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Abstract—This research investigates methodologies to reduce
and implement negative inertia in robots for upper extrem-
ity diagnostics and rehabilitation. The robot’s responsiveness
is enhanced by integrating accelerometers and Kalman filters
into the control scheme, ensuring smoother physical human-
robot interactions. A force gain that mimics negative inertia
significantly improves system dynamics within the admittance
control framework. Introducing dead zones for force and accel-
eration stabilizes responses at lower rendered inertia, crucial for
handling spastic conditions. However, this research identifies a
lack of standardized evaluation methods for negative inertia and
highlights hardware constraints, such as bandwidth limitations,
that restrict performance. Future research should focus on
establishing evaluation standards and optimizing hardware to
refine control precision. This work demonstrates the potential
of advanced control strategies to optimize robotic rehabilitation,
paving the way for more effective diagnostic and therapeutic
interventions.

Index Terms—Rehabilitation Robotics; Physical Human-Robot
Interaction; Transparency; Inertia Compensation; Negative In-
ertia;

I. INTRODUCTION

EAch year, more than 13.7 million individuals worldwide
suffer strokes, with the elderly being particularly vulnera-

ble [1]. In The Netherlands, strokes account for approximately
9,300 deaths annually [2]. Moreover, nearly two-thirds of
stroke survivors endure partial motor control loss, significantly
affecting their quality of life [3, 4]. Along with cerebral palsy,
strokes remain the leading cause of motor impairments, while
conditions like Guillain-Barré Syndrome and traumatic brain
injuries also contribute to neuromotor deficits [5, 6]. Many
patients, however, can recover some motor control through
intensive Neurotherapy, which promotes neuroplasticity—the
brain’s ability to reorganize and form new neural pathways.
Despite these advancements, the complexity of diagnosing
motor impairments and the intensive nature of therapy sessions
place a significant strain on healthcare resources, compounding
the shortage of qualified therapists. Consequently, there is an
increasing demand for robotic alternatives to bridge the gap.

A. Robots in Rehab

Robotic systems offer a promising solution to the shortage
of qualified therapists and clinicians complementing traditional
therapy methods. These systems, shown in Figure 1 can
perform continuous observation, online analysis, and decision-
making, reducing the physical demands on therapists and

allowing them to focus on more complex aspects of therapy
such as treatment planning and efficacy observation.[7] Robots
can provide high-intensity training and quantitative analysis,
potentially improving therapy quality and efficiency. This al-
lows therapists to treat more patients, addressing the emerging
shortage of healthcare professionals.[8]

Fig. 1: The Anyexo diagnostic and rehabilitation exoskeleton
(left) and the Armin V rehab robot (right).[7, 8]

1) Mechanical Transparency in Rehab Robots: For robotic
systems to effectively aid in the rehabilitation of upper extrem-
ity motor function impairments, they must exhibit mechanical
transparency. Mechanical transparency in physical human-
robot interaction (pHRI) ensures that the robot transmits
the correct amount of supportive or resistive force to the
patient without introducing unnecessary interference. This is
crucial for the patient’s inter-joint coordination and overall
rehabilitation success. Various studies have shown that training
with transparent robotic systems fosters motor recovery by
providing consistent and precise assistance. [9–12]

2) Evaluation Methods for Transparency: Despite the im-
portance of mechanical transparency, there is no standard pro-
cedure for its quantitative evaluation.[13] Different methods
have been used to assess transparency. For instance, the Loko-
mat system uses RMS interaction torques to estimate trans-
parency during gait rehabilitation. [14] Other systems, like the
FLOAT robot, assess transparency by evaluating the deviation
from desired interaction forces at different velocities and levels
of body weight support.[15] In arm rehabilitation, transparency
assessments often involve measuring forces exerted by the
exoskeleton and analyzing these forces at the sensor level. [16]
However, this approach can be influenced by misalignment
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effects and passive tissue deformations, necessitating a more
refined analysis at the joint level.

B. Negative Inertia in Diagnostic Robots

Negative inertia can decrease the perceived weight and
resistance of robotic systems, facilitating the identification of
limb properties and the accurate diagnosis of impairments by
clinicians. [17, 18] Negative inertia refers to a control strategy
that artificially reduces the mass and resistance experienced
by the user during interaction with a robotic system. This
technique enables more precise assessments of patient limb
function and supports effective rehabilitation. This research
systematically explores inertia-minimizing techniques to de-
velop an exploratory strategy for implementing negative inertia
on the Shoulder Elbow Perturbator (SEP). The primary focus
of this research is to enhance mechanical transparency and
improve diagnostic outcomes by applying negative inertia to
the SEP.

C. Structure

This research is structured as follows: Section II provides
the background, discussing the existing literature on control
strategies, including feedforward and feedback mechanisms,
inertia compensation techniques, and the hardware used. Sec-
tion III details the methods employed, covering experiments
such as system modelling and identification, servo tuning, the
integration of additional sensors, and the implementation of the
admittance controller with negative inertia. Section IV presents
the results obtained from these experiments. Finally, Section V
offers a discussion of the results, analyzing their implications
and relevance to the field. Section VI looks ahead to possible
eventualities of this research in diagnostic robots.

D. Research Goal

The primary objective of this research is to assess and
reduce the inertia of the Shoulder Elbow Perturbator (SEP)
robot, a single-degree-of-freedom (DoF) system equipped
with a force/torque sensor at its end effector. This research
will compare the performance of a controller implementing
negative inertia with one that does not. By systematically
analyzing different strategies, this research aims to enhance the
effectiveness of robotic diagnostic systems and contribute to
better clinical outcomes for patients with upper motor function
impairments.

A review of the current literature reveals that strategies
for implementing negative inertia largely depend on the com-
plexity of the robots and the ability to accurately model
their dynamic behaviour. Exoskeletons and multi-DoF robots
increasingly rely on feedback and disturbance observer-based
inertia compensation. However, since this research focuses on
implementing negative inertia on a single active DoF diag-
nostic robot, a feedforward approach could yield promising
results. Thus, the research question becomes:

"What strategies can effectively mitigate inertial and other
undesired dynamics while implementing negative inertia on
the Shoulder Elbow Perturbator?"

To answer the research question, the following sub-
objectives have been formulated.

1) Assess the Feasibility of Using Piezoelectric Force Sen-
sors: Evaluate the use of piezoelectric force sensors for
both admittance control and as disturbance observers in
implementing negative inertia.

2) Implement Admittance Control: Establish adequate ad-
mittance control on the SEP as a prerequisite for en-
abling negative inertia.

3) Utilize Accelerometers for Position Feedback: Evaluate
the effectiveness of using accelerometers in combination
with encoders for position feedback.

4) Identify Limiting Factors: Determine the limiting factors,
such as time delays or controller/sensor bandwidths, for
developing an effective negative inertia framework.

II. BACKGROUND

A. Controllers in Rehab Robotics

There are two distinct categories of classification when
exploring robots within the domain of healthcare on human
movements. These are rehabilitative robots, designed to re-
place or augment physiotherapists. These robots can provide
repetitive movements to isolated joints or more often provide
assisted compound movements to multiple joints to mimic
natural movements during activities of daily living (ADL).[19,
20] On the other hand are diagnostic robots, aimed at assisting
clinicians assess neurological or muscular impairment quicker.
These devices are purpose-built often focusing on a singular
movement or a particular joint to effectively allow for accurate
identification of human limb properties like spasticity, joint
viscosity and muscle weakness or muscle synergies. [21, 22]

The controllers designed therefore vary with the purpose
of the devices. Some are more stringent and robust against
external disturbances coming from the environment or human
interaction in this case while others rely on these disturbances
to enable accurate modelling.

B. Admittance or Impedance

Two popular techniques for managing human-robot interac-
tions are impedance and admittance controllers. Both regulate
the robot’s dynamic behaviour, ensuring safety, precision, and
adaptability to external forces.

1) Impedance control: focuses on the relationship between
detected motion and the force applied, either through open
or closed-loop control. Here, the robot behaves as a mechan-
ical impedance, akin to a second-order mass-spring-damper
system. The objective is to control the robot’s response to
external motions to achieve the desired dynamic behaviour.
The equations of motion for such a system are:

F = Mẍ+Bẋ+Kx (1)

where F is the force, x is the displace and M,B,K represent
the desired inertia, damping and stiffness respectively.

Impedance control excels in scenarios where the robot in-
teracts with varying and unpredictable forces, providing robust
regulation of interaction dynamics, and ensuring stability and
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responsiveness. It is ideal for applications requiring precise
force control, such as surgical robots, robotic rehabilitation,
teleoperation, and haptic rendering. [23]

Fig. 2: The admittance control diagram illustrates the inter-
action between the robot dynamics, external forces, virtual
dynamics, and the control system. The externally applied force
Fext influences the robot dynamics Yr and passes through the
virtual dynamics Yv to generate a velocity reference vd. The
controller C enforces this velocity reference by generating a
control force Fc, which is applied to the robot. The resulting
motion of the robot is denoted as v. [24]

2) Admittance control: the inverse of impedance control,
illustrated in Figure 2, focuses on the relationship between
measured force and the velocity reference, determining how
much a robot displaces after being perturbed by an applied
force. The governing equation of motion is:

x =
1

M

∫∫
F dt+

1

B

∫
F dt+

1

K
F (2)

where, x is the displacement, F is the force and M,B,K
are the inertia, damping and compliance (inverse of stiffness)
respectively.

Admittance control is advantageous when the robot needs
to follow specific trajectories or paths precisely in response to
external forces, allowing for smoother and more compliant
interactions. This makes it ideal for collaborative, assistive
robots, or delicate tasks such as diagnosing upper extremity
paresis.[25]

The choice between admittance and impedance control in
human-robot interaction (HRI) depends on the specific appli-
cation needs. Impedance control is favoured for managing how
robots react to external forces, ensuring stability and adapt-
ability. Admittance control excels in making robots follow
precise motion trajectories in response to forces. Advanced
HRI systems often combine both strategies to balance force
responsiveness and motion precision, enhancing interaction
versatility and safety. While impedance control provides ro-
bustness in modifying dynamic responses, admittance control
is particularly suitable for applications like the Shoulder Elbow
Perturbator (SEP), benefiting from negative inertia during
dynamic interactions by enabling precise control and compen-
sation for dynamic behaviour. [25, 26]

C. Feedforward or Feedback

Feedforward methodologies predict control inputs based
on system models and expected user interactions, bypassing
continuous feedback. These controllers leverage known dis-
turbances like inertia, gravity, and friction to enhance trans-
parency and accuracy, especially in rehabilitative movements.

While they improve trajectory tracking and disturbance com-
pensation, inaccuracies in models can cause jittering and os-
cillations. Feedforward control avoids the high computational
costs of differentiating position data to obtain velocity and
acceleration.

In rehabilitative robotics, trajectory planning pre-
programmed movement paths to minimize resistance,
while inverse dynamics control calculates joint torques to
preemptively apply necessary forces. In diagnostic robotics,
model-based feedforward control uses detailed system models
for precise control inputs, and learning-based control uses
past data to predict and apply these inputs, effectively for
repetitive tasks. [27]

Feedback-based methodologies rely on real-time sensor
data to dynamically adjust the robot’s behaviour. Disturbance
observers estimate and compensate for influences like gravity
and friction in real-time, offering robustness and adaptability.
However, their effectiveness depends on accurate, high-rate
sensors to minimize delays, and stability can be a concern.
[28, 29]

In rehabilitative robotics, Proportional-Derivative (PD) con-
trol adjusts forces based on position and velocity feedback,
reducing perceived inertia. Impedance control modifies the
force-movement relationship to simulate lower inertia, smooth-
ing patient movements. In diagnostic robotics, adaptive con-
trol tailors robot behaviour based on user movements, while
Model Predictive Control (MPC) uses real-time feedback and
predictive models for precise neuromuscular assessments.

The choice between feedforward and feedback control de-
pends on application needs. Feedforward models excel with
accurate dynamic modelling and precise trajectory tracking,
while disturbance observers handle dynamic, unpredictable
interactions better. Diagnostic devices benefit from enhanced
transparency for assessing limb dynamics and properties like
spasticity and muscle weakness.

Recent exoskeletal devices, such as ARMin IV+ and
ANYexo 2.0, combine feedforward terms with disturbance
observers, reflecting an evolving hybrid control strategy. [7,
8]

Feedback-based methods offer high precision and adapt-
ability for dynamic rehabilitation but require extensive sensor
integration and real-time processing, increasing complexity
and cost. Feedforward methods suit predictable, repetitive
diagnostic tasks but struggle with real-time adaptation, relying
on accurate system models.

Other approaches, including sensorless and AI-based meth-
ods, balance simplicity, adaptability, and user experience.
Sensorless methods are easier to implement but lack fine-
tuned control. AI-based methods, while resource-intensive,
provide high adaptability and precision, tailoring interactions
to individual users.

D. Inertia Compensation

Implementing negative inertia in an impedance controller
requires precise tuning to avoid instability. The system must
have sufficient damping and safeguards to handle reduced
effective inertia without oscillations or undesired behaviours,
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TABLE I: Guidelines to minimising inertia

Guideline Effects

1 Feedforward Control Effectively reduces the inherent inertia needed to be reduced by the admittance controller

2 No Force Filtering Adds delays and excessive phase lag on the virtual dynamics

3 Minimising post-sensor inertia Reduces apparent inertia but reduces coupled stability

4 Use Virtual Damping Better tracking at low frequency, ideal for HRI

5 Velocity Loop Gain High Pushes phase lag to higher frequencies, increases coupled stability

6 Optimise robotic stiffness Internal Eigen modes introduce phase lags between force and velocity sensor measurements

Beckhoff 
Coupler/Terminals

Drive 
Amps & Conditioners

Simulink The SEP

Analog Output
Analog Inputs

Motor Control

Fig. 3: The flow process of the Amsterdam SEP, from the Simulink model running on the back of TwinCAT3 to the Beckhoff
terminals to the signal conditioners, motor drive and finally to the servo motor and sensors(from left to right).

such as "blowing up." This necessitates highly responsive and
precise force and position sensors to accurately implement
and monitor inertial deviations. Sensors with high bandwidths
increase computational loads, requiring real-time target PCs
for rapid inertial adjustment calculations.

In the Laplace domain, this is represented as:

F (s) =
[
(Mdesired −Mvirtual)s

2 +Bs+K
]
X(s) (3)

In an admittance controller, modifying the robot’s motion
response to applied forces gives the effect of reduced or
negative inertia. Implementing negative inertia is simpler, as
it involves adjusting the motion response rather than the force
response. Precise force sensors are still needed but do not
require extremely high bandwidths. Computational loads are
often reduced since the controller processes motion responses
to force inputs rather than force adjustments. In the Laplace
domain, this is represented as:

X(s) =

[
1

(Mdesired −Mvirtual)s2 +Bs+K

]
F (s) (4)

Therefore, following the six guidelines set out by Keemink
et al, 2018. The inertial mitigation techniques will be im-
plemented where possible on the Amsterdam SEP. [24] The
guidelines are laid out in Table I.

E. The Hardware

The Shoulder Elbow Perturbators (SEP) trace their origins
to the ACT4D haptic manipulator, built upon the ACT3D
haptic master from MOOG (New York, USA) [30]. The SEP,
developed by Hankamp Rehab (Eindhoven, The Netherlands)
[31], perturbs the elbow joint while passively supporting the
arm via a Sarrus linkage mechanism. This mechanism, using
a cable-spring system routed through pulleys, provides gravity

compensation independent of height, which can be adjusted for
users with an integrated jack and spring preload. Perturbations
are delivered by a high-torque rotary table (HIWIN TMS3C,
Taiwan) aligned with the humeral medial epicondyle, and a
strain gauge load cell (Futek LCM200, USA) on the forearm.
A servo controller (HIWIN N1, Taiwan) manages the rotary
table, interfaced with a Beckhoff terminal (EK1100, Germany)
controlled via EtherCAT.

Version 2, now used by Amsterdam UMC (Figure 3), en-
hances Version 1 (Rijndam) with increased rigidity, improved
height adjustment, and safer enclosures. The rotary table
(HiWin TMS3C) remains, now paired with an updated drive
(HIWIN ED1, Taiwan) and more precise encoder. The dis-
placement sensor has been removed, and a single force sensor
(Futek LCM200) is connected to a Futek signal conditioner
(IAA100). Beckhoff terminals now include 1x EL3102, 1x
EL2002, and 1x EL2102. Control has shifted to TwinCAT 3
on Windows, running Simulink models at 1 kHz.

A full breakdown and comparison are provided in Section
VIII-B, summarized in Table VI.

III. METHODS

A. Approach

1) System Modelling and Identification: Modelling the SEP
dynamics, shown in Figure 4, is crucial for effective control,
particularly feedforward inertial compensation. Feedforward
control predicts and counteracts inertia, improving system re-
sponsiveness and precision. Accurate dynamic models enable
the design of controllers that anticipate motion, minimizing
lag and enhancing performance in high-speed, high-accuracy
tasks, as illustrated in Figure 4.

System identification offers a robust method for modelling
complex mechanical systems with nonlinearities, such as mo-



5

tor cogging and compliance in 3D-printed parts and Sarrus
linkages. Unlike traditional methods, it uses experimental data
to derive models, capturing the relationship between inputs
and outputs. Predefining system order improves parameter
estimation and model fitting, reducing computational demands.
Detailed system identification is described in Section VIII-E.

Fext

mr mps mh

Fc Kh

bh
v

Kr

br

Sforce
xr xh

(a) A rigid robot experiences an external force Fext and a control
force Fc, acting on the combined inertia of the robot mr and post-
sensor inertia mps, resulting in velocity v. Energy losses are modelled
as viscous damping br , and compliance is defined by Kr . The
connection between mr and mps is rigid via the load cell Sforce for
force measurement. The robot can also connect rigidly to a human,
represented by inertia mh, stiffness kh, and damping bh, as indicated
by the grey dotted outline. The motion resulting from the force is
defined by xr after mps or xh if the human arm is coupled.

M
Va

Vb

Ra La

Rb Lb

Rc Lc
Vc

(b) The voltage inputs Va, Vb, and Vc pass through their respective
resistances Ra, Rb, and Rc, as well as inductances La, Lb, and Lc,
before entering the M block. The M block represents the internal
dynamics of the motor, which is modelled as a PMSM or a three-
phase servo motor, such as the Hiwin TMS3C.

Fig. 4: Mathematical modelling of the system

2) Force Sensing: The accuracy and responsiveness of the
force sensor are crucial for effective admittance control. Piezo-
electric sensors offer high sensitivity and frequency response,
making them ideal for capturing dynamic force changes.
However, strain gauge sensors, while typically having lower
frequency bandwidth, provide robust and stable measurements
over a wide range of forces. The choice between these
depends on the specific application requirements, with strain
gauges being more suitable for steady-state measurements and
piezoelectric sensors excelling in dynamic scenarios.

3) Servo Tuning: Tuning a controller optimizes its response
to feedback by adjusting gains for each loop (position, ve-
locity, and torque), determining its reaction to errors. As
highlighted by Keemink et al., 2018, low kp and ki values
in the velocity controller meet passivity conditions, but high
bandwidth control improves environment z-width by shifting
phase lag to higher frequencies, affecting only higher hu-
man stiffness values. Increasing kp and ki can thus enhance
environment z-width and improve disturbance rejection at
the motor side, suppressing unwanted friction and parasitic
dynamics despite not meeting passivity requirements. [24]

To implement negative inertia effectively, tuning the con-
troller for higher velocity loop gains is crucial. The tuning

Fig. 5: The standard servo tuning and optimisation flowchart.
[32]

procedure, illustrated in Figure 5, aims to find gains that
balance high performance with stability. Excessive loop gains
can cause instability, so multiple servo gain parameters can
be adjusted for optimal response, including position loop
gain, velocity loop gain, vibration suppression, feed-forward
compensation, and filtering. Ideally, the PI controller for the
velocity loop and the PD controller for the position loop are set
to achieve the desired performance without additional delays
from filters or extra gains.

• Tuneless Function: Automatically adjusts parameters
based on system dynamics without manual intervention.

• Autotune: Uses a set of predefined motions to determine
optimal tuning parameters.

• Inertia Ratio: Balances the motor inertia and load inertia
to ensure stable and responsive motion.

• Loop Gains: Adjusts the proportional, integral, and
derivative gains to refine control response and minimize
errors.

These methods ensure the servo drive operates effectively,
providing precise and responsive control.

4) Additional Modalities and Filtering: Adding an ac-
celerometer to the system provides direct acceleration mea-
surements, enhancing dynamic response calculations by sam-
pling at 1000 Hz, compared to the 500 Hz derived from
force data. This dual-source approach can improve accuracy
and noise rejection, enabling better differentiation between
noise and actual dynamic responses. The resulting precise
acceleration data allows the controller to compensate more
effectively for external disturbances and unmodeled dynamics,
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leading to a more robust system.
Implementing negative inertia on the SEP can destabilize the

system by reducing effective mass, but accurate acceleration
disturbance observers can mitigate these dynamics, preventing
instability and oscillations. Additionally, acceleration data can
support real-time adjustments of damping coefficients, enhanc-
ing stability as noted by Keemink et al., 2018[24].

The Kalman filter, an optimal recursive algorithm, estimates
a dynamic system’s state from noisy measurements. Operating
in prediction and update phases, it forecasts the next state using
the system model and corrects predictions with new measure-
ments. By integrating a noisy accelerometer, the Kalman filter
effectively combines prediction with actual acceleration data,
improving noise rejection and enhancing the accuracy and
robustness of the system’s dynamic response.

Virtual 
Dynamics

Controller SEPP,V,Ades Vtarget PactFext

Fig. 6: The admittance control diagram for the SEP depicts the
interaction between the robot dynamics, external forces, virtual
dynamics, and the control system. The diagram illustrates the
measured externally applied force Fext, which passes through
virtual dynamics to generate a reference position, velocity and
acceleration P, V,Ades. A controller C attempts to enforce
this velocity reference by generating a target velocity Vtarget,
which is applied to the SEP through the Hiwin rotary table and
servo drive (not shown). The resulting position of the robot is
denoted as Pact.

5) Admittance Controller: Implementing an admittance
controller for the Shoulder Elbow Perturbator (SEP) is shown
in Figure 6. It involves modifying the robot’s motion response
to applied forces, giving the effect of reduced or negative in-
ertia. This is achieved by adjusting the motion response rather
than the force response, requiring precise force sensors but
not extremely high bandwidths. The desired trajectory changes
are processed with reduced computational loads, focusing on
motion responses to force inputs.

6) Negative inertia: Incorporated using a force gain and a
compensation force derived from the Kalman-filtered acceler-
ation data. The compensation mass is calculated to counteract
the inherent device inertia, while motor torque feedback is
used to stabilize the system. By adjusting the force gain, the
system can effectively reduce perceived inertia, improving re-
sponsiveness and control precision. The motor torque feedback
loop ensures stability, preventing oscillations and undesired
behaviours, thereby enhancing the overall performance of the
SEP.

B. Experiment Design

1) System Modelling: The simplified dynamics of the SEP
can be modelled mechanically as a mass-spring-damper sys-
tem. Simplifying the mass of the robot and mass post sensor,
from Figure 4a as a single mass due to rigid connection via

MVa

Vb

Ra La

Rb Lb

Rc Lc
Vc

Fext

m

K

b

x

Fig. 7: The combined system dynamics, the simplified robot as
a mass-spring-damper system with the electrical components
in dq phase

force sensor. This turns it into a simple mass spring damper
system, shown in Figure 7. In this model, the robot’s joint
or end-effector is represented by a mass m, connected to a
spring with stiffness k and a damper with damping coefficient
b. The equation of motion for the mass-spring-damper system
is given by:

X(s) =
F (s)

ms2 + bs+ k
(5)

When integrating the motor dynamics, the external force F
is the torque produced by the motor. Using the electromagnetic
torque equation of a PMSM and considering the motor’s
electrical dynamics, we have:

Vq(s) = RsIq(s) + LqsIq(s) + ωLdId(s) + ωλf (6)

By combining the mass-spring-damper system dynamics
with the motor’s electrical model in the Laplace domain, we
can fully describe the behaviour of the 1DOF robot. The
overall system dynamics in the Laplace domain are given by:

X(s) =
3
2P [λfIq(s) + (Ld − Lq)Id(s)Iq(s)]

ms2 + bs+ k
(7)

where the current dynamics Id(s) and Iq(s) are governed
by the Laplace-transformed voltage equations. Getting the sys-
tem frequency response with accurate estimated parameters.
Detailed description is provided in Section VIII-D

For model estimation through system identification, the SEP
is configured in Position Control Mode. It is then excited
with carefully crafted multisine signals containing prime fre-
quencies to prevent 2nd or 3rd harmonics. The inputs and
outputs can then be processed for accurate model estimation
using standard models in MATLAB. These models are Output
Error(OE), Autoregressive with Exogenous inputs(ARX) and
ARX with moving average filter(ARMAX).

2) Force Sensing: In the Rijndam SEP, two force sensors
are available: the Futek LCM 200 strain gauge load cell and
the Kistler 9237b piezoelectric transducer. The Kistler sensor,
with superior sensitivity, accuracy, and rapid response time, is
ideal for high-precision, dynamic measurements. In contrast,
the LCM 200 offers high accuracy for static or slowly varying
forces but with lower resolution. While the Kistler system
excels in applications requiring a wide dynamic range and
quick feedback, it is more complex and costly to integrate and
is sensitive to environmental factors. The LCM 200 is robust
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and cost-effective but vulnerable to electrical noise. For the
SEP, the Kistler combo is optimal for dynamic performance
and precision, whereas the Futek combo is suitable for static
forces and ease of integration.

To validate these performance metrics, a series of exper-
iments are conducted to evaluate the performance of these
sensors based on the desired properties in Section VIII-F.

The following experiments are designed:

• Initialising Sensors - Connect the Kistler sensor to the
terminals, coupler, and power supply to ensure force data
recording functionality.

• Calibration - Calibrate the sensors using springs or
masses of known weights to determine their accuracy.

• Drift Comparison - Preload the sensors for an extended
period to assess drift characteristics.

• Impulse and Oscillatory Response - Conduct perturbation
experiments using a pulley system to excite the robot
with a perturbed mass or mass-spring setup. Analyze
the Impulse Response Function (IRF) and Frequency
Response Function (FRF) of the sensors.

• Perturbation Signal Response - Apply multiple sine
waves to the robot in continuous synchronous position
mode to determine which force sensor effectively tracks
the disturbances.

Detailed descriptions of the experiments and desired sensor
properties are laid out in Section VIII-F.

REDUCE PS INERTIA

SPECTRUM ANALYSER

AUTOTUNE GAINS

MANUAL TUNING

TUNNING LOOP

Remove or stiffen 
compliant components

Determine Inertia
through slope

Autotune Loop Gains

Manual Tuning 
for best performance

Fig. 8: The tuning loop for the SEP using Hiwin Thunder

3) Velocity Controller: The tuning procedure for the SEP
in particular is illustrated in Figure 8 and Figure 9. Initially,
the device inertia is reduced mechanically by tightening the
Sarrus linkage, removing the various 3D printed enclosures,
then using the spectrum analyser, a chirp perturbs the SEP and
the frequency response is recorded. By placing a negative 2
slope on the plot, the inherent inertia is found. After this, the
other loop gains are manually adjusted. Then the settling time
is observed by executing a point-to-point movement of 90° at
180°/s with the acceleration and deceleration times set to 8ms.
Subsequently, the device is autotuned, and the performance

Fig. 9: The methodology of iterative tuning using the Hiwin
Thunder. [33]

is compared again, the loop gains are readjusted to increase
performance.

(a) The Acclerometer (b) The wiring scheme

Fig. 10: Incorporation of the accelerometer in the SEP

4) Accelerometer and Filtering: For acquiring the acceler-
ation data, an accelerometer is integrated into the distal end
of the SEP’s arm shown in Figure 10. A complete description
of sensor choice and integration into the SEP is provided in
Section VIII-G.

A Kalman filter is designed to minimally filter the raw
data providing a smoother acceleration prediction, shown in
Figure 11.

Fig. 11: The final Kalman implementation after tuning

The Kalman filter optimally estimates the state variables,
position and acceleration, using measurements from a servo
encoder and an accelerometer. The state-space model is de-
fined by the state matrix A, the output matrix C, and the
process noise influence matrix G:
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A =


0 1 0

0 0 1

0 0 0

 , C =

1 0 0

0 0 1

 , G =


1 0 0

0 1 0

0 0 1


The Kalman filter is designed by incorporating both process

noise and measurement noise into the state-space model. These
are fine-tuned using experiments described in Section VIII-G.
The process noise covariance matrix QN is tuned empirically:

QN =


q1 0 0

0 q2 0

0 0 q3


Measurement noise is characterized by the encoder position

noise and accelerometer noise, leading to the measurement
noise covariance matrix RN :

RN =

rp 0

0 ra


The Kalman estimator Kest is then calculated using the
system dynamics and noise characteristics, yielding an optimal
estimate of the state vector by minimizing the estimation
error. This approach effectively combines the encoder and
accelerometer data, considering the uncertainties in both the
system model and the sensor measurements, to produce a
reliable state estimation for the control system.

Virtual 
Dynamics

Controller
w/ Cff

SEPP,V,Ades Vtarget Pact

Iner�a 
Compensa�on Aaccl ,Mtorque

FComp

Fext Ftot

Fig. 12: The acceleration and motor torques are used as inputs
to the compensation block which outputs a compensatory force
Fcomp, this is added to input force to make Ftot this passes
through virtual dynamics to generate a reference position,
velocity and acceleration P, V,Ades. A controller C with a
feedforward element attempts to enforce this velocity reference
by generating a target velocity Vtarget, which is applied to
the SEP through the Hiwin rotary table and servo drive (not
shown). The resulting position of the robot is denoted as Pact.

5) Inertia Compensation: Based on the guidelines from
Table I for minimising inertia in admittance controllers while
avoiding instability—especially during coupled movements.
The following strategies will be tested and implemented.

• Reduce the physical inertia of the robot by using
lightweight materials and minimizing the moving mass.

• Employ force sensors with high bandwidth and sensitivity
to capture rapid changes accurately.

• Implement control algorithms that adjust parameters dy-
namically to maintain stability and desired performance.

• Carefully tune the feedback loop to balance responsive-
ness and stability, avoiding aggressive gains that may lead
to instability.

An additional inertial compensation block is added to the
admittance framework in Figure 12. The importance of achiev-
ing a balance between approaching intended virtual dynamics
and ensuring robust stability through passivity is crucial.

IV. RESULTS

A. System Modelling

The parameters for the mathematical model are estimated
based on device specifications and approximations for motor
EMF and impedance. The rotary table’s inertia is sourced from
its manual [34], while the torsional stiffness, set at 50,000
Nm/θ, is estimated based on the servo motor’s attributes.
Damping is calculated using B = 2ζ

√
MK with a damping

ratio (ζ) of 0.7, resulting in 58.56 Ns/m. Stator resistance,
inductance, and pole pairs are derived from the manual, with
flux leakage and angular velocity estimated from nominal
values. The complete breakdown of the parameters is provided
in Section VIII-E.

In the system identification approach, multisine signals with
prime frequencies are used to analyze the joint system’s
dynamic response. These signals cover ranges of 0-11 Hz,
0-23 Hz, and 0-100 Hz, with amplitudes of 3°, 1°, and 0.1°,
respectively. Prime frequencies ensure distinct frequency com-
ponents, preventing harmonic overlap and facilitating accurate
system identification. Higher amplitudes improved the signal-
to-noise ratio (SNR), enhancing measurement precision.

0 5 10 15 20 25 30 35 40
Frequency (Hz)

-10

-5

0

5

10

15

M
ag

ni
tu

de
 (d

B)

Bode Plot

0 5 10 15 20 25 30 35 40
Frequency (Hz)

-30

-20

-10

0

Ph
as

e 
(d

eg
re

es
)

TF Estimate
ARX
ARMAX
OE
Sys Modelling

Fig. 13: In the relevant frequencies, the Output Error (OE)
model is comparable to the estimated transfer function, the
system model is incoherent with ground truth.

The system identification models are validated against the
frequency response of the estimated system. Figure 13 shows
the relevant frequency responses, revealing the magnitude
plot of the mathematical model (in green) closely matches
the OE model and aligns with the average estimated system
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response. The phase plots for the OE, ARX (Auto Regressive
Exogenous), and ARMAX (ARX with Moving Average Filter)
models coincide with the estimated system’s phase plot up to
11 Hz, the highest frequency excited during the experiment.
From 15 to 35 Hz, the OE model’s phase plot generally
aligns with the estimated system response. Notably, none of
the models drops below -180° without unwrapping, although
the mathematical model shows instability. Therefore, the OE
model is selected for feedforward compensation.

B. Force Sensing

From the experiments and results described in Section
VIII-F, several key observations can be made from the four
experiments: drift, impulse response, oscillatory response, and
perturbation tests for bandwidth.

• Drift Experiment: Initial sensor loading shows slight vari-
ation before settling, indicating a longer warm-up phase
for sensors or signal conditioners/amplifiers is crucial
for reliable patient tests. The Kistler sensor exhibits
more periodic noise spikes after load removal, suggesting
increased noise sensitivity. The Kistler sensor also shows
significant drift (54.85 N) compared to the Futek sensor
(6.25 N). After load removal, the Futek sensor returned
to 0 N ±0.4, while the Kistler settled at 48.55 N ±5.

• Impulse Response: Excited frequencies ranged from 0
to 80 Hz, suitable for system response analysis. Both
sensors showed nearly identical force profiles, indicating
good calibration. However, the Kistler sensor exhibits
periodic noise, potentially problematic for an admittance
controller, especially around 100 Hz.

• Oscillation Experiment: Excited frequencies are in the
lower ranges, relevant for human interaction, as humans
respond to frequencies below 20 Hz. Both sensors track
forces similarly, but the Kistler sensor has more promi-
nent noise around 100 Hz. Variations in load extremities
(-90 N vs. -88 N) were observed. high oscillation atten-
uation indicates high system damping, possibly due to
compliance or loose straps.

• Perturbation Experiment: The Kistler sensor shows sig-
nificant electromagnetic interference (EMI) when the
servo drive is active, rendering low-frequency response
unusable compared to the Futek sensor. The high-
frequency response improves but periodic noise persists.

C. Velocity Controller

Inertia is measured from the system’s frequency response
by applying a negative 2 slope to the curve, from Figure 14,
The measured inertia, ranging from 0.040 to 0.053 kgm²,
is slightly higher than the TMS3C motor’s inertia of 0.035
kgm². This range of inertia values results from removing post-
sensor masses, such as wrist clamps, bolts, and the 3D-printed
enclosure.

By doubling the velocity and position loop gains and
halving the integral time constant, following the tuneless
approach. Performance is evaluated by executing a point-
to-point movement of 90° at 180°/s, with acceleration and
deceleration times set to 8 ms. The initial settling time was

Fig. 14: The Spectrum Analyser used to plot the frequency
response of the servo motor.

400 ms. Through iterative tuning, as shown in Figure 9, the
settling time is reduced to 100 ms, this is deemed sufficient
for implementing the admittance controller.

D. Accelerometer and Filtering

Fig. 15: Kalman filtered versus actual data for position en-
coder, velocity from Hiwin servo drive and acceleration from
accelerometer

From Figure 15, the system identification-based model
outperforms the simple model in accuracy, yielding lower
RMSE values for position, velocity, and acceleration estimates.
It offers slightly improved response times due to its precise
representation of system dynamics. Although both models
demonstrated stability, the system identification-based model
exhibited less variability in estimates, indicating superior noise
handling. However, in real-world SEP operations, the simple
model provides smoother performance, enhancing human-
robot interaction, while the accelerometer’s lag limits perfor-
mance.

Implementing the Kalman filter with the system
identification-based state-space model produces more
accurate and reliable state estimates than the simple
theoretical model. The identified model’s ability to capture
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true system dynamics made it the preferred choice for final
implementation. However, the Kalman filter fails to run
on existing SEP hardware, likely due to the absence of
a real-time computer. Consequently, the Kalman filter is
reverted to the initial design, resulting in smoother SEP
movements but with out-of-phase acceleration.

E. The Admittance Controller

Fig. 16: The initial admittance controller framework in
Simulink with external force block as an input, virtual dynam-
ics creating the desired reference, velocity controller enforcing
it and rest of the modules augmenting the operation

The admittance controller on the SEP is implemented as
illustrated in Figure 16. The SEP was configured in Cyclic
Synchronous Velocity mode and a Simulink model for the
velocity controller with drift compensation was created to
ensure a good position and velocity control loop.

• Motor Initialization: from Figure 17, configures the
servo drive to cyclic synchronous velocity mode and
enables virtual safety to stop the drive before reaching
physical end stops. It also activates the Hiwin ED1 drive
and starts the motor.

Fig. 17: Motor Initialization

• External Force: from Figure 18 converts force sensor
readings to Newtons and applies a moving average filter
to calibrate the sensor with a zero offset.

• Virtual Dynamics: from Figure 19 computes desired
acceleration, position, and velocity using:

ẍdesired =
F −Bẋ−Kx

M

These are sent to the velocity controller.
• Velocity Controller: from Figure 20, generates target

velocity using desired position, motor encoder position
error, and drift compensation PI gains. It acts as a position
control loop by adjusting velocity based on the end

Fig. 18: External Force

Fig. 19: Virtual Dynamics

effector position. A velocity damper resets integrators to
maintain safe operation.

Fig. 20: Velocity Controller

• Accelerometer Y: provides raw and filtered acceleration
data. The moving average filter introduces a 100 ms delay
but aids in observing system behaviour in real time.

• Motor Velocity and Position: Acquires absolute motor
encoder position and velocity for input to the velocity
controller and the Kalman filter, which, along with ac-
celerometer data, facilitates inertial compensation.

• Motor Torque: Used to set torque limits, for the torque
controller and inertial compensation.

Full page images of the controllers can be found in subsec-
tion VIII-J.

F. Combining Feedforward and Feedback Control

Combining feedforward (FF) and feedback (FB) compensa-
tion strategies can enhance the SEP’s performance. Feedfor-
ward control effectively neutralizes inherent system dynamics,
while feedback control provides stability and error correction.

1) Model-Based Feedforward: The feedforward strategy
employs a second-order mass-spring-damper model fitted to
the system’s response, using parameters such as the undamped
natural frequency ω0, damping ratio ζf , and compliance Cf .
The generalized transfer function of the SEP is given by:
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G(s) =
Cfω

2
0

s2 + 2ζfω0s+ ω2
0

[m/N ] (8)

The feedforward controller compensates for undesired dy-
namics by inverting the plant’s transfer function without
altering static position loop gains:

Cff (s) =
s2 + 2ζfω0s+ ω2

0

ω2
0

(9)

To ensure a realizable controller, additional poles are intro-
duced to achieve a well-damped system:

Cff (s) =
s2 + 2ζfω0s+ ω2

0

s2 + 2.1ω0s+ ω2
0

(10)
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Fig. 21: The combined system response shows minimal inertia
dynamics at higher frequencies

Implementing the controller as a notch filter can attenuate
high-frequency resonances [35]. In theory, the controller can-
cels resonance and anti-resonance, resulting in a well-damped
system in Figure 21. However, due to hardware limitations, the
implementation of the SEP velocity controller (Figure 22) did
not perform as expected. A real-time computer could resolve
these issues.

Fig. 22: The inverted plant with a second-order lowpass
filter combined with feedback controller to improve system
dynamics

2) Adaptive Control: External factors can alter a system’s
dynamic properties, causing deviations between model param-
eters and reality. Adaptive feedforward control adjusts the
feedforward signal based on actual system behaviour, often
used with feedback control. In the SEP, characterized by force

gain Gf > 0 and inertia and damping compensation Cff =
µffs+βff , this approach enhances anticipatory response and
admittance tracking performance, reducing apparent inertia:

µff ≥ Kp + bm
Kp + βff

mm (11)

The feedforward model includes inertia and damping terms
for improved disturbance rejection. Feedback control refines
dynamic behaviour by correcting errors between desired and
actual states. Integral feedback gain Ki ensures accurate low-
frequency dynamics, meeting the condition βffk

2
r ≥ br:

mv ≥ (Kp + βffk
2
r)mr − (Kp + br)µffk

2
r

(Gfkr + 1)(Kp + br)
(12)

0 ≤ (βffk
2
r − br)Ki (13)

Precise feedforward control is essential when executing
predefined motions with limited position error. Due to known
force requirements, feedback control alone may not suffice.
Figure 22 shows the use of a PI controller with clamping
anti-windup. Integrators in feedforward control can cause
delayed reactions to disturbances by accumulating past errors.
Accurate feedforward control minimizes these delays, but
SEP limitations prevent its use. Anti-windup techniques like
clamping reduce integrator gain until the system returns to its
linear range, ensuring stability and performance.

High-performance feedback control is crucial for following
unknown target motions, stabilizing unstable systems, and
mitigating disturbances. Ensuring robustness is vital due to
the trade-off between stability and performance.

The combined feedforward and feedback strategies improve
force control accuracy and energy efficiency, enhancing robust-
ness against disturbances and model uncertainties. Integrating
both strategies within an admittance framework significantly
boosts the robot’s operational effectiveness.

G. Negative Inertia

The negative inertia implementation includes an inertial
compensation block within the overall control scheme, as
shown in Figure 23. This block generates a compensatory force
combining several elements: the force gain Gf from motor
torque, adjusted by the SEP arm radius, and the Kalman-
filtered angular acceleration converted to SI units from the
accelerometer, multiplied by a compensatory mass. It also con-
siders the inertia of the SEP, both pre and post-sensor, obtained
from the spectrum analyzer in Figure 14, and multiplies this by
the model’s acceleration. A damping term is added to prevent
instabilities.

A compensation trigger, shown in Figure 24, allows real-
time toggling of the compensation for clear observation of its
effects.

Reducing the rendered mass by decreasing virtual mass
leads to vibrations and oscillations in the SEP. This instability
propagates due to the noisy force input to the virtual dynamics.
To address this, additional experiments determine the noise
floor for both the force sensor and accelerometer. Figure 25
shows probability density functions (PDFs) obtained from
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Fig. 23: Complete control scheme with inertia compensation
block

Fig. 24: Inertia compensation block

three-minute trials, establishing safe noise levels for deadband
implementation. The deadband limits are set to the midpoint
between the lower and upper extremities of the first standard
deviation for each sensor. This implementation allows the
virtual mass to be reduced down to 100 grams, previously
unstable below 300 grams, without compromising sensitivity
or performance. Full page images of the controllers can be
found in subsection VIII-K.

(a) Probability density function
for force sensor

(b) Probability density function
for accelerometer

Fig. 25: PDF analysis to determine safe noise levels for
deadband implementation

For evaluating the mitigation strategies for inertia, a virtual
dynamic model is set with the following parameters:

• Mass: m = 0.30 kg
• Damping: b = 10Ns/m
• Stiffness: k = 100N/m

The SEP arm is perturbed by pulling it ±10◦, followed
by triggering to ensure the arm’s properties do not influence
the results. Trials were conducted over a 90-second window

to collect sufficient data for deriving Frequency Response
Functions (FRFs).
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Fig. 26: Control group for the admittance FRF

As shown in Figure 26, the initial response resembles a
standard mass-spring-damper system, with both red and green
responses exhibiting typical inertial characteristics. The system
demonstrates a stiffness slightly below 0 dB and a minor
damping trough at the crossover frequency of 20 Hz, followed
by a slope of -2, indicating normal inertia. However, due to
insufficient high-frequency excitation, the coherence is low,
limiting the ability to make definitive judgments. The phase
plot reveals general lag at higher frequencies. Between the
"no comp" (blue) and "no comp2" (green) responses, damping
was reduced from 10 Ns/m to 3 Ns/m to allow for more
oscillations.

Next, critical inertia compensation is evaluated by setting
the accelerometer-based mass compensation to 0.30 kg, can-
celling the virtual mass set in the virtual dynamics block. This
base scenario is then augmented with inherent inertial com-
pensation from the model, effectively removing the device’s
total inertia from the system. Motor torque-based disturbance
rejection is included to ensure stability.

Figure 27 shows good coherence for the critical compensa-
tion (blue) and the critical compensation with inherent inertia
compensation and disturbance rejection (green). The green
plot, in particular, exhibits a flat response across all frequencies
around 0 dB, as expected. The blue plot, showing only critical
inertia compensation, reveals the presence of some stiffness in
the system, reflected by the response at -5 dB. The phase plots
for relevant frequencies (≤ 20 Hz) indicate slight phase lag at
lower frequencies, remaining close to zero, with the green plot
showing a slight phase lead, suggesting some negative inertia
characteristics. This phase lead is attributed to the additional
compensation for inherent inertia, and a slight reduction in
this compensation would likely result in a response closer to
0 dB with a constant phase at 0°.

For negative inertia compensation, the accelerometer force
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Fig. 27: Critical compensation strategies for the admittance
FRF

compensation is increased to 0.50 kg, creating approximately
200 grams of negative inertia. This method of augmenting
the inertia reduction is repeated to evaluate the performance
differences.
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Fig. 28: Negative inertia strategies for the admittance FRF

Figure 28 reveals key trends. Initially, the green and red
responses exhibit stiffness slightly below 0 dB, indicating
some stiffness in the system. The blue plot, representing
negative inertia compensation, starts around -15 dB, indicating
higher stiffness at low frequencies. A slight damping peak at
6 Hz is observed for both green and red responses, followed
by a -2 slope until 100 Hz, after which the slope becomes
+2, indicating the presence of negative inertia. The red plot
only slightly shows inertial characteristics, while the response
becomes incoherent beyond this due to low coherence. The
blue plot, however, maintains the highest coherence, starting
with positive stiffness and a positive slope, moving from -
15 dB to -10 dB. The presence of negative inertia is further

evidenced by the positive phase lead from 10 Hz to 80 Hz in
the green and red plots, indicating its presence in the system.

Finally, Figure 29 compares no compensation, critical com-
pensation, and negative inertia. While coherence at higher fre-
quencies remains insufficient for conclusive results, however,
the presence of negative inertia becomes more apparent when
compared to control experiments and critical compensation.
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Fig. 29: Comparison of no compensation, critical compensa-
tion, and negative inertia for the admittance FRF

Improving coherence at higher frequencies will require
higher-frequency excitation. Variations in responses within
similar trials underscore the necessity for precise triggering
to capture significant signals. By comparing coherent results,
the differences between rendered virtual inertia, critical inertia
(0 Kg), and negative inertia become clearer. The accelerance
or dynamic mass FRF can be generated to assess the mass
being negative to consolidate the presence of negative inertia.

V. DISCUSSION

A. Caveats

In this research, various strategies are explored, evaluated,
and implemented on two Shoulder Elbow Perturbators: the
Rijndam SEP and the Amsterdam SEP. The goal was to
assess the effective implementation of negative inertia on these
devices. These strategies provide valuable insights into the
feasibility of achieving negative inertia. This section reviews
the approaches presented in previous sections and evaluates
their effectiveness in enhancing transparency and implement-
ing negative inertia.

In Section III, initially proposed rendering negative inertia
by integrating it into the virtual dynamics of the admittance
controller. The goal was to achieve enhanced transparency
and negative inertia by making the effective rendered mass
approach zero or even negative. However, this approach fails
when the rendered mass falls below 300 grams. At such low
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masses, the force sensor’s noise floor, amplified by 1/Mass,
causes large amplitude oscillatory reference signal at higher
frequencies. These oscillations exceed the velocity controller’s
capability, resulting in phase lag, position deviations, and
increased PI controller errors, ultimately creating a positive
feedback loop that leads to instability. The SEP’s end-effector
frequently hits its virtual limits, preventing a stable interaction.

The strategy of using Meffective = Mdesired − Mvirtual is
ineffective and is therefore reverted to using only Mvirtual
for the rendered haptics. This adjustment enables the stable
operation of the SEP with virtual rendered mass as low as
200 grams without unnecessary oscillations. The addition of
dead zones in the force sensor noise floor suppressed undesired
oscillations without the trade-off of filtering, thus avoiding
added time delays. Reducing the rendered mass even lower.

B. System Modelling

System modelling and system identification are employed
to accurately describe the plant, aiding multiple elements of
the control system. Understanding system dynamics across
low, crossover, and high frequencies is essential. The initial
model, a simple mass-spring-damper system is inadequate,
when compared to a system identification approach that better
captures nonlinearities such as cogging, compliance in the
Sarrus linkage, and post-sensor inertia, which are difficult to
measure. The refined model served as a more accurate state
approximation for later stages of controller design.

However, each approach has its limitations. The system
identification method uses position-based multisine pertur-
bations, requiring high signal-to-noise ratios and extensive
frequency content for a comprehensive model. While theoret-
ically feasible, physical constraints limit safe perturbation to
11 Hz, as higher frequencies risked physically compromising
the SEP’s structural integrity. Although not perfect, the system
model adequately captures the system dynamics.

Alternatively, the Hiwin Thunder software’s built-in spec-
trum analyzer proved more effective for determining the
device’s frequency response. Using a chirp signal from 0 to
2 kHz, it accurately assessed the total inertia, stiffness, and
damping of the system.

C. Force Sensing

The literature review identified piezoelectric force sensors
as the optimal choice for the SEP due to their high preci-
sion, reduced noise, greater sensitivity, and higher bandwidth.
The Kistler piezoelectric force transducer was expected to
outperform the Futek strain gauge sensor. However, during
testing, the Kistler sensor exhibited periodic noise and was
highly susceptible to electromagnetic interference (EMI) from
the servo drive.

EMI is mitigated by using multiple grounding wire loops
and shielded connections between the charge amplifier and
Beckhoff terminals. A separate DC power supply for the
servo drive also reduced interference. Despite these measures,
periodic noise persisted at 5-6 Hz with harmonics around 100
Hz, as shown in Figure 53. Implementing a notch filter was
considered but rejected due to the potential loss of critical

force information below 20 Hz, which is crucial for minimiz-
ing inertia as per the guidelines in Table I. The persistent noise
suggests potential damage to the charge amplifier, likely due
to mishandling. Testing confirmed the hypothesis by observing
periodic noise even when the sensor is disconnected from the
amplifier.

This interference compromised the Kistler sensor’s true
performance, rendering it unsuitable for the current setup.
The communication rate of 1 kHz further limited the sensor’s
high bandwidth capabilities, equating its performance to that
of the strain gauge sensor. This limitation underscores the
need for improved shielding and communication protocols to
fully utilize piezoelectric transducers in the SEP. The Futek
sensor, coupled with the ICPDAS, samples at 600 Hz, while
the Kistler is limited to 1 kHz due to EtherCAT communication
constraints. Individual terminals can operate at a 10 kHz
sampling rate but are constrained by the 1 kHz system limit.
EtherCAT’s synchronization protocols manage data effectively,
balancing bandwidth to prevent data loss and latency.

This bottleneck is particularly evident in the Amsterdam
SEP, where the Futek LCM200 strain gauge is paired with the
Futek IAA 100 signal conditioner, capable of sampling rates
from 1 kHz to 25 kHz, with a load cell eigenfrequency of
26 kHz. To enhance performance in the current SEP setup,
rather than replacing or augmenting the force sensor with
a piezoelectric variant, increasing the communication rate
from 1 kHz to 4 kHz is a more efficient and cost-effective
approach. Aligning the system with the ACT4D manipulator
will enhance the performance of the SEP’s sensing elements
and improve the motion controllers. Increasing the bandwidth
of the position loop will, in turn, enhance the velocity and
torque loops as well.

D. Velocity Controller
1) Drive Tuning: Servo drive tuning is crucial for balancing

performance and robustness in the SEP. The process begins
with estimating the device’s inertia using a Bode plot from
the spectrum analyzer. The SEP has an additional inertia of
0.00888 kgm2 compared to the rotary table’s 0.035 kgm2, af-
fecting the inertia ratio. Initially, the tuneless function provides
a baseline by automatically adjusting parameters to match
system inertia. It sets loop gains for a rigid response, suitable
for the SEP’s direct drive system.

However, the tuneless function alone is insufficient, prompt-
ing the use of the autotune function to refine performance.
Autotune systematically adjusts position, velocity, and inte-
gral gains to optimize performance, increasing loop gains
and inertia ratio by approximately 50% while reducing the
time integral by 50%. This improved performance but also
introduced excessive stiffness and subsequent jittering.

Additional manual tuning focused on the position loop
gain, which is critical for accurate positioning. A slightly
reduced position loop gain was chosen to avoid overshoot and
instability. Although less relevant for the current velocity con-
trol mode, this adjustment is useful for system identification
experiments requiring position control.

The velocity loop gain is increased to enhance system
responsiveness. While higher velocity gain improves tracking
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accuracy, exceeding a critical threshold led to diminished re-
turns, making the drive overly stiff and causing high-frequency
oscillations. The velocity loop gain is therefore iteratively
adjusted from 400 to 1150, balancing responsiveness and
stability without significantly increasing oscillations.

Integral gain tuning eliminated steady-state error, ensuring
precise control over time. Achieving the right balance in
velocity loop gain is essential for optimal performance, as
excessive gains lead to overcorrection and instability.

Controller acceleration and deceleration times were con-
strained to 8 ms to maintain stability, forming a trapezoidal
profile rather than the ideal square wave.

2) Additional Modalities: Adding an accelerometer at the
SEP’s distal end provided extra-sensory data but introduced
noise. This was addressed by implementing a noise-dead zone
and a Kalman filter.

Two Kalman filter designs were considered: a relation-
based approach (position, velocity, acceleration) and a model-
based approach from the identified system. The model-based
filter, once tuned, offered less lag and better velocity and
acceleration response. Although less smooth than the relation-
based filter, it provided a robust response with minimal lag.
However, it failed to run on existing hardware, producing an
out-of-scope error, leading to reverting to the relation-based
filter.

Additionally, the accelerometer’s measurement range is lim-
ited to ±3g, and only the Y-axis was measured at 1.5 kHz,
while Beckhoff hardware operates at 1 kHz, causing aliasing
and noise. Increasing the system bandwidth to 4 kHz could
mitigate these issues.

E. Inertia Compensation

The implementation of negative inertia in the Shoulder
Elbow Perturbator (SEP) demonstrates a successful application
of various control strategies, although evaluating performance
metrics poses significant challenges. Through system mod-
elling, system identification, and controller tuning, the SEP
achieves negative inertia, enhancing transparency and respon-
siveness. However, accurately quantifying these improvements
remains difficult due to the complexity of dynamic interactions
and limitations in current measurement techniques. An alter-
nate result analysis using dynamic stiffness is presented in
Section VIII-I.

The research employs a variety of approaches to render
negative inertia effectively. These included integrating negative
inertia into the virtual dynamics of the admittance controller
and employing multiple sensor modalities. Each approach
showed promise in enhancing the SEP’s performance, particu-
larly in reducing the perceived inertia and improving human-
machine interaction.

Various strategies are explored, and experiments are de-
signed and validated to observe the implementation of negative
inertia on the Shoulder Elbow Perturbator.

1) Feed Forward Control: Inertia minimization strategies in
the Shoulder-Elbow Perturbator (SEP) have shown promising
potential for enhancing its performance in physical human-
robot interaction (pHRI). By applying feed-forward control,

we effectively reduce the SEP’s apparent inertia, allowing
for more responsive and accurate force application during
perturbations. This approach, akin to anticipating external
forces, has proven particularly beneficial in ensuring that the
SEP responds swiftly to user inputs, thereby improving overall
system stability.

"Increasing magnitude of the transfer function controller at
higher frequencies with a +2 slope in the Bode plot. Such a
behaviour is physically impossible so the controller needs to
be modified in such a way that it becomes realisable." [35].

This is why the feed-forward control is based on a force gain
and a compensatory mass, as the inverted plant for feedforward
did not work as intended on the velocity controller. This
requires the robot to be in torque control mode with the desired
torques calculated from either the virtual dynamics (position,
velocity and acceleration given as input) or by obtaining the
torques from the force through the Jacobian. The limitation
with this strategy is the bandwidth of the controller as a
general rule of thumb for the operating bandwidth of the torque
controller is roughly 16 times higher than the position loop
which, given the SEP runs at 1 kHz would be only 62.5 Hz(in
position loop), making it a very lethargic controller. This is
elaborated in Section VIII-H.

2) No Force Filtering: To ensure minimal filtering, no
filters are applied to the force input however this leads to
the problem of controller instability when the rendered mass
of the virtual dynamics approaches the actual inertia of the
system. This causes two main issues.

• The noise floor of the force sensor causes an oscillatory
desired position as the input to the velocity controller.
These oscillations are in the region of 100 Hz which is
higher than the current velocity controller limit.

• These high-frequency oscillatory targets cannot be suf-
ficiently tracked by the velocity controller and therefore
the controller overshoots becoming unstable.

To get around this issue, a dead zone is introduced to
effectively remove this noise floor, the dead zone is tuned to
ensure only the bare minimum noise floor is removed while
enabling the sensing of the pHRI.

3) Minimising Post Sensor Inertia: The inertia of the rotary
table is 0.035 kgm2, and the added inertia from the end
effector, linkages and clamps increase it to nearly 0.053 kgm2,
in line with the ACT4D and the Rijndam SEP. However
removing the wrist clamps, the 3D printed enclosure decreases
the inertia to 0.04388 kgm2.

This assisted in reducing the inherent inertia of the SEP
allowing better negative inertia feel.

4) Using Virtual Damping: By incorporating a small
amount of damping into the system, The SEP can smooth out
rapid changes in force, reducing the likelihood of oscillations
or instability. This approach can be particularly effective in
tasks requiring precise control, such as fine motor adjustments
during rehabilitation exercises. Avoiding excessive overshoots.
This is a fixed term in the current controller but it can be made
variable through a sliding model strategy.

5) High Loop Gains: Higher velocity loop gain in the
controller results in increased stiffness, leading to small vibra-
tions and a rough, more rigid pHRI experience. Conversely,



16

insufficient gain compromises trajectory tracking, which is
undesirable. Therefore, precise tuning of the loop gain is
essential to achieve an optimal balance. The introduction of
clamping anti-windup significantly enhances performance, en-
abling a smoother velocity controller while permitting higher
loop gains.

6) Optimising Robot Stiffness: The SEP’s hardware is ob-
served to have some unwanted compliances in the Sarrus
Linkage Mechanism which reduces the effective stiffness of
the device. This compromises the controller’s performance.
Improving the hardware is not part of the scope of this research
however, some crude modifications are made to reduce this
compliance as much as possible. As mentioned earlier, the
additional post-sensor components are removed along with
components like the enclosure to remove unwanted flexing.
Additional shims are added to the Sarrus linkage mechanism
to remove slop. Finally, the linkage mechanism is compressed
and fixed via zip ties to reduce the leverage from the connec-
tions where the slop originates.

All in all, this reduces the compliance in the mechanism,
making the SEP more responsive but for human trials, an
extensive redesign of the system is required.

The successful implementation of negative inertia in the
SEP highlights the potential for incorporating more advanced
control strategies to enhance its capabilities. Despite the
challenges in evaluation, the approaches used in this research
demonstrate major improvements in system transparency and
responsiveness. Future work should focus on refining eval-
uation metrics and exploring further sensor integration to
optimize the SEP’s performance.

In conclusion, the integration of these inertia minimization
strategies in the SEP has the potential to substantially improve
its performance in pHRI. By carefully balancing responsive-
ness, stability, and accuracy, a robust controller framework
for the SEP is developed, capable of meeting the complex de-
mands of shoulder-elbow diagnostics and rehabilitation. Future
work can focus on further refining these strategies, particularly
in optimizing the trade-offs between noise reduction and
system responsiveness, to enhance the SEP’s capabilities in
real-world applications.

VI. FUTURE WORK AND LIMITATIONS

The research presented here demonstrates progress in un-
derstanding the performance of force sensors and system
dynamics for incorporating negative inertia within the SEP’s
admittance controller framework. However, several limitations
exist. Notably, there are no established standards for measuring
the SEP’s negative inertia within an admittance control frame-
work. This lack of standardization complicates the evaluation
of controller performance and comparison across different
systems.

Additionally, while the experiments utilized the servo drive
for the position control loop through velocity control mode,
higher bandwidth velocity and/or torque controllers could po-
tentially be more beneficial if tuned using Simulink. The servo
drive operates at up to 3.2 kHz, which is significantly higher
than the 1 kHz limitation of the Beckhoff hardware. This

discrepancy suggests that using a real-time computer could
enhance feedforward compensation in torque control mode
using torques from force Jacobian. By leveraging an inverted
plant model, w system’s inertia can be further minimised,
enhancing control precision and responsiveness.

Implementing a cascaded controller scheme could also
improve the system’s response. This approach would allow for
a more responsive controller by addressing different dynamic
aspects of the system at multiple levels (torque loop gains,
velocity loop gains). Furthermore, introducing sliding mode
control for damping could provide adaptive damping, partic-
ularly when negative inertia is active. This adaptive damping
would contribute to more stable negative inertia rendering in
physical human-robot interaction (pHRI).

Future work should focus on addressing these limitations by
developing standardized methods for measuring negative iner-
tia in admittance control frameworks. Additionally, redesign-
ing the SEPs Sarrus linkage for less compliance would ensure
a more robust control design. Integrating real-time computing
capabilities and exploring advanced control strategies such as
cascaded controllers and sliding mode control could enhance
system performance and stability.

VII. CONCLUSION

This research successfully explores and demonstrates
methodologies for reducing inertia and implementing negative
inertia in robots designed for upper extremity diagnostics and
rehabilitation. By incorporating accelerometers and Kalman
filters into the control scheme, we achieved smoother and more
responsive physical human-robot interactions. The application
of force gain to simulate negative inertia further enhanced the
robot’s responsiveness within the admittance control frame-
work.

The introduction of dead zones for force and acceleration
proved crucial in ensuring stable responses at lower rendered
inertia, particularly in the presence of spastic conditions. Our
experiments highlighted some improvements in system per-
formance and stability, confirming the potential of advanced
control strategies to optimize robotic rehabilitation.

However, this research also revealed certain limitations. The
absence of standardized methodologies for measuring nega-
tive inertia remains a challenge, complicating the evaluation
of system performance. Additionally, hardware constraints,
particularly the discrepancy in bandwidth between the servo
drive and Beckhoff hardware, limit the maximum achievable
performance.

Future work should focus on developing standardized eval-
uation methods and optimizing hardware to minimize com-
pliance and enhance control precision. Further exploration of
advanced control strategies, such as cascaded controllers and
sliding mode control, could provide additional improvements
in system performance and stability.

Overall, this research demonstrates the feasibility and ben-
efits of implementing negative inertia in robotic systems for
upper extremity diagnostics and rehabilitation, paving the way
for more effective and responsive therapeutic interventions.
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VIII. APPENDIX

A. Systematic Review

Effective compensation for gravity and friction in robotic
systems is well-established. However, inertia compensation
strategies remain underdeveloped due to the absence of stan-
dardized evaluation methods for comparing techniques and
assessing transparency [36].

Using the PRISMA method, a systematic review analyzed
controller strategies in diagnostic and rehabilitative upper
limb robotic devices. The search query, detailed in Table II,
addressed challenges posed by inertia and factors affecting
human-robot interaction, such as friction, gravity, and nonlin-
ear dynamics. The review identified various controllers aimed
at mitigating inertia while enhancing transparency between
human and robotic devices.

Most studies implement Proportional-Derivative (PD) or
Proportional-Integral (PI) controllers to actuate robotic drives.
PD controllers are widely preferred for their stability in
systems with inertia and damping, as well as their fast response
times and ability to reduce undesired oscillations. These
features ensure smooth and controlled movements, critical
for patient safety. However, PD controllers are less effective
in minimizing steady-state errors compared to Proportional-
Integral-Derivative (PID) controllers.

Following the PRISMA method, articles are selected or
excluded based on defined criteria. Of the 459 articles initially
identified, 64 (13.9%) undergo critical review. These studies
are categorized based on additional criteria and summarized
in Table III, which also illustrates robotic devices grouped by
Degree of Freedom.

1) Feedforward Approach: Feedforward control method-
ologies predict control inputs based on system models and
anticipated user interactions, avoiding continuous feedback.
These controllers utilize known disturbances, such as inertia,
gravity, and friction, by employing precise models to cancel
their effects. This approach enhances transparency and accu-
racy, particularly in rehabilitative movements, and improves
trajectory tracking. However, the effectiveness diminishes with
model inaccuracies or nonlinearities, potentially leading to
jittering and oscillations. Feedforward control, initially favored
over feedback methods, avoids the computational burden and
error propagation associated with differentiating position into
velocity and acceleration.

In rehabilitative robotics, trajectory planning and inverse dy-
namics control are widely used. Trajectory planning involves
pre-programming movement paths that account for inertia,
minimizing perceived resistance. Inverse dynamics control
calculates the required joint torques to achieve desired move-
ments, compensating for inertia by pre-emptively applying the
necessary forces.

In diagnostic robotics, both model-based and learning-based
feedforward controls are applied. Model-based feedforward
control relies on detailed system models to compute control
inputs for specific diagnostic movements, reducing inertia.
Learning-based feedforward control uses data from previous
interactions to predict and apply control inputs, proving par-
ticularly effective for repetitive diagnostic tasks.

2) Feedback Approaches: Feedback-based methodologies,
summarized in Table IV, utilize real-time sensor data to
dynamically adjust the robot’s behaviour. These systems con-
tinuously monitor the robot’s interaction with the user, adjust-
ing control inputs to create the effect of negative inertia. A
common technique involves disturbance observers, which es-
timate and compensate for external influences such as gravity,
friction, and inertia in real-time. This approach offers greater
robustness and adaptability to unforeseen disturbances com-
pared to feedforward control. Disturbance observers estimate
position through double integration, reducing computational
costs and errors, and making them suitable for diagnosing and
rehabilitating patients with neurological or motor impairments.
However, their effectiveness relies on accurate, high-sampling-
rate sensors to minimize feedback delays. Stability challenges
in certain scenarios may limit this approach.

In rehabilitative robotics, Proportional-Derivative (PD) con-
trol and impedance control are frequently employed. PD
control dynamically adjusts forces based on feedback from po-
sition and velocity sensors, reducing perceived inertia by fine-
tuning proportional and derivative gains. Impedance control
modifies the dynamic relationship between force and move-
ment, simulating lower inertia to make movements smoother
and easier for patients.

In diagnostic robotics, adaptive control and Model Predic-
tive Control (MPC) prove effective. Adaptive control continu-
ously adjusts the robot’s behaviour based on user movements,
tailoring assistance or resistance to achieve precise control.
MPC utilizes real-time feedback and predictive models to
anticipate future states, adjusting control inputs to enable
accurate neuromuscular assessments.

3) Unexplored Approaches - Sensorless or AI: This cate-
gory includes methods that do not fit neatly into feedback or
feedforward classifications, such as sensorless techniques and
AI-based approaches.

In rehabilitative robotics, both sensorless control and AI-
based methods are explored. Sensorless control relies on
minimal sensor data, using the robot’s intrinsic properties
to approximate inertia effects through passive compliance or
intrinsic joint damping. AI-based control employs machine
learning algorithms to predict and adjust control inputs based
on both historical and real-time data, delivering customized
negative inertia effects.

In diagnostic robotics, sensorless estimation and AI tech-
niques play significant roles. The sensorless estimation uses
motor current measurements to infer applied forces, adjust
control inputs and simplify the system while maintaining
effective inertia compensation. AI and machine learning tech-
niques analyze large datasets from diagnostic sessions to
develop predictive models, enhancing accuracy and user ex-
perience over time.

4) Which is Better?: Each strategy for implementing neg-
ative inertia presents distinct advantages and challenges, de-
pending on the application context. The choice between feed-
forward model-based controllers and disturbance observers
depends on specific requirements. Feedforward models excel
when accurate dynamic modelling is achievable and precise
trajectory tracking is essential. In contrast, disturbance ob-
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TABLE II: Search Query Formulation

CONCEPTS

SY
N

O
N

Y
M

S

Goal Dynamics Device Target
OR OR OR OR

“Negative”
“Compensation”

“Transpar*"

AND
“Inertia”

“Admittance”
“Impedance”

AND

“Rehabilitative”
“Assistive”
“Robotics”

“Exoskeleton”
“Ortho*”
“Haptics”

“Identification”

AND

“Arm”
“Hand”

“Shoulder”
“Elbow”

TABLE III: Graphic Representation of Device Type and Purposes

Scheme DOF Devices Purpose

1

SEP Hankamp[37, 38]
ARM Guide[39]
TU Delft Hydraulic Manipulator
[40]
Wearable Exoskeletons[41] [42]
Joint manipulators
[43–47]

These devices allow focused assessments,
isolating specific joint or muscle limita-
tions. In therapy, their simplicity enables
targeted exercises, closely mimicking real-
world movements for effective and tailored
rehabilitation

2-3

Planar robots
[40, 48–52]
MIT-MANUS*[53]
InMotion2[49]
Exoskeletons[54]
Robotic Arm[55–57]
vBOT,WristBot [58]
Enhanced planar robots
(i.e. Kinearm) [59]

These provide enhanced haptic interfaces
and force field implementation during
reaching movements. The added DOF en-
ables therapists to simulate natural interac-
tions of ADL tasks while allowing for better
diagnoses as well as subsequent rehabilita-
tion

4-14

Exoskeletons
[60–64]
Robotic Arm[65–68]
Armin I-V[69]
ANYexo[7]
Bimanual Arms[63, 70]
Armeo Exoskeleton [71]

These offer a more comprehensive range of
motion in the joint space, enabling com-
plex, compound movements. This allows for
muscle synergies facilitation of more natural
movement and thus improving rehabilita-
tion. Providing a more holistic approach to
rehabilitation and diagnoses enhancing co-
ordination of muscle groups and improving
neurological impairments

*MIT-MANUS is a 2-DOF planar robot with a 3-DOF manipulator in the robot’s wrist.

servers better adapt to dynamic and unpredictable interactions,
making them more suitable when human input introduces un-
certainties. Enhanced transparency is particularly valuable for
diagnostic devices, which prioritize evaluating limb dynam-
ics and properties such as viscoelasticity, spasticity, muscle
weakness, and synergies.

Recent advancements in exoskeletal devices, such as
ARMin IV+ and ARMin V, increasingly favour distur-
bance observers over feedforward compensatory control. The
ANYexo 2.0 exoskeleton, for example, integrates feedforward
terms for position, velocity, and torque control with observers
to mitigate unknown disturbances. This hybrid approach re-
flects evolving strategies in advanced robotic systems.

Feedback-based methodologies offer high precision and

adaptability, making them ideal for dynamic rehabilitation
exercises. However, they require extensive sensor integration
and real-time data processing, increasing system complexity
and cost. Feedforward-based methods provide effective control
for predictable, repetitive diagnostic procedures but struggle
with real-time adaptation. They simplify control design by re-
lying on precomputed models, which demand accurate system
modelling.

Alternative approaches, including sensorless and AI-based
methods, balance simplicity, adaptability, and user experience.
Sensorless methods simplify implementation but may lack
fine-tuned control. AI-based approaches, though computation-
ally intensive, offer high adaptability and precision by tailoring
interactions to individual users.
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TABLE IV: Low-level controller strategies

Control Techniques Description Advantages Disadvantages
Computed Torque Controller [52,

72]

calculating the torques required to generate the
desired joint accelerations and compensating for
factors such as gravity, inertia, and friction. By
accurately computing and applying these torques,
the controller aims to achieve the desired motion
while ensuring the stability and accuracy of the
robotic arm’s movements

Feedback and
Energy gains are
marginal. Reduction of
computational expense
after defining trajectory.

precise model required.
Reduced stability for
unmodelled dynamics.

Disturbance Observer Control [46, 54, 65,

68, 73–75]

An observer that continuously estimates and com-
pensates for external disturbances or uncertainties
affecting the system. The disturbance observer
monitors and reacts to disturbances such as un-
expected forces or changes in the environment.

Provides estimation of
friction. Individual joint
control. No additional
sensor is required

Saturation of torque due
to higher disturbances.
Frequency tuning is dif-
ficult. complex friction
calculation.

Model Predictive Control [76] MPC uses a dynamic model of the system to pre-
dict its behaviour over a future time horizon. The
controller then generates a sequence of control
inputs that minimizes a cost function, consider-
ing both the current state of the system and the
predicted future states

Easy tuning. Model un-
certainties handled. Ac-
tuator limitation han-
dled

Complex number of co-
efficients required

Linear Quadratic Regulator

[41]

employs optimal control theory to determine the
feedback gains that minimize the specified cost
function. It provides a systematic way to balance
the trade-off between achieving desired perfor-
mance and minimizing control effort

State feedback is
utilised to compute the
best input. Guarantees
stability. The same
dynamics for MIMO
and SISO systems

Model inaccuracy
causes instability.
Observer inclusion
makes the system
complex

Sliding Model Control [41, 66, 77, 78]
the sliding surface is defined based on the differ-
ence between the desired and actual states of the
system. The control law is designed to ensure that
the system state converges to this sliding surface
and stays on it, providing robust performance in
the face of disturbances and uncertainties. Sliding
mode control is known for its ability to handle
nonlinearities and uncertainties

Model-independent tra-
jectory in sliding phase.
Low sensitivity to un-
certainty in the model.

cogging or chattering
due to discontinuities.
lack of robustness in the
reaching phase.

H - Infinity Controller [79]
control formulates the control design as an op-
timization problem to minimize the worst-case
impact of disturbances on the system’s perfor-
mance. It involves specifying a performance cri-
terion, such as tracking accuracy, and simultane-
ously minimizing the influence of disturbances and
uncertainties

Can handle model un-
certainty, and complex-
ity. Cross-coupling and
multivariate systems are
better controlled

Poor torque saturation
handling. Controller
limited to defined cost-
function

Passivity Based Controller [80] the control design focuses on maintaining the sys-
tem’s energy balance. The controller is designed
to ensure that the total energy in the system is
dissipated over time, preventing the accumulation
of energy and ensuring stability. This approach can
enhance the robustness of the robotic arm’s control

damping term ensures
passivity and desired
dynamics are achieved
for non-linearities.
asymptotic stability
guaranteed.

Complicated tuning.
Passivity through error
mapping only.

5) The Right Controller Strategy?: Choosing between ad-
mittance and impedance control depends on the specific ap-
plication requirements. Admittance control provides natural
interaction and adaptability, making it well-suited for sce-
narios with variable user input and critical compliance. In
contrast, impedance control excels in tasks requiring precise
force and position regulation, offering stability in controlled
environments. Some devices integrate both control strategies
in a hybrid approach to accommodate different therapeutic or
diagnostic functions. For instance, Dalla Gasperina et al. and
Van der Velden et al. implement various operational modes to
address passive, transparent, corrective, and weight counter-
gravity modes, or to perform specific diagnostic tasks such as
assessing muscle strength, synergy, elasticity, and spasticity
[31, 81].

The choice of negative inertia compensation strategy should
be guided by the application’s needs, desired interaction level,
and available resources. Feedback-based methodologies are
optimal for dynamic, interactive tasks, while feedforward-
based methods are ideal for controlled, repetitive procedures.
Sensorless and AI-based techniques present alternative so-
lutions that enhance user experience and adaptability. Un-
derstanding these strategies in rehabilitative and diagnostic

robotics is crucial for developing responsive and effective
systems for upper extremity impairments.

6) Conclusion: Robotic technologies have significantly ad-
vanced diagnostic and rehabilitative practices for upper ex-
tremity impairments. Diagnostic robots offer valuable insights
into neuromuscular and biomechanical functions, while reha-
bilitative robots enhance recovery by improving movement and
coordination. Implementing negative inertia makes interactions
feel natural and effortless. This thesis explores strategies for
implementing negative inertia in diagnostic robots to enhance
responsiveness and sensitivity. Feedback-based methodolo-
gies provide high precision for dynamic rehabilitation tasks,
feedforward-based methods excel in controlled diagnostic set-
tings, and sensorless and AI-based approaches improve user
experience and adaptability. Understanding these strategies
is essential for developing responsive and effective robotic
systems for upper extremity impairments.

B. The Hardware
1) The ACT4D: The ACT-4D, illustrated in Figure 30,

quantifies arm impairments during functional movements us-
ing a modified MOOG HapticMaster. The blue JR3 6-DOF
force/torque sensor in Figure 31 is used for the HapticMaster’s
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Fig. 30: The very first shoulder elbow perturber [30]

admittance control, but not for the Elbow System. A hori-
zontally mounted sensor drum on ball bearings rotates freely
around its vertical axis, connected via cables and a gearbox
drum to the Harmonic Drive actuator and gearbox.

Fig. 31: The breakdown of the ACT4D Hardware [30]

From Figure 31, the forearm beam attached to the sensor
drum is hinged with ball bearings around the vertical axis
of the Elbow System but is rotationally locked to the sensor
drum. A 1-DOF force sensor, fixed at a distance from the
elbow axis, measures applied elbow torques. Elbow rotations
are measured by a magnetic potentiometer in the sensor drum
and two accelerometers on the beam. The forearm is secured
to the beam via an orthosis and wrist cylinders or a subject-
specific forearm cast.

2) Shoulder Elbow Perturbator - Rijndam, Erasmus MC:
The shoulder elbow perturbator, developed by Hankamp Rehab
in Figure 32, perturbs the elbow joint angle while passively
supporting the arm through an innovative Sarrus linkage mech-
anism. A cable attached to a spring routed through pulleys
ensures gravity compensation is independent of mechanism
height.

Perturbation is provided by a high torque rotary table
(HiWin TMS3C) aligned with the elbow joint. Two force
sensors, a strain gauge load cell (Futek LCM200) and a
piezoelectric load cell (Kistler 9321B), are attached in series
with the forearm support. An infrared proximity sensor (Sharp
2Y0A21) measures vertical displacement. A servo controller
(HiWin D1) controls the drive, while sensors connect to a
Beckhoff terminal, controlled via a real-time PC (HP work-
book) using EtherCAT protocol.

Fig. 32: The First Purpose-Built SEP [82]

Beckhoff 
Coupler/Terminals

Drive 
Amps & Conditioners

Test Manager The SEP

Analog Output
Analog Inputs

Motor Control

Fig. 33: Operation of the Rijndam SEP

A test manager program created in Simulink (Matlab)
communicates with the Beckhoff coupler and HiWin drive at a
1 kHz rate using the EtherCAT library. The SEP also reserves
analog inputs for an EMG amplifier (Delsys) connection for
participants, though the Kistler sensor remains unconnected in
this setup. Illustrated in Figures 33 and 34

The SEP comprises two components: a unit housing the
rotary table platform with the Sarrus linkage and gravity
compensation mechanism, and a separate control cabinet hous-
ing the control laptop, motor driver, power supplies, signal
conditioners, terminals, and couplers.

Fig. 34: The wiring scheme for the Rijndam SEP

3) Shoulder Elbow Perturbator - Amsterdam UMC: Ver-
sion 2 of the Shoulder Elbow Perturbator (SEP), used by
Amsterdam UMC, incorporates several key improvements
over Version 1 used by Rijndam. The Sarrus mechanism
is reworked for increased rigidity and the forearm height
adjustment jack is modified. The enclosure is enhanced for
better patient safety, and the entire package is consolidated into
a single unit, making it heavier but more stable and reducing
its overall footprint.

The electronics also see significant changes. While the
rotary table remains the same (HiWin TMS3C), the drive
is upgraded to the Hiwin ED1, providing a more precise
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TABLE V: Specification Comparison

ACT4D SEP Rijndam SEP Amesterdam

Motor FHA-17C-DC24 Hiwin TMS3C Hiwin TMS3C

Encoder 3600 lines/cycle *100 3600 lines/cycle 4325376 or 8192 counts/rev

Drive Accelnet ACP-090-36 Hiwin D1n-36 Hiwin ED1-01

Mechanism 1:100 Harmonic Reducer Direct drive Direct Drive

Force Sensor Omega LC201
Futek LCM200

Kistler 9321b
Futek LCM200

Signal Conditioner
ICPDAS SG3016

Kistler 5073
AIAA100

Accelerometer 2 x 3 axis Accelerometers - 1 x 3-Axis ADXL 337

Target PC Quansar HP Workbook (Linux) Lenovo Ideapad(Windows)

Coupler EK1100 EK1100

Terminals
2x EL3104

1x EL9505

1x EL2124

1x EL3102

1x EL2002

1x EL1202

Device Inertia 0.050 Kgm2 0.045 Kgm2 0.043 Kgm2

Torque 75 Nm 60 Nm (180 Nm peak) 60 Nm (180 Nm peak)

Velocity 450 °/s 1800 °/s 1800 °/s

Acceleration 4500 °/s2 18000 °/s2 18000 °/s2

Fig. 35: Wiring and Component Scheme for the Amsterdam
SEP

rotary encoder. Only one force sensor (Futek LCM 200) is
used, connected to a Futek signal conditioner (Futek IAA100).
The displacement sensor is omitted, and the Beckhoff coupler
(EK1100) now uses fewer terminals (1x EL3102, 1x EL2002,
1x EL2102). Ilustrated in Figure 36.

Beckhoff 
Coupler/Terminals

Drive 
Amps & Conditioners

Simulink The SEP

Analog Output
Analog Inputs

Motor Control

Fig. 36: Operation of the Amsterdam SEP

The control system transitions from a Linux-based test

manager to Twincat 3 for Windows. The workflow, illustrated
in Figure 36 , involves compiling the model in Simulink and
running it with Twincat 3 at a 1 kHz rate. The comparison is
summarised in Table V.

C. The Right Controller

1) Background: To assess the performance of negative
inertia, a high-level control methodology is implemented. Two
popular techniques, impedance and admittance controllers,
are fundamental for managing human-robot interactions. Both
controllers regulate the robot’s dynamic behaviour, ensuring
safety, precision, and adaptability to external forces.

2) Impedance Control: Impedance control regulates the re-
lationship between detected motion and applied force through
open or closed-loop control. The robot behaves like a second-
order mass-spring-damper system, aiming to control its re-
sponse to external motions. The equation of motion is:

F = Mẍ+Bẋ+Kx (14)

where F ) is the force, x is the displace and M,B,K rep-
resent the desired inertia, damping and stiffness respectively.
Impedance control is advantageous in scenarios with varying
and unpredictable forces, providing robust interaction dynam-
ics, stability, and responsiveness. It’s ideal for precise force
control in applications like surgical robots, robotic rehabilita-
tion, and teleoperation.
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Implementing negative inertia requires precise tuning to
avoid instability, necessitating highly responsive sensors and
real-time computation.

Fig. 37: The admittance control diagram for a robot depicts the
interaction between the robot dynamics, external forces, virtual
dynamics, and the control system. The diagram illustrates
the measured externally applied force Fext, which influences
the robot dynamics Yr directly and passes through virtual
dynamics Yv to generate a velocity reference vd. A controller
C attempts to enforce this velocity reference by generating
a control force Fc, which is applied to the robot through an
actuator (not shown). The resulting motion of the robot is
denoted as v. [24]

3) Admittance Controller: Admittance control as shown in
Figure 37 regulates the relationship between measured force
and velocity reference, defining how much a robot displaces
after force application. The equation of motion is:

x =
1

M

∫∫
F, dt+

1

B

∫
F, dt+

1

K
F (15)

where,x is the displacement, F is the force and M,B,K
are the inertia, damping and compliance (inverse of stiffness)
respectively.

Admittance control is ideal for robots needing precise
trajectory following in response to external forces, making it
suitable for collaborative and assistive robots.

This approach simplifies motion response modification
rather than force response, requiring precise but not extremely
high-bandwidth force sensors.

4) Summary: The choice between admittance and
impedance control depends on specific application needs.
Impedance control manages robot reactions to external forces,
ensuring stability and adaptability, while admittance control
excels in precise motion trajectory following. Advanced
HRI systems often combine both strategies for balanced
force responsiveness and motion precision. Impedance
control, easier for modifying dynamic responses, is generally
preferable for implementing negative inertia, although
challenging for rendering stiff virtual surfaces. Admittance
control, while simpler for stiff surfaces, struggles with low
inertia, making it suitable for applications like the SEP where
negative inertia enhances dynamic interactions.

D. System Modelling

1) Background: From Figure 38, the motion control system
integrates both feedforward and feedback control to regulate
the plant, which consists of the power amplifier, actuator,
and mechanical dynamics. The diagram identifies different
points where disturbances can interfere with the system. The

Fig. 38: A standard control loop for high-performance robots.
[35]

commonly used symbols in control engineering are: r [m] rep-
resenting the reference signal, rf [m] as the filtered reference
signal, e [m] as the error signal, u [N] as the control force to
be applied, v [N] as the real force applied, x [m] as the plant
output motion, y [m] as the measured output motion, and ym
[m] as the measurement value of the measured output motion.

In this system, the reference signal r represents the desired
position or motion. After passing through a filter to remove
high-frequency components, it becomes the filtered reference
signal rf . The error signal e is the difference between the
filtered reference signal rf and the measured output y. The
controller calculates the control force u to correct this error.
However, the real force applied v may differ from u due to
disturbances. The actual motion of the plant, including any
response to disturbances, is denoted as x. The measured output
motion y is obtained from sensors, and the measurement value
ym includes any noise or inaccuracies from the measurement
system.

Disturbances can affect the system at various points, such as
between the control force u and the real force v, or within the
plant affecting the output motion x. Effective control strategies
aim to minimize the impact of these disturbances, ensuring the
system follows the reference signal as closely as possible.

2) System Modeling: Modelling the dynamics of a robot is
crucial for implementing effective control strategies, especially
for feedforward inertial compensation. Feedforward control
aims to predict and counteract the effects of inertia, improving
the system’s responsiveness and precision. Accurate dynamic
models enable the design of controllers that can anticipate and
compensate for the robot’s motion, reducing lag and enhancing
performance in tasks requiring high-speed and high-accuracy
movements.

The dynamics of the SEP (one degree of freedom) robot can
be modelled mechanically as a mass-spring-damper system.
Simplifying the mass of the robot and the mass post sensor
as a single mass due to the rigid connection via the force
sensor turns it into a simple mass-spring-damper system. In
this model, the robot’s joint or end-effector is represented by a
mass m, connected to a spring with stiffness k and a damper
with damping coefficient b. The equation of motion for the
mass-spring-damper system is given by:

m
d2x

dt2
+ b

dx

dt
+ kx = F (16)
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Applying the Laplace transform to this equation, assuming
zero initial conditions, we get:

ms2X(s) + bsX(s) + kX(s) = F (s) (17)

Solving for X(s):

X(s) =
F (s)

ms2 + bs+ k
(18)

When integrating the motor dynamics, the external force F
is the torque produced by the motor. Using the electromagnetic
torque equation of a PMSM and considering the motor’s
electrical dynamics, we have:

F (s) = Te(s) =
3

2
P [λfIq(s) + (Ld − Lq)Id(s)Iq(s)] (19)

The voltage equations in the dq-reference frame in the
Laplace domain are:

Vd(s) = RsId(s) + LdsId(s)− ωLqIq(s) (20)

Vq(s) = RsIq(s) + LqsIq(s) + ωLdId(s) + ωλf (21)

By combining the mass-spring-damper system dynamics
with the motor’s electrical model in the Laplace domain, we
can fully describe the behaviour of the 1DOF robot. The
overall system dynamics in the Laplace domain are given by:

X(s) =
3
2P [λfIq(s) + (Ld − Lq)Id(s)Iq(s)]

ms2 + bs+ k
(22)

where the current dynamics Id(s) and Iq(s) are governed by
the Laplace-transformed voltage equations above. By obtain-
ing the system frequency response with accurately estimated
parameters, we can enhance the robot’s performance for high-
speed and high-accuracy tasks.

3) Parameter Selection: The parameters for the mathe-
matical model are estimated based on device specifications
and approximate figures for the motor EMF and impedance
parameters. The inertia of the rotary table is obtained from
the manual, while the torsional stiffness is estimated based on
the size, weight, and type of the servo motor, specifically the
rotary table. The damping is calculated using B = 2ζ

√
MK,

with a damping ratio ζ of 0.7 for an underdamped system. The
torsional stiffness is estimated to be 50,000 Nm/θ, resulting
in a damping coefficient of 58.56 Nm/s. The stator resistance,
inductances, and pole pairs were obtained from the manual,
while the flux leakage and angular velocity were estimated
from nominal values.

The parameters are as follows:
• Inertia: m = 0.035 kg · m2

• Damping: b = 58.56Nm/s
• Stiffness: k = 50, 000Nm/θ
• Stator Resistance: Rs = 17.1Ω
• d-axis Inductance: Ld = 0.0844H
• q-axis Inductance: Lq = 0.0844H
• Flux Leakage: ωb = 1.12H
• Pole Pairs: P = 11
• Electrical Angular Velocity: ω = 100 rad/s

Fig. 39: The system behaves like a conventional mass-spring-
damper system with stiffness around -70dB for the lower
frequencies, damping around 1kHz after which the system has
a -2 inertial slope while the phase lags approaches -180° for
the higher frequencies ≤ 10kHz showing asymptotic stability.

Fig. 40: By changing the stiffnesses and damping coefficients,
the magnitude changes due to stiffness, and the phase shifts
as well.

4) Frequency Response Analysis: The frequency response
in Figure 39 aligns with the expected outcome for a conven-
tional mass-spring-damper (M-B-K) system. However, given
that some parameters were estimated, two additional frequency
responses were generated with different stiffness values and
the corresponding derived damping coefficients. Initially, the
torsional stiffness was set to a lower value of 1000Nm/θ,
resulting in a calculated damping coefficient of 8.365Nm/s.
The other scenario involved a higher stiffness of 107 Nm/θ,
with a calculated damping of 836.5Nm/s. The results are
illustrated in Figure 40.

Lower stiffness and damping result in a higher magnitude
for the stiffness and a transition from stiffness behaviour to
inertial behaviour at 200 Hz compared to the standard model
at 1200 Hz. The phase also transitions at 30 Hz instead of 300
Hz. Conversely, the higher stiffness scenario shows a lower
stiffness magnitude and a transition frequency of around 10
kHz.
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Comparing system identification and mathematical mod-
elling approaches for M-B-K systems offers distinct insights
and limitations, especially concerning nonlinear dynamics.
System identification can capture complex behaviours not
modelled here, including nonlinearities like cogging, me-
chanical compliance, friction, resonance, and other parasitic
dynamics, reflecting their significant impact on the system
response. In contrast, M-B-K models often simplify these
effects, potentially omitting critical nonlinear characteristics.
While M-B-K models provide a foundational understanding
of system dynamics, system identification can offer a more
comprehensive and precise representation, essential for high-
precision applications where these nonlinearities critically
affect performance. Comparing both approaches reveals the
necessity of addressing complex dynamics for accurate mod-
elling and control.

E. System Identification

1) The Recipe: System identification offers a robust ap-
proach to model complex mechanical systems with nonlin-
earities like cogging in motors, additional compliances from
3D printed parts, and compliance in Sarrus linkages. Un-
like traditional methods, system identification derives models
directly from experimental data, effectively accommodating
these nonlinear behaviours. This method is crucial for accu-
rately capturing interactions between components, optimizing
control strategies, and enhancing overall system performance.
Moreover, the system order can be predefined, allowing for
better parameter estimation and model fitting, reducing com-
putational costs.

The process for system identification is as follows:
1) Prepare Experiment

• Define a model for the system.
• Choose a sampling frequency that is high enough to

observe the relevant dynamics and prevent aliasing.
However, a higher sampling frequency can lead to
larger data set sizes. Select an adequate observation
time. Longer observation times are better for noise
removal from an ergodic signal, though it is a trade-
off with available memory for recording.

• Multiple repetitions are beneficial for noise reduc-
tion and observing discrepancies between record-
ings.

• Define the perturbation signals based on expected
system dynamics. Multisine or pseudorandom bi-
nary sequences are ideal as they need to be per-
sistently exciting and prevent leakage, with prime
numbers preventing even or odd harmonics.

2) Perform Experiment
• Apply the perturbation signal to the system and

record the output response. It is important to record
the same modality of signals; if the input signal is
a position perturbation, the output should also be a
position perturbation, not force, torque, or velocity.

• Take exceptional care to prevent noise, whether
from the environment (mechanical or electromag-
netic) or irrelevant sources.

3) Analyze the Results
• Analyze the input and output signals.
• Check for linearity through coherence and deter-

mine whether open or closed-loop algorithms are
required.

• Perform system identification to obtain a non-
parametric description of the system using fre-
quency or impulse response functions.

• Derive a parametric model and fit it to the data using
various techniques. Evaluate the fit and validity of
the model using metrics such as Variance Accounted
For (VAF) or Standard Error of the Mean (SEM).

System identification is an essential tool for modelling
complex mechanical systems, providing detailed insights and
accurate representations of system dynamics. This approach
ensures precise control and optimization, especially in appli-
cations where nonlinearities significantly impact performance.

2) The Right Signals: In a system identification experiment
using the shoulder-elbow perturbator (SEP) robot operating in
cyclic synchronous position mode, multiple multisine signals
are synthesized, shown in Figure 41 to study the dynamic
response of the joint system. These multisine signals consist
of prime frequencies within the ranges of 0 to 11 Hz, 0 to
23 Hz, and 0 to 100 Hz. Using prime frequencies ensures
that each frequency component remains distinct, avoiding
harmonic overlap and facilitating clearer system identification.
The amplitudes of these signals are set to 3°, 1°, and 0.1°,
respectively, as higher amplitudes yield a higher signal-to-
noise ratio (SNR), improving measurement accuracy.

Fig. 41: Three multsine signals with their frequency contents
and varying amplitudes

During the experiment, these multisine signals are applied to
the SEP robot, and the resulting joint movements are recorded.
By measuring the robot’s output response to these pertur-
bations, dynamic characteristics of the system are derived.
Analyzing the output signals allows for the identification of
key parameters and behaviours of the SEP, offering valuable
insights into its dynamic response. This method leverages
multisine excitation combined with prime frequencies to ef-
fectively characterize the system’s response across a broad
frequency spectrum.
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Fig. 42: High coherence for excited frequencies showing
system linearity

3) The Results: In the system identification experiment in-
volving the shoulder-elbow perturbator (SEP) robot running in
cyclic synchronous position mode, multiple multisine signals
were synthesized to investigate the dynamic response of the
joint system. These signals, composed of prime frequencies
ranging from 0 to 11 Hz, 0 to 23 Hz, and 0 to 100 Hz, ensure
distinct frequency components, avoiding harmonic overlap and
improving system identification. Signal amplitudes were set at
3°, 1°, and 0.1°, with higher amplitudes enhancing the signal-
to-noise ratio (SNR) for improved measurement accuracy.
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Fig. 43: Estimated transfer function of the system response as
shown by the Bode plot

The coherence, shown in Figure 42, indicates a response
near 1 for excited frequencies, suggesting system linearity
and making open-loop system identification feasible. Despite
applying adequate windowing and overlap through the Pwelch
method, discrepancies appeared in the higher frequency range
(≤ 20 Hz) in Figure 43, likely due to unexcited frequencies.
Parametric estimation was pursued by defining the system
order and selecting an appropriate model structure. Given
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Fig. 44: Validation of various models with the original input
signal

the system’s behaviour, resembling a mass-spring-damper, a
second-order model was selected. Based on performance in
Salah (2020) [83], three models were considered:

• ARX (Autoregressive with Exogenous Inputs): Utilizes
past inputs and outputs to predict the current output,
assuming a simple structure.

A(q)y(t) = B(q)u(t) + e(t)

• ARMAX (Autoregressive Moving Average with Exoge-
nous Inputs): Adds a moving average filter to the ARX
model, improving noise capture.

A(q)y(t) = B(q)u(t) + C(q)e(t)

• OE (Output Error): Models the relationship between
input and output using polynomials, minimizing the pre-
diction error.

y(t) =
B(q)

F (q)
u(t) + e(t)

After fitting the models, all showed strong validation results,
as indicated in Figure 44, with over 90% accuracy. The
ARX model performed the worst at 90.78%, followed by the
ARMAX model at 91.34

The system identification models and the mathematical
model were validated against the frequency response of the
estimated system, as shown in Figure 45. To clarify trends,
the frequency response for relevant frequencies was plotted in
Figure 46. In this range, the magnitude plot for the mathe-
matical model (green) and the OE model closely aligns with
the estimated system response. Phase plots for the OE, ARX,
and ARMAX models align well with the estimated phase up
to 11 Hz, the highest excited frequency in the experiment.
Between 15 and 35 Hz, the OE model’s phase plot tracks
the estimated system response more closely. The mathematical
model’s phase shows instability without phase unwrapping.

Thus, the OE model is selected for feedforward compensa-
tion from input ’u1’ to output ’y1’.
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Fig. 45: Frequency response of all models, including the
mathematical model
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Fig. 46: FRF for frequencies of interest ≤ 40Hz.

0.06367z−2 − 0.01066z−1

1− 1.783z−1 + 0.8365z−2
(23)

4) Key Takeaways: While the system model effectively
captures the response at lower frequencies (<20 Hz), it exhibits
limitations at higher frequencies. Since the excited frequencies
were limited to 11 Hz, modelling and discerning the system’s
higher frequency dynamics is challenging. This falls short of
achieving the desired perturbation signals capable of exciting
the system response across low, medium, and high frequencies.
Consequently, the inertial and damping dynamics may not be
fully captured by Equation 23.

To address this, two additional multisine inputs with higher
frequency content were designed, albeit with reduced ampli-
tudes. This trade-off was necessary to avoid damaging the 3D-
printed components and linkage mechanisms. Earlier experi-
ments revealed that excitation near the resonance frequency
caused cracks in the 3D-printed housing and compromised
the device’s integrity due to the loosening of bolts on multiple

components, including the linkage mechanism and the frame
bolt connecting the jack to the elbow perturbator.

(a) FRF 0-97Hz MS ±0.5◦ (b) Sim Response 0-97Hz MS

(c) FRF 0-23Hz MS ±1◦ (d) Sim Response 0-23Hz MS

Fig. 47: Higher excited frequencies with lower amplitudes

As shown in Figure 47, the multisine signal designed for
the 0 to 100 Hz range, with an amplitude of ±0.1◦, resulted
in a poor signal-to-noise ratio (SNR), negatively affecting
system identification and model validation. A compromise was
reached with a multisine from 0 to 23 Hz at ±1◦, though this
also showed suboptimal performance.

The simulated response for the 0 to 23 Hz multisine
reached approximately 86%, but the frequency response did
not correlate well with the estimated system response, despite
good coherence. The simulated response for the 0 to 97
Hz multisine was significantly lower at 30%, with a marked
difference in frequency response. These results indicate that
the models are insufficient for capturing system dynamics at
higher frequencies. While increasing the input signal ampli-
tude could improve system identification, the associated risks
to the device outweigh the potential benefits. Therefore, the
system identification experiments are concluded at this stage.

F. Force Sensing

1) Time Delays or Bandwidth: For implementing the ad-
mittance control scheme on the SEP, the priority between
minimizing time delays and achieving higher bandwidth de-
pends on the specific operational requirements. Reducing time
delays is critical for ensuring prompt and accurate responses
to external forces, particularly in applications requiring pre-
cise force sensing and rapid adjustments. This responsiveness
enhances the overall accuracy and stability of the admittance
control system. In contrast, achieving higher bandwidth al-
lows for faster tracking of dynamic force inputs, improving
transparency and agility in force control tasks. However,
balancing these priorities is essential to maintain stability and
avoid noise amplification associated with higher bandwidth.
Ultimately, minimizing time delays often takes precedence to
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optimize real-time interaction and control precision, especially
in diagnostic and sensitive manipulation scenarios [84].

Fig. 48: The admittance control scheme starts with force input
via the force sensor.

2) Selecting an Appropriate Force Sensor for Admittance
Control: Selecting the right force sensor is crucial for effective
admittance control, as shown in Figure 48. The following
qualities are essential for optimal performance:

• High Sensitivity – Sensors must detect subtle variations
in force, enabling fine-tuned control and smooth interac-
tion.

• Accuracy – Sensors should deliver precise and consistent
measurements with minimal errors. Drift should be min-
imal, and offsets can be adjusted in the control system.

• Wide Band – Sensors must capture a broad range of
forces, from small jerks to slow, gradual applications.

• Fast Response – Real-time force feedback is essential
for stable admittance control. Faster sensors improve the
overall system’s responsiveness.

• Robustness – Sensors should withstand overloads,
shocks, and vibrations while maintaining performance
under varying environmental conditions.

• Low Noise – Sensors should generate minimal inherent
noise to avoid the need for excessive filtering, which
could introduce time delays and degrade controller per-
formance.

• Ease of Calibration – Sensors must be easy to calibrate,
ensuring long-term stability and consistent accuracy over
time.

• Miscellaneous – Additional considerations include cost,
compatibility with existing systems, ease of integration,
and the availability of mechanical integration packages.

3) Piezoelectric vs Straingauge: The Rijndam SEP is
equipped with two force sensors: the Futek LCM 200 strain
gauge load cell and the Kistler 9237B piezoelectric force
transducer. Table VI outlines the general specifications of these
sensors. The Kistler piezoelectric transducer offers superior
speed, sensitivity, and accuracy, making it more robust for
high-precision, dynamic measurements. In comparison, the
LCM 200 with the SG3016 conditioner provides high accuracy
for static or slowly varying forces but operates with lower
resolution.

The Kistler 9321B/5073A combination excels in applica-
tions requiring a broad dynamic range and fast response times,
ideal for real-time feedback. In contrast, the LCM 200 system
is more suited for static or low-dynamic scenarios, though it
struggles with high-speed measurements.

While the Kistler system offers exceptional durability, it is
more sensitive to environmental factors, such as temperature
fluctuations and noise. The Futek LCM 200, although robust,
is more prone to electrical noise if not adequately isolated.

Integrating the Kistler system involves greater complexity
and cost, but it delivers unmatched performance for high-
precision applications. The LCM 200, on the other hand, is
easier and more cost-effective to integrate, making it suitable
for scenarios where budget and simplicity take priority.

For the SEP, the Kistler combination is ideal for high dy-
namic performance, sensitivity, and precision. The Futek com-
bination, however, is more appropriate for applications involv-
ing static or slowly varying forces, where cost-effectiveness
and ease of integration are more critical.

4) Experimental Validation of Force Sensors: To validate
the performance metrics of the force sensors, a series of
experiments will be conducted based on the desired properties
outlined in Section VIII-F-2.

The following experiments are planned:

• Both Sensors Operational – The Kistler sensor, cur-
rently not electrically connected, will be connected to the
terminals, coupler, and power supply to ensure force data
can be recorded.

• Calibration – Calibration tests will be performed using
springs or masses with known weights to assess the
accuracy of both sensors.

• Drift Comparison – The sensors will be preloaded for
an extended duration to evaluate any drift that may occur
over time.

• Impulse and Oscillatory Response – Impulse Response
Function (IRF) and Frequency Response Function (FRF)
experiments will be conducted to characterize the sensors.
The robot will be connected to a pulley system to
introduce perturbations, and the sensors’ responses will
be analyzed.

• Perturbation Signal Response – Multiple sine waves
will be applied to the robot in continuous synchronous
position mode to determine how effectively each sensor
tracks disturbances.

These experiments will provide a thorough evaluation of
the sensors’ performance, ensuring the most suitable sensor is
selected for the SEP’s admittance control system.

Figure 49 illustrates both sensors laid out in series. While
the Futek LCM200 was already connected, the Kistler 9321B
was initially disconnected. To integrate the Kistler 9321B, it
was connected to the Kistler charge amplifier 5731A, which
was configured to record force data in the same ±10V range
as the ICPDAS SG3016 to ensure consistency between the
sensors. The Kistler sensor was first tested on a lab bench,
and once signals were verified via a digital multimeter and
powered by an external 12V DC supply, the charge amplifier
was integrated into the SEP Rijndam system. The wiring
schematics are shown in Figure 49b.

5) Calibration and Drift Experiments: To conduct the
calibration test, the test manager program is first modified
to include additional offset calibration for the Kistler force
sensor. The charge amplifier is configured to output in mV/V,
ensuring a valid comparison between the Futek and Kistler
sensors. The SEP arm is moved to an end stop, and springs
are attached as shown in Figure 50. A spring weight gauge is
connected in series to measure the applied force.
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TABLE VI: Comparison of FUTEK LCM 200 with ICPDAS SG3016 and Kistler 9321B with 5073A

Sensors LCM 200 with ICPDAS SG3016 Kistler 9321B with 5073A

Type Strain Gauge Piezoelectric Force Transducer

Force Range 1.1 kN ±2.5 kN

Output mV/V mV/V

Natural Frequency 26.8 kHz 55 kHz

Accuracy ±0.05 within measuring range ≤ ±0.05 within measuring range

Resolution 4.88 mV 2 mV

Bandwidth 600 Hz (Conditioner limited) 20 kHz

Size and Weight 17 g 90 g

Signal Conditioner ICPDAS SG3016 Kistler 5073A

Conditioner Features 12-bit resolution, up to 600 Hz sampling rate,
RS-485 Modbus RTU

High resolution, high sampling rate, analog and
digital outputs, RS-232 Modbus

Cost C1237 C3800

(a) Both sensors lcm 200 (left) and 9231b (right) on
SEP RIjndam

(b) Wiring scheme for force sensor on SEP

Fig. 49: Initial Experimental setup

The SEP’s data logging service is set to record at 1 Hz,

Fig. 50: Calibration and drift set up

allowing for extended data collection without generating an
overly large dataset, given the system’s limited memory. Once
the configuration was complete, the drift experiment began.

Initially, the SEP is powered on, the sensors are calibrated,
and any offsets are removed. The sensors are left to idle for
30 seconds before loading the arm with a spring applying
approximately 25 kg of force. This setup remains in place for
nearly 15 hours. Afterwards, the force is removed, and the
SEP is again left idle for an additional 20 minutes to observe
any drift.

Figure 51 reveals several key observations. In Figure 51b,
there is a noticeable variation between the initial sensor
loading and the eventual settling value. This indicates that the
sensors, or potentially the signal conditioner/amplifier, require
a longer warm-up period to reach optimal operating condi-
tions—an important consideration for participant or patient
testing. In Figure 51c, after the load was removed the next day,
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(a) Total 16 hours drift experiment

(b) Initial settling time

(c) Load release drifts
and noise

Fig. 51: Drift experiment results with areas of interest magni-
fied on the right

the Kistler sensor showed significantly more periodic noise
spikes compared to its behaviour during the settled phase of
the drift experiment.

Although both sensors initially exhibited an offset, the
piezoelectric Kistler sensor experienced significantly more
drift during the settled phase compared to the strain gauge-
based Futek sensor. The Kistler sensor initially settled at -
186.61 N and drifted to -131.76 N, indicating a drift of 54.85
N. In contrast, the Futek sensor settled at -241.77 N and drifted
to -235.52 N, resulting in a much smaller drift of 6.25 N. When
the load is removed, the Futek sensor returns to an average of
0 N ±0.4, while the Kistler sensor displays a residual force
of 48.55 N ±5.

Fig. 52: The impulse experiments where the impulse is pro-
vided via a cable pulley load mechanism.

6) Impulse Experiments: To validate the frequency re-
sponse of the sensors, an impulse response test is conducted.
Since an impulse excites the entire frequency band (low,
medium, and high frequencies), it is an effective method for
evaluating sensor performance. The impulse is generated by
locking the SEP arm near an end stop and attaching a cable

pulley perpendicular to the arm, with a mass on the other end.
The arm is tightly secured with ratchet straps to ensure that
the entire impulse acts directly on the sensors, minimizing
parasitic damping or stiffness effects, as shown in Figure 52.

Once the setup is secured, the weight is dropped, and
the force response is recorded. This experiment is repeated
multiple times. Before each test, the sensors are calibrated,
and the load is held for 10 seconds to establish a stable idle
response. The weight is then dropped, and the response is
allowed to settle for 20 seconds. This process is repeated five
times to ensure reliable results and allow for averaging in case
of persistent periodic noise.

Fig. 53: One cycle of the impulse response illustrated (left)
and the frequency spectrum (right).

Figure 53 shows the impulse response and corresponding
frequency spectrum of the sensors, with excited frequencies
ranging from 0 to approximately 80 Hz. This range is sufficient
for determining the system’s dynamic response. The force
profiles for both sensors are nearly identical, indicating good
calibration between the two sensor types. However, periodic
noise remains evident in the Kistler sensor, which could lead to
undesirable behaviours in the admittance controller. This noise
is observed as frequency spikes around 100 Hz, resembling
harmonics.

Fig. 54: Similar setup to the impulse response with the addition
of a spring in series between the load and SEP arm.

7) Oscillatory Experiments: In a setup similar to the im-
pulse experiments, adding a spring between the mass and the
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SEP arm induces an oscillatory response, enabling observation
of the system’s low-frequency behaviour and its damping char-
acteristics. A theoretically rigid system would allow infinite
oscillations with an ideal spring, while a compliant system
would exhibit rapid damping.

A helical spring was introduced between the mass and the
cable, as shown in Figure 54. After calibrating both sensors,
the load is pulled close to the ground, applying tension to
preload the system. Following a 10-second preload, the load
is released, allowing natural oscillations to occur. The system
is allowed to oscillate for 30 seconds until the motion ceases.
This procedure was repeated five times to ensure reliable data
collection.

Fig. 55: One cycle of the oscillatory response illustrated (left)
and the frequency spectrum (right).

As with the impulse experiments, the oscillation tests pro-
duce similar results. Figure 55 shows the excited frequencies,
which are primarily at the lower end of the spectrum. This is
notable since humans typically cannot respond to frequencies
above 20 Hz, even in spastic conditions.[85] The force tracking
between the strain gauge and piezoelectric sensors remains
nearly identical. However, noise is more prominent in this
experiment, particularly in the frequency spectrum, where
Gaussian noise is centred around 100 Hz.

A slight variation in the extremities of the loading scenario
is observed, with the sensors reporting slightly different loads
of -90 N and -88 N, respectively. Another significant finding is
the rapid damping of the oscillations, despite the end-effector
being securely fastened with straps. This suggests high internal
damping within the system, due to compliance in the setup or
slack in the ratchet straps.

8) Bandwidth Tests: For the bandwidth tests, the SEP is
subjected to a ±1◦ sine wave ranging from 1 Hz to 10 Hz.
The frequency is limited to 10 Hz to avoid physical damage
to the 3D-printed components of the system. And to maintain
its structural integrity

As shown in Figure 56, significant electromagnetic inter-
ference (EMI) impacts the Kistler sensor wiring, particularly
when the servo drive is activated. The noise level spikes dra-
matically, rendering the low-frequency response in Figure 56b
unusable for the Kistler sensor when compared to the Futek
sensor. The performance improves at higher frequencies, as
seen in Figure 56c, but periodic noise remains a persistent
issue.

9) Key Takeaways: Despite the piezoelectric sensor’s su-
perior specifications, as shown in Table VI, its response
was significantly affected by noise interference. This noise

(a) The force generated from a sine wave signal
(1-10 Hz)

(b) Response at 3 Hz

(c) Response at 10 Hz

Fig. 56: The complete bandwidth experiment on left and
low/higher frequency response on right.

compromised the sensor’s performance, making it less reliable
for precise measurements compared to the strain gauge sensor.

Fig. 57: Shielding for the sensor wires inside the SEP main-
frame.

As shown in Figure 57, attempts were made to reduce
the noise by externally grounding the charge amplifier and
shielding the sensor wires to attenuate electromagnetic inter-
ference (EMI) when the motor was activated. An external
24V DC power supply was added to the Hiwin ED1 drive,
which eliminated motor-induced noise, though the periodic
noise persisted.

Post-processing techniques such as notch filtering based on
the power spectral density, Empirical Mode Decomposition
(EMD), and Wavelet decomposition were applied to remove
noise. However, the periodic noise was traced to the charge
amplifier itself, as the noise remained even after disconnecting
the piezoelectric sensor. While analog filtering through RC
filters within the charge amplifier was considered [86], this
solution is not ideal given the high cost of the Kistler system,
which is three times that of the Futek sensor.

These post-processing methods introduce additional delays,
which is highly undesirable for implementing negative inertia
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on the SEP. In contrast, the Futek strain gauge, based on exper-
imental results, demonstrates adequate performance. With an
eigenfrequency of 26 kHz and a signal conditioner sampling
rate of 600 Hz on the SEP Rijndam, the Futek system is
capable of handling the requirements. The signal conditioner is
upgraded on the SEP Amsterdam to the Futek IAA100, which
supports a minimum sampling rate of 1 kHz.

However, running the Simulink model and signal amplifier
at 1 kHz introduces risks of aliasing, especially if the signal
contains components near or above 500 Hz. Additionally,
leakage can occur if sampling is not perfectly synchronized
with the signal. Therefore, a higher sampling rate for the
Simulink model is recommended to mitigate these issues.
Overall, the Futek strain gauge is sufficient for the admittance
controller with negative inertia implementation.

G. Accelerometer and Filtering

1) Accelerometer: An effective admittance controller re-
quires a robust inner velocity loop to enforce the desired
velocity derived from virtual dynamics. Accurate feedback for
position, velocity, and acceleration is essential for effective
error compensation. While a high-resolution motor encoder
provides precise position data, combining it with a gyro or
accelerometer can enhance multimodal sensory output when
an encoder alone is insufficient. By integrating accelerometer
data twice, position values can be estimated, and a Kalman
filter can further improve the accuracy of position estimation
through sensor fusion.

The accelerometer, as shown in Figure 59, provides direct
acceleration measurements, which offer several advantages.
Compared to deriving acceleration from force data, direct
measurement yields more accurate dynamic responses. With a
sampling rate of 1000 Hz, compared to 500 Hz from force-
derived values, having dual sources of acceleration data en-
hances noise rejection and improves the controller’s ability to
distinguish between noise and actual dynamics. This accurate
acceleration feedback allows the controller to better com-
pensate for external disturbances and unmodeled dynamics,
improving robustness.

Implementing negative inertia on the Series Elastic Actuator
(SEA) can destabilize the system by reducing the effective
mass. Accurate acceleration disturbance observers help coun-
teract this destabilization, preventing instability and unwanted
oscillations. Additionally, acceleration data allows for real-
time adjustment of damping coefficients, enhancing stability
as demonstrated by Keemink et al. (2018) [24].

To evaluate the suitability of integrating a gyro or ac-
celerometer with the SEA, the following experiments are
proposed:

• Data Accuracy and Noise Filtering: Mount each sensor
on the robot and collect position data during controlled
movements. For the ADXL337, double integrate the
acceleration data to obtain the position. For the GY-521,
track the angular position using the gyroscope and inte-
grate the accelerometer data to obtain the linear position.
Compare these position estimates with high-resolution
encoder data to assess accuracy and noise levels.

• Sensor Fusion and Drift Compensation: Use a Kalman
filter to fuse data from the GY-521 accelerometer and
gyroscope. Test the robot through dynamic motions to
evaluate the effectiveness of sensor fusion in reducing
drift and improving accuracy compared to the ADXL337
alone. Analyze the stability and consistency of position
and velocity estimates over extended periods.

These experiments will determine which sensor provides the
most accurate and reliable position and velocity feedback for
the SEP’s admittance control requirements.

The ADXL337, shown in Figure 59 accelerometer is
mounted at the distal end of the SEP end effector with a
radius of 0.298 m. Wiring follows the scheme in Figure 10,
with an external 5V adapter stepping down to 3.3 V via
a voltage divider, stabilized by a 100 nF ceramic capacitor
to minimize noise in the accelerometer output. The output
is converted to degrees per second squared (°/s2) using the
following equation:

Acc =
Measured signal − Zerog Bias

Sensitivity
× g

Radius
×Rad2deg

(24)
where:

Zerog Bias = 2900
Sensitivity = 340 mV = 466.67
g = 9.81 m/s2

Radius = 0.298 m
Rad2deg = 180

π = 57.295

From Figure 58, the raw accelerometer signal contains
significant noise, particularly for the multisine signal, which
is expected. A moving average filter highlights the underly-
ing trends, which align more closely with the ground truth
(sine/multisine waves). However, filtering introduces a 100 ms
delay and phase lag, which can impair performance. Therefore,
minimal filtering is applied. Kalman filtering with position
encoder data can reduce noise further but introduces additional
phase lag, delaying the accelerometer’s measurements.

2) Kalman Filter Tuning: A Kalman filter is designed to
minimally filter the raw data, providing a smoother accelera-
tion prediction, as illustrated in Figure 60.

The first state-space model is a theoretical representation
based on basic physical principles. The state vector x includes
position (p), velocity (v), and acceleration (a):

x(k) =


p(k)

v(k)

a(k)


The system dynamics are described by the following state-

space matrices:

A =


1 ∆t 0

0 1 ∆t

0 0 1

 , B =


0

0

1

 , C =


1 0 0

0 1 0

0 0 1
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(a) Sine waves at two different frequencies. (b) Periodic multisine signal.

Fig. 58: Raw and filtered accelerometer response.

Fig. 59: The ADXL337 (left) and the MPU6050 (right).

Fig. 60: The Kalman filter gain tuning scheme.

Here, ∆t represents the sampling time. The process noise
covariance matrix Q and the measurement noise covariance
matrix R are tuned based on sensor characteristics and exper-
imental data:

Q =


q1 0 0

0 q2 0

0 0 q3

 , R =


rp 0 0

0 rv 0

0 0 ra


A second state-space model is developed through system

identification techniques, providing a more accurate empirical
representation of the system dynamics. The identified system
matrices are:

Aid =


2.786 −1.301 0.8157

2 0 0

0 0.5 0

 , Bid =


0.5

0

0



Cid =


0.1879 0 0

0 −0.1614 0

0 0 0.1367


The process and measurement noise covariances for the

identified model are similarly adjusted:

Qid =


qid1 0 0

0 qid2 0

0 0 qid3

 , Rid =


rid 0 0

0 rid 0

0 0 rid


H. Cascaded Control

Fig. 61: The cascaded control loop

Servo drives typically utilize cascaded control loops to
achieve optimal performance, as depicted in Figure 61. While
the operation for the ED1 servo drive in the SEP is shown in
Figure 62. These loops include:

• Torque Loop: The torque loop, also known as the current
loop, operates with the highest bandwidth (16x higher
than the position loop). It processes the desired torque
from the velocity loop and outputs the necessary current
to the servo motor, independent of position or velocity.
Factory settings, particularly with Hiwin components,
usually optimize torque loop parameters, though input
filters can be adjusted based on the load.

• Velocity Loop: The velocity loop, with a bandwidth 4x
higher than the position loop, adjusts torque to achieve
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Fig. 62: The breakdown of the three loops within the SEP
framework. The position loop is controlled via the Simulink
model while both the velocity and torque loops are managed
internally by the Hiwin servo drive

the desired velocity. This loop is load-tuned, taking its
reference from the position loop.

• Position Loop: The position loop operates with the
lowest bandwidth, generating a reference velocity from
the position error. It is also tuned to the load.

The SEP operates in Cyclic Synchronous Velocity mode,
with a Simulink model that includes drift compensation for
precise position and velocity control. In this setup, Simulink
controls the position loop. The Hiwin ED1 drive can run at 3.2
kHz in the torque loop, 1 kHz in the velocity loop, and 0.1 kHz
in the position loop. If configured for torque control within the
current framework, sampling and bandwidth limitations arise.
The torque controller would operate at 1 kHz, which, by the
Nyquist-Shannon criterion, would be effective until 500 Hz,
reducing the velocity loop’s effective bandwidth to 125 Hz
and the position loop’s bandwidth to 31.25 Hz.

I. Alternate Results

To evaluate the mitigation strategies for inertia, a virtual
dynamic model is set with the following parameters:

• Mass: m = 0.30 kg
• Damping: b = 10N · s−1

• Stiffness: k = 100N/m
The SEP arm is perturbed by pulling it ±10°, and a trigger

is pressed as soon as the arm is released to ensure that arm
properties do not affect the results. Several trials are conducted
within a 90-second window to ensure a sufficiently large data
set from which the Frequency Response Functions can be
obtained.

From Figure 63, the initial response resembles a standard
mass-spring-damper system, for both the red and green re-
sponses. The system has a stiffness slightly lower than 0 dB,
there is a small damping trough at the cross-over frequency
20 Hz after which the slope is +2 indicating normal inertia.
The higher frequencies are not excited in this test therefore
clear and accurate judgment cannot be made due to lower
coherence.

Critical inertia compensation is evaluated by setting the
accelerometer-based mass compensation to 0.30 kg as the
base scenario. This cancels out the virtual mass set in the
virtual dynamics block. Subsequently, augmenting it with
inherent inertial compensation from the model. This removes
the device’s total inertia from the system. After which the
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Fig. 63: Control group for the dynamic stiffness FRF

motor torque-based disturbance rejection is included to ensure
stability.
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Fig. 64: Dynamic stiffness FRF for critical compensation
strategies

In Figure 64, there is good coherence for the critical com-
pensation in blue and the critical compensation with inherent
inertia compensation and disturbance rejection in green. These
two responses, especially the green plot, show a straight line
for all frequencies around 0 dB which is expected. Only
providing critical inertia compensation (shown in blue) shows
the presence of some stiffness in the system by the response at
-5 dB. The phase plots for the relevant frequencies which are
≤ 20 Hz show a slight phase lag at the lower frequencies
but remain close to zero. The response for the green plot
shows a slight phase lead indicating some negative inertia
characteristics.
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For negative inertia compensation, the accelerometer force
compensation is increased to 0.50 kg, creating approximately
200 grams of negative inertia. This experiment is repeated to
evaluate the difference in performance.
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Fig. 65: Dynamic stiffness for negative inertia
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Fig. 66: Comparison of no compensation, critical compensa-
tion, and negative inertia for the dynamic stiffness FRF

Figure 65 indicates a few key trends, initially for the
responses in green and red, the stiffness starts at a +8 dB
showing some negative stiffness in the system. After this, there
is a slight trough at 8 Hz for both responses showing some
positive damping. From here the results diverge slightly They
both have a -2 slope, the red plot has it until 30 Hz while
the green slope has it until 20 Hz. After this, the response is
incoherent due to low coherence. The blue plot however has
the highest coherence, it starts with some positive stiffness and
has a peak at 10 Hz (crossover frequency) before a clear -2

slope up until 30 Hz, after which there is a gradual negative
slope for the unexcited higher frequencies. Another sign of the
presence of negative inertia is the positive phase lead from 12
Hz to 36 Hz. further indicating the presence of negative inertia
in the system.

Finally, comparisons of no compensation, critical compen-
sation, and negative inertia are shown in Figure 66. Trends
suggest that coherence at higher frequencies is insufficient for
conclusive results, but the presence of negative inertia becomes
more apparent when compared with the other test cases.

Coherence at higher frequencies requires improvement of
higher-frequency excitation. Variations in responses within
similar trails highlight the need for precise triggering to cap-
ture significant signals. Comparing coherent results clarifies
the differences between rendered virtual inertia, critical inertia
(0 Kg) and negative inertia.

J. The Initial Admittance Controller

This subsection contains the initial controller scheme for
the admittance controller.

• Figure 67 shows the admittance controller.
• Figure 68 shows the motor initialization block.
• Figure 69 shows the force input block, similar blocks are

used for accelerometer for calibration.
• Figure 70 shows the virtual dynamics block.
• Figure 71 shows the velocity controller.

K. The Inertia Compensation Admittance Controller

• Figure 72 shows the modified velocity controller with
feedforward dynamics.

• Figure 73 shows the complete admittance framework with
inertia compensation.

• Figure 74 shows the inertia compensation block.
• Figure 75 shows the deadband PDFs for finding an

optimal deadband.
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Fig. 67: The initial admittance controller framework in Simulink with external force block as an input, virtual dynamics creating
the desired reference, velocity controller enforcing it and rest of the modules augmenting the operation

Fig. 68: Motor Initialization

Fig. 69: External Force
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Fig. 70: Virtual Dynamics

Fig. 71: Velocity Controller
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Fig. 72: The inverted plant with a second-order lowpass filter combined with feedback controller to improve system dynamics

Fig. 73: Complete control scheme with inertia compensation block
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Fig. 74: Inertia compensation block

(a) Probability density function for force sensor (b) Probability density function for accelerometer

Fig. 75: PDF analysis to determine safe noise levels for deadband implementation
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