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ABSTRACT

As of 2019, the FAA and EASA require all airline pilots to complete stall and recovery training
as integral part of their training. To mitigate risks, this training takes place in ground-based
simulators. To enable this, realistic models of aircraft behaviour in the stall regime need to be
developed. In this paper, a new aerodynamic stall modelling methodology is proposed that combines
classical aerodynamic model identification techniques with a novel adaptation of Kirchhoffs theory
of flow separation that considers flow separation over both wings separately. This new model is
called the 2X model, as it contains 2 independent flow separation variables, i.e. one for each wing.
The model parameters are estimated based on flight experiments in the stall regime conducted
with a Cessna Citation II laboratory aircraft operated by the TU-Delft. The developed model for
the first time allows accurate prediction of lateral-directional dynamics encountered during stall
such as e.g. wing-dip. In addition, it was found that the 2X model also improved predictions of
longitudinal stall dynamics leading to a new extended envelope aerodynamic model for the Cessna
Citation II that now also includes stall entry and post-stall aerodynamics.

1 Nomenclature

𝑎1 = Stall abruptness parameter
𝑐 = chord
𝐶𝐷 = Drag coefficient
𝐶𝐿 = Lift coefficient
𝐶𝑙 = Rolling moment coefficient
𝐶𝑛 = Yawing moment coefficient
𝐶𝑇 = Thrust coefficient
𝐶𝑌 = Side force coefficient
𝐶𝛼0 = Vane geometric coefficient coefficient
𝐶𝛼𝑢𝑝 = vane upwash coefficient
𝐽 = Cost function
𝑀 = Mach number
𝑝 = Roll rate

1Except where otherwise noted, content of this paper is licensed under
a Creative Commons Attribution 4.0 International License.

The reproduction and distribution with attribution of the entire paper or of individual
pages, in electronic or printed form, including some materials under non-CC-BY 4.0
licenses is hereby granted by the respective copyright owners.

CEAS EuroGNC 2022
“Conference on Guidance, Navigation and Control”

3-5 May 2022 @ Technische Universität Berlin, Germany

CEAS-GNC-2022-011

mailto:a.delfosse@student.tudelft.nl
mailto:c.c.devisser@tudelft.nl
mailto:d.m.pool@tudelft.nl


𝑞 = Pitch rate
𝑟 = Yaw rate
𝑋𝐿,𝑅 = Flow separation point locations
𝛼 = Angle of attack
∗ = Stall angle of attack
𝛽 = Angle of sideslip
𝛿𝑎 = Aileron deflection
𝛿𝑒 = Elevator deflection
𝛿𝑒 = Rudder deflection
𝜏1 = Time delay due to flow inertia
𝜏2 = Flow hysteresis effect
𝑡 = time step

2 Introduction
Currently, LOC-I (Loss Of Control In flight) remains the primary cause of aviation fatalities [1] . In

this context, aircraft stall prevention and stall recovery training could be a game changer for the safety of
the commercial aircraft.
Similarly to the FAA which requires US airline pilots to follow stall training since March 2019 [2],
from April 2019 the EASA requires European airline pilots to follow stall training, referred to as ‘Upset
Prevention and Recovery Training’ (UPRT) [3]. For obvious cost and safety considerations, training
pilots in actual aircraft is not considered a viable option. Hence, this training taking place in full motion
flight simulators.

For this reason, significant research and development efforts have been made towards the extension
of the conventional nominal flight envelope that can be simulated to also include stall onset, stall, and
post-stall dynamics in flight simulation training devices (FSTDs). This extension of the aerodynamic
flight envelope has the goal to provide pilots positive transfer of training in case of upset and stall
conditions in order to help them acquire skills to recognize, prevent and recover from such conditions in a
safe manner. Unlike for the nominal flight envelope, at high angles of attack close to and beyond the stall,
the aerodynamics can present a highly non-linear, unsteady, configuration-dependent, and fundamentally
unpredictable (chaotic) behaviour. This makes the task of creating and implementing a high fidelity
stall models challenging, and encourages the use of new original and innovative data gathering and
modeling techniques, with standard stationary methods no longer being viable. One of the possible ways
of modeling stall is using Kirchhoff’s theory of flow separation in the aerodynamic model identification
process [4] [5] [6] [7] [8]. This allows one to capture and model non-linearities such as alpha-hysteresis
by introducing into the aerodynamic model an internal flow separation variable 𝑋 , that can be estimated
by (iteratively) solving an ordinary differential equation within the parameter estimation process [4].
This technique proved to be effective in modelling in particular the low-frequency longitudinal dynamics
during a stall. Nevertheless, there are still blindspots concerning the development of a full envelope high
fidelity stall model. Especially the lateral-directional dynamics cannot be captured using the standard
Kirchhoff based approach since it assumes flow separation to be a symmetric phenomena [9]. However,
because stalls are often accompanied by significant lateral-directional dynamics and divergence such as
sudden asymmetric wing drop, lateral-directional stall dynamics should be included the simulator stall
models to make an effective training device.

Hence, the main contribution of this work is to close this gap and implement the necessary tools for
lateral-directional stall dynamics modeling using flight test data by means of an extension of the classical
Kirchhoff flow separation theory from one global flow separation variable to two wing-specific separation
variables, in a new approach we call the 2X approach. Using two flow separation variables instead of
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one by itself is not new, see [9]. The novelty of the present work is: 1) we do not neglect transient effects
(modelled by the 𝜏1 variable); 2) we include an automated (stall) model structure selection procedure
based on multivariate orthogonal functions (MOF) for all of the force and moment coefficients in clean
and landing configurations; 3) We apply this methodology to flight data obtained in the stall domain
during which the aircraft was excited with specific system identification inputs.

3 Flight Test Data
Enjoying the immense advantage of co-owning (with NLR [10]) a Cessna Citation II aircraft (reg-

istered as PH-LAB) equipped with a dedicated flight test instrumentation system (FTIS) which records
data from many sensors (as described in table 3), the Delft University of technology Citation Stall Mod-
eling task force has at its disposal a state-of-the-art laboratory for conducting flight tests in the stall and
post-stall flight regions.

Fig. 1 Schematic view of the Cessna Citation II,
including the air data boom. Fig. 2 Schematic view of the Cessna Citation II

with the body-fixed reference frame axes defini-
tion.

Table 1 Citation II Dimensions

Dimensions
length 14.4𝑚
b 15.9𝑚
𝑏𝑡𝑎𝑖𝑙 5.8𝑚
𝑐 2.09𝑚
S 30𝑚2

𝑆𝑡𝑎𝑖𝑙 6.2𝑚2

Table 2 Citation II Dimensions, Mass & Inertia

Mass & Inertia
MTOW 6, 600𝑘𝑔
MLW 6, 100𝑘𝑔
Dry mass 4, 157𝑘𝑔
Ixx 12, 392𝑘𝑔.𝑚2

Iyy 31, 501𝑘𝑔.𝑚2

Izz 41, 908𝑘𝑔.𝑚2

Ixz 2, 252.2𝑘𝑔.𝑚2

The Cessna Citation II is a small twin-engine business jet aircraft with unswept tapered wings (taper
ratio of 0.316) accompanied by a small amount of dihedral of about 4.5◦ and an aspect ratio of 7.8.

Flight experiments have been conducted in two different aircraft configurations: a clean configuration
and a landing configuration with flaps and landing gear extended. Different control surface excitation
schemes were used to obtain informative data: 3-2-1-1 and aileron frequency sweeps, also known as
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Equipment Description Measures Units Variables

GPS
High accuracy global positioning system
(using phase tracking)

Position in FE
Velocity in FE

m
m/s

𝑥𝐸 , 𝑦𝐸 , 𝑧𝐸
¤𝑥𝐸 , ¤𝑦𝐸 , ¤𝑧𝐸

DADC Digital airdata computer Total airspeed m/s 𝑉𝑇𝐴𝑆

AHRS
Attitude and heading reference system
(inertial reference system)

Aircraft attitude
Body rotation rates
Body specific forces

rad
rad/s
m/s2

𝜙, 𝜃, 𝜓
p, q, r
𝐴𝑥 , 𝐴𝑦 , 𝐴𝑧

Synchros Angle measurements Control surf. defl. rad 𝛿𝑎, 𝛿𝑒, 𝛿𝑟
Boom Air data boom Air incidence angle rad 𝛼, 𝛽

Table 3 Citation II flight test equipment and measured variables, which are relevant to the research

Fig. 3 Clean Configuration Flight Envelope

’aileron wiggle’. The 3-2-1-1 can be performed either by excitation of a unique control surface (elevator,
ailerons, rudder), or simultaneously on two (elevator + ailerons, elevator + rudder, ailerons + rudder) or
even the three control surfaces (elevator + ailerons + rudder). These manoeuvres were flown while the
aircraft was entering a stall, while the aircraft was in the stall, and during stall recovery [11] [12] [13].

The data were gathered around 2600/3200𝑚 altitude for the clean configuration (with 46 data sets
in total, split so that 36 are used for training purpose and 10 for validation purpose) as shown in figure 3;
and mainly around 3200𝑚 altitude for the landing configuration (with 22 data sets in total, split so that
16 are used for training purpose and 6 for validation purpose) as shown in figure 4.
The data are accompanied by a flight test logbook which allows detailed monitoring of the aircraft
manoeuvre execution (input used, altitude, flight conditions, aircraft response, etc.).

Clean Config Landing Config
Training Data Sets 36 16
Validation Data Sets 10 6

Before running the flight path reconstruction and the model identification procedures, the data
were pre-processed by low-pass filtering them using a Butterworth filter of order 4 through MATLAB’s
function 𝑓 𝑖𝑙𝑡 𝑓 𝑖𝑙𝑡. Indeed, the states resulting from numerical differentiation (for instance ¤𝛼, ¤𝛽, ¤𝑝, ¤𝑞, ¤𝑟,
etc) need filtering due to amplified signal noise. Additionally, sincewe are interested in the low-frequency,
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Fig. 4 Landing Configuration Flight Envelope

high-amplitude dynamics of stall, another main noise sources that needs to be filtered are the vibrations
due to the stall buffet. Even if buffet vibrations are essential to build a realistic stall simulation model,
as the buffet provides pilots with essential information about an imminent stall [7] , for the purpose
of this research these have been filtered out. Note that the high frequency stall buffet model is built in
parallel using the same flight data but using frequency domain methods that are better suited for capturing
oscillatory behavior [7][14]. Eventually, the complete stall model to be used in the simulator consists of
the summation of the low-frequency model that captures the high amplitude motions and a stall buffet
model that captures the high-frequency oscillatory behavior.

4 Stall Model Structure Selection and Parameter Estimation
The Kirchhoff theory of flow separation has been developed in order to essentially model longitudinal

non-linear effects happening during stalls. Nevertheless, with some manipulations and adaptations it is
possible to exploit Kirchhoff theory of flow separation to model asymmetrical effects.
The new idea here is based on the fact that lateral-directional effects during stalls are due (at least in part)
to the fact that flow separation does not happen at the same time / same point on the left wing and on the
right wing.
The flow separation point location being governed by the angle of attack of the wing relative to the
airstream, the first step in this process is to determine the local angles of attack of both left and right
wings. Then an asymmetric stall model can be proposed according to the asymmetric flow separation
profile.

4.1 Local Airflow Angles Determination
In order to obtain the per-wing angle of attack without having dedicated angle of attack sensors for

both wings, we use the approach presented in [15]. The velocity at any arbitrary point P on a rigid-body
aircraft flying in a non-moving atmosphere can be written as follows:

−→
𝑉𝑃 =

−−→
𝑉𝑐𝑔 + −→𝜔 × −→𝑟𝑃 (1)
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Or in matrix form : 
𝑢𝑃

𝑣𝑃

𝑤𝑃

 =


𝑢𝑐𝑔

𝑣𝑐𝑔

𝑤𝑐𝑔

 +


0 −𝑟 𝑞

𝑟 0 −𝑝
−𝑞 𝑝 0



𝑥𝑃

𝑦𝑃

𝑧𝑃

 (2)

It is thus possible to express the flow angles at any point of the wings, depending on the flow
components velocity at the c.g., angular rates of the aircraft and the location - relatively to the c.g. - at
which the new flow angles have to be expressed. This is done first by computing the new flow velocities
components and then, by using the classical flight dynamics formulas for flow angles.

𝛼𝑃 = arctan
𝑤𝑃

𝑢𝑃
= arctan

𝑤𝑐𝑔 − 𝑞.𝑥𝑃 + 𝑝.𝑦𝑃

𝑢𝑐𝑔 − 𝑟.𝑦𝑃 + 𝑞.𝑧𝑃
(3)

𝛽𝑃 = arcsin
𝑢𝑃

𝑉𝑃

= arctan tan 𝜇 cos𝛼 (4)

𝜇𝑃 = arctan
𝑣𝑃

𝑢𝑃
= arctan

𝑣𝑐𝑔 + 𝑟.𝑥𝑃 − 𝑝.𝑧𝑃

𝑢𝑐𝑔 − 𝑟.𝑦𝑃 + 𝑞.𝑧𝑃
(5)

These equations are useful because they allow using only one measurement of airspeed to determine the
value of the airspeed at any point on the wings and subsequently the local angles of attack at any points
on the wings.

Additionally, it is possible to pass easily from the flow angles to the airspeed components (flow
angles and total airspeed being the variables recorded in flight), using the formulas :

•V, 𝛼, 𝜇 → 𝑢, 𝑣, 𝑤 
𝑢 = 𝑉√

1+𝑡𝑎𝑛2 (𝛼)+𝑡𝑎𝑛2 (𝜇)
𝑣 =

𝑉.𝑡𝑎𝑛(𝜇)√
1+𝑡𝑎𝑛2 (𝛼)+𝑡𝑎𝑛2 (𝜇)

𝑤 =
𝑉.𝑡𝑎𝑛(𝛼)√

1+𝑡𝑎𝑛2 (𝛼)+𝑡𝑎𝑛2 (𝜇)

(6)

•V, 𝛼, 𝛽 → 𝑢, 𝑣, 𝑤 
𝑢 = 𝑉.𝑐𝑜𝑠(𝛼).𝑐𝑜𝑠(𝛽)

𝑣 = 𝑉.𝑠𝑖𝑛(𝛽)
𝑤 = 𝑉.𝑠𝑖𝑛(𝛼).𝑠𝑖𝑛(𝛽)

(7)

This yields a convenient method for the determination of the local angle of attack on left and right
wings, separately. It is then possible to determine the flow separation points on each wings according to
the local AOA and later estimate and model the induced asymmetrical aerodynamic effects. In this work
a new ’2X’ model is proposed in which two separate flow separation point location will be considered :
one for the left and one for the right wing.

4.2 Kirchhoff Theory of Flow Separation for Asymmetrical Flows
The purpose of this research is to evaluate the applicability of two independent flow separation

points (one located on each wing) in the model instead of just one, in particular in terms of asymmetrical
variable modeling (lateral-directional motion).

The classical Kirchhoff ODE governing the position of the flow separation point [4] is used, but in
our case the angle of attack and the angle of attack rate used are the local ones (𝛼𝐿 , 𝛼𝑅 and ¤𝛼𝐿 , ¤𝛼𝑅) which
are computed from the data recorded during the flight test using the formulas described in section 4.1.
Here we use 𝑥𝑝 = 0 and 𝑧𝑝 = 0, but to obtain the local angles of attack at each wing two values of 𝑦𝑝
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have been used (𝑦𝑝 = − 𝑏
2 for the left wing and 𝑦𝑝 = + 𝑏

2 for the right wing).

𝜏1
𝑑𝑋𝐿,𝑅

𝑑𝑡
+ 𝑋𝐿,𝑅 = 𝑋0𝐿,𝑅

(𝛼𝐿,𝑅 − 𝜏2 ¤𝛼𝐿,𝑅) (8)

With separate 𝛼𝐿 and 𝛼𝑅 for the new 2X model and 𝛼𝐿 = 𝛼𝑅 = 𝛼 for the standard 1X model. This
function depends on four parameters that needs to be estimated using the experimental data.

• 𝑎1 is a shape parameter which is linked to the abruptness of the stall - more this value is high, more
the stall will be abrupt.

• 𝛼∗ is the angle of attack where 𝑋 = 1
2 which can also be called the stall angle of attack.

• 𝜏1 represents the transient effects of the flow separation point - the time needed to readjust to the
new flow conditions when these changes.

• 𝜏2 which account for the hysteresis effect - dependency of the flow separation point location on the
angle of attack rate ¤𝛼.

These parameters are considered to be identical for both wings. The logic behind it is that both wings are
considered to be identical (they are symmetric), hence their aerodynamic behaviour and the parameters
governing it should also be identical. This also avoids having unnecessary many model terms to estimate
while also preventing correlations between parameters to negatively impact numerical conditioning of
the estimator.

The modelling results of the new 2X model will be presented along with the result of the previous
standard 1X model as comparison material in order to determine and evaluate the possible benefits of
this new model.

For the 2X case, 2 different variants will first be considered, before being reduced to a final variant.

In order to solve Kirchhoff’s ODE and obtain the X-parameters, a model for the lift coefficient first
needs to be defined. For the 1X model, the lift formulation considered is the classic one, as expressed by
equation 9

𝐶𝐿 = 𝐶𝐿0 + 𝐶𝐿𝛼

{
1 +

√
𝑋

2

}2

𝛼 + 𝐶𝐿�̄�
𝑞 + 𝐶𝐿 𝛿𝑒

𝛿𝑒 (9)

For the 2X model, the lift formulation assumes split contributions to the local wings angle of attack,
as shown in equation 10

𝐶𝐿 = 𝐶𝐿0 + 𝐶𝐿𝛼𝐿

(
1 +

√
𝑋𝐿

2

)2

𝛼𝐿 + 𝐶𝐿𝛼𝑅

(
1 +

√
𝑋𝑅

2

)2

𝛼𝑅 + 𝐶𝐿�̄�
𝑞 + 𝐶𝐿 𝛿𝑒

𝛿𝑒 (10)

The last considered formulation for the lift coefficient also used in the 2X approach considers only
one 𝐶𝐿𝛼

= 𝐶𝐿𝛼𝐿
= 𝐶𝐿𝛼𝑅

. This is done taking into consideration the symmetrical profile of the left and
right wings just as it is done previously in Kirchhoff ODE to consider the set of X parameters obtained
(𝜏1, 𝜏2, 𝑎1, 𝛼∗) unique and not proper to each wing. Hence, the lift model obtained is described by
equation 11 :

𝐶𝐿 = 𝐶𝐿0 + 𝐶𝐿𝛼𝐿

[(
1 +

√
𝑋𝐿

2

)2

𝛼𝐿 +
(
1 +

√
𝑋𝑅

2

)2

𝛼𝑅

]
+ 𝐶𝐿�̄�

𝑞 + 𝐶𝐿 𝛿𝑒
𝛿𝑒 (11)
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4.3 Parameter estimation
A non linear optimization technique is required to identify the set of X parameters (𝜏1, 𝜏2, 𝑎1, 𝛼∗)

by solving Kirchhoff’s ODE for the two considered flow separation points (𝑋𝐿 and 𝑋𝑅) supplying the
local angle of attack (𝛼𝐿 and 𝛼𝑅 computed using the equations that can be found in the section 4.1 for
the tip of each wing) and local angle of attack rate ( ¤𝛼𝐿 and ¤𝛼𝑅, obtained by numerical differentiation of
𝛼𝐿 and 𝛼𝑅) for respectively the left and right wings. The nonlinear optimization is performed using the
𝑓 𝑚𝑖𝑛𝑐𝑜𝑛 function in Matlab, using many semi-random initial conditions for the parameters in order to
reduce the chances of ending up in a local optimum. The cost function is a classical mean squared error
(MSE) of the lift coefficient.

The optimization procedure is conducted byminimising the error between themeasured andmodelled
lift coefficient 𝐶𝐿 , considering the relationship between 𝑋 and 𝐶𝐿 - described in equations 9 11 10.

The nonlinear optimization problemwill yield an estimate of both the parameters of the aerodynamic
lift coefficient model𝐶𝐿𝑖

, as well as the 4 parameters of Kirchhoff’s ODE (𝜏1, 𝜏2, 𝑎1, 𝛼∗). An initial model
structure of the lift coefficient 𝐶𝐿 with initial values of the parameters is needed. These are described
in equations 9 11 10. The model structure of the lift coefficient 𝐶𝐿 can then be improved iteratively by
solving for the X-parameters using the nonlinear optimization problem and then running the model term
selection algorithm to improve the 𝐶𝐿 model structure if needed, and eventually re-run the non linear
optimization process if any changes have been made in the 𝐶𝐿 model.

4.4 Model Structure Selection & Multivariate Orthogonal Function modelling
Obtaining an adequate model structure for the 1X and 2X models is not trivial as they may contain

both classical model terms as well as model terms containing the flow separation point(s). In this
work, an automated procedure is developed that is based on the work done by Morelli et al [16]. The
multivariate orthogonal function (MOF) modelling technique is used to determine global aerodynamic
models structures by selecting candidate terms from a pool of candidates. Each term is made mutually
orthogonal in order to decouple them which allows them to be individually assessed for their contribution
to the model fit.

𝑦 =

𝑛∑︁
𝑗=1

𝑎 𝑗 .𝑝 𝑗 + 𝜖 = 𝑃.𝑎 + 𝜖 (12)

A multivariate orthogonal function is formed by a linear combination of the multivariate orthogonal
model terms 𝑝 𝑗 and their parameters 𝑎 𝑗 as described by equation 12. Here 𝑃 is the vector composed of
the individual model terms 𝑝 𝑗 and 𝑎 the vector containing the corresponding model parameters 𝑎 𝑗 .

To obtain the highest quality model, the goal is to minimize the model error 𝜖 . This is done through
the use of a cost function that estimates the model parameters 𝑎 𝑗 so 𝜖 is minimized. The cost function is
once again a least squares function, described by equation 13

𝐽 =
1
2
𝜖𝑇𝜖 =

1
2
(𝑦 − 𝑃.𝑎)𝑇 (𝑦 − 𝑃.𝑎) (13)

The model terms are supposed to be orthogonal, as described by equation 14, so the cost function
can be developed and simplified to be re-written as in equation 15.

for i,j = 1, ...,n & 𝑖 ≠ 𝑗 , 𝑝𝑖𝑝 𝑗 = 0 (14)
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𝐽 =
1
2

𝑦𝑇 .𝑦 −
𝑛∑︁
𝑗=1

(𝑝 𝑗 .𝑦)2

𝑝𝑇
𝑗
.𝑝 𝑗

 (15)

The model parameters to be estimated depend exclusively on their corresponding model term 𝑝 𝑗 and
the measurement vector 𝑦 :

𝑎 𝑗 =
𝑝 𝑗 .𝑦

𝑝𝑇
𝑗
.𝑝 𝑗

(16)

The candidate contributions are quantified based on the effect that they would have on the predicted
square error (PSE), as in equation 17. This is constituted of two contributions : the model fit error (MSE)
plus a model complexity penalty term. It quantifies the improvement in cost function J minimisation
while simultaneously penalising the addition of the model term that increases the model complexity.

𝑃𝑆𝐸 =
(𝑦 − 𝑃.�̂�)𝑇 (𝑦 − 𝑃.�̂�)

𝑁
+ 𝜎2

𝑦

𝑛

𝑁
=

2.𝐽
𝑁

+ 𝜎2
𝑦

𝑛

𝑁
(17)

With N the number of data points, n the current number of terms used in the model, and 𝜎2
𝑦 the variance

of the modeled signal y (that can be expressed by equation 18), which is used as a scaling term.

𝜎2
𝑦 =

1
𝑁 − 1

𝑠𝑢𝑚𝑁
𝑖=1(𝑦𝑖 − 𝑦𝑖) (18)

With 𝑦𝑖 = 1
𝑁

∑𝑁
𝑖=1 𝑧𝑖

The modification in PSE due to the addition of a candidate term 𝑗 is given by equation 19

Δ𝑃𝑆𝐸 𝑗 = −
(𝑝𝑇

𝑗
.𝑦)2

𝑝𝑇
𝑗
.𝑝 𝑗

+ 1
𝑁
𝜎2
𝑦 (19)

Adding model terms to the cost function will on the one hand improve the model fit and thus decrease
the value of the cost function, but on the other will increase model complexity and thus increase the value
of the penalty of the PSE. If the model terms are added in the correct order (from the most effective to
the least effective modelling term), at some point the increased model complexity penalty will out weight
the decrease in cost function due to improved model fit. At this moment, a global minimum has been
reached by the PSE, and the global model structure should be kept as it is at this step.

5 Results
The identification of an aerodynamic model of the Cessna Citation II aircraft including asymmetric

dynamics has been conducted for clean configuration and landing configuration (with flaps and landing
gear extended). The split of the data set for either training or validation purpose was made on a random
basis, with a ratio of 80%/20% for the clean configuration and 70%/30% for the landing configuration
(which count less data set).

First, the results of the nonlinear X-parameter optimization for the different models will be presented.
Then, the model structure selections results for each of the aerodynamic coefficients of interest are
presented and analysed.
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5.1 Kirchhoff ODE & Lift Coefficient parameters analysis
As a reminder, 3 ’initial’ Lift Coefficient 𝐶𝐿 models - which are needed to solve the non linear

optimization problem that gives the X parameters - have been considered and evaluated. These are The
’1X Model’ in equation 9, the ’2X 2𝐶𝐿𝛼

Model’ in equation 10, and the ’2X 1𝐶𝐿𝛼
Model’ in equation

11.

5.1.1 X parameter analysis
The results are found to be coherent with previous work [7] [6] and are well distributed without

clusters near a bound - which can happen if the selected bounds are not well suited for the optimization
problem.

1X 1𝐶𝐿𝛼
2X 1𝐶𝐿𝛼

2X 2𝐶𝐿𝛼

𝜃 var 𝜃 var 𝜃 var
𝜏1 0.4903 0.0679 0.5590 0.0702 0.4087 0.0362
𝜏2 0.1538 0.01334 0.2503 0.0171 0.2179 0.0065
𝑎1 33.3673 32.0890 30.6863 68.2578 26.9272 27.9854
𝛼∗ 0.2425 0.0008 0.2394 0.0031 0.2474 0.0007

Table 4 Obtained X parameters for the different models in clean configuration

The sets of X-parameters, obtained for the different Lift models, presented in Table 4 for the clean
configuration and Table 5 for the landing configuration are all quite similar. In terms of mean values,
variances, but also dispersion, they present results that are close to each other. More details about
the distribution and the correlation between the parameters for the different models can be found the
appendices.

Even if a small discrepancy is observable for the different models, and in particular for the 𝜏2
parameter, a look at the time-domain influence of a variation of these parameters figure 5 - within the
range of figures obtained here - confirms that the sensitivity of the Lift Coefficient 𝐶𝐿 to such variations
is low. The parameters which have the most significant influence are the static parameters : 𝑎1 and

Fig. 5 𝐶𝐿 sensitivity to X-parameters modification, Clean configuration, 2X 2𝐶𝐿𝛼
Model based on flight

data

even more so the stall angle of attack 𝛼∗. Concerning the dynamic parameter 𝜏2 representing the flow
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hysteresis, an adequate estimate can be obtained thanks to the highly dynamical stall data used here
compared to the previous use of quasi-static stall yielding 𝜏2 values tending towards 0 [6].

1𝑋 1𝐶𝐿𝛼 2𝑋 1𝐶𝐿𝛼 2𝑋 2𝐶𝐿𝛼

𝜃 var 𝜃 var 𝜃 var
𝜏1 0.3532 0.0585 0.3094 0.0668 0.4472 0.0596
𝜏2 0.0660 0.0053 0.1083 0.0099 0.1143 0.0135
𝑎1 33.3021 9.2212 35.7050 19.3535 35.6405 34.1304
𝛼∗ 0.1997 0.0018 0.2017 0.0017 0.1851 0.0014

Table 5 Obtained X parameters for the different models in landing configuration

For the landing configuration it is interesting to note that the value of 𝛼∗
𝑙𝑎𝑛𝑑𝑖𝑛𝑔

is, as expected, inferior
to 𝛼∗

𝑐𝑙𝑒𝑎𝑛
. Indeed, this is caused by an up-left shift of the lift curve when the flaps are extended. The

other parameters remain in ranges such that their visual influence are very low.

Among these 3 possible models for computing the X parameters, the 2X 2𝐶𝐿𝛼
appears to give the

best results in term of estimation accuracy and the lowest parameter variance. It greatly improves the
accuracy of estimation of the dynamic X parameters (𝜏1, 𝜏2) (at least divides by two the obtained variance)
and is about as precise when it comes to computing the static parameters (𝑎1, 𝛼∗). The model formulation
combined with the high dynamical content of the flight test data used allowed accurate determination of
the X parameters.

5.1.2 Lift Coefficient 𝐶𝐿 model parameter analysis
The purpose of this section is to compare the accuracy and efficiency of the different proposedmodels

considered (1𝑋1𝐶𝐿𝛼
, 2𝑋2𝐶𝐿𝛼

, 2𝑋1𝐶𝐿𝛼
and the ’blended model’ 2𝑋2𝐶𝐿𝛼

converted to 2𝑋1𝐶𝐿𝛼
) for the

symmetric dynamics to start with, and to evaluate eventual improvements from one model to another and
determine which of the two 2𝑋 models provides the highest performance. •Clean configuration
Starting from the analysis of the ’2X 2𝐶𝐿𝛼

’ model, what can be observed is that all the parameters
are normally distributed and present relatively low values of correlation (always inferior to 0.6) as it can
be seen in figure 6 ; even for the two 𝐶𝐿𝛼

parameters. What is clearly noticeable, is that the values of
𝐶𝐿𝛼𝐿

and 𝐶𝐿𝛼𝑅
are very close together (at roughly 4% difference), which is logical, considering both

right and left wings are symmetric and thus should present similar aerodynamic characteristics.
The Figure 6 represents the distribution of the estimated individual lift coefficient parameters contri-
butions plus their correlation with respect to each of the individual parameters. It can also be used to
check the relevance of the chosen parameters, by checking the dispersion of the scatter plot. And finally,
it allows for the spotting of outliers, and analyse the reason for their presence (e.g. the data set does not
contain adequate excitation of the required dynamics).

1𝑋 1𝐶𝐿𝛼 2𝑋 1𝐶𝐿𝛼 2𝑋 2𝐶𝐿𝛼 converted to 1𝐶𝐿𝛼

𝜃 var 𝜃 var 𝜃 var
𝐶𝐿0 0.0893 0.01333 0.0673 0.0221 0.0962 0.0177
𝐶𝐿𝛼

5.1973 0.4813 2.7430 0.2997 2.5953 0.1652
𝐶𝐿𝛿𝑒

0.2414 0.2372 0.0879 0.4422 0.3261 0.2141
𝐶𝐿𝑞

10.3505 103.9959 8.8671 126.2863 13.8587 65.3707
Table 6 Obtained 𝐶𝐿 parameters for the different models (which include a unique 𝐶𝐿𝛼

) in clean configu-
ration
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Fig. 6 𝐶𝐿 parameters dispersion and correlation for the 2X and 2 𝐶𝐿𝛼
model

𝜃 var
𝐶𝐿0 0.0856 0.0200
𝐶𝐿𝛼𝐿

2.6548 0.6211
𝐶𝐿𝛼𝑅

2.5516 0.9646
𝐶𝐿𝛿𝑒

0.2252 0.2833
𝐶𝐿𝑞

13.1085 61.8766
Table 7 Obtained 𝐶𝐿 parameters for the ’2𝑋 2𝐶𝐿𝛼

’ model in clean configuration

Considering the time taken to solve for the X parameters of the ’2X 1𝐶𝐿𝛼
’ model, which is the longest

of the 3 possible model structures, the uniqueness of the 𝐶𝐿𝛼
coefficient is interpreted as an additional

constraint for the solver which further increases the computational complexity of the optimization.
Moreover, it was observed that it was possible to compute an accurate unique 𝐶𝐿𝛼

parameter from the
2𝐶𝐿𝛼

model, by averaging the value of 𝐶𝐿𝛼𝐿
and 𝐶𝐿𝛼𝑅

, that are relatively close as can be seen in table 7.
This method seems to be a better and more efficient alternative which is less time consuming, globally
more accurate (reduce variance of almost all parameters, reduces MSE, increases VAF), and gives very
close results to the constrained ’2X 1𝐶𝐿𝛼

’ model as concluded in table 6.
In appendix 6.2 the distribution and correlation of the 𝐶𝐿 parameters for the other - ’2X 1𝐶𝐿𝛼

’ and ’1X’
- models are presented.

The conversion of the ’2X 2𝐶𝐿𝛼
’ model to a ’2X 1𝐶𝐿𝛼

’ globally yields the best results in terms of
variances, and the retained value for the mean 𝐶𝐿𝛼

is also close to the one found by the optimisation run
with the unique 𝐶𝐿𝛼

model (less than 6% difference). Additionally, this value is extremely close to half
the value of the 𝐶𝐿𝛼

from the 1X model (less than 0.5% of difference).

Finally, by converting the ’2X 2𝐶𝐿𝛼
’ model to the ’2X 1𝐶𝐿𝛼

’ model, a great model simplification
is made without significant costs in terms of accuracy. The model accuracy of the simplest ’old’ 1X
model is already very accurate with a low MSE, a high VAF and a relatively high R2 coefficient. The
new models introducing two distinct flow separation point are as accurate as the classical 1X model at a
significance level of less than 1%.

The VAF of all of the data set are above 99%, be it training or validation data. For all the models
considered. This means that the CL model is already, in each of its forms, capturing the vast majority of
the dynamics.
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1𝑋 2𝑋 2𝐶𝐿𝛼
2𝑋 1𝐶𝐿𝛼

from 2𝐶𝐿𝛼

Training
MSE 0.0030 0.0031 0.0031
R2 0.70 0.69 0.69
VAF (%) 99.67 99.65 99.66

Validation
MSE 0.0029 0.0044 0.0044
R2 0.74 0.60 0.60
VAF (%) 99.67 99.52 99.51

Table 8 Training and Validation results

The final lift model 𝐶𝐿 defined as by equation 11 with the corresponding terms coefficient issued
from 6 (’2X 1𝐶𝐿𝛼

’ issued from 2X 2𝐶𝐿𝛼
model terms) depict nicely the time evolution of the measured

lift coefficient during the whole manoeuvre (pre-stall, stall and recovery) and this regardless of the control
surface input, as it can bee seen in figure 7 and figure 8.

Fig. 7 Example of modeled lift coefficient 𝐶𝐿 for the aircraft in clean configuration, during a ’3-2-1-1’
aileron manoeuvre during the stall

•Landing configuration

1𝑋 1𝐶𝐿𝛼 2𝑋 1𝐶𝐿𝛼 2𝑋 2𝐶𝐿𝛼 converted to 1𝐶𝐿𝛼

𝜃 var 𝜃 var 𝜃 var
𝐶𝐿0 0.3978 0.0088 0.4016 0.0081 0.4375 0.0133
𝐶𝐿𝛼

2.7027 0.6755 1.3476 0.1461 1.6728 0.4113
𝐶𝐿𝛿𝑒

-2.9992 0.6079 -2.9204 0.5591 -2.1322 2.6118
𝐶𝐿𝑞

32.2693 271.1357 34.2620 220.7462 30.3496 207.1190
Table 9 Obtained 𝐶𝐿 parameters for the different models in landing configuration

For the landing configuration, the same type of observation can bemade as for the clean configuration,
except that there is more asymmetry in the estimation of the𝐶𝐿𝛼𝐿,𝑅

parameters for ’2X 2𝐶𝐿𝛼
’ as shown by

Table 10. Nevertheless, when further analysed, it is found that 𝐶𝐿𝛼𝐿
and 𝐶𝐿𝛼𝑅

are correlated (𝜌 = 0.72)
so they likely describe (at least partly) the same dynamic. Considering the remarks previously made for
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Fig. 8 Example of modeled lift coefficient 𝐶𝐿 for the aircraft in clean configuration, during an aileron
frequency sweep (AKA ’wiggle’) manoeuvre during the stall

𝜃 var
𝐶𝐿0 0.3885 0.0087
𝐶𝐿𝛼𝐿

0.9070 1.2130
𝐶𝐿𝛼𝑅

1.8802 1.1930
𝐶𝐿𝛿𝑒

-2.9980 0.5136
𝐶𝐿𝑞

33.2396 232.2020
Table 10 Obtained 𝐶𝐿 parameters for the ’2𝑋 2𝐶𝐿𝛼

’ model in landing configuration

the clean configuration model and the obtained results, it has been determined that also here the ’2X
2𝐶𝐿𝛼

’ can be converted to a ’2X 1𝐶𝐿𝛼
’ to simplify the model structure and optimize computation time

without significantly degrading the final model accuracy.

One can remark that for the landing configuration the average 𝐶𝐿 is higher than for the clean
configuration, in accordance to the deployment of flaps, to increase lift (which also increases drag and
lowers the stall angle of attack). Another remark that can be made for the landing configuration is that,
as expected, the bias in the lift coefficient 𝐶𝐿0𝑙𝑎𝑛𝑑𝑖𝑛𝑔

is higher than the bias in the lift coefficient in clean
conditions 𝐶𝐿0𝑐𝑙𝑒𝑎𝑛

. This is also in accordance with the fact that the lift curve is translated / shifted
up-left with flap extension. However, something that was not expected is that the 𝐶𝐿𝛼𝑙𝑎𝑛𝑑𝑖𝑛𝑔

coefficient is
lower than for the clean condition 𝐶𝐿𝛼𝑐𝑙𝑒𝑎𝑛

. Indeed, the up-left shift of the lift curve resulting from a flap
extension is not usually described to be accompanied with modification of slope of the 𝐶𝐿 −𝛼 curve, and
if this is the case it usually results in an increase of the 𝐶𝐿𝛼

coefficient and not a decrease.

5.2 Lateral-Directional Model Comparison
In this section lateral-directional aerodynamic models are developed and validated. This is done by

the introduction in the pool of model terms candidates such as:[(
1 +

√
𝑋𝐿

2

)2

∗ 𝛼𝐿 −
(
1 +

√
𝑋𝑅

2

)2

∗ 𝛼𝑅

]
, (1 − 𝑋𝐿), (1 − 𝑋𝑅), (𝑋𝑅 − 𝑋𝐿),

𝑚𝑎𝑥((1 − 𝑋𝐿), (1 − 𝑋𝑅)), 𝑚𝑖𝑛((1 − 𝑋𝐿), (1 − 𝑋𝑅)), 𝑚𝑎𝑥(0.5, 𝑋𝐿), 𝑚𝑎𝑥(0.5, 𝑋𝑅)
(20)
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representing the effects of individual flow separation component over each wings or the effect due to
differential flow separation. To save space, we only present results for the aircraft in clean configuration.

Similarly, as described in section (5.1.2), the 𝑋 parameters values estimated for either the ’2X 2𝐶𝐿𝛼
’

model or the ’2X 1𝐶𝐿𝛼
’ model were very close. For this reason, only one set of 𝑋 parameters was

selected concerning the 2X model - in this case, the 𝑋 parameters values estimated from the ’2X 2𝐶𝐿𝛼
’

model were used, as they seemed to be the most accurate and precise ones.

The model term selection algorithm is based on the ranking of the candidate terms according to the
effect they have on the PSE (as described in the section 4.4). Considering the candidate terms, as stated
before, all the 1st order candidate terms that we want to take into consideration for the building of the
model are manually entered. If higher order parameters are desired, they are automatically generated by
the algorithm, from cross-products of the original first order terms, up to the desired maximum order.

When the model term selection process is initiated, it computes the possible contribution of the
candidate terms to the global aerodynamic model coefficient. If the minimum PSE is reached the
algorithm stops. This procedure is done for each training data set and the candidate terms are ranked.
Finally, to select which terms will be part of the model, a plot that shows in howmany sets each candidate
term was selected by the algorithm is created.

On the presented plots a vertical dotted line is present at the place which represents half of the
training data sets. This may serve as a coarse metric to include or not a possible candidate term in the
final aerodynamic coefficient model.

The procedure is exactly the same for the 1X model or the 2X model. Once both variants of the
aerodynamic models are completed and built, they can be compared in their efficiency in modeling the
asymmetric dynamics of the aircraft during stalls. Additionally, the 2X model which includes the new
differential flow separation terms (depending eventually on Δ𝑋 and / or Δ𝐶𝐿𝛼

) can be evaluated.

Concerning the classical model with a unique flow separation point 𝑋 , after model term selection
based on multivariate orthogonal function modelling, it was observed that keeping terms selected in at
least 75% of the data sets yielded the most accurate models in terms of residual MSE and other statistical
indicators. To establish the global model, terms were selected from order 1 and order 2 model selection
candidate terms proposal, only keeping the best contributing terms and getting rid of any redundancies
in the selected terms.

For the 2𝑋 model, the same findings were made. Hence, the model terms were selected the same
way, except for a small detail that must be noted : to specifically model the aerodynamic coefficients
governing the lateral-directional dynamic, terms containing the differential values of the flow separation

points (such as Δ𝑋 = (𝑋𝐿 − 𝑋𝑅) or Δ𝐶𝑥 =

[(
1+

√
𝑋𝐿

2

)2
∗ 𝛼𝐿 −

(
1+

√
𝑋𝑅

2

)2
∗ 𝛼𝑅

]
) were selected in priority

if they were selected in at least 50% of the data sets in this case.

5.2.1 Rolling Moment Coefficient (𝐶𝑙) models
The rolling moment coefficient 𝐶𝑙 has a crucial role in the asymmetric dynamics of an aircraft.

Thanks to the possibility of having different flow separation points locations on each of the wings, new
asymmetrical terms are automatically introduced, depending on 𝑋𝐿 and / or 𝑋𝑅, their differential values,
etc.

After investigating different maximum desired orders for the model, i.e. by introducing and / or
removing certain candidate terms to the pool of regressors different "possible" aerodynamic model of the
rolling moment 𝐶𝑙 have been developed.
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For each of the resulting models, the estimation of its parameters and the computation of statistics to
evaluate the model fit quality, accuracy and fidelity, have also been undertaken.

After the model term selection has been done for terms of the 1st and 2nd degree, and after having
observed the individual terms contributions to the model, it was concluded that the Rolling Moment can
by quite accurately described by equation 21

𝐶𝑙 = 𝐶𝑙0 + 𝐶𝑙Δ𝐶𝐿𝛼

[(
1 +

√
𝑋𝐿

2

)2

𝛼𝐿 −
(
1 +

√
𝑋𝑅

2

)2

𝛼𝑅

]
+ 𝐶𝑙𝛽 𝛽 + 𝐶𝑙𝛿𝑎

𝛿𝑎 + 𝐶𝑙𝛼,Δ𝑋𝛼Δ𝑋 (21)

Rolling moment coefficient model accompanied by its significant terms with the 2𝑋 model

Fig. 9 𝐶𝑙 model term selection - 2𝑋 | order 1 Fig. 10 𝐶𝑙 model term selection - 2𝑋 | order 2

The formulation of the model containing a unique flow separation point 𝑋 at a 75% confidence rate
is as follow :

𝐶𝑙 = 𝐶𝑙0 + 𝐶𝑙𝛽 𝛽 + 𝐶𝑙𝛼,𝛿𝑎

(
1 +

√
𝑋

2

)2

𝛼𝛿𝑎 + 𝐶𝑙 ¤𝛼 ¤𝛼 (22)

Rolling moment coefficient model accompanied by its significant terms considering a unique flow separation
point 𝑋

One can observe the existence of ’cross-terms’, such as 𝐶𝑙𝛼,𝛿𝑎
here, advocating once more the high

level of aerodynamic nonlinearities encountered during stall, and the crucial role played by the flow
separation point location even if only a unique one is considered. Different metrics to assess model
fidelity are presented in table 11.

With 𝜃 representing the estimated parameter and 𝜎(𝜃) the standard variation of the estimated pa-
rameter.

According to the model obtained here for the rolling moment, one can observe that the results seem
consistent, considering the closeness of the values from the training and the validation data.
In addition, it can be noticed that both the 1X and the 2X models have similar accuracy. The 2X
model seems to be somewhat more accurate, according to the slightly higher value of coefficient of
determination (R2) and of the explained variance (VAF) of this model compared to the 1X model.
Nevertheless, considering the small values of the estimated parameters and also, more generally the small
value and dynamic range of this aerodynamic coefficient, building an accurate dynamic model with these
available data is not trivial.
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Table 11 Resulting parameters and model accuracy for the rolling moment model

Terms selection
Coefficient Estimations Training Validation

𝜃 𝜎(𝜃) MSE rel. (%) R2 VAF (%) MSE rel. (%) R2 VAF (%)

1X model

C𝑙0 0.0008 0.0015

0.0538 0.25 41.79 0.0503 0.33 39.08
C𝑙𝛽 -0.0366 0.0418
C𝑙𝛼,𝛿𝑎 -0.1867 0.1833
C𝑙 ¤𝛼 0.1780 1.1652

2X model

C𝑙0 -0.0001 0.0011

0.0560 0.31 43.89 0.0716 0.31 67.88
C𝑙Δ𝐶𝐿𝛼

0.0314 0.1167
C𝑙𝛽 -0.0303 0.0310
C𝑙𝛿𝑎 -0.0569 0.0425
C𝑙𝛼,Δ𝑋 0.0940 0.6981

Fig. 11 Example of rolling moment coefficient 𝐶𝑙 for the aircraft in clean configuration, during a ’3-2-1-1’
manoeuvre during the stall

5.2.2 Yawing moment coefficient (𝐶𝑛) models
The procedure to model the yawing moment coefficient is exactly the same as for modelling the

rolling moment. The pool of candidate terms has also been chosen to be the same, because all the
necessary terms are already present in this pool of terms.

The level of confidence of the selected terms for the yawing moment coefficient 𝐶𝑛 is about the
same as the level of confidence of the selected terms for the rolling moment coefficient 𝐶𝑙 , with similar
thresholds for term selection - once more tuned relatively to the value of the modeled term.

𝐶𝑛 = 𝐶𝑛0 + 𝐶𝑛𝛽 𝛽 + 𝐶𝑛 ¤𝛼 ¤𝛼 (23)

Final aerodynamic model chosen for the yawing moment coefficient 𝐶𝑛 using the unique 𝑋 model
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Fig. 12 𝐶𝑛 model term selection - 2𝑋 | order 1 Fig. 13 𝐶𝑛 model term selection - 2𝑋 | order 2

Considering the 1Xmodel, it consists of terms that do not take into account the flow separation point.

Indeed, the only term that could have been integrated in this model, containing 𝑋 , was𝐶𝑛𝛼,𝛽

(
1+

√
𝑋

2

)2
𝛼.𝛽.

But the resulting model, being just as accurate as with the selected 𝐶𝑛𝛽 𝛽 term, in order to keep the model
parsimonious - which is one of the main goals of this research - the later term was preferred over the
more complex former one.
The 2X model is very similar to the 1X model, but with the manually added term due to differential flow
separation 𝐶𝑛Δ𝑋Δ𝑋 .

𝐶𝑛 = 𝐶𝑛0 + 𝐶𝑛𝛽 𝛽 + 𝐶𝑛 ¤𝛼 ¤𝛼 + 𝐶𝑛𝛿𝑟
𝛿𝑟 + 𝐶𝑛Δ𝑋Δ𝑋 (24)

Final aerodynamic model chosen for the yawing moment coefficient 𝐶𝑛 using the 2𝑋 model

The estimated coefficients of the yawing moment model and the model fidelity metrics are available
in table 12. These results show that the developed models are consistent with similar values of the model
fit metrics for both the training and the validation data. In addition, the 2Xmodel is once again marginally
improved by the introduction of the two distinct flow separation points and their differential value.

Table 12 Resulting parameters and model accuracy for the yawing moment model

Terms selection
Coefficient Estimations Training Validation

𝜃 𝜎(𝜃) MSE rel. (%) R2 VAF (%) MSE rel. (%) R2 VAF (%)

1X model
C𝑛0 -0.0021 0.0015

0.0392 0.37 40.04 0.0405 0.32 46.75C𝑛𝛽 0.0512 0.0241
C𝑛 ¤𝛼 0.3044 1.1227

2X model

C𝑛0 0.0012 0.0028

0.0352 0.52 63.85 0.0387 0.44 54.66
C𝑛𝛽 0.0697 0.0283
C𝑛 ¤𝛼 -0.1961 0.6772
C𝑛𝛿𝑟

0.0814 0.0597
C𝑛Δ𝑋 -0.0042 0.0388

5.2.3 Side-Force Coefficient (𝐶𝑌 ) models
The side-force coefficient was also modeled using the same technique and with an identical pool of

candidate terms. The selected terms for the side-force coefficient𝐶𝑌 also have a similar level of confidence
as for the other coefficients modeling asymmetrical dynamics (𝐶𝑙 and𝐶𝑛) with tuned thresholds relatively
to the value of the modeled term for an optimal selection.
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Fig. 14 Example of yawing moment coefficient 𝐶𝑛 for the aircraft in clean configuration, during a ’3-2-1-1’
manoeuvre during the stall

Fig. 15 𝐶𝑌 model term selection - 2𝑋 | order 1 Fig. 16 𝐶𝑌 model term selection - 2𝑋 | order 2

The final model formulation for the Side Force coefficient 𝐶𝑌 with the presence of two separate flow
separation points is defined in equation 26. For the 1X model, the optimal model structure obtained for
the Side Force coefficient 𝐶𝑌 in clean configuration are presented in equation 26. The different estimated
model terms and the metrics to estimate the side-force model fidelity are given in table 13.

𝐶𝑌 = 𝐶𝑌0 + 𝐶𝑌𝛽 𝛽 + 𝐶𝑌𝛿𝑎
𝛿𝑎 + 𝐶𝑌Δ𝑋Δ𝑋 (25)

Final model formulation for the Side Force coefficient 𝐶𝑌 using the 2𝑋 model

𝐶𝑌 = 𝐶𝑌0 + 𝐶𝑌𝛼,𝛽

(
1 +

√
𝑋

2

)2

𝛼𝛽 + 𝐶𝑌𝛿𝑎
𝛿𝑎 (26)

Final model formulation for the Side Force coefficient 𝐶𝑌 using the unique 𝑋 model

5.2.4 Control surface effectiveness evaluation during stall
For this research work, the focus was on modelling the potential reduction of the effectiveness of the

ailerons during stall. In order to try to evaluate the aileron effectiveness reduction during stall, positions
of the ailerons and corresponding values of 𝑋 for which they are completely stalled were computed. In
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Table 13 Resulting parameters and model accuracy for the side-force model

Terms selection
Coefficient Estimations Training Validation

𝜃 𝜎(𝜃) MSE rel. (%) R2 VAF (%) MSE rel. (%) R2 VAF (%)

1X model
C𝑌0 0.0172 0.0094

0.2798 0.49 53.03 0.3174 0.33 65.3C𝑌𝛼,𝛽
-3.1185 0.8514

C𝑌𝛿𝑎
-0.0559 0.1336

2X model

C𝑌0 0.0175 0.0096

0.2757 0.53 59.28 0.3141 0.44 82.91
C𝑌𝛽 -0.5228 0.1409
C𝑌𝛿𝑎

-0.0739 0.1165
C𝑌Δ𝑋 0.0338 0.2334

Fig. 17 Example of side-force coefficient 𝐶𝑌 for the aircraft in clean configuration, during a ’3-2-1-1’
manoeuvre during the stall

Figure 18 on the first subplot, the wings with ailerons are depicted. The dotted grey lines that cross each
of the wings are the lines defining 𝑋𝐿,𝑅 = 0.5. They cut the wing in two perfectly equal parts, lengthwise.
Additionally, the dotted magenta line is the ’equi-X’ line representing the value of 𝑋 (and thus the wing
region) for which the aileron of either the left or the right wing is fully stalled.
This value has been computed, and is equal to 𝑋𝑠𝑡𝑎𝑙𝑙𝑒𝑑_𝑎𝑖𝑙𝑒𝑟𝑜𝑛 = 0.332 for the Cessna Citation II aircraft.
This plot is designed to provide an animated visual preview of the progression of the flow separation over
the wings, other subplots with interesting variables to follow and have a look to are also present on the
other subplots. In this case, the second subplot shows the position of the flow separation point over each
of the wings separately and the last trio of subplots show other variables such as the considered right
wing and left wing angles of attack, the aircraft attitude (roll here), and the aileron input.

Thanks to a specifically developed algorithm that locates in each flight data set the time window
during which the flow separation points (𝑋𝐿,𝑅) are within a specific range, it was observed that among
the training data sets, only very few show the aircraft with both ailerons completely stalled at the same
time. However, in a larger number of other data sets the aircraft has at least one of its two ailerons in
stalled condition. Nevertheless, the problem is that the duration for which just one of the aileron has
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Fig. 18 Plot for flow model progression over the wings, showing ailerons location and corresponding 𝑋

location for which ailerons are stalled

stalled is short, which reduces the available data volume for modelling this effect. For instance, only 8
aileron stalls in our dataset have a duration of more than 0.5 seconds, and their duration never exceeds
1.31 seconds, which is quite short considering that the mean duration of the stall manoeuvre (3-2-1-1 or
control surfaces ’wiggle’) performed is about 10 seconds.

An attempt to estimate the aerodynamic parameters (𝐶𝑙𝛿𝑎
in particular) during a shorter time window,

by windowing the data on a specific part of the manoeuvre (depending on the 𝑋𝐿,𝑅 values, to ensure
ailerons are stalled), was made. However, the results remain inconclusive and working with considerably
shorter time windows to estimate parameters substantially reduces estimation accuracy and reliability.
In conclusion, with the available and considered flight test data, no observable and/or notifiable modifi-
cation or alteration in the control surface effectiveness was observed or detected.

6 Conclusion
The novel modelling approach introducing separate flow separation points 𝑋 for each wing individ-

ually introduces a more versatile and physically meaningful method of modeling aircraft during stalls by
allowing the introduction of asymmetric model terms that are each a function of their respective per-wing
flow separation variable.
In addition, it opens the door to possible new ways of improving aerodynamic stall models identified
from data gathered during stall flight tests. Indeed, flight tests provide measurements on dynamic stall
phenomena that currently cannot be obtained through other means, and the proposed modelling approach
could exploit the information contained in such datasets.

At this point in time no reduction in modelling performance was found when comparing the new 2X
approach to the classical 1X modelling approach. Indeed, the introduction of separate flow separation
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points for each wing yields adequate result. A slight improvement in the lateral-directional dynamic
model can even be observed to a certain extent which deserves further research.
However, in some cases the optimal aerodynamicmodel structure, even for the asymmetric aerodynamics,
does not contain the flow separation variable 𝑋 . This by itself indicates that the current flight datasets are
not sufficiently informative to robustly estimate aerodynamic model terms that depend on 𝑋 . Addition-
ally, no significant improvements can be observed with the 2X model when modeling the longitudinal
aerodynamics, as Kirchhoff’s stall model, which was initially built and used for modeling such dynamics
([4]), was already accurate in this direction as evidenced in part 5.1.

Concerning the lateral-directional aerodynamics, minor yet significant improvements to the model
accuracy were provided by the introduction of the two separation point variables. An improvement of
2%-15% was obtained by switching from the 1X to the 2X model. Limited lateral asymmetries are
observed in the available flight test data which in turn limits excitation and the ability to estimate related
parameters. Hence, an important recommendation for future flight tests is to design maneuvers that are
better suited for exciting the lateral asymmetric stall dynamics specifically.

Accurate estimation of control surface effectiveness reduction, and in particular the aileron effec-
tiveness reduction during stall requires more informative data. For this specific input sequences should
be designed, possibly automatically, to increase the number of data samples for which at least one of the
ailerons is stalled. It should be noted that designing such an input sequence while maintaining adequate
safety levels is challenging given that the danger of loss-of-control is present during maneuvers conducted
while the aircraft is in a stall.

Finally, this paper presents potential model fidelity improvements as well as the improved flexibility
that comes with using two separate flow separation points instead of just one. Flight data in the stall
regime is very challenging to obtain, however, as it is not a regime in which an aircraft can spend
any significant amount of time. This is particularly true for investigating control surface effectiveness
reduction since it requires input sequences that are not aimed at stall recovery but which may in fact
deepen the stall. Hence further improving the quality of the models presented in this work may require
experiments which cannot be conducted because of safety reasons.
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Appendices

6.1 X parameter analysis
This appendix contains details from the nonlinear optimization of the X-parameters.

Fig. 19 X parameters dispersion and correlation for the unique flow separation point 𝑋 model

Fig. 20 X parameters dispersion and correlation for the multiple flow separation point 2𝑋 and 2𝐶𝐿𝛼
model
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6.2 𝐶𝐿 parameters analysis
These results are obtained after running the linear parameter optimization to estimate 𝐶𝐿 parameters

considering the - 3 - different possible models, with only one flow separation point or two flow separation
point and with or without considering 𝐶𝐿𝑎𝑙𝑝ℎ𝑎𝐿

= 𝐶𝐿𝑎𝑙𝑝ℎ𝑎𝑅

Fig. 21 𝐶𝐿 parameters dispersion and correlation for the 1𝑋 model

Fig. 22 𝐶𝐿 parameters dispersion and correlation for the 2𝑋 2𝐶𝐿𝑎𝑙𝑝ℎ𝑎
converted to 2𝑋 1𝐶𝐿𝑎𝑙𝑝ℎ𝑎

model
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6.3 Models of the aircraft in landing configuration


𝐶𝑙X model = 𝐶𝑙0 + 𝐶𝑙𝛼.𝛿𝑎

(
1+

√
𝑋

2

)2
𝛼.𝛿𝑎 + 𝐶𝑙𝛼.𝛿𝑒

(
1+

√
𝑋

2

)2
𝛼.𝛿𝑒 + 𝐶𝑙𝛿𝑟

𝛿𝑟 + 𝐶𝑙𝛽 𝛽

𝐶𝑙2X model = 𝐶𝑙0 + 𝐶𝑙𝛿𝑎
𝛿𝑎 + 𝐶𝑙Δ𝐶𝐿𝛼

[(
1+

√
𝑋𝐿

2

)2
𝛼𝐿 −

(
1+

√
𝑋𝑅

2

)2
𝛼𝑅

]
+ 𝐶𝑙𝛿𝑒

𝛿𝑒 + 𝐶𝑙𝛽 𝛽 + 𝐶𝑙𝛿𝑟
𝛿𝑟

(27)

Table 14 Resulting parameters and model accuracy for the Rolling Moment coefficient model

Terms selection
Coefficient Estimations Training Validation

𝜃 𝜎(𝜃) MSE rel. (%) R2 VAF (%) MSE rel. (%) R2 VAF (%)

1X model

C𝑙0 0.0064 0.0099

0.1087 0.34 54.65 0.0672 0.38 51.19
C𝑙𝛼.𝛿𝑎 0.4339 0.2494
C𝑙𝛼.𝛿𝑒 -0.0478 0.1134
C𝑙𝛿𝑟 0.3304 0.4757
C𝑙𝛽 -0.0352 0.0301

2X model

C𝑙0 0.0060 0.0096

0.1087 0.35 45.96 0.0678 0.35 43.16

C𝑙𝛿𝑎 0.0507 0.0362
C𝑙Δ𝐶𝐿𝛼

0.0057 0.0741
C𝑙𝛿𝑒 -0.0120 0.0168
C𝑙𝛽 -0.0354 0.0306
C𝑙𝛿𝑟 0.3356 0.4663

Fig. 23 Example of resulting model for the Rolling moment coefficient with the aircraft in landing config-
uration. {

𝐶𝑛X model = 𝐶𝑛0 + 𝐶𝑛𝛽 𝛽 + 𝐶𝑛𝑝 𝑝 + 𝐶𝑛𝑞𝑞

𝐶𝑛2X model = 𝐶𝑛0 + 𝐶𝑛𝛽 𝛽 + 𝐶𝑛𝑝 𝑝 + 𝐶𝑛𝑞𝑞 + 𝐶𝑛𝑟 𝑟 + 𝐶𝑛Δ𝑋Δ𝑋
(28)
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Table 15 Resulting parameters and model accuracy for the Yawing Moment coefficient model

Terms selection
Coefficient Estimations Training Validation

𝜃 𝜎(𝜃) MSE rel. (%) R2 VAF (%) MSE rel. (%) R2 VAF (%)

1X model

C𝑛0 -0.0007 0.0012

0.0444 0.3 38.45 0.0332 0.48 46.63
C𝑛𝛽 0.0494 0.0285
C𝑛𝑝

-0.0026 0.0430
C𝑛𝑞 -0.0948 0.3565

2X model

C𝑛0 -0.0007 0.0013

0.0447 0.35 39.6 0.0333 0.5 42.14

C𝑛𝛽 0.0525 0.0273
C𝑛𝑝

-0.0117 0.0563
C𝑛𝑞 0.0143 0.4675
C𝑛𝑟 -0.0230 0.0735
C𝑛Δ𝑋 0.0011 0.0034

Fig. 24 Example of resulting model for the Yawing moment coefficient with the aircraft in landing config-
uration.

𝐶𝑌X model = 𝐶𝑌0 + 𝐶𝑌𝛽 𝛽 + 𝐶𝑌𝛿𝑎
𝛿𝑎 + 𝐶𝑌𝛼.𝑝

(
1+

√
𝑋

2

)2
𝛼.𝑝 + 𝐶𝑛𝑞𝑞 + 𝐶𝑌𝛿𝑒

𝛿𝑒 + 𝐶𝑌𝛿𝑟
𝛿𝑟 + 𝐶𝑌(1−𝑋) (1 − 𝑋)

𝐶𝑌2X model = 𝐶𝑌0 + 𝐶𝑛𝛽 𝛽 + 𝐶𝑛𝑝 𝑝 + 𝐶𝑛𝑞𝑞 + 𝐶𝑌𝛿𝑎
𝛿𝑎 + 𝐶𝑌𝛿𝑒

𝛿𝑒 + 𝐶𝑌𝛿𝑟
𝛿𝑟 + 𝐶𝑛Δ𝑋Δ𝑋

(29)
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Table 16 Resulting parameters and model accuracy for the Side-Force coefficient model

Terms selection
Coefficient Estimations Training Validation

𝜃 𝜎(𝜃) MSE rel. (%) R2 VAF (%) MSE rel. (%) R2 VAF (%)

1X model

C𝑌0 0.0130 0.0430

0.4129 0.46 62.22 0.2631 0.39 62.81

C𝑌𝛽 -0.5793 0.2590
C𝑌𝛿𝑎

0.2590 0.1018
C𝑌𝛼.𝑝

-4.2450 3.1179
C𝑌𝑞 0.5752 2.080
C𝑌𝛿𝑒

-0.0415 0.1376
C𝑌𝛿𝑟

0.5760 2.0747
C𝑌(1−𝑋) 0.008 1.3390

2X model

C𝑌0 0.01176 0.0422

0.3724 0.4 0.7 0.2710 0.7 60.17

C𝑌𝛽 -0.5578 0.2339
C𝑌𝑝

-0.4860 0.5180
C𝑌𝑞 -0.4110 1.6721
C𝑌𝛿𝑎

0.2616 0.0993
C𝑌𝛿𝑒

-0.1005 0.1166
C𝑌𝛿𝑟

0.3770 2.1247
C𝑌Δ𝑋 0.0164 0.1971

Fig. 25 Example of resulting model for the Side-Force coefficient with the aircraft in landing configuration.
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