, the average over each value for c is
taken and f varies per curve. One data point is missing, indicating a
time-out. The 95% confidence intervals, though thin, are included.

seen in Fig. 4, SurTree is faster for lower maximum depths.
As the maximum depth increases, SurTree’s runtime seem-
ingly grows exponentially, whereas OST’s runtime appears
to grow in a more linear fashion. As more features are added,
OST starts to perform better than SurTree. From the 900 runs
that were executed, SurTree completed 838 of them within
the time limit of ten minutes.

With regards to the number of instances n, SurTree and
OST both scale almost linearly. However, SurTree’s runtime
seems to gradually flatten, whereas OST’s runtime grows
steeper over n.

It needs to be mentioned that a problem was encountered
in the runtime analysis of OST. In some occasions, a delay
of 10 seconds would occur before the algorithm would start
training. This problem was identified by sudden peaks in the
runtime data and the fact that the progress bar, which usu-
ally appears immediately on screen, would sometimes only
appear after 10 seconds. OST is closed-source, which made
it impossible for us to remove the delay or exclude it from the
timing.

Instead, this problem was fixed by trying to identify when
a delay happened in a test. Since the length of the delay was
very consistent in each occurrence, we could detect a delay by
reading the console output 3 seconds after initiating the train-
ing process. If no progress bar was printed after 3 seconds,
the delayed test would be rerun. Anyone trying to replicate
the runtime results should be aware of this problem and our
solution.

5.4 Harrell’s C-index
Harrell’s C-index (Harrell et al., 1982) is another metric that
can be used to evaluate survival trees. The principle behind
this statistic is that if an instance i is known to die earlier
than an instance j (meaning ti < tj), then it should also be
classified with a higher risk (θi > θj). If this is the case for
a certain pair of instances, this pair is called concordant. If

Figure 5: SurTree’s difference in Harrell’s C-index in comparison to
OST, plotted over its improvement on the objective score.

instead θi < θj , then the pair is called discordant. In the case
that θi = θj , the pair is said to have a tied risk.

Since some observations are censored, and therefore the
time-to-event might not be known, we can only make state-
ments about pairs for which the instance with an earlier time
is not censored. This way, no matter whether the later in-
stance is censored or not, its event cannot have occurred ear-
lier than the other event.

The number of concordant, discordant, and tied-risk pairs
can be calculated using the following formulas respectively:

CC =
∑
i,j

1(ti < tj)1(θi > θj)δi (22)

DC =
∑
i,j

1(ti < tj)1(θi < θj)δi (23)

TR =
∑
i,j

1(ti < tj)1(θi = θj)δi (24)

Harrell’s C-index is computed using the following formula:

HC =
CC + 0.5 · TR
CC + TR+DC

(25)

This value can range between 0 and 1, with higher values
being preferred. Without any splits, the C-index will equal
0.5.

For each of the 838 runs that SurTree completed, the C-
index was calculated. As can be seen in Fig. 5, an improve-
ment from SurTree on OST in the objective score correlates
positively with an improvement in the C-index. Such an im-
provement is not guaranteed, as SurTree produced 49 trees
with a worse C-index than the trees produced by OST for the
same settings. However, in the other 426 cases where the
SurTree’s objective score was higher, so was its C-index. The
average difference in Harrell’s C-index between SurTree and
OST was 0.0087.

6 Responsible Research
To ensure that this research is conducted and published re-
sponsibly, we need to take a moment to reflect on some im-
portant matters. These matters include ethical implications of
this research, reproducibility of the experiment results, and
possible biases in the data.

6.1 Ethical implications
The output of this research is a method to compute globally
optimal survival trees. The objective function is a numerical
metric, which is the only thing the algorithm tries to opti-
mize. The algorithm is therefore unbiased with regard to how
to split instances. It only chooses a split if it improves the
objective score and for no other reason.

We acknowledge that a particular feature that has histor-
ically been discriminated against, such as gender or race,
might be picked by the algorithm as a significant splitting
feature. A person using the algorithm could draw conclusions
from the output that reinforce this discrimination. However,
the opposite might also happen; it could bring certain types of
discrimination to light, allowing users to take action against
it. The actual effect of the algorithm on this matter is there-
fore mostly dependent on the end user.

6.2 Reproducibility
The source code for SurTree is publicly available as a branch
in the MurTree repository. The exact code used to generate
the test datasets is included in this repository, allowing any-
one to perform the experiments in Section 5 themselves.

6.3 Possible biases
It is important to acknowledge that biases with regard to run-
time may have occurred during the evaluation process. For
example, due to the difference in parameters that can be
set for both algorithms, it is possible that one or both al-
gorithms are not running optimally, affecting runtime. This
can skew the comparison towards one side unjustly. Alter-
natively, since the evaluation has been done on a personal
computer instead of a higher-end computer, the runtime per-
formance might differ when the experiment is rerun by other
researchers.

Furthermore, the datasets that were generated for the ex-
periment provide some variety in a handful of parameters,
but still have some commonalities. For example, each feature
always has a probability of 50% to be true, and there is no
dependence between features. This means that on average,
every decision node splits the dataset in half. This is an over-
simplification of real-life data, which could have biases and
dependence in its features.

7 Discussion
The experimental results show that the objective function
value of SurTree’s trees is always at least equal to that of
OST’s trees. This supports the claim that SurTree finds the
absolutely optimal trees, with regard to the chosen objective.
Another metric, Harrell’s C-index, also tends to improve as
the objective is improved. This improvement is, however, not
guaranteed, as an increase in the objective score can lead to a

decrease in the C-index. SurTree’s approach, therefore, does
not necessarily lead to optimality on all fronts.

Particularly for lower depths, the runtime of SurTree seems
to be well under that of OST. If the maximum depth is set to at
most 3, SurTree can finish in one-tenth of the time OST does,
despite the fact that it optimizes the objective even more. This
significant difference in performance can be attributed to a
few properties. For example, while SurTree runs its algo-
rithm only once, OST is by default set to run the same algo-
rithm 100 times, causing many calculations to be done even
if the best tree is already found. Another reason might be the
fact that SurTree is implemented in C++ whereas OST is im-
plemented in Julia, as code written in Julia tends to be a bit
slower than code written in C++.

As the number of features or the maximum depth increases,
SurTree starts to take significantly more time, whereas the
time required by OST increases less. At 10 features, SurTree
can still outperform OST for every depth up to 5. At 50 fea-
tures, SurTree is generally faster than OST at a depth of 4, but
at a depth of 5, it tends to be slower. At 100 features, either
algorithm could be faster at a depth of 4 depending on the
number of instances, but SurTree will almost certainly take
longer than 10 minutes at a depth of 5 when the dataset in-
cludes more than 200 instances.

8 Conclusions and Future Work
In this research, we present SurTree, an extension of the
MurTree-algorithm that constructs globally optimal survival
trees, i.e. decision trees that split up survival data such that
the error function as defined by LeBlanc and Crowley (1992)
is minimized. Some notable changes include a new objec-
tive function, a new formula to be used in MurTree’s terminal
solver, and the removal of MurTree’s similarity lower bound.

Through experiments, it has been verified that SurTree
is successful in minimizing the objective function at least
as much as Optimal Survival Trees (OST), a state-of-the-
art method for creating survival trees. For cases with a low
maximum depth or a small number of features, SurTree out-
performs OST by a significant factor in terms of runtime.
Since SurTree solves an NP-hard problem, runtime becomes
a problem when the maximum depth increases. However, for
reasonably-sized cases, SurTree can compete with the state-
of-the-art.

In the future, further research can be done on adapting
MurTree to optimize other metrics often seen in survival anal-
ysis. Furthermore, it could be beneficial to analyze how
SurTree could be rewritten to work with non-binary features,
such as categorical or continuous features.

References
Aalen, O. O. (1978). Nonparametric Inference for a Family

of Counting Processes. Annals of Statistics, 6(4).
Aglin, G., Nijssen, S., & Schaus, P. (2020). Learning Optimal

Decision Trees Using Caching Branch-and-Bound
Search. Proceedings of the ... AAAI Conference on
Artificial Intelligence, 34(04), 3146–3153.

Bertsimas, D., & Dunn, J. (2017). Optimal classification
trees. Machine Learning, 106(7), 1039–1082.

Bertsimas, D., Dunn, J., Gibson, E., & Orfanoudaki, A.
(2022). Optimal survival trees. Machine Learning,
111(8), 2951–3023.

Breiman, L. (1984). Classification and regression trees. Bio-
metrics, 40(3), 874.

Davis, R. J., & Anderson, J. M. (1989). Exponential survival
trees. Statistics in Medicine, 8(8), 947–961.

Demirović, E., Lukina, A., Hebrard, E., Chan, J., Bailey, J.,
Leckie, C., Ramamohanarao, K., & Stuckey, P. J.
(2022). MurTree: Optimal Decision Trees via Dy-
namic Programming and Search. HAL (Le Centre
pour la Communication Scientifique Directe).

Graf, E., Schmoor, C., Sauerbrei, W., & Schumacher, M.
(1999). Assessment and comparison of prognostic
classification schemes for survival data. Statistics in
Medicine, 18(17-18), 2529–2545.

Harrell, F. E., Califf, R. M., Pryor, D. B., Lee, K. L., & Rosati,
R. A. (1982). Evaluating the yield of medical tests.
JAMA, 247(18), 2543.

Hyafil, L., & Rivest, R. L. (1976). Constructing optimal
binary decision trees is NP-complete. Information
Processing Letters, 5(1), 15–17.

Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation
from incomplete observations. Journal of the Amer-
ican Statistical Association, 53(282), 457–481.

LeBlanc, M., & Crowley, J. (1992). Relative Risk Trees for
Censored Survival Data. Biometrics, 48(2), 411.

LeBlanc, M., & Crowley, J. (1993). Survival trees by good-
ness of split. Journal of the American Statistical As-
sociation, 88(422), 457–467.

Narodytska, N., Ignatiev, A., Pereira, F., & Marques-Silva, J.
(2018). Learning optimal decision trees with sat.

Nelson, W. (1972). Theory and Applications of Hazard
Plotting for Censored Failure Data. Technometrics,
14(4), 945–966.

Nijssen, S., & Fromont, E. (2007). Mining optimal decision
trees from itemset lattices. HAL (Le Centre pour la
Communication Scientifique Directe).

Su, X., & Fan, J. (2004). Multivariate survival trees: A max-
imum likelihood approach based on frailty models.
Biometrics, 60(1), 93–99.

Van der Linden, J. G. M., de Weerdt, M. M., & Demirović, E.
(2023). Optimal decision trees for separable objec-
tives: Pushing the limits of dynamic programming.

Zhu, H., Murali, P., Phan, D. T., Nguyen, L. H., &
Kalagnanam, J. R. (2020). A scalable mip-based
method for learning optimal multivariate decision
trees. 33, 1771–1781.

A Distributions in Ground Truth Trees
To determine the time-to-event for each instance during the dataset generation, a ground truth tree is generated for each dataset.
Each leaf node is assigned a random distribution from the list below. Each option has an equal probability of being assigned.

• Exponential(λ), with λ ∈ {0.3, 0.4, 0.6, 0.8, 0.9, 1.15, 1.5, 1.8}
• Weibull(k, λ), with (k, λ) ∈ {(0.8, 0.4), (0.9, 0.5), (0.9, 0.7), (0.9, 1.1), (0.9, 1.5), (1.0, 1.1), (1.0, 1.9), (1.3, 0.5)}
• Lognormal(µ, σ2), with (µ, σ2) ∈ {(0.1, 1), (0.2, 0.75), (0.3, 0.3), (0.3, 0.5), (0.3, 0.8), (0.4, 0.32), (0.5, 0.3), (0.5, 0.7)}
• Gamma(k, θ), with (k, θ) ∈ {(0.2, 0.75), (0.3, 1.3), (0.3, 2.0), (0.5, 1.5), (0.8, 1.0), (0.9, 1.3), (1.3, 0.9), (1.5, 0.7)}

B Experiment Results
A summary is given in Table 1 describing the results of the experiment that was conducted on the synthetically generated
datasets.

n is the number of instances in the dataset, f is the number of features per instance, c is the fraction of censored data, and
d is the maximum depth of the generated tree. Five datasets were generated for each setting. For both SurTree and OST, the
median runtime is given in seconds, together with the first and third quantiles within the parentheses. The averages are given
for both the objective score and Harrell’s C-index.

Note that if a cell reads “> 600”, this means that at least one of the five runs timed out, not necessarily all five runs.

Table 1: A summary of the results obtained from the experiment.

Runtime Score Harrell’s C
n f c d OST SurTree OST SurTree OST SurTree

100 10 0.1 2 .1060 (.0965, .1080) .0001 (.0001, .0010) .1206 .1206 .6213 .6213
3 .1530 (.1510, .1665) .0001 (.0001, .0005) .2555 .2561 .6862 .6847
4 .2410 (.2320, .2420) .0030 (.0030, .0035) .4689 .5043 .7642 .7831
5 .3450 (.3320, .3625) .0120 (.0115, .0130) .7107 .7831 .8470 .8741

0.5 2 .0920 (.0865, .0955) .0001 (.0001, .0005) .1086 .1086 .6613 .6565
3 .1420 (.1365, .1445) .0001 (.0001, .0010) .2453 .2457 .7451 .7403
4 .2090 (.2080, .2180) .0030 (.0025, .0030) .4440 .4839 .8139 .8350
5 .2870 (.2755, .3020) .0130 (.0130, .0140) .5734 .6387 .8668 .8910

0.8 2 .0840 (.0760, .0915) .0001 (.0001, .0005) .1320 .1320 .7209 .7209
3 .1200 (.1165, .1280) .0001 (.0001, .0010) .2447 .2463 .7799 .7808
4 .1580 (.1525, .1605) .0020 (.0020, .0030) .3332 .3690 .8068 .8123
5 .1990 (.1915, .2060) .0120 (.0100, .0120) .4287 .4828 .8272 .8440

50 0.1 2 .2670 (.2665, .2755) .0010 (.0010, .0010) .1667 .1667 .6460 .6460
3 .4980 (.4960, .5200) .0200 (.0195, .0205) .3663 .3799 .7314 .7400
4 .8100 (.8075, .8535) .6270 (.6165, .6410) .6274 .7086 .8217 .8504
5 1.239 (1.187, 1.246) 13.87 (13.12, 14.18) .8418 .9283 .9042 .9413

0.5 2 .2390 (.2380, .2650) .0010 (.0010, .0010) .1685 .1685 .6779 .6779
3 .4150 (.4030, .4495) .0200 (.0185, .0205) .3595 .3776 .7795 .7790
4 .6830 (.6535, .7190) .6380 (.6285, .6540) .5589 .6472 .8631 .8888
5 .9440 (.9235, .9680) 16.88 (16.56, 17.41) .6855 .7814 .9080 .9501

0.8 2 .2040 (.1955, .2160) .0010 (.0001, .0010) .2236 .2236 .7572 .7572
3 .3390 (.3335, .3490) .0180 (.0165, .0190) .3748 .3926 .8508 .8474
4 .5000 (.4830, .5245) .5850 (.5785, .6390) .5061 .5798 .8710 .8941
5 .5770 (.5740, .5890) 11.94 (11.71, 13.37) .5593 .6415 .9010 .9122

100 0.1 2 .5290 (.4955, .5345) .0020 (.0020, .0025) .2204 .2204 .6662 .6662
3 .9120 (.8810, .9605) .1310 (.1300, .1405) .4108 .4351 .7532 .7518
4 1.546 (1.512, 1.554) 8.863 (8.733, 10.05) .6550 .7532 .8262 .8589
5 2.446 (2.305, 2.462) 418.6 (405.1, 434.9) .8728 .9374 .9167 .9494

0.5 2 .4310 (.3945, .4350) .0020 (.0020, .0030) .1898 .1915 .6810 .6856
3 .7380 (.7265, .7585) .1300 (.1280, .1400) .3953 .4222 .7972 .8012
4 1.252 (1.202, 1.257) 9.585 (9.313, 10.08) .6141 .7076 .8709 .9063
5 1.816 (1.776, 1.882) > 600 .7394 - .9230 -

Table 1: A summary of the results obtained from the experiment.

Runtime Score Harrell’s C
n f c d OST SurTree OST SurTree OST SurTree

0.8 2 .3450 (.3270, .3815) .0020 (.0020, .0030) .2709 .2709 .7819 .7819
3 .6180 (.5980, .6240) .1340 (.1300, .1470) .4263 .4593 .8406 .8705
4 .9130 (.8620, .9255) 9.501 (9.149, 9.619) .5651 .6399 .8956 .9127
5 1.066 (1.036, 1.075) 389.2 (377.3, 404.0) .6076 .6796 .8988 .9308

500 10 0.1 2 .3510 (.3345, .3685) .0010 (.0001, .0010) .0408 .0408 .5755 .5755
3 .5940 (.5825, .6275) .0010 (.0010, .0020) .0877 .0901 .6165 .6153
4 .9650 (.9495, .9910) .0060 (.0055, .0065) .1574 .1659 .6566 .6650
5 1.440 (1.423, 1.537) .0230 (.0225, .0260) .2604 .2963 .6997 .7144

0.5 2 .2860 (.2740, .3140) .0010 (.0005, .0010) .0487 .0487 .6123 .6123
3 .5130 (.4965, .5225) .0020 (.0010, .0020) .1068 .1082 .6692 .6702
4 .8450 (.8210, .8760) .0060 (.0050, .0065) .1836 .1981 .7230 .7341
5 1.243 (1.228, 1.306) .0210 (.0205, .0225) .2747 .3194 .7630 .7832

0.8 2 .2660 (.2530, .3995) .0001 (.0001, .0010) .0536 .0536 .6367 .6335
3 .4180 (.4085, .4305) .0020 (.0010, .0020) .1088 .1088 .7033 .7033
4 .6650 (.6560, .7095) .0050 (.0050, .0065) .1775 .1945 .7582 .7666
5 1.010 (1.006, 1.024) .0190 (.0185, .0195) .2472 .2831 .7977 .8163

50 0.1 2 1.585 (1.208, 1.605) .0020 (.0015, .0020) .0411 .0411 .5714 .5714
3 2.844 (2.244, 3.097) .0360 (.0355, .0375) .1043 .1078 .6187 .6206
4 4.132 (3.775, 4.492) 1.105 (1.098, 1.133) .1812 .2299 .6619 .6873
5 6.652 (5.843, 8.280) 26.45 (26.22, 27.36) .3125 .4048 .7144 .7583

0.5 2 1.414 (1.357, 1.771) .0020 (.0010, .0020) .0477 .0477 .6091 .6091
3 2.508 (2.296, 2.986) .0350 (.0340, .0355) .0976 .1034 .6547 .6608
4 4.334 (4.030, 4.849) 1.115 (1.095, 1.116) .1710 .2030 .7011 .7254
5 6.734 (5.824, 7.468) 26.56 (26.29, 26.63) .2961 .3758 .7629 .7974

0.8 2 1.101 (1.088, 1.169) .0020 (.0010, .0020) .0866 .0866 .6761 .6761
3 2.105 (1.985, 2.317) .0340 (.0335, .0340) .1610 .1656 .7432 .7466
4 3.306 (3.270, 3.788) 1.060 (1.056, 1.078) .2574 .2862 .8094 .8222
5 4.952 (4.751, 5.175) 25.42 (25.02, 25.56) .3324 .4186 .8366 .8677

100 0.1 2 2.595 (2.220, 2.961) .0050 (.0050, .0055) .0517 .0517 .5800 .5800
3 4.435 (4.260, 4.956) .2550 (.2515, .2585) .1082 .1133 .6217 .6277
4 7.135 (6.693, 7.312) 16.70 (16.58, 16.88) .1881 .2264 .6689 .6875
5 11.05 (10.84, 11.72) > 600 .3254 - .7232 -

0.5 2 1.957 (1.865, 2.019) .0050 (.0050, .0050) .0587 .0587 .6196 .6196
3 3.866 (3.562, 4.297) .2490 (.2450, .2495) .1174 .1225 .6690 .6769
4 5.909 (5.527, 6.266) 16.39 (16.16, 16.60) .2178 .2459 .7228 .7457
5 9.408 (9.236, 9.453) > 600 .3372 - .7813 -

0.8 2 1.563 (1.488, 1.601) .0050 (.0040, .0050) .0683 .0692 .6579 .6536
3 2.796 (2.775, 3.007) .2450 (.2405, .2470) .1461 .1560 .7371 .7353
4 4.784 (4.583, 4.854) 15.61 (15.40, 15.97) .2441 .2847 .7957 .8189
5 7.570 (7.255, 7.709) > 600 .3458 - .8444 -

1000 10 0.1 2 .6640 (.6235, .7130) .0010 (.0001, .0015) .0469 .0469 .5938 .5938
3 1.132 (1.113, 1.248) .0030 (.0020, .0030) .0862 .0863 .6287 .6275
4 1.925 (1.811, 1.982) .0100 (.0100, .0115) .1468 .1562 .6560 .6660
5 2.927 (2.816, 2.981) .0370 (.0355, .0380) .2280 .2578 .6950 .7113

0.5 2 .5630 (.5055, .5850) .0010 (.0005, .0010) .0442 .0442 .6034 .6034
3 .9970 (.9080, 1.093) .0030 (.0025, .0030) .0987 .0987 .6599 .6599
4 1.613 (1.536, 1.859) .0100 (.0100, .0110) .1683 .1732 .7089 .7139
5 2.417 (2.404, 2.614) .0340 (.0330, .0345) .2383 .2555 .7454 .7564

0.8 2 .4860 (.4375, .5165) .0010 (.0005, .0010) .0487 .0487 .6368 .6368

Table 1: A summary of the results obtained from the experiment.

Runtime Score Harrell’s C
n f c d OST SurTree OST SurTree OST SurTree

3 .8970 (.8525, 1.035) .0020 (.0020, .0030) .1002 .1003 .7012 .7004
4 1.345 (1.329, 1.379) .0080 (.0080, .0095) .1711 .1843 .7594 .7693
5 2.101 (2.032, 2.157) .0290 (.0290, .0300) .2357 .2603 .7984 .8141

50 0.1 2 2.725 (2.473, 2.942) .0020 (.0020, .0030) .0360 .0360 .5771 .5771
3 4.847 (4.684, 4.963) .0560 (.0545, .0570) .0799 .0799 .6177 .6152
4 7.502 (7.343, 7.639) 1.630 (1.603, 1.675) .1345 .1506 .6505 .6573
5 11.42 (11.09, 11.61) 35.50 (35.18, 35.84) .2086 .2716 .6751 .7123

0.5 2 2.223 (2.102, 2.299) .0020 (.0020, .0030) .0456 .0456 .6127 .6127
3 3.974 (3.829, 4.249) .0560 (.0540, .0575) .0811 .0816 .6547 .6560
4 6.468 (6.316, 6.901) 1.602 (1.573, 1.637) .1351 .1583 .6929 .7079
5 9.424 (9.318, 9.644) 34.86 (33.94, 35.22) .2097 .2810 .7262 .7687

0.8 2 1.808 (1.591, 1.851) .0020 (.0020, .0030) .0483 .0483 .6481 .6481
3 3.291 (3.200, 3.470) .0540 (.0530, .0550) .1006 .1007 .7067 .7048
4 5.264 (5.167, 5.585) 1.513 (1.501, 1.560) .1838 .2055 .7712 .7879
5 7.626 (7.394, 8.044) 33.35 (32.71, 33.40) .2573 .3158 .8081 .8374

100 0.1 2 4.923 (4.672, 5.364) .0080 (.0075, .0085) .0414 .0414 .5800 .5800
3 9.726 (9.236, 10.09) .3880 (.3855, .3920) .0840 .0851 .6185 .6189
4 14.37 (14.01, 14.84) 23.98 (23.90, 24.65) .1380 .1603 .6480 .6627
5 21.63 (20.90, 21.87) > 600 .2063 - .6749 -

0.5 2 4.176 (3.870, 4.279) .0080 (.0075, .0085) .0418 .0418 .6022 .6022
3 7.652 (7.582, 8.178) .3850 (.3815, .3950) .0934 .0942 .6623 .6613
4 12.33 (11.64, 13.21) 23.31 (23.15, 23.43) .1646 .1879 .7054 .7217
5 18.07 (17.65, 18.54) > 600 .2363 - .7353 -

0.8 2 2.981 (2.891, 3.174) .0100 (.0075, .0105) .0345 .0345 .6113 .6113
3 5.650 (5.371, 6.117) .3890 (.3785, .3910) .0828 .0904 .6727 .6867
4 9.168 (9.017, 9.247) 22.72 (22.67, 22.94) .1452 .1813 .7338 .7594
5 14.29 (14.07, 14.73) > 600 .2267 - .7816 -

5000 10 0.1 2 3.079 (2.991, 3.362) .0040 (.0030, .0045) .0337 .0337 .5709 .5709
3 5.681 (5.575, 5.855) .0120 (.0110, .0130) .0698 .0698 .6116 .6116
4 9.438 (9.274, 9.740) .0470 (.0460, .0485) .1333 .1427 .6547 .6599
5 14.62 (14.48, 15.08) .1560 (.1515, .1575) .2006 .2376 .6830 .7024

0.5 2 2.563 (2.397, 2.767) .0040 (.0030, .0040) .0268 .0268 .5856 .5856
3 4.906 (4.710, 5.220) .0110 (.0100, .0110) .0609 .0619 .6337 .6345
4 8.113 (7.530, 8.294) .0440 (.0440, .0485) .1102 .1186 .6759 .6828
5 12.63 (12.46, 13.16) .1450 (.1435, .1485) .1804 .1982 .7226 .7358

0.8 2 2.219 (2.049, 2.256) .0040 (.0035, .0040) .0433 .0433 .6295 .6295
3 3.864 (3.789, 4.158) .0100 (.0090, .0100) .0905 .0906 .6912 .6883
4 6.859 (6.582, 6.899) .0380 (.0370, .0385) .1398 .1446 .7372 .7415
5 10.86 (10.75, 10.96) .1200 (.1180, .1220) .1860 .1998 .7685 .7785

50 0.1 2 12.88 (12.42, 13.46) .0110 (.0110, .0120) .0206 .0206 .5623 .5623
3 25.87 (25.52, 26.71) .2250 (.2230, .2395) .0506 .0506 .6065 .6065
4 46.00 (44.29, 46.55) 5.695 (5.664, 5.814) .1122 .1165 .6502 .6550
5 73.73 (71.63, 75.86) 101.9 (99.11, 103.6) .2069 .2317 .6910 .7037

0.5 2 10.37 (9.542, 10.68) .0110 (.0110, .0115) .0263 .0263 .5848 .5848
3 20.31 (19.49, 21.54) .2200 (.2180, .2245) .0685 .0689 .6412 .6413
4 35.82 (34.61, 38.74) 5.622 (5.460, 5.732) .1304 .1387 .6918 .6968
5 60.61 (59.62, 62.58) 100.4 (99.49, 101.4) .2045 .2382 .7295 .7527

0.8 2 8.613 (8.241, 8.861) .0110 (.0105, .0120) .0254 .0254 .5993 .5993
3 18.20 (17.14, 18.54) .2230 (.2180, .2265) .0608 .0608 .6562 .6562
4 30.80 (29.54, 32.08) 5.620 (5.446, 5.686) .1221 .1297 .7213 .7294

Table 1: A summary of the results obtained from the experiment.

Runtime Score Harrell’s C
n f c d OST SurTree OST SurTree OST SurTree

5 47.93 (45.96, 50.16) 97.68 (97.40, 99.87) .1735 .2042 .7565 .7798

100 0.1 2 23.73 (22.65, 24.19) .0320 (.0315, .0325) .0365 .0376 .5797 .5810
3 50.97 (49.00, 52.80) 1.526 (1.480, 1.544) .0746 .0749 .6138 .6141
4 88.77 (85.88, 93.16) 79.76 (78.39, 80.13) .1383 .1475 .6545 .6610
5 147.9 (142.8, 151.7) > 600 .2160 - .6876 -

0.5 2 19.68 (18.53, 20.21) .0320 (.0315, .0330) .0380 .0380 .6000 .6000
3 40.52 (40.22, 41.81) 1.563 (1.528, 1.599) .0755 .0761 .6457 .6462
4 71.92 (71.32, 74.00) 80.36 (80.29, 81.18) .1422 .1524 .6988 .7071
5 122.5 (117.7, 125.2) > 600 .2398 - .7524 -

0.8 2 15.30 (15.24, 16.82) .0320 (.0320, .0330) .0388 .0388 .6309 .6309
3 32.63 (32.50, 33.27) 1.546 (1.495, 1.573) .0837 .0838 .6896 .6897
4 60.44 (58.30, 60.58) 79.27 (78.73, 79.93) .1550 .1654 .7478 .7572
5 96.33 (93.30, 99.95) > 600 .2416 - .7981 -

10000 10 0.1 2 6.399 (6.109, 6.644) .0080 (.0075, .0080) .0338 .0338 .5764 .5764
3 11.04 (10.77, 11.65) .0220 (.0220, .0225) .0607 .0611 .6067 .6082
4 18.52 (18.27, 19.50) .0970 (.0965, .1025) .1140 .1186 .6540 .6545
5 30.05 (29.15, 30.75) .3210 (.3140, .3240) .1817 .2136 .6814 .6992

0.5 2 5.012 (4.964, 5.165) .0080 (.0070, .0080) .0281 .0281 .5891 .5891
3 9.349 (9.287, 10.36) .0220 (.0215, .0225) .0689 .0696 .6426 .6430
4 15.83 (15.46, 16.79) .0930 (.0925, .0935) .1165 .1289 .6864 .6953
5 24.80 (24.42, 26.39) .2950 (.2915, .3015) .1772 .2075 .7198 .7412

0.8 2 4.025 (3.973, 4.508) .0070 (.0070, .0080) .0388 .0388 .6237 .6237
3 8.251 (7.778, 8.588) .0180 (.0180, .0200) .0799 .0804 .6808 .6826
4 14.21 (13.65, 14.39) .0760 (.0740, .0760) .1423 .1565 .7331 .7460
5 22.44 (21.07, 23.83) .2330 (.2320, .2430) .1983 .2218 .7685 .7857

50 0.1 2 25.40 (24.07, 26.65) .0220 (.0220, .0230) .0271 .0271 .5750 .5750
3 49.61 (48.90, 52.91) .4350 (.4160, .4385) .0553 .0553 .6092 .6092
4 90.35 (86.24, 91.82) 10.89 (10.58, 11.05) .1235 .1303 .6534 .6605
5 151.3 (144.9, 154.0) 186.1 (182.5, 190.4) .2002 .2194 .6903 .7028

0.5 2 19.98 (19.21, 21.65) .0220 (.0215, .0225) .0337 .0337 .5980 .5980
3 41.98 (40.63, 43.50) .4320 (.4235, .4485) .0688 .0706 .6448 .6485
4 70.70 (68.73, 72.60) 10.87 (10.51, 11.18) .1259 .1341 .6925 .7020
5 123.0 (119.6, 131.5) 185.8 (185.2, 187.0) .1838 .2136 .7256 .7466

0.8 2 16.94 (15.93, 18.10) .0220 (.0210, .0285) .0441 .0441 .6294 .6294
3 35.42 (33.83, 36.16) .4270 (.4135, .4335) .0843 .0843 .6822 .6822
4 59.89 (59.48, 63.18) 10.35 (10.25, 10.43) .1441 .1511 .7368 .7434
5 101.7 (101.0, 103.0) 178.6 (176.2, 182.2) .2017 .2260 .7767 .7939

100 0.1 2 49.02 (47.81, 50.41) .0650 (.0610, .0660) .0273 .0273 .5633 .5633
3 99.32 (96.33, 102.3) 2.963 (2.939, 3.038) .0594 .0594 .6032 .6032
4 172.3 (167.6, 176.6) 150.1 (148.4, 150.7) .1084 .1220 .6435 .6528
5 289.1 (283.4, 304.9) > 600 .1742 - .6759 -

0.5 2 40.36 (38.64, 41.83) .0620 (.0615, .0650) .0356 .0356 .5929 .5929
3 80.77 (79.08, 83.84) 2.903 (2.886, 2.958) .0738 .0738 .6450 .6450
4 142.9 (139.7, 144.9) 150.5 (148.5, 151.6) .1296 .1410 .6948 .7051
5 240.9 (236.9, 256.9) > 600 .2121 - .7500 -

0.8 2 32.99 (29.07, 33.86) .0630 (.0610, .0630) .0325 .0325 .6161 .6161
3 65.35 (62.77, 70.37) 3.003 (2.941, 3.031) .0691 .0691 .6735 .6735
4 116.8 (113.3, 123.1) 148.1 (147.1, 149.9) .1229 .1315 .7235 .7321
5 200.5 (195.6, 205.3) > 600 .1767 - .7628 -

	Introduction
	Preliminaries
	Terminology
	Objective function

	Review of MurTree
	Recursive definition
	Terminal solver
	Similarity lower bounds

	SurTree
	Instance representation
	Objective function
	SurTree's terminal solver
	Removal of the similarity lower bound

	Computational Evaluation
	Setup
	Objective score
	Runtime
	Harrell’s C-index

	Responsible Research
	Ethical implications
	Reproducibility
	Possible biases

	Discussion
	Conclusions and Future Work
	Distributions in Ground Truth Trees
	Experiment Results

