
Automatically Identifying Parameter

Constraints for Complex Web APIs:

A Case Study at Adyen

Version of August 20, 2020

H.A. Grent

Automatically Identifying Parameter

Constraints for Complex Web APIs:

A Case Study at Adyen

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER SCIENCE

by

H.A. Grent
born in Hoorn, the Netherlands

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Tech-
nology
Delft, the Netherlands
www.ewi.tudelft.nl

Adyen
Simon Carmiggeltstraat 6-50,

1011 DJ
Amsterdam, the Netherlands

www.adyen.com

www.ewi.tudelft.nl
www.adyen.com

©2020 H.A. Grent. All rights reserved.

Automatically Identifying Parameter

Constraints for Complex Web APIs:

A Case Study at Adyen

Author: H.A. Grent
Student id: 4440528

Abstract

Web APIs can have constraints on parameters, such that not all parameters
are either always required or always optional. Sometimes the presence
or value of one parameter could cause another parameter to be required.
Additionally, parameters could have restrictions on what kinds of values
are valid. We refer to these as inter-parameter and single-parameter con-
straints respectively. Having a clear overview of the constraints can help
API consumers to integrate without the need for additional support and
with fewer integration faults.

We developed two approaches for identifying parameter constraints in
complex web APIs. One approach uses online documentation to infer inter-
parameter constraints, the other depends on static code analysis to extract
inter- and single-parameter constraints from the control flow of the API’s
source code. In our case study at several APIs at Adyen, the documentation-
and code-based approach can identify 21% and 53% percent of the con-
straints respectively. When the constraints identified by both approaches
are combined, 66% of the inter-parameter constraints can be identified.
Code analysis is able to identify 78% of the single-parameter constraints.

Thesis Committee:

Chair: Prof. Dr. A. van Deursen, Faculty EEMCS, TU Delft
University supervisor: Dr. M. Aniche, Faculty EEMCS, TU Delft
Company supervisor: A. Akimov, Head of API, Adyen
Committee Member: Dr. C.B. Poulsen, Faculty EEMCS, TU Delft

ii

Preface

First and foremost, a large thank you to Maurício Aniche and Aleksei Akimov for
their guidance and continued involvement. I would also like to thank the people
from the Documentation and Developer Experience team for their company and
their ideas. Coffee tastes better in good company. Additional thanks to Casper
Schröder and Hendrig Sellik for making public transport more fun.

H.A. Grent
Delft, the Netherlands

August 20, 2020

iii

Contents

Preface iii

Contents v

1 Introduction 1

2 Related Work 5
2.1 API Quality and Usability . 5

2.2 Constraints in Practice . 6

2.3 Machine-Readable Representation 8

2.4 Automatically Identifying Parameter Constraints 8

3 Approach 11
3.1 Documentation Analysis . 12

3.2 Code Analysis . 18

4 Research Methodology 27
4.1 Selected Endpoints . 27

4.2 Ground Truth . 28

4.3 Grouping Challenges . 29

4.4 Analysis . 29

5 Results 31
5.1 Research Question 1 . 31

5.2 Research Question 2 . 33

6 Discussion 45
6.1 Comparison to Previous Works . 45

6.2 Code Analysis for Complex APIs . 46

6.3 Using Formal Constraints . 46

v

Contents

6.4 Security Concerns . 47
6.5 Generalization . 47
6.6 Threats to Validity . 49

7 Conclusions and Future Work 51

Bibliography 53

A Case Study - Challenge Groups 57

B Documentation Analysis - Word Embeddings 59

C Code Analysis - Unhappy Flow 61

vi

Chapter 1

Introduction

Web Application Programming Interfaces (Web APIs) allow applications to ac-
cess the functionality or data of a service through HTTP requests. Web APIs
commonly provide an API reference [15], which describes what operations are
available through which endpoint and which parameters are required or op-
tional for requests to these endpoints. However, these parameters are not al-
ways just required or optional: whether they are required can depend on the
presence or value of another parameter [21, 17]. As such, there are constraints
between parameters.

Within Adyen, as a payment platform, we find such inter-parameter con-
straints as well. Take constraints that apply on different payment methods as
example; if an API consumer wants to make a payment with iDEAL, then the
previously non-required issuer and returnURL parameter are now required1.
For other payment methods different parameters become required. As another
example, when authorizing a payment, the API expects a bank account or a card
as payment details2. Without either the request will fail.

Having a clear overview of the constraints in a Web API is important, be-
cause it helps API consumers to integrate the API without the need for company
support. Incomplete or incorrect documentation on these constraints can waste
a lot of time, and cause costly integration faults [3]. Currently, these constraints
are documented and maintained manually by API developers, which can be la-
borious and difficult. This difficulty comes from the size and complexity of the
code base of the web service, and documentation being provided by different
people than those who write the code. Therefore, tools that help API developers
identify and maintain the constraints in their APIs are needed.

In this paper, we evaluate two approaches to automatically identify con-

1https://docs.adyen.com/api-explorer/#/PaymentSetupAndVerificationService/v52
/post/payments__reqParam_paymentMethod

2https://docs.adyen.com/api-explorer/#/Payment/v52/post/authorise__reqParam_b
ankAccount

1

https://docs.adyen.com/api-explorer/#/PaymentSetupAndVerificationService/v52/post/payments__reqParam_paymentMethod
https://docs.adyen.com/api-explorer/#/PaymentSetupAndVerificationService/v52/post/payments__reqParam_paymentMethod
https://docs.adyen.com/api-explorer/#/Payment/v52/post/authorise__reqParam_bankAccount
https://docs.adyen.com/api-explorer/#/Payment/v52/post/authorise__reqParam_bankAccount

1. Introduction

straints for complex Web APIs. One approach analyses the online service doc-
umentation, the other analyses the source code. For these approaches, we
identify challenges that can complicate the process of automatically identify-
ing constraints. We draw inspiration from Wu et al. [35] who set out to identify
inter-parameter constraints from the online API reference and available soft-
ware development kits (SDKs).

Our approaches are developed to be able to identify constraints for complex,
large scale APIs. We consider complexity mainly as the number of parame-
ters an API exposes, and the complexity within the source code itself. For our
main APIs under study, the Adyen APIs, complexity largely results from mak-
ing a large number of payment-related operations available through one inter-
face while being subject to varying legislation or payment method requirements.
When examining the Adyen API through the online documentation3 we can ob-
serve several endpoints, with a varying number of parameters. For example,
version 52 of the ’/payments’ endpoint, which exposes a large number of pay-
ment methods, features 55 top-level parameters and 371 parameters in total.
Other endpoints often expose considerably fewer parameters.

The complexity of an API poses two key challenges. For one, because there
are more parameters, exploring the solution space with any search-based tech-
nique is made more difficult. An inter-parameter constraint may be between
any two (or more) parameters, which means there is an exponential amount of
possible constraints. Second, how the code holding the constraints is structured
is changed to deal with this complexity accordingly. One could expect a more
frequent usage of frameworks, abstraction, and interfaces.

Main Research Question: Can (inter-)parameter constraints in
complex Web APIs be identified using automated techniques?

This is split into the following research questions (RQs):
RQ1: How effective are documentation- and static code analysis in identifying
parameter constraints in a large-scale enterprise API?
RQ2: What are challenges in using documentation- or static code analysis to
identify inter-parameter constraints?

Our results show that static code analysis is more effective than the docu-
mentation based approach for identifying parameter constraints. The documen-
tation and code-based approach can identify 21% and 53% percent of the inter-
parameter constraints respectively. When the constraints identified by both ap-

3https://docs.adyen.com

2

https://docs.adyen.com

proaches are combined, 66% of the inter-parameter constraints can be identi-
fied. Code analysis is able to identify 78% of the single-parameter constraints.

The two approaches face largely separate challenges. The documentation
based approach largely suffers from a lack of available explicit information de-
scribing the constraints. Static code analysis tends to be able to extract con-
straints from the source code by maintaining a basic variable stack, evaluating
method calls, and analyzing conditions in for-loops, switch statements, and if-
else statements. The main challenges we faced within this case study were data
flow insensitivity and engineering a sound static code analysis approach.

The main contributions of this research are:
• An approach that infers inter-parameter constraints from online documen-

tation.
• An approach that extracts inter-parameter and single-parameter constraints

from source code.
• For both approaches: an overview of challenges of automatically identify-

ing constraints in a complex Web API.

3

Chapter 2

Related Work

In this chapter, we provide insight into the literature surrounding parameter
constraints and its broader surrounding field of API quality. We look at ex-
isting approaches related to identifying parameter constraints and what inter-
parameter constraints look like in practice.

2.1 API Quality and Usability

There has been an increase in API research [25]. This literature expands on both
the technical and soft aspects of API quality attributes. Technical aspects focus
on things such as architectural styles [18, 31], specification formats (RAML1,
OAS2) and software quality requirements [5, 12]. Soft aspects focus on API us-
ability [20, 26, 28, 10]. The soft and technical aspects are not a strict dichotomy.
While APIs in its broadest sense refer to a generic kind of programming inter-
face, our focus is Web APIs: web services over HTTP.

Usability, as an aspect of software quality, frequently takes focus in API de-
sign literature, because ultimately APIs are consumed by people to create spe-
cific functionality for their own use case. Usability in API design is related to
technical aspects of API design by several design aspects such as the overall ar-
chitecture and organization of classes [34, 4], which in turn impact compatibility
[33] and maintainability. Any of such decisions can, and probably will, have an
impact on the overall usability of an API. Such is the relationship between the
technical- and soft aspects of API quality.

For technical aspects that have a more direct connection to usability, API ar-
chitectural styles are readily discussed. To maintain some overview, we consider
RPC, REST, and GraphQL as the main styles [7]. REST is by far the most popular
style [27]. Choosing for one style or the other depends on the use case. Without

1https://raml.org
2https://swagger.io/specification/

5

https://raml.org
https://swagger.io/specification/

2. Related Work

trying to open a can of worms; RPC may be beneficial for action-oriented ser-
vices, REST for resource-oriented services and GraphQL for highly relational
data [7, 32]. At the end of the day, all these impact the way software architects
think about their implementation and the way the functionality is exposed to the
API’s users.

For soft aspects, API usability is not strictly defined in literature. Within this
topic there is a focus on learnability, efficiency and understandability [25, 12].
Rauf et al. [25] describes learnability as the capability of software to be learned
by its developers with ease, efficiency in terms of resources (time) needed to
complete a task, and understandability as to how well a user can understand
the code without confusion. Various works exist on identifying usability factors
and sometimes provide metrics for them, with little consistency in the naming
of the metric [25]. Readability, satisfaction, and memorability are common met-
rics [25]. A lack of documentation is a key obstacle for API learnability [26, 23].
Robillard and DeLine [26] identify five documentation factors impacting the de-
velopers learning experience: documentation of intent, code examples, mapping
usage scenarios, penetrability, and format and presentation.

For developers, API usability is key in the adoption/integration process. Learn-
ing obstacles may result in opting for a different service [24, 26] or increased
integration efforts in supporting API consumers. Research suggests that a sig-
nificant portion of faults in API integration can be attributed to invalid or missing
user input [3]. These integration faults relate to parameter constraints, such as
the absence of (conditionally) required parameters or invalid values for provided
parameters.

2.2 Constraints in Practice

The work by Martin-Lopez et al. [17] gives an overview of the frequency of inter-
parameter constraints for different industries, considering only REST APIs. Ac-
cording to their research, 85% of the REST APIs have inter-parameter con-
straints and on average 9.8% of the operations contain constraints. In less ex-
pansive studies, Oostvogels [21] and Wu et al. [35] report comparable numbers.

With respect to the different kinds of dependencies, both Martin-Lopez et
al., Oostvogels and Wu et al. [17, 21, 35] present data, while categorizing them
differently. Most of the constraints in the wild are not complex, only 4% of
the dependencies in REST APIs are classified as complex [17]. Complex con-
straints involve multiple categories from the categories below. For non-complex
constraints, all three categories described by Oostvogels are roughly equally
common.

6

2.2. Constraints in Practice

Oostvogels describes three categories of constraints:

• Exclusive: Exactly one of a set of parameters must be present.
• Dependent: The presence or value of one parameter depends on the pres-

ence or value of another parameter.
• Group: A group of parameters should either all be present or not present.

Whereas the different categories are arguably subsets of the dependent cate-
gory in terms of logical equivalence, it is useful to have a semantic difference
between them. We consider the following categories and subcategories:

• Dependent
P1→ P2: The presence of P2 depends on the presence of P1.
P1 = V→ P2: The presence of P2 depends on the value of P1.
P1 = V→ P2 = V2 The value of P2 depends on the value of P1.

• Exclusive
P1 or P2: P1 or P2 is needed, providing both is valid.
P1 xor P2: P1 or P2 is needed, providing both is invalid.

• Group
P1 <-> P2: Provide both or neither.

• Arithmetic3

P1 > P2: P1 has to be greater than P2.
P1 > P2 - X: P1 has to be greater than P2 minus some constant.
P1 + P2 + P... = Pn: A sum of parameters has to be equal to the value

of another parameter.

The term ’(inter-)parameter constraints’, as used by Oostvogels [21], is not used
consistently as such throughout literature, the concept is referenced to differ-
ently in other works. Some other terms used to reference the same concept
are ’(inter-)parameter dependencies’ [17], ’dependency constraints’ [35], ’data
contracts’[11] or more generally ’method specifications’ [22].

We will use the term ’(inter-)parameter constraints’, with the following work-
ing definitions: an inter-parameter constraint describes a requirement on the
presence or value of a parameter based on the presence or value of another pa-
rameter, for a given web service operation [35]. Single-parameter constraints
describe the requirement on the presence or value of single parameter. We con-
sider something a requirement if not adhering to it leads to the request failing,
see Section 3.1.2. As a result, any constraints that lead to a different result than
intended with a request are not strictly parameter constraints.

3The arithmetic constraint’s subcategories do not form a complete list. We opted to describe
the most common arithmetic constraints.

7

2. Related Work

2.3 Machine-Readable Representation

Oostvogels [21] provides a machine-readable language for expressing parame-
ter constraints. This constraint-centric specification language supports express-
ing inter-parameter constraints as well as single-parameter constraints. The
syntax proposed by Oostvogels, can be seen in Figure 2.1. We use this language
to express constraints, with minor differences in representation. For example,
provided the constraint that ’if A is provided, then B is required’ we would rep-
resent this as A→ B as opposed to implic(present(A), present(B)).

Figure 2.1: Machine-readable constraint language syntax from Oostvogels [21].

2.4 Automatically Identifying Parameter Constraints

A handful of papers exist outlining approaches for automatically identifying sin-
gle and inter-parameter constraints. These approaches rely on documentation,
API responses, or code analysis to infer such constraints for simple APIs.

Gao et al. [11] uses a decision tree based approach to infer inter-parameter
constraints. The information for populating the decision tree is inferred from
observing API responses for a given candidate constraint. These candidates are
chosen using a set of heuristics and by observing the API’s feedback. The latter
includes parsing error messages provided as feedback by the API. Whereas the
approach was able to infer 145 out of 154 manually identified constraints, few
APIs were evaluated. The APIs under study did contain at around 5 parameters
per endpoint on average.

Pandita et al. [22] utilizes a number of sources of documentation, includ-
ing in-code comments, to infer constraints using a NLP based pipeline. These
constraints are both inter-parameter constraints as well as single parameter
constraints. A large part of the pipeline is responsible for transforming natural
text to formal contracts. The constraints are not automatically validated for cor-
rectness. This approach yields an average of 92% precision and 93% recall on a
number of Facebook Web APIs and .NET libraries.

8

2.4. Automatically Identifying Parameter Constraints

The work by Atlidakis et al. [2] uses a fuzzing type approach to find depen-
dencies between parameters for different endpoints. That is, it aims at identify-
ing dependencies between a parameter in endpoint A and another endpoint B.
To steer the fuzzing process, OpenAPI specifications and the feedback from API
responses are used. The fuzzing approach fires a larger number of API requests,
at around 5000.

These approaches are designed to infer constraints from documentation, but
do not consider code as input. Wu et al. [35] sets out to automatically identify
inter-parameter constraints by inferring constraint candidates from the online
API reference and available software development kits (SDKs). These candi-
dates are then verified by calling the public web service with request bodies
which would satisfy or violate the candidate constraints. The approach by Wu
et al. uses a combination of NLP and data flow analysis, for documentation and
SDK analysis respectively. We will next dive into details of their approach, as
we use it as inspiration for the approach within this paper.

For analyzing the documentation they use a two-phase filtering approach,
called the ’loose’ and ’rigid’ strategy. The rigid strategy uses predefined tem-
plates to match with the text. For example, the template ’Either A or B must be
specified’ is matched with a concrete sentence using the Jaccard distance. The
loose strategy "generates a constraint candidate when the number of distinct
parameters appearing in its describing sentence matches the number of param-
eters in a template."[35]. If two parameters occur in the same sentence, then
they are assumed to be related in some way. The loose selection is used as the
preferred strategy throughout the paper.

For analyzing the API’s SDK, they perform data-flow analysis on control flow
graphs generated from SDK methods. In this process all possible combinations
of sets of parameters are generated, which are then used to infer constraints.
The process for generating these combinations depends on branches in the con-
trol flow graph of a single method and the combinations of parameters accessed
in those branches. A literal or variable in the code is included in the data flow
when it corresponds with a parameter name available in the online documen-
tation. The method for inferring constraints from the combinations is not ex-
plained.

The approach achieves a precision and recall of around 95% for four sim-
ple APIs. Whereas the approach relies on both code and documentation by
design, the results indicate that by far most of the inter-parameter constraints
are inferred from the documentation. The documentation provided a total of
351 candidates and the code a total of 36 candidates. The documentation based
candidates did have a lower precision than the SDK based candidates, at 20.8%
and 100.0% respectively, but opposite being true for recall at 82.9% and 40.9%
respectively.

9

Chapter 3

Approach

Our approach has two distinct types of analysis: documentation analysis and
code analysis. The goal of both approaches is to automatically obtain constraints
of Web APIs in a machine-readable representation. The code analysis extracts
single-parameter constraints (e.g. X > 5) and inter-parameter constraints (e.g.
X or Y), the documentation analysis only infers inter-parameter constraints. Our
approach draws inspiration from Wu et al. [35], with the aim to be able to apply
our approach on more complex systems being used in the industry. A high-level
overview of our process is shown in Figure 3.1. We shortly describe the general
process, and later describe the documentation and code analysis in more detail.

Figure 3.1: Overview of the process, showing the initial service information
collection step and then the documentation- and code analysis approach.

11

3. Approach

In the first step, we collect information about the parameters for the end-
points of a Web API from the OpenAPI Specification1 (OAS). The most important
service information is: the data type of each parameter, whether the parameter
is required, any enum values, their description, and parent- and sub-parameters.
This information aids us with a number of tasks, such as default value genera-
tion for making requests to an API and detecting parameter references. We use
this information in both approaches.

For the documentation based approach, we analyze the textual documenta-
tion to infer constraints. This process has two steps. First, we extract sets of
candidate parameters from the OAS descriptions, e.g., the candidate [bankAc-
count, card]. We will explain how we obtain these candidates in Section 3.1.
The candidates are collected to reduce the total number of requests needed to
infer the constraints. Since a constraint may be between any two or more pa-
rameters, we would have to inspect all combinations for constraints. Trying all
combinations would require an exponential number of requests with respect to
the amount of parameters, which would require too many requests.

Secondly, we validate the candidates that were collected in the previous
step. The candidates only show us which parameters could have a constraint
between them. With validation we aim to infer the exact constraint that ap-
plies, e.g., given the candidate [bankAccount, card] we want to infer that the
inter-parameter constraint is or(bankAccount, card). We rely on sending requests
to the API to infer the constraint. Whether a request fails or succeeds tells us
whether it satisfied the requirements of an API or not.

For the code approach, we look at the control structure of methods within
the source code to extract constraints. We aim to infer the usage of parameters
within this control structure and the preconditions that apply to their usage.
For example, i f (X! = null){Y} would allow us to infer that Y is needed with the
precondition that X is provided in the request.

3.1 Documentation Analysis

With documentation analysis, we aim to infer if there are constraints between
parameters by analyzing the textual documentation of the Web API. Documen-
tation analysis has two distinct steps: finding sets of parameters which might
have constraints between them (candidates) and then determining the exact
inter-parameter constraints by means of sending API requests to the subject
API (validation).

1The OAS is an API description standard which provides service information in a structured
way, typically using the JSON format. The Swagger Editor2 gives a quick impression of the
format. For this work, it is good to be familiar with the possible data types for parameters 3.
These data types are currently defined as string, number, integer, boolean, array, and object.

12

3.1. Documentation Analysis

3.1.1 Candidate Inference

We use the OAS’ parameter descriptions to find candidates. Adyen’s API Ex-
plorer4 visualizes these parameters, along with their descriptions, for all public
endpoints. The intuition is that the description of one parameter can refer to
another parameter, which hints at a possible constraint between the two param-
eters. E.g. given the parameter bankAccount with the description "The details
of the bank account. Either bankAccount or card is required.", we assume the
two can have a constraint between them.

To extract candidates, we use a co-occurrence matrix [6]. This co-occurrence
matrix contains a row and column for every parameter in a given endpoint. To
populate this co-occurrence matrix, we automatically analyze the description of
every parameter; if the description of a parameter contains the name of another
parameter, then their corresponding entry in the matrix is updated. E.g. for
the earlier example the cell corresponding with bankAccount and card will be
updated by one.

Whether a parameter is required may depend on the value of another pa-
rameter. E.g. paymentMethod = ”iDEAL”→ returnUrl. Such value-dependent
constraints require additional information to be inferred in the validation step.
More specifically, we need to know which values are relevant for what parame-
ters. We do this by checking if the descriptions mention any of the enum values
the OAS provides. When an enum value of a parameter is mentioned in a de-
scription, then this value is marked and used in the subsequent validation step.

card bankAccount type reference

card - 2 0 X
bankAccount - - 1 X
type - - - X
reference - - - -

Table 3.1: Example co-occurrence matrix for an endpoint with four parameters.
Any X entry occurred too frequently, and is ignored.

Certain parameters may occur extraordinarily often in descriptions. This is
often because of parameter names being common as a word in natural text.
Words such as ’reference’ and ’value’ tend to be used without it being a refer-
ence to a parameter. This would yield us a lot of irrelevant candidates. Conse-
quently, we ignore parameters that co-occur with too many other parameters.
Following Table 3.1 this is indicated with an X.

4https://docs.adyen.com/api-explorer/#/PaymentSetupAndVerificationService/v52
/post/payments

13

https://docs.adyen.com/api-explorer/#/PaymentSetupAndVerificationService/v52/post/payments
https://docs.adyen.com/api-explorer/#/PaymentSetupAndVerificationService/v52/post/payments

3. Approach

We generate sets of candidates based on the co-occurrence matrix. We gen-
erate candidates from every row of the matrix. For each row we include the
parameter corresponding to that row in the candidate, and any parameters that
co-occurred at least once with that parameter. The candidates with only one
parameter are removed. Once again following Table 3.1, we would generate
the sets [card, bankAccount], and [bankAccount, type]. After this, we use these
candidates as input to the validation phase.

Parsing Semantics

The documentation also provides more specific information about the exact con-
straint itself. One might find descriptions such as ’either x or y’ is required. We
do not consider these semantics in the inference of constraints, due to the dif-
ficulties involved in parsing such semantics accurately, which results in a loss
of accuracy. Not all descriptions for parameters are necessarily accurate or se-
mantically clear either. In the case of ’either A or B’ it is not clear whether it
is used exclusively or inclusively 5. Not making any of such assumptions means
that all combinations have to be tried. Which is doable, given the small size of
the candidates.

We explored the usage of word embeddings [19] as a means to find candi-
dates. When using word embeddings, we can obtain a semantic similarity be-
tween words, and sentences. The premise is that parameters with semantically
similar descriptions are more likely to be related to each other in a constraint.
In practice, this kind of similarity measure did not filter the number of possi-
ble parameter combinations enough to be viable on its own. The details of our
approach and findings can be found in appendix B.

3.1.2 Validating Candidates

From the documentation analysis we get sets of parameters which might have
constraints between them (candidates), and for each parameter which values
were found in the documentation. The aim is to figure out the exact inter-
parameter constraint that applies on these parameters, if any. We do this by
generating requests, and observing the API response for failure (see Section:
3.1.2). If a request fails, this tells us that some constraint was not satisfied.

We generate a truth table for each candidate. In this truth table each row
indicates the present, or absent parameters and whether the corresponding re-
quest’s result was successful. We represent all the possible combinations of
parameters in such a truth table. An example of such a group is [card,bank], for

5https://english.stackexchange.com/questions/13889/does-either-a-or-b-preclud
e-both-a-and-b

14

https://english.stackexchange.com/questions/13889/does-either-a-or-b-preclude-both-a-and-b
https://english.stackexchange.com/questions/13889/does-either-a-or-b-preclude-both-a-and-b

3.1. Documentation Analysis

which the corresponding truth table can be seen in Table 3.2. For each row in
this table a base request is generated, with the parameters indicated as present
included and the parameters indicated as not present removed. This request is
then sent to the API and the response is checked for failure. If the request fails,
then the Result column is updated accordingly.

Following Table 3.2, either of constraints extracted from the successful rows
need to be true in order to satisfy the constraint. The disjunctive normal form
between the successful rows forms the constraint that applies between bank
and card. If all requests are successful, then no constraint applies.

For candidates which contain parameters with marked values this process
works slightly differently. For a parameter with marked values, all the values
identified in the previous step are added as a column in the truth table. Besides
the marked values, a column including a non identified value is included. This
is to have greater confidence that the constraint actually depends on the value
of the parameter, and not simply on the presence of the parameter. An example
of this process can be seen in Table 3.3. In which case state had gas as an
identified enum value.

card bank Result Constraint

0 0 F -
0 1 T and(!card, bank)
1 0 T and(card, !bank)
1 1 T and(card, bank)

Table 3.2: Validation table for two parameters, where 0 and 1 indicate the ab-
sence and presence of parameters. The result column indicates whether a re-
quest was successful (T) or not (F).

state = gas state = solid temperature Result

0 0 0 F
0 0 1 T
0 1 0 F
0 1 1 T
1 0 0 T
1 0 1 T

Table 3.3: Validation table for two parameters, state can be ’gas’ or ’solid’. Rows
with both ’state’ columns being true are excluded.

15

3. Approach

Request Building

Building valid requests is a major part of validating the previously generated
candidates. To do this, request bodies are built by modifying the base request
according to the modifications imposed by a truth table. Following such a truth
table, the parameters indicated as present are included and the parameters
indicated as not present removed from the base request. For example, given
that the base request includes the parameter accountName, then on the basis
of Table 3.1 we would generate the four request bodies shown in Figure 3.2.

{
"accountName": "Medina"
}

{
"accountName": "Medina",
"bankAcount": "DE8098"
}

{
"accountName": "Medina",
"card": "12356",
}

{
"accountName": "Medina",
"card": "12356",
"bankAcount": "DE8098"
}

Figure 3.2: Example request bodies generated on the basis of Table 3.1.

Generating the Base Request

The base request is a default request specified for each endpoint, which should
always succeed. These default requests can either be specified manually, or they
can be generated from the OAS. The OAS specifies the required parameters,
including all should result in a valid base request. When this was not the case,
we manually added the missing parameters to the base request.

Generating Parameter Values

The parameters provided in a request need to have valid values. What qualifies
as valid depends on what values are meaningful for the given parameter. For
example, if a parameter represents a date providing any value which is not a
date makes little sense. We use either a manually defined value or default value.
The default value depends on the type of the parameter.

The type of the parameter can be inferred from the OAS, which are currently
defined as string, number, integer, boolean, array and object6. For each of
these types a standard value can be configured. A string may by default return
’str’ and an integer may return ’0’. For some parameters, such a default value
may not be sufficient, in which case one has to manually define a standard value.

6https://swagger.io/docs/specification/data-models/data-types/

16

https://swagger.io/docs/specification/data-models/data-types/

3.1. Documentation Analysis

This would apply on parameters such as the previously mentioned date example,
card numbers, and account names.

Identifying Request Failure

Whether a request was successful or not is determined primarily by the HTTP
status code returned as a response to a request. Generally, 2xx is considered
as a success and 4xx and 5xx as a failure. The specific codes and responses
depend on the subject API. An API may respond with a ’200: OK’ while providing
an empty response body, depending on whether this is a normal response such
responses may be added to the definition of failure as well. I.e. the definition
of failure may have to be adjusted for a specific domain. Requests may also fail
due to connectivity issues. For us, when running the API on a local server this
was not a problem.

Rate-limiting

Web services may limit the number of requests that are made in a given period
of time. Rate-limiting is not a limitation in our validation process, as we have
access to a local build of the API which can function the same as a deployed
public Web API. We are able to make as many requests as we want, while only
limited by the time it takes the local build to process the request. If a local build
is not possible, then access to a web service account without such rate limiting
is an alternative.

Computational Costs

The total time needed to validate constraints depends on a number of factors,
most importantly the number of candidates, the number of parameters for a
candidate, and the number of requests we can make each second. For each
candidate we need to check all combinations of parameters. The number of
combinations, assuming that each parameter is either present or absent is 2p,
where p is the number of parameters. We are able to make at around 5 requests
a second. The runtime needed in seconds equals ∑

C
i=1 2|PCi |/5, where C denotes

the set of candidates and |PCi | is the number of parameters in candidate i.

Given a parameter can be multiple values this calculation changes. The num-
ber of combinations is given by ∏

p
i=1 |values(pi)|+ 1. Following Table 3.3, know-

ing that gas can have 2 values and temperature just 1, we make 6 requests.
Substituting this term in place of |PCi |2 would give us the expected runtime for
candidates which consider specific values.

Provided this information, we can see that the number of parameters in can-
didates will dominate the runtime rather quickly. However, in practice candi-

17

3. Approach

dates tend to have a small number of parameters, thus controlling the number
of candidates tends to be the priority.

3.2 Code Analysis

With code analysis, we aim to extract constraints from the control structure of
the source code. For this we analyze methods relevant to handling the HTTP
requests made to the API. A method called the ’controller method’ is typically
responsible for handling requests made to one endpoint of an API. Starting from
this controller method, we detect the access of parameters and analyze any
control structures and method calls parameters are used in. Within our case
study, the Web APIs primarily use Java. As such, the control structures mostly
include if-else statements, switch-statements, and for-loops.

Following Snippet 1, we can see how we could infer the dependency of the
’card’ on ’bankAccount’ and the constraint on the value of ’offset’. That is, if the
card is not provided for payment details, then we would need the bankAccount
from the request. For the offset, we know that it should be smaller or equal to
80. In practice, there is a large number of challenges involved in inferring such
dependencies, but with this example we establish a basic intuition.

def handle(Request req)
if req.getCard() != null then

method = req.getCard()
validateCard(method)

else
method =
req.getBankAccount()

end
if req.getOffset() > 80 then

throw Exception()
end
...
method.preprocess()

Snippet 1: An example method han-
dling an API request.

Figure 3.3: Control-flow graph cor-
responding with the method shown
in Snippet 1.

3.2.1 Control Flow Graph

To represent the control structure of a method, we use a control-flow graph
(CFG). We generate such CFGs for every method we analyze. The CFG shows
what branches can be taken, and as such it can be used to know what param-

18

3.2. Code Analysis

eters are used within those branches and which preconditions apply for those
branches. Since the CFG tells us what branches lead to invalid states, such as
throwing exceptions, we can infer what preconditions would cause the request
to be invalid. For Snippet 1 the CFG shown in Figure 3.3 is generated.

We collect constraints by iterating over the statements of the CFG. In this
process we collect a tree of preconditions and consequences to represent the
constraints. As an example of such a tree, following Snippet 1 we would ob-
tain the constraints shown in Figure 3.4. The exact preconditions that ap-
ply can be inferred from the CFG. For example, from the CFG in Figure 3.3,
the precondition req.card! = null has a true and a false branch. From this we
can infer that the negation of this precondition would lead us to the statement
method = req.card. Within the constraint tree this is represented as card = null→
{present(bankAccount)}.

Looping expressions, such as the for-loop, can be difficult to analyze stati-
cally. This is because the condition breaking the loop can be complex. However,
we noticed that the exact analysis of looping expressions was not important for
the inference of constraints. Looping statements were sometimes used for pa-
rameters which have an array value. E.g. "people": [{”name” : ”Frank”, ...}, ...].
For such array values, any conditions within the body of a loop would apply to
all values that would be iterated over. Hence, analyzing the body of a for-loop
once would be sufficient.

card != null → {present(card) },
card = null → {present(bankAccount) },
offset > 80→ {InvalidState }

Figure 3.4: An example constraint tree, based on Snippet 1

3.2.2 Sensitivities

We perform analysis which is flow-sensitive, partially path-sensitive and context-
sensitive. In the analysis the branches of the control flow graph (CFG) are con-
sidered, without explicitly taking the previously evaluated path into account.
This makes the analysis only partially path-sensitive. To exemplify this, con-
sider a node C reachable through either A or B. When evaluating C the program
is agnostic to whether the execution trace would have gone through A or B. If
a variable is modified in two exclusive branches, then the most recent modifi-
cation is chosen. Similarly, we do also not keep track of data conditions that
would result from taking one path or the other. For example, if a branch has
o f f set > 80 as a guard then we do not assume anything about the value of offset
outside the branch’s body.

19

3. Approach

3.2.3 Inter-Procedural Analysis

The controller method calls other methods, including these calls in the analysis
is important to find all constraints. Any method the controller method relies
on can also make calls to other methods. To represent this network of function
calls, we generate a static call graph with the controller method as the root.
Starting from the controller method, we recursively construct this call graph up
until a predefined depth. For us a depth of 15 was sufficient.

When we occur a function call in the control flow, the body of the called
method is evaluated given its current context. Following Snippet 1, the
validateCard(method) is an example of such a call, in which method represents
its context. After analyzing the body of the method, the constraint tree is inte-
grated with the constraint tree of the controller method. Assume that for the
call validateCard(method) we would obtain the tree card.cvc = null→ InvalidState,
then this would be added to the original tree as shown in Figure 3.4 and result
in the new tree shown in Figure 3.5. Note that the obtained tree is not added at
a random level, but in the body of the statement that preceded the method call.
I.e. in the body of card != null.

card != null → {
present(card),
cvc = null → {InvalidState }},

card = null → {present(bank) },
offset > 80→ {InvalidState }

Figure 3.5: An example constraint tree, based on Snippet 1 with the constraints
obtained from analyzing validateCard(method) integrated.

3.2.4 Guard Analysis

Up until now we have only considered simple conditions as guards, however in
practice these can get more complicated. Evaluating and parsing them correctly
is essential for correct constraint inference, since they form the preconditions of
any constraints we find. For example, for the constraint card.country = ”NL”→
card.cvc! = null the precondition card.country = ”NL” could be extracted from a
statement such as i f (country.equals(”NL”)).

Programming languages tend to have a large variety in what expressions can
be used in guards or other parts of the code. In the next sections we explain
how we deal with resolving a number of these expressions and how these are
used in parsing guards to a constraint oriented machine-readable format.

20

3.2. Code Analysis

Variable Stack

Knowing which variables correspond with which parameter is essential for ex-
tracting parameter constraints from the code. When a variable is referenced
we want to know if it is related to a parameter, and as such relevant for the
constraints we will extract. To maintain such references we maintain a vari-
able stack. Our variable stack keeps track of known concrete values for vari-
ables and which parameters correspond with which variable. For example,
int maxLength = Constants.maxLength would be resolved to the maxLength entry
shown in Figure 3.6 and String card = request.getCard() would be resolved to its
corresponding entry. How we know request.getCard() corresponds with the card
parameter is explained in Section 3.2.5. For the isValidCard variable the condi-
tion is the result from a function call (see Section 3.2.4).

maxLength: {
value: 100,
condition: null

},
card: {

value: null,
condition: param(card)

},
isValidCard: {

value: null,
condition: param(card.cvc) != null || param(card.iban) != null

}

Figure 3.6: An example variable stack.

For Java primitives, including strings, we evaluate basic operations such as
addition and subtraction. E.g. ”en”+ ”_US” is resolved as ”en_US”. For booleans
we resolve binary operations only if it can be said that they are surely false or
true. E.g. given A||B with A= true we know the expression is true. If such expres-
sions are assigned to a variable, then we update the variable stack accordingly.
Any expression that we can not resolve result in the value being equal to null.

For collections, such as arrays, we keep track of the contents of the collection
if the contents are primitive or enum values. Given APIs often consume simple
types, these basic collections are the most significant for inferring constraints.
For example, if the stack keeps track of a list of countries in the countries vari-
able and the country variable corresponds with the parameter country, then later
on we could parse the statement i f (countries.contains(country)) to a meaningful
precondition of a constraint7.

7We handle the .contains(arg) method as a common expression (see Section 3.2.4).

21

3. Approach

Function Calls

The guards may depend on the result of a (boolean) function call, such as the
function shown in Snippet 2. For example, i f (isValidCard(card)){...}. In order
to infer which constraints apply to either a ’true’ or ’false’ result, we use an
adaption to the default approach for analyzing function calls. In this adapted
approach, all conditions are collected that would result in the function returning
’true’. For simplicity, we assume functions do not return null. Following the
method in Snippet 2, ’true’ would have or(card.cvc ! = null,card.iban ! = null) in its
set of preconditions. Then, if a guard is false we know that the negation of the
conditions in true apply. Figure 3.6 shows how the results from evaluating such
a function could be stored in the variable stack. This is relevant for cases such
as boolean validCard = isValidCard(card).

Function isValidCard(Card card)
if card.getCvc() != null then

return true
end
if card.getIban() != null then

return true
end
return false

end
Snippet 2: A boolean method which indicates
whether a card is valid or not.

card.cvc != null → {return true },
card.iban != null → {return true }

Figure 3.7: An example constraint tree adapted for boolean functions, based on
Snippet 2.

To collect conditions that result in the function returning true, we main-
tain an adapted version of the default constraint tree we build. An example of
which can be seen in Figure 3.7. In this adapted version the return statements
are added to the tree. This way we know all the conditions that correspond
with true. If a return statement returns an expression, then we correspond
this expression with true. E.g. if the method in Snippet 2 would just contain
return card.getCvc()! = null || card.getIban()! = null then those conditions would be
corresponded with true.

22

3.2. Code Analysis

Common Expressions

The core Java language includes common methods whose logic is hard to infer
using static analysis, but can still be given meaning to individually due to their
common nature. In this case we do not use the default parsing process, but
map the expression to a manually defined machine-readable output. Examples
of these are the .length() method for strings and the .contains(arg) method for
collections. We deal with the .length() to be able to infer constraints on the
length of string type parameters and the .equals(arg) operation can be parsed
as a simple equality constraint. We applied the same concept for a handful of
common methods used within Adyen.

Guard Parsing

When we encounter a conditional statement, such as an if-statement, in the
code, we want to parse its guard such that it is expressed in a machine-readable
format. We parse guards as a collection of ANDs and ORs. These connectives
follow the machine-readable representation presented in Section 2.3. In the
process of parsing these statements the expressions that occur directly in the
guard are evaluated, i.e., any referenced variables are retrieved from the vari-
able stack and any expression are resolved as described earlier.

For imagining this process, consider the guard !isValidCard(card)&
card.getIssuer() ! = merchBank. Assume that isValidCard(card) is the same method
described in Snippet 2. We parse this method as a boolean function call, which
provides us with the conditions and(card.cvc = null, card.iban = null). Then, since
card.getIssuer() returns issuer we know that expression corresponds with the
issuer parameter (see Section 3.2.5). From the variable stack we can see that
merchBank is set to "Adyen". Putting all this information together, this guard
would be parsed to and(and(card.cvc = null, card.iban = null), issuer ! = ”Adyen”).

Unparsed Statements

The parts of conditional statements that can not be parsed to a constraint on
a parameter are parsed as unparsed, but still shown in the representation.
Since code is (often) written to be legible by humans, this allows us to re-
tain some information the condition might have. Following an earlier example
!isValidCard(card)&card.getIssuer() != null. Assume that we could not resolve the
reference to isValidCard(card). The guard would be parsed to
and(!Unparsed(isValidCard(card)), issuer ! = null).

Guard Evaluation

Sometimes we can evaluate whether a guard is guaranteed to be false or true.
When the guard is guaranteed to be false, then the body corresponding with

23

3. Approach

this path is not evaluated. This excludes any constraints that would be present
within the body. Similarly, if the guard is true, then any connected else/else-if
statements are not evaluated.

Whether we can evaluate if a guard is guaranteed to be true or false depends
on the conditional statement itself. Consider i f (A||B) and given A = true then we
know that this guard is always true. For i f (A&B) we know that this guard is
always false given A = f alse. With these two idioms we evaluate any larger
composite statement consisting out of ANDs and ORs.

The boolean value of an expression can be obtained in a number of ways.
In most relevant cases, we know the value because it is set in the framework’s
configuration. This is particularly relevant since a controller method may be
reused using different configurations. This configuration can exclude running
certain parts of the code and as such exclude constraints present in that part of
the code.

3.2.5 Considerations

In this section we underline a number of challenges that need to be considered
in order to make the code analysis work on real-world systems. For the following
challenges we provide solutions that may not work for all systems, but were used
as working solutions for the results of this paper.

Duplicate Parameter Names

In APIs with object encapsulation, the same parameter name may be used mul-
tiple times for different parameters. An example of this is the parameter ’ref-
erence’ in a number of Adyen endpoints8. As a result of this, any reference to
’reference’ can reference multiple ’reference’ parameters.

For documentation analysis, any reference to a duplicate parameter name
is assumed to be a reference to the closest parameter with respect to the pa-
rameter whose description the name was found in. The distance measure is the
number of edges between the two parameters. Where all top level parameters
are connected and all subparameters are connected to their parents, forming a
tree. With an equal distance both parameters are considered.

For code analysis, the correct parameter is inferred from the context of the
most recently accessed variables. For example, given we just accessed the ’card’
parameter, then we can infer that the ’reference’ parameter probably corre-
sponds with ’card.reference’ and not (e.g.) ’bank.reference’.

8https://docs.adyen.com/api-explorer/#/PaymentSetupAndVerificationService/v52
/post/payments

24

https://docs.adyen.com/api-explorer/#/PaymentSetupAndVerificationService/v52/post/payments
https://docs.adyen.com/api-explorer/#/PaymentSetupAndVerificationService/v52/post/payments

3.2. Code Analysis

Request to Object Conversion

Typically the request passed to an API is deserialized from its original format
(JSON, XML) to an object model. Due to this conversion the direct link between
request parameters and the variables/fields accessed throughout the code may
be lost. Linking in-code variables to a request’s parameters is essential.

The solution can vary from system to system. Whereas tracing fields in the
deserialization process may not feasible, we can make assumptions on the cor-
respondence of class fields with parameter names. For SpringMVC the field
names need to match the parameter keys. Within the Adyen APIs, the object
models used during deserialization do have fields whose names correspond di-
rectly with the parameter names in the original request. This allows us to in-
fer that address.getCountry() corresponds with the parameter country, since that
method returns the field country.

In some cases, the internal class’ field names may differ from the parameter
names by the request of the API consumer. This can be due to various reasons.
We found the use of JAXB annotations9 and mapping multiple parameters to the
same class field during deserialization to be relevant. With JAXB annotations,
the external parameter name can differ from the internal class field’s name.
Since these annotations are placed above class fields, reflection tools can easily
detect when this is being done. For mapping parameters to different fields,
defining such a mapping manually mitigates the problem. When two parameters
were mapped to the same field, then we associated that field with both external
parameters.

Parameter Access

In order to detect constraints, we determine whether a part of the code ac-
cesses a parameter, or whether a variable represents a parameter. The access
of a parameter does not always mean it is required, if it does depends on the
framework being used. For example, in Flask parameters are accessed from a
map-like structure. In this case, for param = req[′param′] the parameter being
accessed means that it has to be provided. When the framework converts the
request to internal object models, this is not the case. In the deserialization the
provided parameters are used to fill the related model instances. Later these
instances are used in the flow of the controller method.

When the requests are deserialized as such, the access of the object’s at-
tribute corresponding with a parameter does not mean that the parameter is
required. We determine whether the parameter is required on the basis of as-
sertions. For example, looking at Snippet 3, we know that in order to reach
process(address) card can not be null and is thus card is required in that branch.

9https://javaee.github.io/jaxb-v2/

25

https://javaee.github.io/jaxb-v2/

3. Approach

...
card = request.getCard()
address = request.getAddress()
if card != null then

process(address)
end
...

Snippet 3: Example snippet showing how the access of an objects attribute
corresponding with a parameter does not directly imply that that parameter
is required.

Identifying Invalid States

We use throwable exceptions occcuring in the code to know if the preconditions
leading to that condition should be avoided. Any code statement that tells us the
preconditions should be avoided is marked as an ’invalid state’. In most cases,
checking the code for such throwable exceptions was enough for extracting
constraints. However, there are cases in which parameter constraints may not
be enforced by explicit exceptions. Take a try-catch construction in Java for
example. If an error is thrown, we do not directly know what caused it. This may
require the use of static null-pointer detection (e.g. [30]). We did not encounter
such try-catch constructions, as such, we only dealt with explicit invalid states.

Errors may also be deferred to a later point in program execution. In this
case the results of a validation step may be added to a result map, which is later
used to throw exceptions. Due to the nature of our static analysis, such flows
are difficult to identify. Our solution is to identify patterns, that can be used to
identify such a deferred invalid state. For example, any statement containing
x.addError(...) could be tagged as an invalid state.

3.2.6 Constraint Tree validation

Static code analysis can produce false positives, so having a validation phase to
increase the precision makes sense. However, the usage of unparsed statements
makes automatically validating the constraints ineffective.

If any constraint contains unparsed elements, we can not safely generate
validation requests; if a validation request fails we do not know if it was due
to the constraint described by the unparsed statement. We could still apply
the validation process on constraints which do not have unparsed elements.
However, most false positives contained unparsed statements. Furthermore,
false positives tended to have a large number of hard to interpret unparsed
elements. As a result, differentiating between true and false positives tends to
be relatively easy for humans.

26

Chapter 4

Research Methodology

Our main research question is ’Can (inter-)parameter constraints in complex
Web APIs be identified using automated techniques?’. To answer this question,
we split this question into the following research questions (RQs):

RQ1: How effective are documentation- and static code analysis in
identifying parameter constraints in a large-scale enterprise API? We
answer this question by comparing automatically identified constraints against
a manually collected ground truth, for both single- and inter-parameter con-
straints. We are particularly interested in how many constraints can be identi-
fied and the number of false positives. False positives are particularly important
as they can hinder the adoption process of static analysis tools [13].

RQ2: What are challenges in using documentation- or static code
analysis to identify inter-parameter constraints? Besides the aforemen-
tioned metrics, we aim to understand the challenges that occur when trying
to automatically identify constraints for large-scale industry APIs. We do this
in particular to gain a deeper understanding of the viability and future direc-
tions of each approach; can the approach work, and what is needed to make
the approach work? Unique to our work is the analysis of complex APIs, which
face unique challenges in terms of the number of parameters to analyze and the
structure of the accompanying code.

In the remainder of this chapter, we explain the APIs and endpoints we se-
lected and how, from those endpoints, we collect the ground truth, and finally
how we performed the analysis.

4.1 Selected Endpoints

We aimed at selecting a representative set of Adyen APIs and endpoints which
were publicly accessible. These APIs and corresponding endpoints can be ex-
plored through the API explorer1. At the time of writing, there are three distinct

1https://docs.adyen.com/api-explorer

27

https://docs.adyen.com/api-explorer

4. Research Methodology

public APIs: Checkout (checkout), Payments (pal), and Adyen for Platforms (cal).
Within Adyen’s API Explorer, these different APIs can be distinguished by their
server URL. E.g. the Checkout API has https://checkout-test.adyen.com as a
default server path.

We selected endpoints on the basis of the following criteria; an endpoint has
to contain inter-parameter constraints, and the internal logic must be dissimi-
lar enough from any previously selected endpoint. This dissimilarity criterion
comes from the observation that endpoints frequently featured the same (inter-
)parameter constraints, as a result of strong code reuse. Including such similar
endpoints would lead to an unbalanced set of endpoints, in which we would
effectively be analyzing the same code a number of times.

We selected the following APIs and endpoints; Checkout: /payments, Pay-
ments: /authorise, /capture, /storeDetailAndSubmitThirdParty, /getCostEstimate,
Adyen for Platforms: /createAccountHolder, /getAccountHolder, /updateAccoun-
tHolder, /createAccount, /uploadDocument. These endpoints can all be found
through the API Explorer.

4.2 Ground Truth

The ground truth consists out of a representative set of constraints which we
manually collected for each of the selected endpoints. These constraints include
both inter- and single-parameter constraints. Three aspects of the ground truth
are particularly important; the collection, selection, and representation. Note
that we do not publish this ground truth for security reasons.

4.2.1 Collection

Given that only a number of constraints were known beforehand, we had to
carefully inspect the code of all selected endpoints for constraints. In this pro-
cess we start at the controller method and follow the code until its end, taking
note of any constraints we find along the way. Any constraints were validated
by making API requests corresponding with the constraint in order to ensure
their correctness. Additionally, developers from the respective APIs were asked
for guidance in pointing out constraints known by them and the general logic of
handling requests related to that API.

4.2.2 Selection

Some inter-parameter constraints are trivial, as such not every constraint which
is technically a constraint is included. For example, given we have an address
object with, amongst others, a country field which is known to be required. In
this case, address→ country is technically an inter-parameter constraint. How-

28

4.3. Grouping Challenges

ever, any of such encapsulation constraints are excluded based on their frequent
occurrence and triviality due to being known beforehand through the documen-
tation and their straightforward presence within the code.

Not all payment methods2 are included either, but instead, one representa-
tive payment method is used per payment method category, such as open invoice
or bank transfer. This is mainly done because of the sheer number of payment
methods, which internally may rely on similar logic.

4.2.3 Representation

How constraints are represented can strongly impact the results’ statistics. For
example, if we choose to represent A→ B & C as A→ B and A→C, then we end
up with twice the constraints. The same applies for A ||B →C.

Generally, we opt to group logical ORs and logical ANDs together. This is
done in order to match how constraints would be present in IF-statements; mul-
tiple conditions in the guard (left-side) would lead to a number of consequences
in the body (right-side). IF-statements are a particularly common control struc-
ture to encode constraints.

4.3 Grouping Challenges

To gain insight into the challenges the two approaches face, we place unde-
tected inter-parameter constraints into one or more challenge categories ac-
cording to the reasons that lead the constraint to be undetected. These chal-
lenge categories can be seen in table A.1 and table A.2 for documentation- and
code analysis respectively, available in appendix A.

4.4 Analysis

We analyze all selected endpoints for constraints separately for the documenta-
tion and code-based approach. Before running the documentation analysis, we
deploy a local build of the API and configure the correct authentication details
in order to make requests to this API. After this we specify the endpoint we
want to analyze. This ensures we load the correct service information from the
OAS files. Finally, both approaches perform their analysis as described in the
Approach chapter.

2Payment methods are primarily used for the /payments endpoint. A payment method is, at
the time of writing, provided through the paymentMethod.type parameter.

29

4. Research Methodology

4.4.1 Ground Truth Comparison

We manually compared the output given by the approaches to the ground truth.
If the identified constraint and ground truth constraint are logically equivalent,
then we consider them to be the same constraint. Given that both approaches
represent the output of constraints using logical formulations, this comparison
can be done directly.

Sometimes only part of a constraint was identified. For example, given
A→ B &C, it would only identify A→C. In these cases we deviate from the rep-
resentation standard established in Section 4.2.3, and represent the constraint
A→ B as unidentified and A→C as identified.

4.4.2 False Positives

Both approaches can produce false positives. For documentation analysis the
likelihood of getting a false positive is reduced due to the added validation
stage. For the documentation analysis, any truth table which suggested a con-
straint between two parameters which was not there would be considered as a
false positive. For code analysis, any unique path in the constraint three that
incorrectly suggests that its preconditions lead to an invalid state is considered
a false positive. For example, the constraint tree in Figure 4.1 contains two false
positives: card ! = null→ card.cvc ! = null and card ! = null→ card.iban ! = null.

card != null → {
card.cvc = null → {InvalidState },
card.iban = null → {InvalidState }

}

Figure 4.1: An example constraint tree, containing two false positives.

30

Chapter 5

Results

5.1 Research Question 1
How effective are documentation- and static code analysis in iden-
tifying parameter constraints in a large-scale enterprise API?

5.1.1 Inter-parameter Constraints

To answer RQ1 for inter-parameter constraints, we show the number of
inter-parameter constraints identified by each approach in Table 5.1.

Total Code Code FP Doc Doc FP Both

/payments 17 11 2 0 0 0
/authorise 15 11 4 3 0 2
/capture 5 2 0 1 0 0
/storeDetailAndSubmit... 5 2 0 1 0 1
/createAccountHolder 4 0 0 3 0 0
/getAccountHolder 1 0 0 0 0 0
/updateAccountHolder 1 1 0 0 0 0
/createAccount 1 0 1 1 0 0
/uploadDocument 3 1 1 1 0 1
/getCostEstimate 1 0 0 1 0 0

Total: 53 28 8 11 0 4

Table 5.1: For every endpoint we show: the total number of manually identified
inter-parameter constraints, the number of constraints identified by the code
and documentation analysis, with their respective false positives (FP), and the
number of constraints that were identified by both.

31

5. Results

Observation 1: Code and documentation analysis together detect
66% of the inter-parameter constraints. Code and documentation
analysis detect 35 ((28+11)-4) out of the 53 constraints in total. Typi-
cally, using both approaches, the analysis is able to find at least some
constraints for every endpoint.

Observation 2: Code and documentation analysis detect different
constraints. Between the 28 and 11 constraints found, only 4 were
found by both code- and documentation analysis. For this, 3 different
endpoints contributed to the total overlap of 4.

Observation 3: Code analysis detects more constraints, but with
more false positives. Code analysis detects around 2.5 times more con-
straints than documentation analysis, it does however produce a number
of false positives. Documentation analysis finds fewer constraints, but
does not produce false positives.

5.1.2 Single-Parameter Constraints

For (single-)parameter constraints we provide information for all end-
points that had parameter constraints. This only includes code analysis,
since documentation analysis is not set up to find single-parameter con-
straints. Although possible, we did not get any false positives.

Total Identified

/payments 9 8
/authorise 14 10
/capture 5 5
/storeDetailAndSubmit... 4 4
/createAccountHolder 4 1
/createAccount 1 1

Total: 37 29

Table 5.2: For every endpoint, the total amount of parameter constraints and
the number of identified single-parameter constraints using code analysis.

Observation 4: For the majority of the single-parameter constraints,
easy to infer code structures are used to check parameter values.
For example, the fraudOffset having to be smaller than 999 would be
done with a check similar to i f (request.getFraudO f f set()< 999). Some no-
table challenging cases include regex patterns not being parsed to some-
thing meaningful, and parsing the parsing of dates.

32

5.2. Research Question 2

Observation 5: Code analysis detects 78% of the single-parameter
constraints. Code analysis detects 29 out of 37 the single-parameter
constraints. For some endpoints it manages to find all parameter con-
straints. The percentage of single-parameter constraints found is larger
than the total number of inter-parameter constraints.

Code and documentation analysis combined obtain 66% of
the inter-parameter constraints. Code analysis obtains 78%
of the single-parameter constraints.

5.2 Research Question 2
What are challenges in using documentation- or static code anal-
ysis to identify inter-parameter constraints?

5.2.1 Documentation Analysis

For every endpoint we labeled constraints with the reasons for being not
detected. These four reasons are described in table A.1, and their short
descriptions are in the header of table 5.3. To answer RQ2, we inspect
and discuss these reasons in more detail.

Lack of Information (A.1)

By far the most common reason for not identifying a constraint is the
absence of information about the constraint. Without descriptions de-
scribing the constraint directly it gets harder to identify them through
the descriptions alone. Checking the parameters’ descriptions for refer-
ences to parameters directly will not work. Using the contextual related-
ness of parameter descriptions could potentially be used as information.
However, initial results, as discussed in section 3.1.1, do suggest this is
not realistically possible.

In some cases we do not even know that the parameter is present
through the documentation. The existence of such parameters can be
detected by looking through the object models of the code, as discussed
later in section 5.2.2. However, for documentation analysis this is not an
option, which means inferring any of such constraints is not possible un-
less additional manual information is provided. This includes providing a

33

5. Results

A1
No Info

A2
Implicit Info

A3
No Value

A4
Validation

/payments 15 2 0 0
/authorise 7 2 3 2
/capture 4 0 0 0
/storeDetailAndSubmit... 3 1 0 0
/createAccountHolder 0 1 0 0
/getAccountHolder 0 0 0 0
/updateAcountHolder... 0 1 0 0
/createAccount 0 0 0 0
/uploadDocument 2 0 0 0
/getCostEstimate 0 0 0 0

Total: 30 7 3 2

Table 5.3: For every endpoint, the table shows the reasons documentation anal-
ysis was not able to identify an inter-parameter constraint. One constraint may
not have been identified for multiple reasons.

description of the parameter which is not in the OAS. Manually providing
descriptions with the sole purpose of inferring constraints is convoluted.
In this case, directly specifying the constraints that might apply on that
parameter may be more effective.

Implicit References (A.2)

Some constraints were not detected due to the use of implicit informa-
tion. There were a number of cases in which the OAS did include docu-
mentation on a constraint, but the description did not explicitly mention
the name of a parameter. For example, the parameter stateOrProvince’s
description describes ’Required for the US and Canada’. Any human
would know that the country parameter’s value being equal to ’US’ or
’CA’ would require stateOrProvince.

In order to make the connection between the implicit information and
the referenced parameter, word embeddings could potentially be used.
So rather than checking for a direct match, similarity measures could be
used to utilize the implicit information. However, this may generate too
many candidates to validate, similar to the word embeddings described
in Section 3.1.1.

34

5.2. Research Question 2

Value not Detected (A.3)

Finding the values constraints depend on can be difficult. There are
cases in which, usually amongst other reasons, a value dependent con-
straint is not detected because the value is not detected or entirely un-
known. For example, for constraint recurring.contract = ”ONECLICK” →
card.cvc the value ONECLICK was not detected. And for constraint country=
”US”→ stateOrProvince the value US was not detected. Providing these
values as OAS enum values would allow these values to be detected.

These are two different cases of undetected values. The recurring
contract types are limited in number and specific to the company, the
country codes are a common standard (ISO-3166-1 alpha-2) for which
a larger number of values exists. Therefore including these in the OAS
would make less sense and would not provide a solution to the problem.
Given the values are not always present in the descriptions using spe-
cial formatting, parsing descriptions to extract values is not generally
possible either.

Value dependent constraints remain to be an open challenge for any
black-box model, including documentation analysis. The documentation
may provide us with some values, such as enum values in the OAS. How-
ever, this is not always the case. Whereas manually specifying possible
values could be possible in some cases, this is less viable in the case of
value+additionalValue< 100000 as we likely do not know the value or have
any prior information on it.

Unobserved Constraints (A.4)

API requests used for validation may fail due to unobserved constraints.
Only part of a constraint may be detected, which results in this detected
part not being identified as a constraint. For example, assume we detect
a relationship between contract = ”ONECLICK” and card.cvc. The real con-
straint is contract = ”ONECLICK”→ card.cvc & shopperInteraction. In this
case, we can not automatically infer the constraint between contract =
”ONECLICK” AND card.cvc. This is because the unobserved requirement
of shopperInteraction will cause some validation requests to fail. Any re-
quest including the contract will fail, since it needs the shopperInterac-
tion to be present as well.

While we might not be able to detect the unobserved constraint, we
can get some information from cases like this. When this scenario occurs
the request will always fail when the parameter with an unobserved con-

35

5. Results

straint is present. The unobserved constraint can be an inter-parameter
constraint, as described earlier, or a constraint on the value of a param-
eter. The outcome is the same for both cases; we do not know the cause
of failure. When this is the case, we should raise a flag on this occurring,
such that the reason might be resolved manually.

Request Dependencies

API requests may depend on a sequence of preceding requests. For
Adyen, a classic example is the authorize and capture steps, in which the
capture step captures the payment authorized in the authorize step. As a
result, authorize has to be used before capture and the capture request
depends on a field returned by the authorize request, namely the PSP
reference. Without providing a valid PSP reference the capture request
will always fail, which makes inferring constraints difficult.

While generating validation requests, such constraints between dif-
ferent endpoints can be a problem. This is especially the case if the
value returned by a preceding request can only be used in a dependent
second request once. This could for example happen for the creation
of accounts. One request could create an account, the other could then
close it. Trying to close the already closed account again would result in
an error. In this case, the preceding request would have to be sent for
every validation request to get the valid value.

To mitigate this problem, any of such dependencies should be re-
solved. Within this paper, we were able to manually specify default val-
ues for such fields. This circumvented the problem with relative ease.
As such, it did not impact the results, and this challenge is not included
in Table 5.3. When this is not the case, one would have to specify these
dependencies. Atlidakis et al. [2] outlines REST-ler, a tool which is able
to infer such dependencies in the sequences of requests.

For documentation, by far the most common reason for not
detecting constraints is the absence of information explicitly
describing the constraints in the OpenAPI Specifications.
Dealing with this absence of information is a major chal-
lenge.

36

5.2. Research Question 2

5.2.2 Static Code Analysis

For code analysis, we identified a number of challenges our static code
analysis faces when extracting inter-parameter constraints. Some of
these challenges have been addressed such that they no longer impact
the results, take the ’Design Pattern’ challenge for example. We still in-
clude these challenges, since they could be relevant for other APIs. In
order to better understand the challenges at hand, in appendix C we
provide a dummy API’s flow along with code snippets which contain a
number of challenges explained in this section.

B
1
:

D
e
te

c
ti

o
n

B
2
:

D
e
re

fe
re

n
c
e
d

B
3
:

V
a
ri

a
b

le
S

ta
c
k

B
4
:

P
re

c
o
n

d
it

io
n

s

B
5
:

C
o
n

tr
o
l

S
tr

u
c
tu

re

B
6
:

D
a
ta

F
lo

w

B
7
:

A
ri

th
m

e
ti

c

B
8
:

F
ra

m
e
w

o
rk

/payments 1 1 0 1 1 1 0 2
/authorise 0 3 2 1 3 0 1 0
/capture 0 3 2 0 3 0 1 0
/storeDetailAndSubmit... 0 0 0 0 0 3 0 3
/createAccountHolder 0 2 2 0 4 2 0 0
/getAccountHolder 0 0 0 0 0 1 0 0
/updateAccountHolder... 0 0 0 0 0 0 0 0
/createAccount 0 1 0 0 0 0 0 0
/uploadDocument 0 2 0 0 0 0 0 0
/getCostEstimate 0 1 1 0 0 0 0 0

Total: 1 13 7 2 11 7 2 5

Table 5.4: For every endpoint, the table shows the reasons code analysis was
not able to identify an inter-parameter constraint. One constraint may not have
been identified for multiple reasons.

We observe that, unlike documentation analysis, for code analysis
a lack of information was not the leading challenge. Frequently, con-
straints were encoded within the control-flow of the controller methods
in a relatively straight forward fashion. This makes a static code analysis
approach which focuses on the analysis of control statements effective.
There are however cases for which such a basic approach has to be ad-
justed or extended. We discuss these cases in more detail in the following
sections.

37

5. Results

Parameter not Detected (B.1)

When an expression is not associated with a parameter, no constraints
will be inferred from that related part of the code. Within our approach,
this happened because these parameters are not referenced in the Ope-
nAPI specifications. From a business perspective, these parameters may
not be referenced because a function is being deprecated or because
certain functionality is only intended to be used by a select group of API
consumers. From an API design perspective, these parameters might be
missing because documentation still needs to be added.

As a solution to this problem, one can specify any access to fields of
a data model as an access to a parameter, regardless of whether the ac-
cessed fields are in the documentation or not. To do this, we would have
to detect whether a class is part of the data models. This could be done
by manually specifying the data models. Given the relatively small num-
ber of data model classes, this is viable. Manually specifying parameter
names which are not in the OAS is an alternative solution. This would
however require knowing which parameters are not in the OAS. In our
case, this was not something we would always know beforehand.

Parameter Dereferenced (B.2)

A large number of parameter references are dereferenced at some point.
When this challenge occurs we initially can associate an expression with
a parameter, but after some steps this reference is lost. Typically the ref-
erence is lost due to the developed parser not being able to parse all Java
expressions. Within the evaluated APIs this usually happened during ob-
ject creation. Either object creation when deserializing the request to the
internal data model or when creating a new object within the controller
method’s flow. The latter was more common than the former.

Within deserialization two, or more, parameters may be used to fill
the same field of a data model. For example, for a card object the coun-
tryCode could either be set from the countryCode parameter directly,
or be extracted from the provided IBAN. As a result, we do not know
that there are constraints on the country code part of the provided IBAN.
Maintaining references in Adyens deserialization forms a significant chal-
lenge with no easy solution. This is mostly because deserialization steps
are tightly interwoven with the framework that is being used (see section
5.2.2 B.9).

Frequently a number of parameters were used in the creation of a

38

5.2. Research Question 2

new data model object. This object was then validated for constraints.
If the fields in the new model did not correspond with known parameter
names, constraints could not be detected. As such, statically maintaining
objects is relevant for static code analysis. For the creation of objects
within the controller method’s flow, some references could be retained if
we keep track of objects in our static variable stack. When parsing the
construction of an object we can theoretically keep track of which fields
of that object correspond to which parameter(s). Due to time restrictions,
we have not explored this in more detail.

Static Variable Stack (B.3)

Maintaining basic values in the variable stack is sufficient for inferring
most inter-parameter constraints. These basic values include Java prim-
itives, strings, and parameter references, as described in section 3.2.4.
This tends to be enough since fields in API requests typically handle basic
values as well. For example, a ’name’ would be a string and an ’amount’
would be an integer. Parameters which are objects consequently ex-
ist out of combinations of these basic values. E.g. ”person” : {”name” :
”Hanson”, ...}. Just maintaining basic values is not always enough. This
is particularly relevant for objects, as discussed in Section 5.2.2 B.2. Ex-
tending the range of expressions that can be parsed to update the vari-
able stack is discussed briefly in Section 5.2.2 B.4.

Preconditions (B.4)

Some constraints have complex preconditions resulting in another pa-
rameter being required or not. For example, consider a hypothetical
function isValidIban(iban) in which validity of the IBAN itself depends on a
large number of conditions, which the approach aims to parse. Typically,
such preconditions exhibit expressions that are difficult for static code
analysis to parse. As a result, our approach would produce preconditions
containing an often large number of unparsed elements. These are hard
to read by humans, even if the precondition could be fully parsed. This is
why this has its own challenge category, even though the essence of the
problem relates to both B.2 and B.3.

In essence, this challenge relates to the kind of expressions our static
analysis tool can parse. Given that we can not take all expressions of any
language into account [14], it is important to identify which expressions
are important when statically analyzing code for parameter constraints.

39

5. Results

For example, the Java default method Boolean.parseBoolean(String s)
may be a function that is universally used through different APIs. Section
3.2.4 addresses this problem partially for the scope of this paper.

Control Structure (B.5)

The basic evaluation of for-loops is relevant for extracting constraints.
For-loops are used in a number of cases to validate parameter constraints
within the source code itself. When for-loops were used, this was typi-
cally done for parameters with array values. E.g. "people": [{”name” :
”Frank”, ...}, ...]. As discussed in section 3.2.1, evaluating the body of the
for-loop once would be sufficient to infer the constraints. For-loops are
also used for arithmetic constraints. In particular for the type P1+P2+
... = Pn. For this, one could heuristically specify that all elements of an
array type parameter contribute to the sum. Using such heuristics could
circumvent a number of complications that come from statically keeping
track of stop conditions for looping statements.

Theoretically, a more advanced analysis of for-loops could be needed.
Consider a for-loop which iterates over a number of parameter objects.
Each of these parameter objects could implement their own validate(request)
method. The aforementioned heuristics would not suffice. However, in
practice, we did not encounter such a structure within the code base.

Switch statements were common for value-dependent constraints. Nat-
urally, case statements lend themselves well for executing logic specific
to a certain value of a parameter. Supporting case statements is to a
large extent trivial, however due to time limitations and case statements
not being the only reason for failing to extract a constraint, these are
not implemented. However, since they are not implemented they are still
counted towards the results in Table 5.4.

Data Flow (B.6)

Data flow limitations involved the lack of path sensitivity and not keeping
track of fall through conditions on certain branches. The impact on the
results in noticeable, thus when using static code analysis for inferring
inter-parameter constraints, having the approach be data flow sensitive
is preferred.

For path sensitivity, our approach is limited when two mutually exclu-
sive branches influence the precondition of another branch. An example
of this is shown in figure 4. Here, the checks that are applied to the

40

5.2. Research Question 2

object in the body of the evaluateCorners if-statement depends on the
shape of the object. We are not able to infer this correctly.

For conditions on fall-through paths, snippet 5 shows how not keeping
track of these conditions may cause incorrectly extraction of constraints.
In this case, in order to end up at the exception the fall-through condi-
tions ID == null and user == null would apply. We do not keep track of
these conditions. As such, the code analysis would extract the incorrect
constraint auth = True→ InvalidState.

Making static analysis path-sensitive is possible [8]. However, our
current approach is not easily changed to support path-sensitive analysis.
As such, within the analysis of parameter constraints, this is still an open
challenge.

Function validateShape(object)
if object.shape = ’square’ then

evaluateCorners = true
else if object.shape = ’circle’ then

evaluateCorners = false

if evaluateCorners then...
end
return false

end
Snippet 4: Method evaluating some prop-
erty of an object.

Function getAccount(request)
if request.auth == True then

if request.ID != null then
return ...

else if request.user != null then
return ...

Throw Exception()
end

end
Snippet 5: Method evaluating some prop-
erty of an object.

Arithmetic Constraint Syntax (B.7)

Arithmetic constraints include parameters that are related to each other
by means of arithmetic. For example, A+B > 10. These constraints are
common [17], with 107 out of the 633 identified constraints being arith-
metic constraints. From these 107 constraints 106 had an arity of 2, with
A >= B being by far the most common.

Within our case study, such constraints were often directly present in
the code. E.g. A >= B would have a corresponding i f (A >= B) statement.
This made them easy to extract. Another type of arithmetic constraint
involves the addition of parameters having to satisfy some criteria. This
happened for amount+additionalAmount < number and for sum(split.value)=
total. Just like the aforementioned arithmetic constraint, the constraint
amount+additionalAmount < number was often directly present in the code
as such, and thus easy to extract. This was not the case for constraints

41

5. Results

such as sum(split.value) = total, which was encoded by means of a for-
loop. For this constraint, we could try to heuristically analyze for-loops,
as described in section 5.2.2 B.5. However, we were not able to resolve
that a parameter was being referenced within the for-loop, making this
ineffective.

Arithmetic constraints can get as complex as mathematics itself. How-
ever, in practice complex constraints are rare. Common arithmetic con-
straints can be supported easily, whereas slightly more complicated con-
straints (sum(splits) = total) provide more challenges to overcome.

Framework (B.8)

Frameworks can make the inference of constraints more complicated.
The remote procedure call (RPC) based framework within Adyen was oc-
casionally used to dynamically add new tasks. These tasks get passed
through the framework, to then be handled as a kind of internal API re-
quest. Due to certain characteristics of the framework, such as multiple
layers of abstraction, resolving which tasks get executed is especially
difficult.

Design Patterns

Design patterns are used to address common challenges within software
engineering. These patterns may be any of the Gang of Four design pat-
terns or locally specific design patterns. Given that these patterns tend
to be common and are generally complex to interpret, this challenge falls
into its own category. The factory pattern was the only design pattern we
encountered for which analysis was necessary in order to infer parame-
ter constraints.

The factory pattern was particularly relevant for payment methods.
Payment methods have their own requirements; an instance of a payment
method would check if the request satisfies its requirements. Determin-
ing which payment method corresponds with which instance is difficult
to do fully automatically using static code analysis.

We addressed this challenge by manually specifying which payment
method corresponds with which Java class and which method within that
class enforced the constraints. This entirely circumvents the need for
static code analysis to resolve the corresponding payment method in-
stance.

42

5.2. Research Question 2

Non-Code Constraints

The source code is not the only place where constraints may be present.
As an example of this, constraints may be enforced at the database layer.
In this case, the maximum length of a field may be limited by table spec-
ifications or an SQL query might depend on the presence of a certain
field.

Ideally, any constraint is handled directly in the code itself. This
enables feedback in API responses, making the API more transparent.
Whereas non-code constraints are not unthinkable, they did not occur
during this case study and seem unlikely to happen.

Sound Static Analysis

A common theme amongst a number of the aforementioned challenges,
particularly B.2, B.3, and B.4, is statically analyzing code in a sound way.
This includes determining the kind of expressions we need to parse and
how we parse them.

Some challenges pose a solution which relies on the simplification
of the underlying code, while still being able to correctly extract con-
straints. For example, with the analysis of for-loops, analyzing the body
once can be sufficient (see Section 5.2.2 B.5). Understanding which sim-
plifications we can make without losing the ability to accurately extract
constraints is an important future research direction.

Other challenges are more of an engineering challenge, in which we
need to know the kinds of expressions which we need to support in pars-
ing. This includes supporting the static analysis of objects (Section 5.2.2
B.2) and knowing which expressions are relevant (Section 5.2.2 B.4).
Generalizing the knowledge of which expressions are relevant for pa-
rameter constraints is subject to future research.

For code analysis, the main challenges were data flow in-
sensitivity and engineering a sound code analysis approach.
This involves deciding how to evaluate looping control struc-
tures, maintaining parameter references throughout the API’s
code, and deciding how to deal with the variety of expres-
sions in a programming language.

43

Chapter 6

Discussion

In this chapter we compare our work to existing, comparable approaches,
discuss the use of formal constraints, possible security concerns, how we
expect code analysis to generalize, and threats to validity.

6.1 Comparison to Previous Works

The major differences of our approach with respect to approaches exist-
ing in literature are the following; our approach focused on an API with
a large number of parameters and our approach focuses on the analysis
of code to infer constraints.

Existing works that specifically focused on inter-parameter constraints
for Web APIs only evaluated APIs with a small number of parameters.
This may make search-based techniques more effective, as is reflected in
the results. The works by Gao et al. [11] and Wu et al. [35] both succeed
a precision of 90%, whereas we obtain a precision of 20% using a docu-
mentation analysis approach largely similar to the one used in the work
of Wu et al.

Concerning code analysis, Wu et al. is the only work we found which
describes the analysis of code to infer inter-parameter constraints (see
section 2.4). There are several differences. First and foremost, their
approach performs data-flow analysis whereas we extract a constraint
structure directly. The implication of this is that our approach does not
have a strict need for the validation of candidates, similar to what the
doc analysis does. Generating combinations of accessed parameters in
the same way they did also lead to an explosion of possible combina-
tions. Secondly, their approach does not address many of the features
any software system has. Key examples are analyzing methods sepa-

45

6. Discussion

rately, as opposed to within its given context, and not supporting value-
dependent constraints. The latter effectively made their approach not
support single-parameter constraints or any constraints such as X = V →
Y .

The work by Pandita et al. [22] does not provide any specific infor-
mation about inter-parameter constraints, nor does it only analyze Web
APIs. With the information they provided, a direct comparison is not
feasible.

6.2 Code Analysis for Complex APIs

The difference between static code for complex and simple APIs may not
be as strong as one might think. Simple and complex APIs rely on the
same set of (Java) expressions and often deploy some kind of framework
in the process. To this extent, a large number of challenges described in
Section 5.2.2 would apply to a simple API as well.

Complex APIs will have more code, which makes fast sound analysis
a point of focus. Extensively analyzing every method might be too com-
putationally intensive. The approach described in this paper is able to
analyze methods quickly enough for large software systems. However,
when continuing to develop this approach, in particular to make it data-
flow sensitive, this aspect needs to be considered.

6.3 Using Formal Constraints

Provided a reasonably complete set of formal constraints, there are two
main use cases: documentation and conformance testing. As is, we are
not able to automatically identify all constraints. This limits the practical
use of the constraints that can be detected.

6.3.1 Documentation

External documentation ought to help anyone who uses the API to inte-
grate better. To this end, the formal constraints should be deployed in a
way that helps the API consumer. Due to the large number of constraints,
it may generally not be beneficial to show all constraints all the time.
Therefore having more dynamic documentation which uses progressive
disclosure to point out relevant constraints to a user is an interesting
use-case. E.g. the requirements of a specific payment method will only

46

6.4. Security Concerns

be shown when an API consumer indicates to want to use that payment
method.

6.3.2 Conformance Testing

Given a formal set of constraints in a machine-readable format, we can
check requests and APIs for conformance. Martin-Lopez [16] describes
a tool that can do both of these things. Being able to dispatch non-
conformant requests before they reach the controller of an API can save
time and resources. The tool described by Martin-Lopez also gener-
ates a large number of test-cases based on these constraints. This way
APIs can also be monitored for changes in constraints and possible non-
conformance to the business requirements reflected through the pro-
vided constraints. Such constraint oriented testing of Web APIs is not
a focus within current literature [1, 2, 9, 29].

6.4 Security Concerns

Constraints extracted from the source code reflect the code to a certain
extent. As such, the constraints can reveal information we do not want
everybody to know. This is relevant for possible attacks on the APIs and
revealing sensitive information.

The constraints provide information on boundary conditions used within
the code. A malicious third party could potentially use this information to
exploit the API more easily. As such, automatically making all identified
constraints public is not preferable. In terms of sensitive information, the
constraints may reveal features that are still in development before be-
ing announced to the public. The constraints may also reveal parameters
that are only intended to be used by a select group of API consumers.

6.5 Generalization

The current approach has been designed for a specific system which uses
certain conventions for coding. It uses a remote procedure call (RPC)
based framework written in Java. Throughout the development of the
approach we kept any assumptions that may limit the approach in other
scenarios in mind. In this section, we discuss how we expect the current
approach to generalize.

47

6. Discussion

6.5.1 Programming Language

The code analysis approach can work regardless of the key programming
language of the API. The main features of the approach are observing the
access of parameters in the code and analyzing the control structures
in which these parameters are used. Most popular object-oriented lan-
guages contain similar control structures. Observing parameter access
will differ from language to language and from framework to framework
(see section 3.2.5), but as long as a connection between request param-
eters and expressions in the code can be made this approach will work.

6.5.2 API Frameworks

A large number of API frameworks exist, in this section we discuss Jer-
sey, Spring, and Flask due to their popularity. In general, frameworks
deal with dispatching the request sent to the API to the corresponding
(controller) method internally. Frameworks do not contain any logic as
to what to do with the contents of a request once arrived at its controller
method.

The Jersey, Spring, and Flask frameworks provide similar function-
ality. They create controller classes with controller methods, indicated
as such with annotations. E.g. @GetMapping(”/end point”) for methods
in Spring and @Path(”end point”) for classes in Jersey. They also provide
functionality for specifying which HTTP method(s) they should handle.
Such explicit annotations make it trivial to correspond the correct con-
troller method with an endpoint.

For accessing parameters in dispatched requests, all three frame-
works provide conventions. In Flask request bodies can be accessed as a
map, where parameters in the request correspond directly with the key
needed to access them. For example, language = req_data[”language”] can
be used to access the language parameter. Spring and Jersey also have
a direct link between the parameters sent in a request and variables in
the code. In both cases, this is done by annotating controller method pa-
rameters. These annotations are different for each framework. For Jer-
sey, a parameter may be annotated as follows methodName(@FormParam(

”deliveryAddress”) String deliveryAddress).

As a conclusion, the key features needed for static code analysis for
inter-parameter constraints are present for three popular frameworks.

48

6.6. Threats to Validity

6.5.3 Query Style

The query style is how parameters are passed to the API in a request. We
consider three main flavors: RPC, REST, and GraphQL.

Remote procedure call (RPC) based frameworks treat API requests
as calls to functions, where the arguments to the function are put in ei-
ther the query string or the body. This is contrary to REST, which often
involves path parameters such as /store/orders/orderID. Path parame-
ters are unlikely to be involved in constraints. Research has shown that
about 0.8% of constraints involve path parameters [17], all of which were
located within the same API. Both body and query string parameters are
used often. The sole difference for the approach is the method of encod-
ing the parameters for a request.

GraphQL deviates in terms of query style. For (HTTP) GET operations
the queries can be compared to SQL. Any mutations, such as DELETE
and PATCH do use a style similar to RPC. For GET requests, the queries
filter data rather than perform operations on it. As such, any constraints
that lead to errors are hard to think of and inter-parameter constraints
may not be present in such requests.

6.6 Threats to Validity

Internal Validity. The ground truth we used consists out of a repre-
sentative set of constraints which we manually collected for each of the
selected endpoints. In this process1 we thoroughly inspected the related
code and verified them by making requests to the API. As such, we are
sure that we have a correct set of constraints. For completeness, we in-
spected all available endpoints within Adyen for constraints. From the
relevant endpoints, we selected the constraints such that they represent
a diverse selection of code. As such, we are confident that the results
represent the different APIs within Adyen well.

External Validity. Given that this research is a case study done in one
company, research into other complex APIs is needed for further gen-
eralization of the results. However, given the size and scale of Adyen’s
software, we are confident that the results found in our study are repre-
sentative for other large-scale companies. In Section 6.5 we discuss how
we expect the approach the generalize across different programming lan-

1See Section 4.2 for more details.

49

6. Discussion

guages, frameworks, and query styles. We expect the static code analysis
approach to generalize.

50

Chapter 7

Conclusions and Future Work

We developed two approaches for inferring parameter constraints for
complex Web APIs. One approach analyzes online documentation to infer
inter-parameter constraints, the other depends on static code analysis to
extract inter- and single-parameter constraints from the control flow of
the API’s source code. The documentation- and code-based approach
are able to identify 21% and 53% percent of the constraints respectively.
When the constraints identified by both approaches are combined, 66%
of the inter-parameter constraints can be identified. Code analysis is able
to identify 78% of the single-parameter constraints.

The two approaches face largely separate challenges. The documen-
tation based approach largely suffers from a lack of available explicit
information describing the constraints. Static code analysis tends to be
able to extract constraints from the source code by maintaining a basic
variable stack, evaluating method calls, and analyzing conditions in for-
loops, switch statements, and if-else statements. The main challenges we
faced within this case study were data flow insensitivity and engineering
a sound static code analysis approach.

RQ1: How effective are documentation- and static code analysis in
identifying parameter constraints in a large-scale enterprise API?
Code and documentation analysis combined obtain 66% of the inter-
parameter constraints. Code analysis obtains 78% of the single-parameter
constraints.

RQ2: What are challenges in using documentation- or static code
analysis to identify inter-parameter constraints?
For documentation, by far the most common reason for not detecting con-

51

7. Conclusions and Future Work

straints is the absence of information explicitly describing the constraints
in the OpenAPI Specifications. Dealing with this absence of information
is a major challenge.

For code analysis, the main challenges were data flow insensitivity
and engineering a sound code analysis approach. This involves deciding
how to evaluate looping control structures, maintaining parameter ref-
erences throughout the API’s code, and deciding how to deal with the
variety of expressions in a programming language.

We view future work largely in the light of developing and exploring the
different approaches in order to obtain a more complete set of parame-
ter constraints. After tools have matured enough to extract parameter
constraints accurately, the applications of these constraints would gain
more focus. We discuss possible use-cases of parameter constraints in
Section 6.3.

Static code analysis would benefit from expanding the current ap-
proach and exploring this approach on a larger variety of APIs. For the
current approach, data flow sensitivity is the most significant, general
challenge with no straight-forward solution. Exploring a larger variety
of APIs would help with understanding in what other ways constraints
may be present in the code. This would also help us with engineering a
more generally applicable tool by knowing the kinds of expressions that
we need to parse, and the kind of simplifications we can make while still
obtaining a sound static analysis.

For documentation analysis, we inferred inter-parameter constraints
from the API reference. However, there are other sources of documenta-
tion which could prove to be useful. In many cases, the API reference is
not the only source of documentation. Whether additional documentation
could improve a documentation based approach is currently unclear. Ex-
tracting the content from more external pages containing documentation
or comments within the source code could be beneficial.

Provided the large number of requests that can be made to a local
build of an API, search-based approaches could prove to be effective.
As discussed in the related work section, Gao et al. [11] uses a deci-
sion tree based approach to infer inter-parameter constraints. To guide
such a search-based approach, any source of information may prove to
be useful. For example, the output of our documentation- and code-based
approach could guide such an algorithm.

52

Bibliography

[1] Andrea Arcuri. Restful api automated test case generation. In 2017
IEEE International Conference on Software Quality, Reliability and
Security (QRS), pages 9–20. IEEE, 2017.

[2] Vaggelis Atlidakis, Patrice Godefroid, and Marina Polishchuk.
Rest-ler: automatic intelligent rest api fuzzing. arXiv preprint
arXiv:1806.09739, 2018.

[3] Joop Aué, Maurício Aniche, Maikel Lobbezoo, and Arie van Deursen.
An exploratory study on faults inweb api integration in a large-scale
payment company. In 2018 IEEE/ACM 40th International Confer-
ence on Software Engineering: Software Engineering in Practice
Track (ICSE-SEIP), pages 13–22. IEEE, 2018.

[4] Len Bass and Bonnie E John. Linking usability to software archi-
tecture patterns through general scenarios. Journal of Systems and
Software, 66(3):187–197, 2003.

[5] Barry W Boehm, John R Brown, and Mlity Lipow. Quantitative eval-
uation of software quality. In Proceedings of the 2nd international
conference on Software engineering, pages 592–605. IEEE Com-
puter Society Press, 1976.

[6] Stefan Bordag. A comparison of co-occurrence and similarity mea-
sures as simulations of context. In International Conference on In-
telligent Text Processing and Computational Linguistics, pages 52–
63. Springer, 2008.

[7] Mark Boyd. How to choose architectural styles and specification
formats for your apis, Sep 2017. URL https://www.programmable

53

https://www.programmableweb.com/news/how-to-choose-architectural-styles-and-specification-formats-your-apis/analysis/2017/09/27
https://www.programmableweb.com/news/how-to-choose-architectural-styles-and-specification-formats-your-apis/analysis/2017/09/27

Bibliography

web.com/news/how-to-choose-architectural-styles-and-spec
ification-formats-your-apis/analysis/2017/09/27.

[8] Isil Dillig, Thomas Dillig, and Alex Aiken. Sound, complete and
scalable path-sensitive analysis. In Proceedings of the 29th ACM
SIGPLAN Conference on Programming Language Design and Im-
plementation, pages 270–280, 2008.

[9] Hamza Ed-Douibi, Javier Luis Cánovas Izquierdo, and Jordi Cabot.
Automatic generation of test cases for rest apis: a specification-
based approach. In 2018 IEEE 22nd International Enterprise Dis-
tributed Object Computing Conference (EDOC), pages 181–190.
IEEE, 2018.

[10] Fabian Fagerholm and Jürgen Münch. Developer experience: Con-
cept and definition. In 2012 international conference on software
and system process (ICSSP), pages 73–77. IEEE, 2012.

[11] Chushu Gao, Jun Wei, Hua Zhong, and Tao Huang. Inferring data
contract for web-based api. In 2014 IEEE International Conference
on Web Services, pages 65–72. IEEE, 2014.

[12] ISO/IEC. Iso/iec 25010: 2011 systems and software engineering–
systems and software quality requirements and evaluation (square)–
system and software quality models, 2011.

[13] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert
Bowdidge. Why don’t software developers use static analysis tools
to find bugs? In 2013 35th International Conference on Software
Engineering (ICSE), pages 672–681. IEEE, 2013.

[14] Panagiotis Louridas. Static code analysis. Ieee Software, 23(4):58–
61, 2006.

[15] Walid Maalej and Martin P Robillard. Patterns of knowledge in api
reference documentation. IEEE Transactions on Software Engineer-
ing, 39(9):1264–1282, 2013.

[16] Alberto Martin-Lopez. Automated analysis of inter-parameter de-
pendencies in web apis. In International Conference on Software
Engineering, ACM Student Research Competition, 2020.

54

https://www.programmableweb.com/news/how-to-choose-architectural-styles-and-specification-formats-your-apis/analysis/2017/09/27
https://www.programmableweb.com/news/how-to-choose-architectural-styles-and-specification-formats-your-apis/analysis/2017/09/27
https://www.programmableweb.com/news/how-to-choose-architectural-styles-and-specification-formats-your-apis/analysis/2017/09/27

Bibliography

[17] Alberto Martin-Lopez, Sergio Segura, and Antonio Ruiz-Cortés. A
catalogue of inter-parameter dependencies in restful web apis. In
International Conference on Service-Oriented Computing, pages
399–414. Springer, 2019.

[18] Mark Masse. REST API Design Rulebook: Designing Consistent
RESTful Web Service Interfaces. " O’Reilly Media, Inc.", 2011.

[19] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. Distributed representations of words and phrases and their
compositionality. In Advances in neural information processing sys-
tems, pages 3111–3119, 2013.

[20] Brad A Myers and Jeffrey Stylos. Improving api usability. Communi-
cations of the ACM, 59(6):62–69, 2016.

[21] Nathalie Oostvogels, Joeri De Koster, and Wolfgang De Meuter.
Inter-parameter constraints in contemporary web apis. In Interna-
tional Conference on Web Engineering, pages 323–335. Springer,
2017.

[22] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney,
and Amit Paradkar. Inferring method specifications from natural
language api descriptions. In 2012 34th International Conference
on Software Engineering (ICSE), pages 815–825. IEEE, 2012.

[23] Marco Piccioni, Carlo A Furia, and Bertrand Meyer. An empirical
study of api usability. In 2013 ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement, pages 5–14.
IEEE, 2013.

[24] Irum Rauf, Pekka Perälä, Jouni Huotari, and Ivan Porres. Perceived
obstacles by novice developers adopting user interface apis and
tools. In 2016 IEEE Symposium on Visual Languages and Human-
Centric Computing (VL/HCC), pages 223–227. IEEE, 2016.

[25] Irum Rauf, Elena Troubitsyna, and Ivan Porres. A systematic map-
ping study of api usability evaluation methods. Computer Science
Review, 33:49–68, 2019.

[26] Martin P Robillard and Robert Deline. A field study of api learning
obstacles. Empirical Software Engineering, 16(6):703–732, 2011.

55

Bibliography

[27] Wendel Santos. Which api types and architectural styles are most
used?, Feb 2018. URL https://www.programmableweb.com/news
/which-api-types-and-architectural-styles-are-most-used/
research/2017/11/26.

[28] Ahmed Seffah and Eduard Metzker. The obstacles and myths of
usability and software engineering. Communications of the ACM,
47(12):71–76, 2004.

[29] Sergio Segura, José A Parejo, Javier Troya, and Antonio Ruiz-Cortés.
Metamorphic testing of restful web apis. IEEE Transactions on Soft-
ware Engineering, 44(11):1083–1099, 2017.

[30] Fausto Spoto. Precise null-pointer analysis. Software & Systems
Modeling, 10(2):219–252, 2011.

[31] Raj Srinivasan. Rpc: Remote procedure call protocol specification
version 2, 1995.

[32] Phil Sturgeon. Understanding rpc vs rest for http apis, September
2016. URL https://www.smashingmagazine.com/2016/09/under
standing-rest-and-rpc-for-http-apis/.

[33] Jeffrey Stylos, Benjamin Graf, Daniela K Busse, Carsten Ziegler,
Ralf Ehret, and Jan Karstens. A case study of api redesign for im-
proved usability. In 2008 IEEE Symposium on Visual Languages and
Human-Centric Computing, pages 189–192. IEEE, 2008.

[34] Jaroslav Tulach. Practical API design: Confessions of a Java frame-
work architect. Apress, 2008.

[35] Qian Wu, Ling Wu, Guangtai Liang, Qianxiang Wang, Tao Xie, and
Hong Mei. Inferring dependency constraints on parameters for web
services. In Proceedings of the 22nd international conference on
World Wide Web, pages 1421–1432, 2013.

56

https://www.programmableweb.com/news/which-api-types-and-architectural-styles-are-most-used/research/2017/11/26
https://www.programmableweb.com/news/which-api-types-and-architectural-styles-are-most-used/research/2017/11/26
https://www.programmableweb.com/news/which-api-types-and-architectural-styles-are-most-used/research/2017/11/26
https://www.smashingmagazine.com/2016/09/understanding-rest-and-rpc-for-http-apis/
https://www.smashingmagazine.com/2016/09/understanding-rest-and-rpc-for-http-apis/

Appendix A

Case Study - Challenge Groups

Code Short Description Description

A.1 No info. No information about the constraint in the API
reference.

A.2 Implicit Info. The constraint was described, but the respec-
tive parameters were not referenced directly.

A.3 Value not detected. The value the constraint depends on was not
detected.

A.4 Validation Validation requests failed due to unobserved
constraints.

Table A.1: High-level reasons for failing to detect constraints for doc analysis.

57

A. Case Study - Challenge Groups

Code Short Description Description

B.1 Detection Parameter was accessed, but not detected be-
cause it was not in the OpenAPI specification.

B.2 Dereferenced Parameter was detected, but dereferenced in
variable assignment or object creation.

B.3 Variable Stack The value of a variable could not be resolved
or be maintained fully statically.

B.4 Preconditions An expression or function imposes a precon-
dition that can not fully be evaluated. E.g
boolean cvcRequired = cvcRequired(type)

B.5 Control Structure A control statement such as ‘For, switch, try/-
catch’ was not handled fully.

B.6 Data Flow A constraint was missed due to the analysis not
being data flow sensitive.

B.7 Arithmetic Some constraints with arithmetic syntax are
not fully supported. E.g. A + B + . . . = X

B.8 Framework Functionality specific to the API framework
was used and caused limitation in extracting
constraints.

Table A.2: High-level reasons for failing to detect constraints for code analysis.

58

Appendix B

Documentation Analysis - Word
Embeddings

We explored the usage of word embeddings [19] as a means to find candi-
dates. Using these vectors, we can obtain a semantic similarity between
words, and sentences. The premise is that parameters with semantically
similar descriptions are more likely to be related to each other in a con-
straint.

For every parameter, we calculated its semantic similarity to all other
parameters of an endpoint. This allows us to create a list of the most
similar parameters for each parameter. If the semantically similar pa-
rameters are more likely to be related in constraints, then exploring the
most similar parameters would allow us to find constraints without hav-
ing to exhaust all parameters.

In this process we used SpaCy1 for our word embeddings and similar-
ity measures. We used the en_core_web_sm model, which contains vectors
trained on written text such as blogs, news, and comments. For sim-
ilarity, we used SpaCy’s default similarity method for sentences. This
method assumes a bag-of-words model for sentences, where the vector
of a sentence is the average of the vectors of each word. The similarity
between sentences is then determined with the cosine similarity between
the two vectors.

In order to test the premise, we used the ground-truth to see the position
parameters involved in constraints would have in the list of most similar
parameters. For each constraint in the ground truth, we made pairs of
related parameters. E.g. for or(card,bank) the pair [card, bank] and for

1https://spacy.io

59

https://spacy.io

B. Documentation Analysis - Word Embeddings

tenderRe f erence→ uniqueTerminalId the pair [tenderReference, uniqueTer-
minalId]. Then for every pair we determined the minimum ranking the
parameter would have in the other’s similarity list between the two pa-
rameters. For example, assume that bank is on position 8 in card ’s list
and card is position 5 on bank ’s list, then 5 is the rank used for the
results shown in Table B.1.

Endpoint Ranks #Params #Requests

/payments 6, 21, 8, 22 371 73458
/authorise 51, 21, 3, 8,

324, 1, 6, 20
378 74844

/capture 31, 1, 18, 8 192 38016
/storeDetailAndSubmit... 1, 1 51 10098
/createAccountHolder 3, 2, 67 103 20394
/updateAccountHolder... 1 3 54
/createAccount 1 4 108
/uploadDocument 1 7 378
/getCostEstimate 1 22 4158
Total: - - 221508

Table B.1: Table showing the ranking and theoretical number of requests
needed when using word embeddings as a similarity measure. The ranks col-
umn shows the individual ranks of relevant parameters, the #Params the num-
ber of parameters for the given endpoint, and #Requests the number of re-
quests needed to validate all candidates.

Looking at the results in Table B.1, we can observe that the rank of
relevant parameters is typically within the top 22. This heuristic allows
us to filter the search space significantly. Using the formulas provided
in section 3.1.2, we can calculate the number of requests needed if for
every parameter we check the top 22 most similar parameters. For sim-
plicity, we assume every parameter has two values, as such the number
of requests is given by 22 ∗P ∗ 32, where P is the number of parameters
in an endpoint. For every endpoint the number of requests needed to
validate all the candidates is given in the #Requests column.

Following these calculations, we would have to make 221508 requests
in order to find most constraints that include 2 parameters, which given
5 requests a second would take little over 12 hours. Largely due to the
large number of candidates, even for constraints which only include 2
parameters, the approach is rendered impractical.

60

Appendix C

Code Analysis - Unhappy Flow

To gain a better understanding of what the challenges may look like in
practice, we provide a dummy API model which has enforces multiple
constraints in its flow. This flow contains a lot of constructs which are
hard for static code analysis to deal with, as such this Appendix is called
the unhappy flow. As shown in Figure C.1, an HTTP request is sent to
the API, given a specific endpoint. The dispatcher handles this request.
First, the request is deserialised using a deserialiser (see Listing C.1)
into the internal data model (see Listing C.2). This model is passed as a
request to the /payment controller, which has two consecutive tasks, as
shown in Listing C.3 and Listing C.4. The second task also spawns a new
task flow by making a call to the /invoice controller (see Listing C.6).

To relate the challenges identified in Section 5.2.2 to the code, we
provide comments in the dummy code below. These comments mention
the code of the challenge, along with some additional explanation.

61

C. Code Analysis - Unhappy Flow

Figure C.1: Dummy API flow, in which a request is made and handled by the dis-
patcher. First, the request is deserialised into its internal data model (request),
then this request is passed to the controller for the /payment endpoint. This
endpoint includes two tasks and makes a call to the /invoice controller.

Listing C.1: Dummy request deserializer.

class Deserialiser {

public static PaymentRequest deserialize(HttpRequest request) {
// Create a new payment request model and populate it with the

body.
PaymentRequest pr = new PaymentRequest();
JSONObject body = request.getBody();

pr.setCard(body.get("card"));
pr.setEncryptedCard(body.get("encryptedCard"));
pr.setPaymentMethod(body.get("paymentMethod"));

pr.setAmount(body.get("amount"));

JSONObject invoiceDetails = body.get("invoiceDetails");
pr.setInvoiceDetails(invoiceDetails);

// Shopper email might have been provided through a different field.
// B.2. the invoiceDetails.shopperEmail is dereferenced from the

request’s shopperEmail field.
String shopperEmail = body.get("shopperEmail") != null ?

body.get("shopperEmail") :
invoiceDetails.get("shopperEmail");

pr.setShopperEmail(shopperEmail);

62

pr.setShopperCountry(body.get("shopperCountry"));

return pr;
}

}

Listing C.2: Dummy model of a payment request.

class PaymentRequest extends AbstractRequest {

Card card;
EncryptedCard encryptedCard;
String paymentMethod;

Amount amount;
InvoiceDetails invoiceDetails;

String shopperEmail;
String shopperCountry;

// -- getters / setters --
}

Listing C.3: First task executed in the dummy /payment flow.

class PaymentTask1 {
public boolean in(AbstractRequest request) {

// Decrypt the card and add it to the request.
decryptCard(request);
// ...

}

public boolean out(AbstractRequest request) {
buildResponse(request);

}

public void decryptCard(AbstractRequest request) {
// Try to decrypt if there is another card.
if (request.getEncryptedCard() != null) {

try {
Card card = Util.decrypt(request.getEncryptedCard());
request.setCard(card);

} catch (Exception decryptException) {
Logger.info("Provided encrypted details invalid.");

}
}

}

63

C. Code Analysis - Unhappy Flow

}

Listing C.4: Second task executed in the dummy /payment flow.

class PaymentTask2 {

public boolean in(AbstractRequest request) {
// ...
Card card = request.getCard();
validateCard(card);

// Design pattern: An initiation is retrieved from the
PMInitiation factory, the specific handle method defines the
constraints.

PMInitation initation = PMInitation.get(request.getBrand());
initation.handle(request);

if (request.getInvoiceDetails() != null) {
// Spawn a new task chain for invoice requests.
// B.8: Tracing through the logic of InvoiceController.handle()

is not feasible due to the complexity of the framework,
however invoice task 1 does enforce constraints.

InvoiceController.handle(request);
}

}

public void validateCard(Card card) throws Exception {
// The card has to be provided.
if (card != null) {

// Check the details of the card...
if (Util.isEmptyOrNull(card.getHolder())) {

throw Exception("No card holder provided.");
}

} else {
// B.2: Either encryptedCard or card was needed. We can not

infer this, since we do not know that the card field can be
populated by both the encryptedCard information and normal
card information. Payment task 1 relates to this.

throw Exception("No card provided");
}

}
}

Listing C.5: Dummy factory pattern used for payment methods.

enum PMInitation {
ideal(IDeal.get()),

64

...

Handler handler;

PMInitation(Handler handler) {
this.handler = handler;

}

public static PMInitation get(String method) {
// Mapping of alternatives.
switch (method) {

case "iDeal":
method = "ideal";
break;

default:
break;

}

// Find the correct initiation.
for(PMInitation pmInitation : PMInitation.values()) {

if (pmInitation.name().equals(method)) {
return pmInitation;

}
}

// Fallback option, nothing found.
return fallback;

}

public void handle(Request request) {
handler.handle(request);

}
}

class IDeal() {

public static void handle(Request request) throws Exception {
if (request.getShopperEmail() == null) {

throw Exception("Shopper email is missing");
}
// ...

}
}

Listing C.6: First, and only, task executed in the dummy /invoice flow.

class InvoiceTask1 {

65

C. Code Analysis - Unhappy Flow

public boolean in(PaymentRequest request) {
InvoiceDetails details = request.getInvoiceDetails();

OpenInvoice openInvoice = details.getOpenInvoice();
if (openInvoice != null) {

int whole = openInvoice.getTotalAmount();
int sum = 0;
// B.5: We only iterate the body of the for-loop once.
for (Entry entry : openInvoice.getEntries()) {

// B.3.: A new object is created in which the reference to
the invoiceDetails.openInvoice.amount is lost.

OpenInvoiceParameters params = new OpenInvoiceParameters(
openInvoice.getAmount(), openInvoice.getDueDate());

OpenInvoiceValidator.validate(params);
// Add the amount of a single entry to the sum.
sum += openInvoice.getAmount();

}

// B.7: We do not keep track of all the amounts that
contributed to the sum.

// Therefore we can not infer this arithmetic constraint.
if (sum != whole) {

Logger.info("...");
throw Exception("The whole can not be greater than the sum

of its parts.");
}

}
}

}

class OpenInvoiceParameters {

Amount openInvoiceAmount;
Date dueDate;

public OpenInvoiceParameters(Amount amount, Date dueDate) {
this.openInvoiceAmount = amount;
this.dueDate = dueDate;

}

// -- getters / setters
}

66

	Preface
	Contents
	Introduction
	Related Work
	API Quality and Usability
	Constraints in Practice
	Machine-Readable Representation
	Automatically Identifying Parameter Constraints

	Approach
	Documentation Analysis
	Code Analysis

	Research Methodology
	Selected Endpoints
	Ground Truth
	Grouping Challenges
	Analysis

	Results
	Research Question 1
	Research Question 2

	Discussion
	Comparison to Previous Works
	Code Analysis for Complex APIs
	Using Formal Constraints
	Security Concerns
	Generalization
	Threats to Validity

	Conclusions and Future Work
	Bibliography
	Case Study - Challenge Groups
	Documentation Analysis - Word Embeddings
	Code Analysis - Unhappy Flow

