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Battery Identification With Cubic Spline and Moving Horizon
Estimation for Mobile Robots

Mohammad Shokri , Lorenzo Lyons , Sérgio Pequito , Senior Member, IEEE, and Laura Ferranti

Abstract— We propose a novel approach to track the state
of charge (SoC) of batteries in mobile robots to improve their
capabilities. The batteries’ status is critical to accomplish their
mission, but limited battery life can be a challenge. Our method-
ology focuses on modeling and estimating the SoC of batteries
through system identification and fractional-order models. These
models are flexible and can adjust to transient responses, allowing
for accurate estimation of battery characteristics. Specifically,
we use cubic spline interpolation to obtain the open-circuit
voltage (OCV) and the different resistors of the battery model.
To estimate the SoC, we deploy a novel approach based on the
moving horizon estimation (MHE) algorithm, which is suitable
for handling poor initial estimation and constraints on the battery
model. We consider the constraint on the peak discharging
current, which can limit the performance of mobile robots in
low-battery mode. We validate our approach by applying system
identification and MHE to data from a mobile robot. The results
show that our method accurately estimates the SoC despite poor
initial values, enabling improved performance for mobile robots.

Index Terms— Battery model, cubic spline, fractional-order
models, moving horizon estimation (MHE), system identification.

I. INTRODUCTION

MOBILE robots have the potential to improve our quality
of life in many applications such as warehouse logis-

tics [1], scene reconstruction [2], and search-and-rescue [3].
To operate, mobile robots depend on their onboard battery.
Thus, it is essential for mobile robots to monitor the battery’s
state of charge (SoC) in terms of percentage to fully charged
to ensure successful completion of their missions [4], [5].

Because there is no sensor for measuring the SoC directly,
the SoC can be considered as a hidden state of the battery
that has to be estimated based on the observed data from the
battery, such as the terminal current and voltage. Therefore,
it is crucial to have a reliable battery model to estimate the
SoC through current and voltage measurements. In particular,
it is important for the mobile robot’s batteries, which may have
different behaviors connected to other electrical devices, such
as motor drivers or electrical converters [6].

There are many data-driven approaches for modeling batter-
ies that consider an electrochemical model whose parameters
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are obtained via system identification [7], [8]. Another
approach is the equivalent circuit model (ECM), where the
battery model consists of the open-circuit voltage (OCV) and
some electrical circuits to model the transient response [4], [5],
[9]. In [9], the curve for the OCV is assumed to be available,
and the authors obtain the parameters of the RC circuits.
Especially, this assumption is essential for recursive least-
square approaches which are sensitive to initial conditions for
compensating errors [10]. In [11] and [12], a parametric model
is considered for the OCV curve, which is made by some
fixed functions. Toward a more flexible structure for the OCV,
Kwak et al. [13] and Chen et al. [14] leverage a piece-linear
interpolation that considers linear functions between every two
consecutive points and can be fit with data.

To model the temporal behavior of batteries, a chain
of fixed RC circuits is exploited to model slow and fast
transient responses [14], [15]. The work in [16] and [17]
considers RC circuits to depend on the SoC to model differ-
ent temporal behavior in low-battery or high-battery modes.
To extend the temporal flexibility, fractional-order calculus
has attracted increasing interest for modeling batteries [18],
[19]. In fractional-order models, fractional-order RC circuits
(FRCCs) have been considered, in constant phase elements
with fractional-order derivatives [20], [21]. Constant phase
elements represent the electrochemical dynamics of the battery
and can behave like ideal capacitors or resistors depending on
their order of derivatives [22].

Given the battery model, there are a variety of approaches
for estimation the SoC. The extended Kalman filter (EKF)
is a popular method for SoC estimation because of the
nonlinearity of the battery model [23], [24]. An unscented
Kalman filter (UKF) is also useful for estimating SoC since it
can estimate the mean and covariance of error more accurately
than EKF [4]. In [19], UKF is used for the fractional-order
battery model. However, EKF and UKF misperform when the
initial value of the estimation is far from the real value of
SoC [25]. In addition, they cannot handle the constraints and
may estimate an infeasible SoC. An intrinsic limitation exists
on the maximum deliverable power that is reduced in low-
battery mode, and the battery cannot provide any current while
it is in low-battery mode [26], [27]. Thus, the constraint on
SoC and the peak current should also be considered in SoC
estimation [11], [16], [26], [27].

Moving horizon estimation (MHE) is an estimation method
that is able to cope with the aforementioned issues faced by
Kalman-based estimations such as EKF or UKF. Specially,
MHE solves a constrained optimization problem to estimate
SoC in a time-receding fashion. The works in [7], [8], and [25]

1063-6536 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 26,2024 at 13:18:14 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-9250-6743
https://orcid.org/0000-0003-2907-142X
https://orcid.org/0000-0002-5143-1543
https://orcid.org/0000-0003-3856-6221


IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 32, NO. 5, SEPTEMBER 2024 1945

apply MHE to the battery model with the integer-order model.
In this brief, we exploit MHE for a fractional-order battery
model to consider the dynamics of FRCC and to factor in
the low-battery mode constraint. In particular, we propose
a fractional-order battery model with flexible structures for
an SoC–OCV curve, a resistor, and multiple FRCCs whose
resistors depend on the SoC to consider different behaviors in
the SoC range.

To characterize the dependencies of SoC, the OCV and
the resistance (of the resistor and the FRCCs) are considered
to be curves of SoC. For curve formulation, we use cubic
splines, which apply cubic polynomials between each pair
of consecutive points to produce smooth and differentiable
curves [28]. This method imbues our model with exceptional
flexibility, enabling it to adeptly adjust to various environ-
mental conditions. Then, we investigate the peak discharging
current of the battery based on the available data. Afterward,
given the battery model, we propose an MHE framework for
the SoC and FRCCs’ states by considering the SoC range
constraints and the constraint of the peak discharging current.
MHE minimizes the errors of the terminal voltage, the SoC
dynamics, and the truncation errors made by fractional-order
states.

This brief’s contributions are as given below.
1) Application of fractional-order calculus to model a

mobile robot’s battery, including SoC-dependent curves
for the OCV, resistor, and FRCCs, with higher descrip-
tion capabilities and, therefore, more flexible to perform
system identification capturing the temporal behavior.

2) Using splines to characterize the curves with smooth
functions, which leads to flexible system identification.

3) Inclusion of the peak discharging current of the battery
when estimating SoC, allowing for a more comprehen-
sive evaluation of battery performance.

4) Design of an MHE algorithm for SoC estimation from
a fractional-order model, which provides an effective
method for handling poor initial estimation and con-
straints on the battery model.

This brief is structured as follows: Section II presents
the preliminary information. Section III contains the battery
model and its peak discharging current. Section IV proposes
the system identification. Section V details the MHE for
the battery model. Section VI presents the numerical results.
Finally, Section VII concludes the remarks of the brief.

II. PRELIMINARY

Our method relies on fractional-order calculus. In the fol-
lowing, we summarize its main results we will use in the brief.
Fractional-order calculus extends the derivatives to an arbitrary
(possibly fractional) order (e.g., Riemann–Liouville, Caputo,
or Grünwald–Letnikov [29]). Hereafter, at time t , we consider
the Grünwald–Letnikov definition with the α derivative of
signal ut

∈ R that can be defined as follows:

Dαut
= lim

h→0

1
hα

∞∑
k=0

(−1)k0(α + 1)

0(k + 1)0(α − k + 1)
ut−k (1)

where 0(.) is the Gamma function defined as 0(n) =∫
∞

0 xn−1e−x dx . To discretize (1), the sampling time δ is

Fig. 1. Schematic of the battery model comprising OCV, a resistor, and M
FRCCs.

considered to be fixed. Thus, the discrete Grünwald–Letnikov
is defined as follows:

Dα
δ ut

=
1
δα

∞∑
k=0

(−1)k0(α + 1)

0(k + 1)0(α − k + 1)
ut−k . (2)

III. BATTERY MODEL

A. Battery Circuitry

Let vt
∈ R and i t

∈ R denote the terminal voltage and
current of the battery, respectively. To characterize the charge
level of the battery, we define s t

∈ [0, 1] as the SoC of the
battery at time t ∈ N that is calculated as follows:

s t+1
= s t

−
δ

C
i t

+ wt
s (3)

where δ > 0 is the sampling time, and C > 0 is the capacity
of the battery. In addition, wt

s ∈ R stands for the disturbance
affecting the SoC’s dynamics at time t .

To model the battery, we use the circuitry that is illustrated
in Fig. 1. The battery model consists of an OCV, a resistor,
and multiple FRCCs. The OCV is denoted by U0(s t ) ≥ 0 and
depends on the SoC of the battery s t at time t . The resistive
circuit has the SoC-dependent resistance R0(s t ) ≥ 0, and its
voltage is computed by vt

0 = R0(s t )i t . In addition, there are M
FRCCs that are responsible for characterizing the transient
response of the battery. Let vt

m ∈ R and i t
m ∈ R denote the

voltage and the current of m ∈ {1, . . . , M} FRCC, respectively.
The evolution of voltage and current across the FRCC m is
described by

i t
m + τmDαm

δ i t
m = i t

vt
m = Rm(s t )i t

m (4)

where 0 < αm < 2 is the order of the derivative, and τm >

0 is the time constant of FRCC m. In addition, Rm(s t ) ≥

0 stands for the resistance of FRCC m, and Dαm
δ i t

m indicates
the discrete Grünwald–Letnikov fractional-order derivative of
i t
m ∈ R. Hereafter, we consider a truncation K of the discrete

Gr”unwald–Letnikov fractional-order as

Dαm
δ i t

m =
1

δαm

K∑
k=0

γm,k i t−k
m + et

m,K (5)

where γm,k = ((−1)k0(αm + 1))/(0(k + 1)0(αm − k + 1))

and et
m = (1/δαm )

∑
∞

k=K γm,k i t−k
m . The error introduced by the
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truncation is negligible for a sufficiently large K ∈ N since
|γm,k | ≤ ((αm)K /K !) [30]. Therefore, we can rewrite (4) as

i t
m +

τm

δαm

K−1∑
k=0

γm,k i t−k
m + τmet

m,K = i t . (6)

Based on (3) and (4), the terminal voltage is obtained as

vt
= U0(s t ) − R0(s t )i t

−

M∑
m=1

Rm(s t )i t
m + wt

v (7)

where wt
v stands for the noise of the terminal voltage.

B. Cubic Spline

The battery model (7) depends on the functions U0(s t ),
R0(s t ), and Rm(s t ) that depend on the SoC. To characterize
these functions, we use their interpolation via cubic spline
with N +1 points to assure continuity for the first and second
derivatives [31], [32]. Let us consider partitioning the interval
[0, 1] into N ∈ N equally sized intervals by xn = n/N for
n = 0, . . . , N . Then, for s t

∈ [xn, xn+1], we have

U0(s t ) = hU
n P(N (s t

− xn)) + hU
n+1 P(N (xn+1 − s t ))

+ yU
n (N (s t

− xn)) + yU
n+1(N (xn+1 − s t ))

R0(s t ) = h0
n P(N (s t

− xn)) + h0
n+1 P(N (xn+1 − s t ))

+ y0
n(N (s t

− xn)) + y0
n+1(N (xn+1 − s t ))

Rm(s t ) = hm
n P(N (s t

− xn)) + hm
n+1 P(N (xn+1 − s t ))

+ ym
n (N (s t

− xn)) + ym
n+1(N (xn+1 − s t )) (8)

where P(x) = (1/6)(x3
− x). For n = 0, . . . , N , it follows

that yU
n , y0

n , and ym
n are the values of the functions at

s t
= xn . Similarly, for n = 0, . . . , N , we have hU

n , h0
n , and

hm
n parameters whose zero value indicates that the second

derivative of the function is zero at s t
= xn . Since U0(s t ),

R0(s t ), and Rm(s t ) are nonnegative, we have

yU
n ≥ 0, y0

n ≥ 0, ym
n ≥ 0 (9)

for n = 0, . . . , N and m = 1, . . . , M . To ensure continuity in
the first derivative, the following constraints must hold:

0.5hU
n−1 + 2hU

n + 0.5hU
n+1 = 3(yU

n−1 − 2yU
n + yU

n+1)

0.5h0
n−1 + 2h0

n + 0.5h0
n+1 = 3(y0

n−1 − 2y0
n + y0

n+1)

0.5hm
n−1 + 2hm

n + 0.5hm
n+1 = 3(ym

n−1 − 2ym
n + ym

n+1) (10)

for n = 1, . . . , N − 1. For the boundary conditions (i.e., n ∈

{0, N }), we can assume that

hU
0 = hU

N = h0
0 = h0

N = hm
0 = hm

N = 0. (11)

Intuitively, the condition (11) implies that U0(s t ), R0(s t ), and
Rm(s t ) have more linear traits on the boundaries.

C. Peak Discharging Current

In this section, we delve into the examination of the battery’s
peak discharging current, a critical factor in governing the
mobile robot’s operations and orchestrating their tasks during
low-battery scenarios. Every battery has a threshold for the

Fig. 2. Peak discharging current.

maximum power it can deliver, and this constraint plays a piv-
otal role in overseeing the battery of mobile robots and strate-
gizing their missions. Moreover, when estimating the SoC,
the peak discharging current defines a viable range beyond
which achieving specific SoC values becomes unattainable.
It is imperative that the estimated SoC values adhere to the
constraints associated with the peak discharging current. The
peak discharging current depends on the SoC [27]. Specifi-
cally, at a lower charge, it has a linear dependency

i t
≤ γs t (12)

where γ > 0. Furthermore, the current does not exceed the
constant µ, i.e., i t

≤ µ. Fig. 2 depicts the feasible region for
the terminal current.

IV. SYSTEM IDENTIFICATION

Given the battery model, this section describes the model’s
cubic splines to meet the battery’s voltage and current data.
To this end, we use a dataset from the terminal voltage and
current for system identification. We aim to identify the param-
eters of the cubic splines regarding OCV, the resistor, and
FRCCs’ resistor, i.e., yU

n , y0
n , ym

n , hU
n , h0

n , and hm
n . In addition,

we determine the parameters of the peak discharging current
with the data.

On our dataset, vt,q and i t,q are available for trial q =

1, . . . , Q at t = 1, . . . , Tq . Given αm and τm , we can calculate
i t,q
m time series for m = 1, . . . , M via (6). The trials start from

the full-charge situation, and based on the initial SoC of each
trial, we can calculate s t,q via Coulomb counting from (3).
Let zSI stand for the vector that concatenates the variables
yU

n , y0
n , ym

n , hU
n , h0

n , and hm
n , for n = 0, . . . , N and m =

1, . . . , M . Given the data from vt,q , i t,q , and s t,q , the following
optimization to obtain the cubic spline parameters:

min
zSI

Q∑
q=1

Tq∑
t=1

∥∥∥vt,q
− U0(s t,q)+R0(s t,q)i t,q

+

M∑
m=1

Rm(s t,q)i t,q
m

∥∥∥2

+

N∑
n=0

(
λU

|hU
n | + λ0

|h0
n| + λm

|hm
n |

)
s.t. (8), (9), (10), and (11) for n = 0, . . . , N

m = 1, . . . , M, and q = 1, . . . , Q. (13)

where λU , λ0, and λm are the hyperparameters. The term∑N
n=0(λ

U
|hU

n |+λ0
|h0

n|+λm
|hm

n |) has a regularization role for
the system identification to promote a lower second derivative.
Specifically, the absolute value may lead some of hU

n , h0
n , and

hm
n to be zero, which shows the tendency of (13) to obtain the

linear curves for U0(s t ), R0(s t ), and Rm(s t ) at each point.

Authorized licensed use limited to: TU Delft Library. Downloaded on August 26,2024 at 13:18:14 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 32, NO. 5, SEPTEMBER 2024 1947

Algorithm 1 System Identification for Modeling Battery

Based on (8), U0(s t,q), R0(s t,q), and Rm(s t,q) have a linear
dependency on the optimization parameters. Therefore, the
cost function in (13) is convex with respect to the optimization
parameters. Moreover, (9)–(11) are linear constraints with
respect to the optimization parameters. Therefore, (13) is a
convex optimization and has a unique solution. Algorithm 1
provides the procedure for system identification in (13).

The constraint in (12) shows the limitation on the terminal
current. To determine µ and γ, we assume a dataset containing
adequate situations with extracting peak current for the whole
range of SoC. Thus, they can be computed by µ = max i t,q

and γ = max(i t,q/s t,q), with q = 1, . . . , Q and t = 1, . . . , Tq .

V. MOVING HORIZON ESTIMATION

The battery model has hidden states, such as the SoC or the
FRCCs’ current, which cannot be measured directly. Given an
identified battery model, we design a state estimator from the
observed data of terminal voltage and current via MHE.

Let us assume the time series of the terminal voltage (vt )
and terminal current (i t ) are available. To this end, we use
MHE to estimate states based on a sequence of H past
measurements. Let us define H t

= min{H, t} to handle
the MHE at the initial stage where the available samples
are less than H . Suppose v(t−H t ):t

= [vt−H t
, . . . , vt

]
⊤ and

i (t−H t ):t
= [i t−H t

, . . . , i t
]
⊤ be the observed sequence of

terminal voltage and current, respectively. In addition, suppose
that ŝ t−H t

and î t−H t

m are the available estimation of s t−H t
and

i t−H t

m , respectively. Let us define s̃(t−H t ):t
= [s̃ t−H t

, . . . , s̃ t
]
⊤

and ĩ (t−H t ):t
m = [ĩ0

m, . . . , ĩ H t
+1

m ]
⊤ as optimization variables

corresponding to a sequence of s t and i t
m , respectively.

Based on the dynamics of the SoC in (3), we have the
following constraints:

s̃
t ′
+1

= s̃
t ′

−
δ

C
i t ′

+ w̃
t ′

s , for t − H t
≤ t ′

≤ t − 1

0 ≤ s̃
t ′

≤ 1, i t ′

≤ γs̃
t ′

, for t − H t
≤ t ′

≤ t. (14)

Let us denote w̃
(t−H t ):(t−1)

s = [w̃
t−H t

s , . . . , w̃
t−1
s ]

⊤. Moreover,
according to (6), we have the following constraints:

ĩ
t ′

m + τm

t−H t
−t ′∑

k=0

γm,k ĩ
t ′
−k

m + τm ẽ
t ′

m = i t ′

(15)

for t−H t
≤ t ′

≤ t . Let us denote ẽ(t−H t ):t
m = [ẽt−H t

m , . . . , ẽt
m]

⊤.
Note that (15) uses different truncations for different t ′ because
we only use the terminal current’s data for the estimation in
the interval t − H t to t .

Based on (7), for the voltage measurements, we have the
following constraint:

vt ′

= U0(s̃
t ′

) − R0(s̃
t ′

)i t ′

−

M∑
m=1

Rm(s̃
t ′

)ĩ
t ′

m + w̃
t ′

v (16)

for t − H ≤ t ′
≤ t . Let us denote w̃

(t−H t ):t
v =

[w̃
t−H t

v , . . . , w̃
t
v]

⊤. It would be difficult to use (16) as con-
straints since it is not linear with respect to s̃ t ′

. Therefore,
we linearize (16) around s = ŝ t−H t

as

vt ′

= u0 + l0s̃
t ′

− r0i t ′

−

M∑
m=1

rm ĩ
t ′

m + w̃
t ′

v (17)

where

u0 = U0(ŝ
t−H t

), l0 =
∂U0

∂s
(ŝ

t−H t

), and

r0 = R0(ŝ
t−H t

), rm = Rm(ŝ
t−H t

). (18)

Let zMHE,t stand for the vector that concatenates the vari-
ables s̃(t−H t ):t , ĩ (t−H t ):t

m , w̃
(t−H t ):(t−1)

s , w̃
(t−H t ):t
v , and ẽ(t−H t ):t

m
for m = 1, . . . , M . By defining the constraints, the MHE is
formulated as follows:

min
zMHE,t

ps ||s̃
t−H t

− ŝ
t−H t

||
2
+

M∑
m=1

pi,m ||ĩ
t−H t

m − î
t−H t

m ||
2

+ ||w̃
(t−H t ):(t−1)

s ||
2
Ps

+ ||w̃
(t−H t ):t
v ||

2
Pv

+

M∑
m=1

||ẽ
(t−H t ):t
m ||

2
Pi,m

s.t. (14), (15), and (17) for m = 1, . . . , M (19)

where ps and pi,m are the weights of the initial estimation
terms that lead s̃ t−H t

and ĩ t−H t

m to be obtained close to the
last estimations (i.e., ŝ t−H t

and î t−H t

m ) at the beginning of the
interval. The matrices Ps , Pv , and Pi,m are the weights of
different cost function terms.

Algorithm 2 shows the procedure of MHE. The MHE is
initiated with the initial estimates ŝ0 and î0

m for m = 1, . . . , M .
At time t , the optimal values of s̃(t−H t ):t and ĩ (t−H t ):t

m are
calculated based on the last estimations ŝ t−H t

and î t−H t

m for
m = 1, . . . , M on the horizon (t − H t ) to t . Afterward,
ŝ t−H t

+1 and î t−H t
+1

m are updated with the optimal values of
the corresponding elements zMHE,t from the optimization (19).

An advantage of MHE is that it can account for constraints
in the estimation problem. There are two types of inequality
constraints in our proposed solution (see Algorithm 2): i) the
SoC range and ii) the peak discharging current. Based on the
SoC range and the nature of the battery, it is impossible to
violate these constraints, e.g., SoC more than 1 or high current
in low-battery mode. The constraints in MHE are responsible
for forcing the estimation to be in the feasible region.
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Algorithm 2 MHE for Battery Model at Time t

Fig. 3. Mobile robot.

VI. NUMERICAL RESULTS

A. Mobile Robot Data

To evaluate the methodology, we apply the algorithms to
the battery data of a mobile robot in five trials. Fig. 3 shows
the mobile robot used for the experiments. For each trial, the
robot starts in a fully charged state. Then, it moves and stops
frequently to deplete the battery. The robot’s battery is a two-
cell rechargeable polymer lithium-ion battery with a 550-mAh
capacity with a usable voltage range of 3.2–4.2 V per cell. The
trials are divided into two sets of training (four trials) and
testing (one trial) results. Fig. 4 shows the terminal voltage
and current time series of the battery for the training data.
Note that the terminal voltage and current have many sharp
peaks and drops due to the route that the mobile robot follows.
In addition, the current drops at the end of the experiment
because of the limitations on low-battery mode.

B. System Identification

For system identification, we use the training data, and we
calculate the SoC via Coulomb counting from (3) and using
the assumption that the trial starts from fully charged mode.
For system identification, we consider a battery model with
one FRCC with α1 = 1.2 and τ1 = 0.05 s. We considered
N = 21 points regarding U0(s t ), R0(s t ), and R1(s t ). The

Fig. 4. Voltage and current time series for a trial.

Fig. 5. Terminal voltage prediction and prediction error on testing data.

hyperparameters λU , λ0, and λ1 are considered to be 15,
150, and 100, respectively. The truncation sample size for
fractional-order calculation is considered as K = 10.

The parameters of the battery model are determined using
Algorithm 1. To evaluate the model, we use cross-validation on
the testing data. Fig. 5 shows the terminal voltage, its predic-
tion, and its error. The predicted voltage follows the trend of
the real terminal voltage, and the model follows the battery’s
behavior well. The prediction error does not exceed 0.25 V
(35% of the terminal voltage). The prediction percent error
(PEt ) at time t is defined as PEt

= 100((|vt
− v̂

t
|)/vt ) where

vt and v̂
t are the real and predicted voltages, respectively. Our

model’s average percent error (the percentage of prediction
error to the real value) is approximately 0.53%. However,
it might be possible to get less error upon fine-tuning some of
the parameters. In addition, the parameters µ and γ are equal
to 2.6 and 11.9 A, respectively.

Fig. 6 shows the OCV determined by our proposed method
as described in Section IV. The system identification smoothly
calculates the OCV curve. Although there are N = 21 points
for interpolation of the curve, the curve stays smooth as much
as possible because of the regularization term

∑N
n=0 λU

|hU
n |.

This regularization decreases the curvature of the splines at
each interpolation point so that the curve remains linear as far
as it is possible. The OCV drops when SoC is close to 0.28.
In addition, we have less change in OCV in the middle range
than in the high range of SoC.
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Fig. 6. OCV curve obtained by the system identification.

Fig. 7. Resistance curve for resistive circuit and FRCC obtained from system
identification.

Fig. 7 displays the resistance curves for the resistor and the
FRCC. Similar to the OCV curve, these curves are obtained
smoothly with less fluctuation because of the regularization
terms in system identification. Contrary to the pulse-based
experiments for determining resistance parameters as in [16]
and [17], our method uses data-driven techniques that leverage
natural terminal current fluctuations. This strategy proves
especially beneficial for mobile robots, given the integration of
the battery with diverse circuits, such as motor drivers. Using
direct observations, our method streamlines the estimation
process, enhancing its relevance to the practical operation
of mobile robots. Moreover, this approach facilitates the
scalability and deployability of mobile robots in real-world
environments, underscoring its practical advantages.

Table I depicts the performance of the modeling with respect
to the fractional-order of the derivative via average percent
error. The average percent error has its lowest value on α1 =

1.2. Specially, when α1 = 1 (integer order model), we have
higher errors than with α1 = 1.2, which shows the advantage
of using fractional-order models. In addition, we repeated
the simulations for two FRCCs, and as shown in Table I,
the fractional-order systems can perform better than multiple
integer order elements for describing the temporal behavior.

C. Moving Horizon Estimation

Assuming that the terminal current and voltage are available,
MHE exploits the identified battery model to estimate the SoC
and the current of the FRCC. We consider H = 20 for the
horizon of the MHE. The hyperparameters are considered as
follows: ps = 1000, pi,1 = 1000, Ps = 100 000IH , Pv = IH ,
and Pi,1 = 0.1IH where IH is identity matric with size H × H .

TABLE I
AVERAGE PERCENT ERROR OF THE SYSTEM IDENTIFICATION WITH

RESPECT TO THE ORDER OF FRACTIONAL DERIVATIVE

Fig. 8. MHE from the synthetic data for s̃0
= 0.9 and s̃0

= 0.5 cases. (a) EKF
and UKF estimation results (implemented based on [33]) from the synthetic
data with initial value s̃0

= 0.5. (a) Estimation of SoC. (b) Estimation of the
FRCC’s current.

The truncation sample size is considered to be K = 10 for the
discretized fractional-order dynamics.

As a ground truth, to validate the MHE, we used synthetic
data that are artificially generated by simulation. To do so,
we extract the current time series of training data from the
model and set 1 for the initial SoC. The synthetic data contain
the simulation values for the states (SoC and the current of
FRCC) that can be compared with the estimated states. For
MHE, we consider two different values of the initial SoC of
the estimation: s̃0

= 0.9, s̃0
= 0.5, EKF (for s̃0

= 0.5), and
UKF (for s̃0

= 0.5). Fig. 8(a) shows the synthetic data and the
results of MHE for the two aforementioned cases. In particular,
the estimates of SoC converge to the synthetic SoC. In contrast
to EKF and UKF, MHE converges quickly to the synthetic
SoC regardless of different initial estimations. In addition,
Table II shows comparison of the sensitivity of the methods
to initial estimation. MHE has less error compared with the
other methods to compensate for poor initial estimation. That
provides evidence of an advantage of MHE in coping with a
poor initial value of the SoC.
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TABLE II
AVERAGE ABSOLUTE ERROR OF THE ESTIMATION METHODS WITH

RESPECT TO THE INITIAL ESTIMATED SOC

Fig. 9. Mean square error of MHE with respect to ps .

Fig. 10. Estimation of SoC for MHE and Coulomb counting (the determin-
istic battery model) from test data.

Fig. 8(b) depicts the estimation results for the current of
the FRCC from the synthetic data for the two aforementioned
cases. Although the initial condition for the FRCC’s current is
the same, the estimations have some errors in the initial stage
of the trajectory. The error happens in light of the poor initial
condition of the SoC. However, the MHE compensates for the
error with almost 8 s.

The quality of MHE depends on the parameters in opti-
mization (19). Fig. 9 displays the mean square error of MHE
and synthetic data with respect to ps . ps determines how much
MHE relies on the previous estimation for the next estimation.
The less the ps , the noisier the results are obtained because
MHE tends to estimate regardless of the previous estimations.
Note that big values of ps make MHE dependent on previous
estimations, leading to slow estimation.

To validate the MHE on real data, we feed MHE with the
test data and compare the results with Coulomb counting.
Coulomb counting results can be interpreted as the determin-
istic battery model, i.e., by considering (3) with zero noise in
SoC. Note that Coulomb counting neglects the stochasticity of
the battery and is not a ground truth for estimation. The SoC’s
initial value is set at 0.9. Fig. 10 shows the estimation of SoC
with MHE and Coulomb counting. Note that the trajectories
follow each other with an average and maximum absolute
error of 0.04 and 0.08, respectively (after the transient stage).

Fig. 11. Estimation of the terminal voltage error and its distributions for
MHE and Coulomb counting (the deterministic battery model) from test data.
The ticks on the violin plot show the minimum, maximum, and mean of the
errors.

The difference between these two trajectories is due to the
stochastic nature of the battery, system identification error, and
MHE’s error.

Fig. 11 depicts the estimation error of the measured voltage
for MHE and the deterministic model. The errors are calcu-
lated by subtracting the terminal voltage of the real data from
the estimated voltages calculated by evaluating the estimated
states in (7). Fig. 11 shows the errors’ distributions, and in
particular, note that MHE is closer to zero.

VII. CONCLUSION

This research brief proposes a novel methodology for sys-
tem identification and state estimation of batteries in mobile
robots. Our approach uses fractional-order components for
increased temporal flexibility and cubic spline interpolation to
obtain smooth curves for OCV and resistors. We also consider
the limitation on peak discharging voltage to achieve a well-
defined optimization problem for the MHE algorithm used
for SoC estimation. Our methodology is validated through
numerical results obtained from voltage and current data of
a mobile robot, demonstrating the effectiveness of the system
identification and MHE in accurately estimating the SoC even
with poor initial values.

Future research will aim to enhance our framework by
incorporating considerations of the battery’s state of health
(e.g., aging effects). Specifically, we believe it would be worth
exploring a pretrained model using our system identification
framework, followed by iterative updates using recursive least-
squares techniques to account for state of health and/or
aging dynamics. Furthermore, we intend to conduct empirical
research to assess the impact of temperature on battery per-
formance, recognizing its significant influence on modifying
battery parameters.
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