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Abstract
This thesis aims to estimate conditional distribution functions subject to the likelihood ratio order con-
straint. We use the modified gradient projection method to ensure that in each iteration, the point stays
feasible while improving the objective function. Regarding the objective function, we use the contin-
uous ranked probability score (CRPS), a loss function used for forecast evaluation. Given its strict
propriety, we use it for estimation procedures. Our numerical experiments indicate that the estimated
conditional distribution functions perform reasonably well as the number of iteration increases. How-
ever, the algorithm’s long running time makes it impractical for use in practice. Furthermore, due to the
reparametrization of the estimand, the objective function loses its convexity property while the feasible
set is convex. This causes the algorithm to potentially return a local minimum, rather than a global
minimum.
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1
Introduction

Regression is a procedure which estimates the relationship between a variable 𝑌 that depends on
a vector of covariates 𝐗 = (𝑋1, … , 𝑋𝑑)⊺. The relationship between 𝑌 and 𝐗 is described through an
unknown function 𝑓 and a random error 𝜀, that is,

𝑌 = 𝑓(𝐗) + 𝜀.

In linear regression, for instance, the relationship of 𝑌 with 𝐗 is described by the conditional average
𝔼[𝑌|𝐗]. This conditional expectation is then assumed to be linear in the parameter. Suppose for in-
stance, the conditional expectation is modelled in the following manner: 𝔼[𝑌|𝐗] = 𝛽0+∑

𝑑
𝑘=1 𝛽𝑘𝑋𝑘, then

the goal in linear regression is to estimate the unknown coefficients 𝛽𝑖, for all 0 ≤ 𝑖 ≤ 𝑑. The rigidness
of this relationship may be relaxed by assuming that 𝔼[𝑌|𝐗] belongs to a class of functions parame-
terized in a non-linear way. All in all, the relationship between 𝑌 and 𝐗 is usually summarized by one
quantity, which is the expected value.

There is another type of regression, in which the whole conditional distribution 𝑌|𝐗 is of interest in-
stead of only the conditional expectation. Such regression is called distributional regression (Fahrmeir
et al., 2013). Similar to usual regression, there are parametric and non-parametric distributional regres-
sion. In the parametric case, the conditional distribution of 𝑌|𝐗 is assumed to be a distribution 𝑃, which
belongs to known class of distributions {𝑃𝜽 ∶ 𝜽 ∈ Θ}, where Θ denotes the parameter space with finite
dimension. The goal is to estimate the unknown parameter 𝜽. For non-parametric approaches, the
parameter is the distribution function of 𝑌|𝐗, which is only assumed to belong to a much bigger class of
distributions that cannot be smoothly parameterized with a finite dimensional parameter set. Because
the conditional distribution function is of interest, this type of regression is used when the forecasts are
probabilistic.

An example of an application of distributional regression is in the meteorological field. The physics
of the atmosphere may be described using partial differential equations, which are then solved numeri-
cally (Kalnay, 2002, p. 136). Due to the chaotic nature of these partial differential equations, the model
predicts long-term weather inaccurately. Therefore, an ensemble of multiple runs of numerical weather
prediction (NWP) models is used, to account for the uncertainty (Gneiting and Raftery, 2005). These
runs differ in the initial conditions and/or the parameterization of the model. The model outputs are then
statistically post-processed, to quantify the uncertainty of the model outputs (Gneiting and Katzfuss,
2014; Schefzik et al., 2013). One method of post-processing the outputs is to do distributional regres-
sion. The goal of this approach is to find the conditional distribution function of the weather quantity
𝑌 (e.g. temperature, wind or precipitation), given the ensemble member forecasts 𝐗 (Gneiting et al.,
2005).

Following from the example above, if multiple runs of NWP indicate a larger value of the weather
quantity (e.g. high temperature, heavy precipitation), then regressing of these outputs on the weather
quantity should be large as well intuitively (Henzi et al., 2021). This yields that the probability of ob-
serving large value of the weather quantity is also large. If we were to do the usual regression, then
we expect that the conditional expectation increases with the covariate values. Such a regression is
called the isotonic regression. The usual linear regression, in which the relationship is increasing, is
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2 1. Introduction

an example of such a regression. In Henzi et al. (2021), the concept of isotonicity is extended for dis-
tributional regression. The isotonic relationship for this regression refers to the order constraint on the
conditional distribution function of 𝑌|𝑋 = 𝑥. To be more precise, the isotonic distributional regression
preserves the order 𝐹(𝑦|𝑥1) ≥ 𝐹(𝑦|𝑥2) for any 𝑦 ∈ ℝ, if 𝑥1, 𝑥2 ∈ ℝ such that 𝑥1 ≤ 𝑥2, where we denote
𝐹(⋅|𝑥) as the conditional distribution function of 𝑌|𝑋 = 𝑥. If the conditional distribution function satisfies
this relationship, then we denote it as [𝑌|𝑋 = 𝑥1] ≤st [𝑌|𝑋 = 𝑥2], which is an example of a stochastic
order.

In fact, new inference techniques have been developed that impose different types of stochastic
order constraints. An example of a stochastic order is the likelihood ratio order, which is a stronger
order than we discussed previously. This order stipulates that if 𝑋 and 𝑌 have density function 𝑓𝑋
and 𝑓𝑌 respectively, then 𝑋 is stochastically smaller than 𝑌 in likelihood ratio order if and only if the
density ratio 𝑓𝑌(𝑡)/𝑓𝑋(𝑡) increases in 𝑡. Imposing this order in a regression context means that the
ratio of the conditional densities 𝑓(𝑦|𝑥′)/𝑓(𝑦|𝑥) increases in 𝑦 for 𝑥 ≤ 𝑥′. Recently, Mösching and
Dümbgen (2024) show how to estimate the conditional distribution functions with this stochastic order as
a constraint. Their technique estimates 𝐹(𝑦|𝑥) non-parametrically by constructing empirical likelihood,
which is maximized with the likelihood ratio order constraint.

Inspired by the work of Henzi et al. (2021) and Mösching and Dümbgen (2024), we attempt to
estimate conditional distribution functions while adhering to the likelihood ratio order constraint. In
this thesis, however, we use expected loss (risk) as the criterion function. We specifically choose the
continuous ranked probability score (CRPS) for the loss function, which is an example of a scoring
rule. A scoring rule takes two arguments: the probability distribution function used for the forecasting
and the realization. It then assigns these two arguments to a numerical value (Gneiting and Katzfuss,
2014).

This numerical value may be used for evaluation of the forecast and estimation procedure (Gneiting
and Raftery, 2007). In particular, we use a strictly proper scoring rule for the latter, such as CRPS,
which will be explained later in the thesis. The use of strictly proper scoring rule ensures that the risk
of probabilistic forecasting using a distribution function is minimum if and only if the said distribution
function is the true distribution of the realization. Henzi et al. (2021) demonstrate using such a scoring
rule (we will see that CRPS is strictly proper), to solve the isotonic distributional regression problem.

Therefore in this thesis, we aim to estimate the conditional distribution function similarly as in
Mösching and Dümbgen (2024), but instead, we minimize the expected CRPS loss with the likelihood
ratio order constraint. To solve the minimization problem numerically, we use the gradient projection
method.

Before we delve deep into the main body of the thesis, we outline how this thesis is organized.
Chapter two through chapter four review the concepts that we have mentioned in this introduction. We
start in Chapter 2 which discusses the different types of stochastic orders. Here we will see that the
likelihood ratio order is the strongest stochastic order. In Chapter 3, we discuss scoring rules and give
examples of (strictly) proper scoring rules. It turns out that there is a connection between scoring rules
and information theory. The algorithm that is proposed by Mösching and Dümbgen (2024) is described
in Chapter 4. We include the information on their algorithm in order to understand their method. We
also apply the likelihood approach when the conditional distribution functions are chosen to belong to a
class of normal distribution. In Chapter 5, we formulate the empirical risk with CRPS as the loss function
and the likelihood ratio order constraint. It turns out that this feasible set is non-convex. Although, we
transform it so that it becomes a convex set, the objective function then becomes a non-convex function.
Lastly, Chapter 6 describes the algorithm that we use to solve the optimization problem. We also show
how the number of constraints can be lowered substantially, and present the results of a small simulation
study. In these results, we visually compare the performance of the algorithm developed in this thesis
with the one proposed by Mösching and Dümbgen (2024). Their algorithm are implemented in the
programming language R (R Core Team, 2024), with a package name LRDistReg (see Mösching and
Dümbgen (2022)).



2
Stochastic Orders

In the introduction, we have briefly introduced several terminologies such as stochastic order and scor-
ing rules. In this chapter, we begin by defining the stochastic orders more formally. There are four
orders that we will discuss: usual stochastic order, likelihood ratio order and the monotone hazard rate
order. We will show examples of random variables that follow these orders. We also show how these
orders is related. The definitions and theorems of the usual stochastic order, the hazard rate order and
the likelihood ratio order are taken from Shaked and Shanthikumar (2007). The proofs of the theorems
here are not new, but we add details on them for the clarity because the proofs/details are often omit-
ted in these sources. Lastly, the definition of the monotone hazard ratio order is taken from Wu and
Westling (2023).

2.1. The usual stochastic order
We start with the definition of the usual stochastic order.

Definition 2.1.1 (The usual stochastic order). Let 𝑋 and 𝑌 be real-valued random variables. We say
that 𝑋 is smaller than 𝑌 in the usual stochastic order (denoted by 𝑋 ≤st 𝑌) if for any 𝑥 ∈ ℝ,

ℙ(𝑋 ≤ 𝑥) ≥ ℙ(𝑌 ≤ 𝑥). (2.1)

Intuitively, we say 𝑋 ≤st 𝑌 if and only if the probability of 𝑋 taking a smaller value is higher than 𝑌 taking
that same value. From (2.1), we also have that 𝑋 ≤st 𝑌 if and only if for any 𝑥 ∈ ℝ,

ℙ(𝑋 > 𝑥) ≤ ℙ(𝑌 > 𝑥).

One way to characterize the usual stochastic ordering is to use the coupling method. The following
is a definition of coupling from van der Hofstad (2016).

Definition 2.1.2 (Coupling). Let 𝑋 and 𝑌 be random variables on probability spaces (Ω𝑋 , ℱ𝑋 , ℙ𝑋) and
(Ω𝑌 , ℱ𝑌 , ℙ𝑌) respectively. The random variable (𝑋̂, 𝑌̂) is a coupling of 𝑋 and 𝑌 if there exists a new
probability space (Ω, ℱ, ℙ) such that the marginal distributions have the following properties:

ℙ(𝑋̂ ≤ 𝑥) = ℙ𝑋(𝑋 ≤ 𝑥) and ℙ(𝑌̂ ≤ 𝑦) = ℙ𝑌(𝑌 ≤ 𝑦).

That is, the marginal distribution of 𝑋̂ is the distribution 𝑋, similarly the marginal distribution of 𝑌̂ is the
distribution of 𝑌.

The following theorem from van der Hofstad (2016) states that there exists a coupling 𝑋 and 𝑌, say
(𝑋̂, 𝑌̂), such that 𝑋̂ ≤ 𝑌̂ almost surely if and only if 𝑋 ≤st 𝑌.

Theorem 2.1.3. Let 𝑋 and 𝑌 be random variables. There exists coupling (𝑋̂, 𝑌̂) of 𝑋 and 𝑌 such that
ℙ(𝑋̂ ≤ 𝑌̂) = 1 if and only if 𝑋 ≤st 𝑌.
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4 2. Stochastic Orders

Proof. The proof of the coupling implies the usual stochastic order is shown by using the marginal
property of the coupling. Indeed, suppose that 𝑋 and 𝑌 are coupled by (𝑋̂, 𝑌̂) such that ℙ(𝑋̂ ≤ 𝑌̂) = 1.
For any 𝑥 ∈ ℝ, we have

ℙ(𝑌 ≤ 𝑥) = ℙ (𝑌̂ ≤ 𝑥) = ℙ (𝑌̂ ≤ 𝑥|𝑋̂ ≤ 𝑌̂)ℙ (𝑋̂ ≤ 𝑌̂) + ℙ (𝑌̂ ≤ 𝑥|𝑋̂ > 𝑌̂)ℙ (𝑋̂ > 𝑌̂)
= ℙ (𝑌̂ ≤ 𝑥|𝑋̂ ≤ 𝑌̂)
= ℙ (𝑋̂ ≤ 𝑌̂ ≤ 𝑥)
≤ ℙ (𝑋̂ ≤ 𝑥) = ℙ(𝑋 ≤ 𝑥).

The inequality is obtained by using ℙ(𝐴 ∩ 𝐵) ≤ min{ℙ(𝐴), ℙ(𝐵)}, which is true since ℙ(𝐴 ∩ 𝐵) =
ℙ(𝐴|𝐵)ℙ(𝐵) ≤ ℙ(𝐵) and ℙ(𝐴 ∩ 𝐵) = ℙ(𝐵|𝐴)ℙ(𝐴) ≤ ℙ(𝐴).

For the converse, we assume that 𝑋 ≤st 𝑌. Let 𝐹−1 denote the generalized inverse function of the
distribution function 𝐹, i.e. for 𝛼 ∈ [0, 1],

𝐹−1(𝛼) = inf{𝑥 ∈ ℝ ∶ 𝐹(𝑥) ≥ 𝛼}.

Then it is known that 𝐹−1(𝑈) has distribution function 𝐹 if 𝑈 is uniform on (0, 1). Indeed, for any 𝑥 ∈ ℝ,

ℙ(𝐹−1(𝑈) ≤ 𝑥) = ℙ(𝑈 ≤ 𝐹(𝑥)) = 𝐹(𝑥). (2.2)

Now, let 𝐹𝑋 and 𝐹𝑌 be the distribution function of 𝑋 and 𝑌 respectively. Define 𝑋̂ ∶= 𝐹−1𝑋 (𝑈) and
𝑌̂ ∶= 𝐹−1𝑌 (𝑈). Then (𝑋̂, 𝑌̂) have the same marginal distribution as 𝑋 and 𝑌 by (2.2). By the assumption
𝐹𝑋(𝑥) ≥ 𝐹𝑌(𝑥) for any 𝑥 ∈ ℝ, which follows 𝐹−1𝑋 (𝛼) ≤ 𝐹−1𝑌 (𝛼) for any 𝛼 ∈ [0, 1]. Hence,

ℙ(𝑋̂ ≤ 𝑌̂) = ℙ (𝐹−1𝑋 (𝑈) ≤ 𝐹−1𝑌 (𝑈)) = 1.

We give examples of two random variables that satisfy the usual stochastic order.

Example 2.1.4. Let 𝑋 and 𝑌 follow the Bernoulli distribution with parameters 𝑝1 and 𝑝2 respectively,
such that 0 ≤ 𝑝1 < 𝑝2 ≤ 1. To show that 𝑋 ≤st 𝑌, we couple the two random variables by using the
uniform distribution. Let 𝑈 be uniformly distribution on (0, 1). Let 𝑋̂ = 𝟙(𝑈 ∈ (0, 𝑝1]) and 𝑌̂ = 𝟙(𝑈 ∈
(0, 𝑝2]), the marginal distributions of 𝑋̂ and 𝑌̂ correspond to the distribution of 𝑋 and 𝑌. Then,

ℙ(𝑋̂ ≤ 𝑌̂) = ℙ (𝑋̂ = 0, 𝑌̂ = 0) + ℙ (𝑋̂ = 0, 𝑌̂ = 1) + ℙ (𝑋̂ = 1, 𝑌̂ = 1) .

These terms will sum up to one because

ℙ(𝑋̂ = 0, 𝑌̂ = 0) = ℙ(𝑈 ∈ (𝑝2, 1]) = 1 − 𝑝2
ℙ(𝑋̂ = 0, 𝑌̂ = 1) = ℙ(𝑈 ∈ (𝑝1, 𝑝2]) = 𝑝2 − 𝑝1
ℙ(𝑋̂ = 1, 𝑌̂ = 1) = ℙ(𝑈 ∈ (0, 𝑝1]) = 𝑝1.

In fact, the probability of the event {𝑋̂ = 1, 𝑌̂ = 0} is zero since if 𝑋̂ = 1, then 𝑈 ∈ (0, 𝑝1]\(𝑝1, 𝑝2] and so
it is necessary that 𝑌̂ = 1 as well. We conclude that,

ℙ(𝑋̂ ≤ 𝑌̂) = 1,

and therefore 𝑋 ≤st 𝑌 by Theorem 2.1.3. △
Example 2.1.5. Let 𝑋 and 𝑌 follow the geometric distributions with parameter 𝑝1 and 𝑝2 respectively,
such that 0 < 𝑝1 < 𝑝2 ≤ 1. We interpret this distribution as the number of trials needed to get one
success. The claim is that 𝑌 ≤st 𝑋.

One may prove this claim directly by using the Definition 2.1.1. Indeed, for any 𝑘 ∈ ℕ, by using the
geometric series,

ℙ(𝑋 > 𝑘) = 1 −
𝑘

∑
𝑗=1
𝑝1(1 − 𝑝1)𝑗−1 = (1 − 𝑝1)𝑘 ≤ (1 − 𝑝2)𝑘 = ℙ(𝑌 > 𝑘).



2.2. The hazard rate order 5

The inequality is true since 𝑝 ↦ (1 − 𝑝)𝑘 is a decreasing function in 𝑝 ∈ (0, 1). Hence, 𝑌 ≤st 𝑋.
A different approach is to use the coupling argument. The idea in this case is to consider two infinite

sequence of i.i.d. Bernoulli random variables, in which each element of the sequence are coupled
according to Example 2.1.4. The coupling of 𝑋 and 𝑌 is constructed by finding which element of the
sequence is a success.

We interpret ’success’ as an event that takes a value one. Let (𝑌𝑖)𝑖∈ℕ and (𝑍𝑖)𝑖∈ℕ be i.i.d. Bernoulli
sequence such that 𝑌𝑖 and 𝑍𝑖 follow the Bernoulli distributions with parameters 𝑝1 and 𝑝2 respectively,
for any 𝑖 ∈ ℕ. Let (𝑌̂𝑖 , 𝑍̂𝑖) be a coupling from Example 2.1.4 for any 𝑖 ∈ ℕ. The coupling of 𝑋 and 𝑌 can
be constructed by defining the following random variables

𝑋̂1 ∶=min {𝑗 ∶ 𝑌̂𝑗 = 1} and 𝑋̂2 ∶=min {𝑘 ∶ 𝑍̂𝑘 = 1} .

Note that 𝑋̂1 and 𝑋̂2 follow the geometric distribution with parameter 𝑝1 and 𝑝2 respectively, since the
tuple (𝑌̂𝑖 , 𝑍̂𝑖) is independent for each 𝑖 ∈ ℕ. Further ℙ(𝑋̂2 ≤ 𝑋̂1) = 1 because the 𝑍̂𝑘 will be equal to 1
earlier than 𝑌̂𝑗 since the event {𝑍̂𝑘 = 1} has higher probability than the event {𝑌̂𝑘 = 1}. △

2.2. The hazard rate order
The term hazard rate may be encountered in survival analysis. It is a statistical analysis where the
outcome of interest is the time at which a certain event happens, e.g. the mortality time of a patient, the
lifespan of an electrical device. The hazard rate is the rate of a subject not surviving for an additional
infinitesimally change in time 𝑡 ≥ 0, given that it has survived longer than 𝑡.

Let us define the hazard rate more formally, which is taken from Karim and Islam (2019). Let 𝑇 be
a non-negative random variable and 𝑡 ≥ 0, then the hazard rate is the following function:

ℎ(𝑡) ∶= lim
𝛿𝑡→0+

ℙ(𝑡 < 𝑇 ≤ 𝑡 + 𝛿𝑡|𝑇 ≥ 𝑡)
𝛿𝑡 . (2.3)

In survival analysis, one usually considers non-negative random variables. This is not required for
defining the hazard rate order.

Definition 2.2.1 (The hazard rate order). Let 𝑋 and 𝑌 be real-valued random variables, with ℎ𝑋(𝑡) and
ℎ𝑌(𝑡) being the associated hazard rates. We say that 𝑋 is smaller than 𝑌 in the hazard rate order
(denoted by 𝑋 ≤hr 𝑌) if for any 𝑡 ∈ ℝ,

ℎ𝑋(𝑡) ≥ ℎ𝑌(𝑡). (2.4)

To gain an intuition of the hazard rate order, we first rewrite (2.3) in terms of the probability of
surviving. Suppose 𝑇 has a density 𝑓𝑇, then (2.3) may be written in terms of 𝑓𝑇 and ℙ(𝑇 ≥ 𝑡). The
quantity 𝑆𝑇(𝑡) ∶= ℙ(𝑇 ≥ 𝑡) is called the survival function in survival analysis. This function is non-
increasing, since 𝑆𝑇(𝑡) = 1 − ℙ(𝑇 ≤ 𝑡). From (2.3), we obtain that

ℎ(𝑡) = 1
ℙ(𝑇 ≥ 𝑡) lim

𝛿𝑡→0+
ℙ(𝑡 < 𝑇 ≤ 𝑡 + 𝛿𝑡)

𝛿𝑡 = 𝑓𝑇(𝑡)
𝑆𝑇(𝑡)

≥ 0. (2.5)

The hazard rate is non-negative because density functions are non-negative and the range of the
survival function is the interval [0, 1]. If 𝑓𝑇 is the derivative of the distribution function 𝐹𝑇 w.r.t. 𝑡, then
from (2.5),

ℎ(𝑡) = 1
𝑆𝑇(𝑡)

𝑑
𝑑𝑡𝐹𝑇(𝑡) =

1
𝑆𝑇(𝑡)

𝑑
𝑑𝑡 [1 − 𝑆𝑇(𝑡)] = −

1
𝑆𝑇(𝑡)

𝑑
𝑑𝑡𝑆𝑇(𝑡) = −

𝑑
𝑑𝑡 log 𝑆𝑇(𝑡).

Therefore, the hazard rate is the instantaneous change of − log 𝑆(𝑡). A small value of hazard rate
at a given point corresponds to a small change in − log 𝑆(𝑡) for an infinitesimal increase in 𝑡. This
corresponds to a slow decrease in the probability of survival and therefore a higher lifespan. On the
other hand, a higher hazard rate implies a shorter lifespan.

Using (2.5), we can show that 𝑋 ≤hr 𝑌 implies 𝑋 ≤st 𝑌. This means that the hazard rate order is a
stronger order than the usual stochastic order.

Theorem 2.2.2. Let 𝑋 and 𝑌 be two non-negative random variables with density function 𝑓𝑋 and 𝑓𝑌
respectively. If 𝑋 ≤hr 𝑌, then 𝑋 ≤st𝑌.
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Proof. If 𝑋 ≤hr 𝑌, then (2.4) is equivalent to

𝑓𝑋(𝑡)
ℙ(𝑋 ≥ 𝑡) ≥

𝑓𝑌(𝑡)
ℙ(𝑌 ≥ 𝑡) .

The values on the numerator and denominator on both sides of the inequalities are always non-
negative. Therefore, it is necessary that 𝑓𝑋(𝑡) ≥ 𝑓𝑌(𝑡) and ℙ(𝑋 ≥ 𝑡) ≤ ℙ(𝑌 ≥ 𝑡) for the inequality
to be true. In any case, ℙ(𝑋 ≥ 𝑡) ≤ ℙ(𝑌 ≥ 𝑡), which is equivalent to ℙ(𝑋 < 𝑡) ≥ ℙ(𝑌 < 𝑡). Hence,
𝑋 ≤st 𝑌.

Example 2.2.3. Let 𝑋 and 𝑌 be exponentially distributed with parameters 𝜆1, 𝜆2 > 0 respectively, such
that 𝜆1 < 𝜆2. Then,

𝑆𝑋(𝑡) = 1 − ∫
𝑡

0
𝜆1𝑒−𝜆1𝑥 𝑑𝑥 = 𝑒−𝜆1𝑡 and 𝑆𝑌(𝑡) = 1 − ∫

𝑡

0
𝜆2𝑒−𝜆2𝑥 𝑑𝑥 = 𝑒−𝜆2𝑡 .

Therefore, the corresponding hazard rates are

ℎ𝑋(𝑡) =
𝜆1𝑒−𝜆1𝑡
𝑒−𝜆1𝑡 = 𝜆1 and ℎ𝑌(𝑡) =

𝜆2𝑒−𝜆2𝑡
𝑒−𝜆2𝑡 = 𝜆2.

Since 𝜆2 > 𝜆1, we conclude that 𝑌 ≤hr 𝑋. △

2.3. The likelihood ratio order
This particular stochastic order is the strongest order, in the sense that the monotone likelihood ratio
order implies the other two previously mentioned orders. Let us define the likelihood ratio order.

Definition 2.3.1 (The likelihood ratio order). Let 𝑋 and 𝑌 be real-valued random variables with density
function 𝑓𝑋 and 𝑓𝑌 respectively. Let supp(𝑋) denote the support of 𝑋, i.e. supp(𝑋) = cl{𝑥 ∈ ℝ ∶
𝑓𝑋(𝑥) > 0}, where cl(𝐴) means the closure of a set 𝐴. Then 𝑋 is smaller than 𝑌 in the likelihood ratio
order (denoted as 𝑋 ≤lr 𝑌) if

𝑓𝑌(𝑡)
𝑓𝑋(𝑡)

is increasing in 𝑡 ∈ supp(𝑋) ∪ supp(𝑌).

In other words, we have 𝑋 ≤lr 𝑌 if and only if for any 𝑥, 𝑦 ∈ supp(𝑋) ∪ supp(𝑌) and 𝑥 ≤ 𝑦, then

𝑓𝑌(𝑦)
𝑓𝑋(𝑦)

≥ 𝑓𝑌(𝑥)
𝑓𝑋(𝑥)

,

or equivalently,
𝑓𝑋(𝑥)𝑓𝑌(𝑦) ≥ 𝑓𝑋(𝑦)𝑓𝑌(𝑥) for any 𝑥 ≤ 𝑦.

As a remark, this definition assumes that the probability measure is absolutely continuous w.r.t. the
Lebesgue measure. Dümbgen and Mösching (2023) generalize it for arbitrary probability measures on
ℝ that are absolutely continuous w.r.t. a general measure.

The following theorem shows that the likelihood ratio order is a sufficient condition for random vari-
ables to follow the hazard rate order. This yields that the likelihood ratio order is the strongest stochastic
order among the usual and hazard rate orders.

Theorem 2.3.2. Let 𝑋 and 𝑌 be real-valued random variables with density function 𝑓𝑋 and 𝑓𝑌 respec-
tively. If 𝑋 ≤lr 𝑌, then 𝑋 ≤hr 𝑌 and hence 𝑋 ≤st 𝑌.

Proof. Let 𝐹𝑋 and 𝐹𝑌 denote the distribution function of 𝑋 and 𝑌 respectively. Assume 𝑋 ≤lr 𝑌, then for
any 𝑥 ≤ 𝑦,

𝑓𝑋(𝑥)𝑓𝑌(𝑦) ≥ 𝑓𝑋(𝑦)𝑓𝑌(𝑥). (2.6)

Integrating both sides of inequality in (2.6) w.r.t. 𝑥 on interval (−∞, 𝑦] yields

∫
𝑦

−∞
𝑓𝑋(𝑥)𝑓𝑌(𝑦) 𝑑𝑥 ≥ ∫

𝑦

−∞
𝑓𝑋(𝑦)𝑓𝑌(𝑥) 𝑑𝑥 ⟺ 𝑓𝑌(𝑦)𝐹𝑋(𝑦) ≥ 𝑓𝑋(𝑦)𝐹𝑌(𝑦). (2.7)
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We again integrate both sides of inequality in (2.6), but w.r.t. 𝑦 on interval [𝑥,∞) yields

∫
∞

𝑥
𝑓𝑋(𝑥)𝑓𝑌(𝑦) 𝑑𝑦 ≥ ∫

∞

𝑥
𝑓𝑋(𝑦)𝑓𝑌(𝑥) 𝑑𝑦 ⟺ 𝑓𝑋(𝑥)(1 − 𝐹𝑌(𝑥) ≥ 𝑓𝑌(𝑥)(1 − 𝐹𝑋(𝑥)). (2.8)

From (2.7) and (2.8), we obtain the following two inequalities:

𝑓𝑌(𝑥)
𝑓𝑋(𝑥)

≥ 𝐹𝑌(𝑥)
𝐹𝑋(𝑥)

and
𝑓𝑌(𝑥)
𝑓𝑋(𝑥)

≤ 1 − 𝐹𝑌(𝑥)
1 − 𝐹𝑋(𝑥)

. (2.9)

From (2.9), we obtain that
𝑓𝑋(𝑥)

1 − 𝐹𝑥(𝑥)
= ℎ𝑋(𝑥) ≥ ℎ𝑌(𝑥) =

𝑓𝑌(𝑦)
1 − 𝐹𝑌(𝑦)

,

and so 𝑋 ≤hr 𝑌. Further, we combine both inequalities in (2.9) to get

1 − 𝐹𝑌(𝑥)
1 − 𝐹𝑋(𝑥)

≥ 𝐹𝑌(𝑥)
𝐹𝑋(𝑥)

⟺ 𝐹𝑋(𝑥)
1 − 𝐹𝑋(𝑥)

≥ 𝐹𝑌(𝑥)
1 − 𝐹𝑌(𝑥)

.

Hence, ℙ(𝑋 ≤ 𝑥) ≥ ℙ(𝑌 ≤ 𝑥), which means that 𝑋 ≤st 𝑌. As a remark, the proof of 𝑋 ≤hr 𝑌 implies
𝑋 ≤st 𝑌 is also in Theorem 2.2.2. Furthermore, the proof is for 𝑋 and 𝑌 being continuous random
variables. The proof for discrete random variables is similar, but we replace the integrals with sums.

We demonstrate the likelihood ratio order by giving the following examples and an example in which
two random variables follow the usual stochastic order, but not the likelihood ratio order.

Example 2.3.3. Let 𝑋 ∼ 𝒩(𝜇1, 𝜎2) and 𝑌 ∼ 𝒩(𝜇2, 𝜎2) such that 𝜇1 ≤ 𝜇2. Let 𝑓𝑋 and 𝑓𝑌 be the densities
of 𝑋 and 𝑌 respectively. The ratio of the densities is

𝑓𝑌(𝑡)
𝑓𝑋(𝑡)

= exp((𝑡 − 𝜇1)
2

2𝜎2 − (𝑡 − 𝜇2)
2

2𝜎2 ) = exp(2𝑡(𝜇2 − 𝜇1) + 𝜇
2
1 − 𝜇22

2𝜎2 ) . (2.10)

The ratio in (2.10) is increasing in 𝑡, for any 𝑡 ∈ ℝ. Indeed, because 𝜇1 ≤ 𝜇2, we have 𝜇2 − 𝜇1 ≥ 0.
Therefore, the mapping 𝑡 ↦ 2𝑡(𝜇2 − 𝜇1) is increasing in 𝑡. Hence, 𝑋 ≤lr 𝑌.

However, the likelihood ratio order does not hold if we vary the variance when both random variables
have the same fixed mean. Consider two centered normal distributions with different variances, i.e.
𝑋 ∼ 𝒩(0, 𝜎21 ) and 𝑌 ∼ 𝒩(0, 𝜎22 ), such that 0 < 𝜎1 ≤ 𝜎2. Then for any 𝑡 ∈ ℝ, we have

𝑓𝑌(𝑡)
𝑓𝑋(𝑡)

= 𝜎1
𝜎2

exp(𝑡
2(𝜎22 − 𝜎21 )
2𝜎21𝜎22

) ,

which is not increasing due to the term 𝑡2. The ratio tends to infinity as 𝑡 → ±∞, and it has a minimum
at 𝑡 = 0. △
Example 2.3.4. Let 𝑋, 𝑌 ∈ {1, 2, 3} and we define their probability mass functions as follows

ℙ(𝑋 = 𝑥) = {
0.2 if 𝑥 = 1,
0.7 if 𝑥 = 2,
0.1 if 𝑥 = 3.

and ℙ(𝑌 = 𝑥) = {
0.1 if 𝑥 = 1,
0.8 if 𝑥 = 2,
0.1 if 𝑥 = 3.

We have that

ℙ(𝑋 ≤ 1) = 0.2 ≥ 0.1 = ℙ(𝑌 ≤ 1)
ℙ(𝑋 ≤ 2) = 0.2 + 0.7 = 0.9 ≥ 0.9 = 0.1 + 0.8 = ℙ(𝑌 ≤ 2)

ℙ(𝑋 ≤ 3) = 1 ≥ 1 = ℙ(𝑌 ≤ 3),
which means that 𝑋 ≤st𝑌. However,

ℙ(𝑌 = 1)
ℙ(𝑋 = 1) =

0.1
0.2 =

1
2 ,

ℙ(𝑌 = 2)
ℙ(𝑋 = 2) =

0.8
0.7 > 1,

ℙ(𝑌 = 3)
ℙ(𝑋 = 3) =

0.1
0.1 = 1.

The ratioℙ(𝑌 = 𝑥)/ℙ(𝑋 = 𝑥) is not increasing in 𝑥, and therefore 𝑋 is not smaller than 𝑌 in the likelihood
ratio order. Note that we use the definition of the likelihood ratio order for discrete random variables.
In this setting, the density function in the definition is replaced by the probability mass function. △
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Example 2.3.5. We consider a distribution that is given by Henzi et al. (2021). Let 𝑌 and 𝑋 be real-
valued random variables. Suppose 𝑋 ∼ Unif(0, 10) and

𝑌|𝑋 = 𝑥 ∼ Gamma(𝑘(𝑥) = √𝑥, 𝜃(𝑥) =min{max{𝑥, 1}, 6}),

where 𝑘(𝑥) > 0 for any 𝑥 > 0 is the shape parameter and 𝜃(𝑥) > 0 is the scale parameter. Then the
density of 𝑌|𝑋 = 𝑥 is

𝑓𝑌|𝑋(𝑦|𝑥) =
1

Γ(𝑘(𝑥))𝜃(𝑥)𝑘(𝑥) 𝑦
𝑘(𝑥)−1𝑒−𝑦/𝜃(𝑥)𝟙{𝑦 > 0}.

Assume 0 < 𝑥 ≤ 𝑥′ < 10 and let (𝑘(𝑥), 𝜃(𝑥)) and (𝑘(𝑥′), 𝜃(𝑥′)) be the shape and scale parameter of
𝑌|𝑋 = 𝑥 and 𝑌|𝑋 = 𝑥′ respectively. Then the ratio of densities is

𝑓𝑌|𝑋(𝑦|𝑥′)
𝑓𝑌|𝑋(𝑦|𝑥)

= Γ(𝑘(𝑥))
Γ(𝑘(𝑥′))

𝜃(𝑥)𝑘(𝑥)
𝜃(𝑥′)𝑘(𝑥′) 𝑦

𝑘(𝑥′)−𝑘(𝑥)𝑒𝑦/𝜃(𝑥)−𝑦/𝜃(𝑥′) = 𝐶𝑦𝑘(𝑥′)−𝑘(𝑥)𝑒𝑦/𝜃(𝑥)−𝑦/𝜃(𝑥′), (2.11)

where

𝐶 ∶= Γ(𝑘(𝑥))
Γ(𝑘(𝑥′))

𝜃(𝑥)𝑘(𝑥)
𝜃(𝑥′)𝑘(𝑥′)

is a positive constant for a fixed 𝑥, 𝑥′.
Now, we will show that (2.11) is increasing in 𝑦 for any 𝑦 ≥ 0. The mapping 𝑦 ↦ 𝑦𝑘(𝑥′)−𝑘(𝑥) is

increasing in 𝑦 because 𝑥 ↦ √𝑥 is an increasing function and so 𝑘(𝑥′) − 𝑘(𝑥) = √𝑥′ − √𝑥 ≥ 0.
Further, the mapping 𝑥 ↦ min{max{𝑥, 1}, 6} is increasing as well. The scale parameter then equal to
either 1 or 6 for 𝑥 ∈ (0, 1] and 𝑥 ∈ [6, 10) respectively. For 𝑥 ∈ (1, 6), the scale parameter increases
linearly. Therefore, if 𝑥 ≤ 𝑥′, then 𝜃(𝑥) ≤ 𝜃(𝑥′) and so 𝑦 ↦ 𝑒𝑦/𝜃(𝑥)−𝑦/𝜃(𝑥′) is increasing in 𝑦 because
the exponent is non-negative. The ratio in (2.11) is increasing in 𝑦 for any 𝑦 ≥ 0, and hence [𝑌|𝑋 =
𝑥] ≤lr [𝑌|𝑋 = 𝑥′] if 𝑥 ≤ 𝑥′. It also implies that [𝑌|𝑋 = 𝑥] ≤st [𝑌|𝑋 = 𝑥′]. As a remark, [𝑌|𝑋 =
𝑥] ≤st [𝑌|𝑋 = 𝑥′] is still true for 𝑋 ∼ Unif(0, 𝑐) for any 𝑐 > 0, and

𝑌|𝑋 = 𝑥 ∼ Gamma(𝑘(𝑥) = √𝑥, 𝜃(𝑥) =min{max{𝑥, 𝑎}, 𝑏}), for any 0 < 𝑎 < 𝑏 < 𝑐.

△

Example 2.3.6. We adjust the following result from Lemma 3 in Mösching and Dümbgen (2024), which
is valid for probability measures with dominating measures other than Lebesgue measure. Let 𝑋 and
𝑌 be random variables which has density functions 𝑓𝑋 and 𝑓𝑌 respectively, and assume 𝑋 ≤lr 𝑌. Let 𝑍𝜆
be another random variable with density function 𝑓𝜆(𝑧) ∶= (1− 𝜆)𝑓𝑋(𝑧) + 𝜆𝑓𝑌(𝑧), where 0 < 𝜆 < 1. The
claim is that 𝑍𝜆 ≤lr 𝑍𝜇 for any 0 < 𝜆 < 𝜇 < 1.

Indeed, let 0 < 𝜆 < 𝜇 < 1 and take any 𝑧1 ≤ 𝑧2. Then

𝑓𝜆(𝑧1)𝑓𝜇(𝑧2) − 𝑓𝜆(𝑧2)𝑓𝜇(𝑧1) = [(1 − 𝜆)𝜇 − 𝜆(1 − 𝜇)]𝑓𝑋(𝑧1)𝑓𝑌(𝑧2)
+ [(1 − 𝜆)(1 − 𝜇) − (1 − 𝜆)(1 − 𝜇)]𝑓𝑋(𝑧1)𝑓𝑋(𝑧2)
+ [𝜆(1 − 𝜇) − (1 − 𝜆)𝜇)]𝑓𝑋(𝑧2)𝑓𝑌(𝑧1) + [𝜆𝜇 − 𝜆𝜇]𝑓𝑌(𝑧1)𝑓𝑌(𝑧2)

= (𝜇 − 𝜆)[𝑓𝑋(𝑧1)𝑓𝑌(𝑧2) − 𝑓𝑌(𝑧1)𝑓𝑌(𝑧2)] ≥ 0,

by the assumption that 𝑋 ≤lr 𝑌. Hence, 𝑍𝜆 ≤lr 𝑍𝜇 for any 0 < 𝜆 < 𝜇 < 1. △

2.4. The monotone hazard ratio order
Following our discussion about survival analysis, one might be interested in estimating the hazard ratio.
This quantity gives the relative hazard of an experiment group with a control group. For instance, what
the instantaneous risk of death of heavy-smoker patients relative to non-smoker patients is, at a time 𝑡,
given the survival time 𝑡. A model that is often used for obtaining the hazard ratio is Cox’s proportional
hazard regression model, which was proposed by Cox (1972).

The Cox’s proportional hazard regression model assumes that the hazard rate for an individual with
covariates 𝐗 ∈ ℝ𝑑 is

ℎ(𝑡|𝐗) = ℎ0(𝑡) exp(𝜷⊺𝐗),
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where ℎ0 represents the baseline hazard when the covariates 𝐗 = 𝟎 and 𝜷 ∈ ℝ𝑑. Suppose 𝐗 = 𝑋1 ∈ ℝ,
then

ℎ(𝑡|𝑋1 + 1)
ℎ(𝑡|𝑋1)

= exp (𝛽) ,

which yields that the hazard rate given an increase of 𝑋1 of one unit, is proportional to the hazard rate
given 𝑋1. If 𝑋1 ∈ {0, 1}, then, the ratio of hazard rate is exp (𝛽). We interpret it as the mortality risk of
patients that belong to group 𝑋1 = 1 relative to patients from group 𝑋1 = 0. In both of these cases, the
hazard ratio is independent of time.

The assumption that the hazard ratio is constant with time, may be violated in practice. Fortunately,
Wu and Westling (2023) developed a non-parametric estimator for estimating the hazard ratio, in the
case that it exhibits a monotone behavior. In constructing the estimator, they define a new type of
stochastic order called the monotone hazard ratio order.

Definition 2.4.1 (The monotone hazard ratio order). Let 𝑋 and 𝑌 be real-valued random variables, with
ℎ𝑋(𝑡) and ℎ𝑌(𝑡) being the associated hazard rates. We say that 𝑋 is smaller than 𝑌 in the hazard rate
order (denoted by 𝑋 ≤mhr 𝑌) if

ℎ𝑌(𝑡)
ℎ𝑋(𝑡)

is non-decreasing in 𝑡 ∈ supp(𝑋) ∪ supp(𝑌). (2.12)

As stated by Wu and Westling (2023), if two random variables are ordered in the monotone hazard
ratio sense, then in general they are not ordered in the usual stochastic order, likelihood ratio, or hazard
rate. Themonotone hazard ratio order is also not implied by any of these three orders. This is illustrated
by the following example taken from Wu and Westling (2023). We refer to the aforementioned article
for more examples.

Example 2.4.2. Suppose first that we have two geometric random variables 𝑋1 and 𝑋2 with parameters
𝑝1, 𝑝2 ∈ (0, 1] respectively. We still interpret this distribution as in Example 2.1.5. Then for 𝑖 ∈ {1, 2},
the cumulative distribution is

𝐹𝑋𝑖(𝑡) = 1 − (1 − 𝑝𝑖)𝑡 , 𝑡 ∈ ℕ.
By (2.5) the hazard rate for 𝑋𝑖 ’s are

ℎ𝑋𝑖(𝑡) =
ℙ(𝑋𝑖 = 𝑡)
ℙ(𝑋𝑖 ≥ 𝑡)

= ℙ(𝑋𝑖 = 𝑡)
ℙ(𝑋𝑖 = 𝑡) + ℙ(𝑋𝑖 > 𝑡)

= 1
1 + ℙ(𝑋𝑖 > 𝑡)/ℙ(𝑋𝑖 = 𝑡)

We have that
ℙ(𝑋𝑖 > 𝑡)
ℙ(𝑋𝑖 = 𝑡)

= (1 − 𝑝𝑖)𝑡
𝑝𝑖(1 − 𝑝𝑖)𝑡−1

= 1 − 𝑝𝑖
𝑝𝑖

Therefore, the hazard rate for 𝑋𝑖 is ℎ𝑋𝑖(𝑡) = 𝑝𝑖, and so the hazard ratio is

ℎ𝑋2(𝑡)
ℎ𝑋1(𝑡)

= 𝑝2
𝑝1
1 − 𝑝1
1 − 𝑝2

,

which is non-decreasing in 𝑡 ∈ ℕ. However, as we have seen in Example 2.1.5, we have to impose an
order on the 𝑝𝑖 ’s. If 𝑝1 > 𝑝2, then 𝑋1 ≤mhr 𝑋2 but 𝑋1 ≤st 𝑋2 is false. Therefore, 𝑋1 ≤lr 𝑋2 and 𝑋1 ≤hr 𝑋2
are also false. △





3
Scoring Rules

In this chapter, we define more formally what a scoring rule is and its interpretation. We also give
examples of scoring rules and study their properties. Finally, there is a relation between the scoring
rules and information theory, which we will discuss as well.

Suppose we forecast an event, in which its uncertainty is quantified by a probability distribution. The
forecasts are based on a given data set. The question is, under the assumption that new events have
the same distribution as those observed in the given data set, how well do the forecasts predict these
new events? To assess the quality of the probabilistic forecasts, one might consider using scoring rules.
In this section, we review well-known scoring rules and their properties. We mainly use Gneiting and
Raftery (2007) for the basic information about the scoring rules. In this section, we also give several
examples of scoring rules.

Let us first define scoring rules formally.
Definition 3.0.1 (Scoring rules). Let 𝒫 be a convex class of probability measures on a measurable
space (Ω, ℱ). A function 𝑆 ∶ 𝒫 × Ω → ℝ is called a scoring rule if for any ℙ ∈ 𝒫, the function 𝑆(ℙ, ⋅) is
measurable, and the integral of 𝑆(ℙ, ⋅) w.r.t. ℚ exists for any ℚ ∈ 𝒫.
Before we interpret the scoring rule, there is a technicality that we need to address. Gneiting and
Raftery (2007) requires 𝑆 to be 𝒫-quasi integrable, which means that for any ℙ ∈ 𝒫, a real-valued
measurable function 𝑓 on the probability space (Ω, ℱ, ℙ) is ℙ-quasi integrable. Let 𝑓 = 𝑓+ −𝑓−, where
𝑓+ = max{𝑓, 0} and 𝑓− = min{−𝑓, 0}. For 𝑓 to be ℙ-quasi integrable, means that at least one of 𝑓+
and 𝑓− has a real integral w.r.t. ℙ. So then ∫𝑓 𝑑ℙ ∈ ℝ. One may also say that the integral 𝑓 w.r.t
measure ℙ exists (Bauer, 2001, p. 65).

We may interpret scoring rules in two ways: as a reward or a loss system. If the scoring rules are
interpreted as a reward system, then the scoring rules are said to be positively oriented. If we view the
scoring rules as a loss system, then the scoring rules are negatively oriented. In positive orientation, a
forecaster that predicts the observed event well receives a high reward. Alternatively, scoring rules that
are seen as a loss system give less loss on well-predicted events. In this section, we use the positive
orientation, unless mentioned otherwise.

3.1. Proper and strictly proper scoring rules
A natural question that comes up is how can we construct forecasts such that the reward is high.
Further, the scoring rule varies depending on the probability measure and the data. To this end, we
will need a scoring rule such that the averaged reward is maximized when we predict events using the
’true’ distribution of the data set. We refer to such scoring rule as proper. If the scoring rule has a
unique distribution that maximizes the reward output, then the scoring rule is strictly proper.
Definition 3.1.1 (Proper and strictly proper scoring rules). Let 𝒫 be a convex class of probability mea-
sures on a measurable space (Ω, ℱ). Let 𝑆 ∶ 𝒫×Ω → ℝ be a scoring rule. Let 𝔼ℚ denote an expectation
under the probability measure ℚ ∈ 𝒫. The scoring rule 𝑆 is proper relative to 𝒫, if for any ℙ,ℚ ∈ 𝒫,

𝔼ℚ[𝑆(ℚ, ⋅)] = ∫𝑆(ℚ,𝜔) 𝑑ℚ(𝜔) ≥ ∫𝑆(ℙ,𝜔) 𝑑ℚ(𝜔) = 𝔼ℚ[𝑆(ℙ, ⋅)]. (3.1)

11
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We refer to 𝑆 being strictly proper if the equality in (3.1) holds if and only if ℙ = ℚ.

From the Definition 3.1.1, we observe the following. Suppose a given data set follows the distribution
of ℚ, but the forecaster uses ℙ to predict events in the data. Then on average, the reward of predicting
events using the true distribution should give the maximal reward, if the reward system (i.e. the scoring
rule) is proper. If the distribution ℚ is the only distribution that gives maximal reward, then the scoring
rule is strictly proper. We further observe that if 𝑆 interpreted as a loss function, then predicting events
using ℚ should give the least loss. In that case, (3.1) therefore becomes

𝔼ℚ[𝑆(ℚ, ⋅)] ≤ 𝔼ℚ[𝑆(ℙ, ⋅)]. (3.2)

We now give examples of scoring rules and show that they are (strictly) proper.

Example 3.1.2 (The Brier score). The Brier score or the quadratic score is presented in Brier (1950)
for weather forecast verification. For this score, the convex class of probability measures 𝒫 is

𝒫𝑟 ∶= {𝐩 = (𝑝𝜔)𝜔∈Ω ∈ ℝ𝑟 ∶ ∀𝜔 ∈ Ω, 𝑝𝜔 ≥ 0, ∑
𝜔∈Ω

𝑝𝜔 = 1} , (3.3)

which is defined on a measurable space (Ω,ℱ) such that Ω ∶= {1, 2, … , 𝑟}. Then the Brier score is
defined as follows:

𝑆Brier(𝐩, 𝑗) = −
𝑟

∑
𝜔=1

(𝑝𝜔 − 𝟙(𝑗 = 𝜔))2, (3.4)

where 𝟙(𝑗 = 𝜔) = 1 if the event 𝜔 occurs, otherwise its value is 0.
The interpretation of this score is quite straightforward. Suppose 𝐩 is the probabilistic forecast and

𝑗 is the event that we observe. Suppose the forecaster has 100% confidence that event 𝜔′ will occur,
i.e. 𝑝𝜔′ = 1 and 𝑝𝜔 = 0 for any 𝜔 ≠ 𝜔′ ∈ Ω. If we observe event 𝑗 = 𝜔′, then from (3.4), the Brier score
takes a value of zero. On the other hand, if we observe event 𝑗 that is not 𝜔′, then the score is negative.
In this particular example, the score is equal to −2. The highest reward for ’perfect’ forecasting is then
zero.

To show that 𝑆Brier is strictly proper, we compute 𝔼𝐪[𝑆Brier(𝐪, ⋅)] − 𝔼𝐪[𝑆Brier(𝐩, ⋅)]. For any fixed
𝑗 ∈ Ω, we have

𝑆Brier(𝐩, 𝑗) = − ∑
𝜔∈Ω

𝑝2𝜔 − 2𝟙(𝑗 = 𝜔)𝑝𝜔 + 𝟙(𝑗 = 𝜔)2

= 2𝑝𝑗 − 1 − ∑
𝜔∈Ω

𝑝2𝜔 ,

and so,

𝑆Brier(𝐪, 𝑗) − 𝑆Brier(𝐩, 𝑗) = 2(𝑞𝑗 − 𝑝𝑗) − ∑
𝜔∈Ω

(𝑞2𝜔 − 𝑝2𝜔).

Therefore for any 𝐪, 𝐩 ∈ 𝒫, we get

𝔼𝐪[𝑆Brier(𝐪, ⋅)] − 𝔼𝐪[𝑆Brier(𝐩, ⋅)] = ∑
𝑗∈Ω

𝑆Brier(𝐪, 𝑗)𝑞𝑗 −∑
𝑗∈Ω

𝑆Brier(𝐩, 𝑗)𝑞𝑗

=∑
𝑗∈Ω
[𝑆Brier(𝐪, 𝑗) − 𝑆Brier(𝐩, 𝑗)]𝑞𝑗

=∑
𝑗∈Ω

(2(𝑞𝑗 − 𝑝𝑗) − ∑
𝜔∈Ω

(𝑞2𝜔 − 𝑝2𝜔)) 𝑞𝑗

=∑
𝑗∈Ω

2𝑞𝑗(𝑞𝑗 − 𝑝𝑗) − ∑
𝜔∈Ω

(𝑞2𝜔 − 𝑝2𝜔)∑
𝑗∈Ω

𝑞𝑗
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=∑
𝑗∈Ω

2(𝑞2𝑗 − 𝑞𝑗𝑝𝑗) −∑
𝑗∈Ω
(𝑞2𝑗 − 𝑝2𝑗 )

= ∑
𝑗∈Ω

𝑞2𝑗 − 2𝑞𝑗𝑝𝑗 + 𝑝2𝑗

=∑
𝑗∈Ω
(𝑞𝑗 − 𝑝𝑗)2 ≥ 0,

the squared Euclidean distance in ℝ𝑟 of 𝐩 and 𝐪. The Brier score satisfies the condition in (3.1), and
therefore 𝑆Brier(𝐩, ⋅) is a proper scoring rule. By the definition of metric distance, equality is attained if
and only if 𝐪 = 𝐩. △
Example 3.1.3 (The pseudo-spherical score). While we find the pseudo-spherical score in Gneiting
and Raftery (2007), the spherical score was already mentioned in Winkler and Murphy (1968). The
measurable space (Ω, ℱ) and the convex class of probability measures are the same as in Example
3.1.2. The pseudo-spherical score is defined as follows: for any 𝛼 > 1 and 𝐩 ∈ 𝒫𝑟,

𝑆Spherical(𝐩, 𝑗) =
𝑝𝛼−1𝑗

(∑𝑘∈Ω 𝑝𝛼𝑘 )
(𝛼−1)/𝛼 .

According to Selten (1998), if 𝛼 = 2, then 𝑆Spherical is called spherical because the vector 𝐩 is
mapped to a vector on a unit sphere. Indeed, let 𝛼 = 2 and let

𝐒Spherical(𝐩) ∶= (𝑆Spherical(𝐩, 1), … , 𝑆Spherical(𝐩, 𝑟))⊺.

Then the Euclidean norm of 𝐒Spherical(𝐩) is

||𝐒Spherical(𝐩)|| = √∑
𝑗∈Ω

(
𝑝𝑗

(∑𝑘∈Ω 𝑝2𝑘)
1/2)

2

= √
∑𝑗∈Ω 𝑝2𝑗
∑𝑘∈Ω 𝑝2𝑘

= 1.

For a general 𝛼, the norm of the vector 𝐒Spherical(𝐩) is generally not equal to one. The name pseudo-
spherical scores most likely refer to the generalized version of the spherical score when 𝛼 = 2.

To show that the pseudo-spherical scoring rule is proper, we use Hölder’s inequality. For any 𝐩, 𝐪 ∈
𝒫𝑟 and 𝛼 > 1, we have

𝔼𝐪[𝑆Spherical(𝐩, ⋅)] = ∑
𝑗∈Ω

𝑝𝛼−1𝑗

(∑𝑘∈Ω 𝑝𝛼𝑘 )
(𝛼−1)/𝛼 𝑞𝑗

= (∑
𝑘∈Ω

𝑝𝛼𝑘)

−(𝛼−1)/𝛼

(∑
𝑗∈Ω

𝑝𝛼−1𝑗 𝑞𝑗) (3.5)

and

𝔼𝐪[𝑆Spherical(𝐪, ⋅)] = ∑
𝑗∈Ω

𝑞𝛼𝑗
(∑𝑘∈Ω 𝑞𝛼𝑘 )

(𝛼−1)/𝛼 = (∑
𝑗∈Ω

𝑞𝛼𝑗 )

1/𝛼

. (3.6)

By using Hölder’s inequality for 𝑝 = 𝛼/(1−𝛼) and 𝑞 = 𝛼 on the second term of (3.5) and combine with
(3.6) yield

∑
𝑗∈Ω

𝑝𝛼−1𝑗 𝑞𝑗 ≤ (∑
𝑗∈Ω

𝑝𝛼𝑗 )

(𝛼−1)/𝛼

(∑
𝑗∈Ω

𝑞𝛼𝑗 )

1/𝛼

= (∑
𝑗∈Ω

𝑝𝛼𝑗 )

(𝛼−1)/𝛼

𝔼𝐪[𝑆Spherical(𝐪, ⋅)]. (3.7)
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Combining (3.5), (3.6) and (3.7) yield,

𝔼𝐪[𝑆Spherical(𝐩, ⋅)] ≤ 𝔼𝐪[𝑆Spherical(𝐪, ⋅)].

△

Example 3.1.4 (The logarithmic score). Let (Ω, ℱ) and 𝒫𝑟 be measurable space and a convex class
of probability measures as defined in Example 3.1.2. Then for 𝐩 ∈ 𝒫𝑟 and 𝑗 ∈ Ω, the logarithm scoring
rule is

𝑆log(𝐩, 𝑗) = log𝑝𝑗 . (3.8)

This score is strictly proper since 𝔼𝐪[𝑆log(𝐪, ⋅)] − 𝔼𝐪[𝑆log(𝐩, ⋅)] is related to the Kullback-Leibler di-
vergence. Indeed,

𝔼𝐪[𝑆log(𝐪, ⋅)] − 𝔼𝐪[𝑆log(𝐩, ⋅)] = ∑
𝑗∈Ω
[log(𝑞𝑗) − log(𝑝𝑗)]𝑞𝑗 =∑

𝑗∈Ω
log(

𝑞𝑗
𝑝𝑗
)𝑞𝑗 = −∑

𝑗∈Ω
log(

𝑝𝑗
𝑞𝑗
)𝑞𝑗 . (3.9)

By using the inequality − log(𝑥) ≥ −𝑥 + 1 for any 𝑥 ∈ ℝ, on (3.9), we have

𝔼𝐪[𝑆log(𝐪, ⋅)] − 𝔼𝐪[𝑆log(𝐩, ⋅)] ≥ ∑
𝑗∈Ω

(−
𝑝𝑗
𝑞𝑗
+ 1)𝑞𝑗 =∑

𝑗∈Ω
−𝑝𝑗 + 𝑞𝑗 = 0. (3.10)

The inequality in (3.10) is an equality if and only if 𝐩 = 𝐪, which follows immediately from (3.9). Note
also that if 𝑆∗log(𝐩, 𝑗) ∶= −𝑆log(𝐩, 𝑗), then 𝑆∗log(𝐩, 𝑗) is the negative orientation version of the logarithmic
score and

𝔼𝐪[𝑆∗log(𝐪, 𝑗)] = −∑
𝑗∈Ω

𝑞𝑗 log 𝑞𝑗 ,

which is the Shannon entropy. △

3.2. The (continuous) ranked probability score
In Section 3.1, we have seen several examples of (strictly) proper scoring rules. These scoring rules
are defined on a finite sample space. Such scoring rules use the probability mass function and the
observed event to give the forecaster a reward or a loss, depending on the orientation of the scoring rule.
In this section, we discuss the development of a scoring rule that uses the distribution function directly
instead of the probability mass function. This scoring rule is called the continuous ranked probability
score (CRPS), which was introduced by Matheson and Winkler (1976). Before the CRPS, there was
also a scoring rule called the ranked probability score (RPS), which was introduced by Epstein (1969).
In this section, we will discuss both the RPS and the CRPS. Furthermore, even though Matheson and
Winkler (1976) already stated how the RPS and the CRPS are related, we will prove the truthfulness
of the statement mathematically as well.

3.2.1. The ranked probability score
The ranked probability score is constructed with the goal that it is sensitive to how ’far’ lies a forecast
from the observed event. Consider the following examples of forecasts for a hypothetical location, in
which the wind speed is rarely very high and is often low. Suppose then the recorded wind speed
can be partitioned and ranked from very high, high, moderate to low-speed. Now, a forecaster A and B
forecast these events with the following probability respectively: (0.1, 0.1, 0.2, 0.6) and (0.2, 0.1, 0.1, 0.6).
If a low wind speed is observed, then all scoring rules that we have discussed in the previous section
will give the same score. However, forecaster B assigns a higher probability to the event as ’very high’,
and so one might argue that forecaster A has a better quality forecast. For this reason, a scoring rule
that can distinguish such forecasts was developed by Epstein (1969).

The derivation of the ranked probability score uses the utility framework. Suppose the sample space
Ω = {1, 2}, where 1 is interpreted as bad weather that requires full protection and 2 is good weather
which requires no protection. One can then compute the expected utility, by designing a utility matrix
and a decision rule of when action to protect is taken. Instead of two possible outcomes, Epstein
(1969) apply the utility framework on Ω = {1,… , 𝑟} for 𝑟 ≥ 2. Suppose we again interpret the sample
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space as the outcome of the weather and we rank the elements of Ω from worst to the best weather,
one then can compute the expected utility in this scenario. Unfortunately, the resulting expected utility
will depend on the outcome of the weather and the ”goodness” of the prediction. We describe the
computation and explanation of the utility in more detail in Appendix A. That is, if we predict the best
weather perfectly, then its expected utility is higher than when the worst weather is perfectly predicted.
The ranked probability score is defined by combining the resulting expected utility when we rank the
weather from best to worst, and vice versa. Now, we state the definition of the ranked probability score.

Definition 3.2.1 (The ranked probability score). Let (Ω, ℱ) be the probability space, whereΩ = {1,… , 𝑟},
such that the elements are ranked from ”good” to ”bad” or vice versa 1. Let 𝑝𝜔 denote the probability
of event 𝜔 occurs. Let 𝒫𝑟 be a class of convex probability measures on (Ω, ℱ), defined as in (3.3). The
ranked probability score (RPS) is a scoring rule defined as follows

𝑆RPS(𝐩, 𝑗) =
3
2 −

1
2(𝑟 − 1)

𝑟−1

∑
𝑖=1
[(

𝑖

∑
𝑘=1

𝑝𝑘)

2

+ (
𝑟

∑
𝑘=𝑖+1

𝑝𝑘)

2

] − 1
𝑟 − 1

𝑟

∑
𝑖=1
|𝑖 − 𝑗|𝑝𝑖 . (3.11)

The ranked probability score gives the maximum reward for ’perfectly’ predicting an event 𝑗 and it is
independent of how the forecaster ranks the sample space. Indeed, let 𝐩 = (𝑝1, … , 𝑝𝑟) such that 𝑝𝑗 = 1
and 𝑝𝑗′ = 0 for any 1 ≤ 𝑗 ≠ 𝑗′ ≤ 𝑟. Then for any 1 ≤ 𝑖 ≤ 𝑟 − 1, the summand of the second term in
(3.11) is equal to 1. This is because if 1 ≤ 𝑗 ≤ 𝑖, then ∑𝑖𝑘=1 𝑝𝑘 = 1 and ∑𝑟𝑘=𝑖+1 𝑝𝑘 = 0, and vice versa
for 𝑖 ≤ 𝑗 ≤ 𝑟. Hence,

𝑆RPS(𝐩, 𝑗) =
3
2 −

1
2(𝑟 − 1)

𝑟−1

∑
𝑖=1
1 = 3

2 −
1
2 = 1.

Now suppose we predict with 100% confidence that weather 𝑗′ occurs, but the observed outcome
is 𝑗 ≠ 𝑗′. In case we set 𝐩 = 𝐩1 = (1, 0, … , 0) and 𝑗 > 1, then

𝑆RPS(𝐩1, 𝑗) =
3
2 −

1
2(𝑟 − 1)

𝑟−1

∑
𝑖=1
1 − 1

𝑟 − 1(𝑗 − 1) =
3
2 −

1
2 −

𝑗 − 1
𝑟 − 1 =

𝑟 − 𝑗
𝑟 − 1 .

If we let 𝐩2 = (0, 0, … , 1) but 𝑗 < 𝑟, then

𝑆RPS(𝐩2, 𝑗) =
3
2 −

1
2(𝑟 − 1)

𝑟−1

∑
𝑖=1
1 − 1

𝑟 − 1(𝑟 − 𝑗) =
3
2 −

1
2 −

𝑗 − 1
𝑟 − 1 =

𝑗 − 1
𝑟 − 1.

The score 𝑆RPS(𝐩1, 𝑗) is decreasing linearly with 𝑗, as opposed to linearly increasing 𝑆RPS(𝐩2, 𝑗) in 𝑗.
These scores are intercepting at 𝑗 = (𝑟 − 1)/2, which is the weather in the middle range.

The following result states that the ranked probability score is strictly proper, which is already proven
in Murphy (1966) and von Holstein (1970).

Theorem 3.2.2. The ranked probability score is strictly proper relative to 𝒫𝑟.

Proof. Let 𝑋 be a random variable that takes values in {1, … , 𝑟} and following a distribution with prob-
ability mass vector 𝐪 = (𝑞1, … , 𝑞𝑟) ∈ 𝒫𝑟. Before we compute 𝔼𝐪 [𝑆RPS(𝐩, 𝑋)], let us rewrite the second
term in 𝑆RPS(𝐩, 𝑗). We prove

𝑟−1

∑
𝑖=1
[(

𝑖

∑
𝑘=1

𝑝𝑘)

2

+ (
𝑟

∑
𝑘=𝑖+1

𝑝𝑘)

2

] =
𝑟

∑
𝑘=1

𝑟

∑
𝑙=1
[(𝑟 − 1) − |𝑘 − 𝑙|]𝑝𝑘𝑝𝑙 . (3.12)

1The term ”good” and ”bad” depends on the context of the problem. If we consider temperature, we can discretize and assign
an interpretation for each interval. The sample space Ω in this case would be sorted from hot to cold or vice versa
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To this end put each summand in a (𝑟 −1)×2 array, where the first column represents (∑𝑖𝑘=1 𝑝𝑘)
2
and

the second column is (∑𝑟𝑘=𝑖+1 𝑝𝑘)
2
:

𝑝21 (𝑝2 + 𝑝3 +⋯+ 𝑝𝑟−1 + 𝑝𝑟)2
(𝑝1 + 𝑝2)2 (𝑝3 +⋯+ 𝑝𝑟−1 + 𝑝𝑟)2
⋮ ⋮
(𝑝1 + 𝑝2 + 𝑝3 +⋯+ 𝑝𝑟−2)2 (𝑝𝑟−1 + 𝑝𝑟)2
(𝑝1 + 𝑝2 + 𝑝3 +⋯+ 𝑝𝑟−2 + 𝑝𝑟−1)2 𝑝2𝑟

If we expand the polynomials, we notice that 𝑝21 , 𝑝22 , … , 𝑝2𝑟 appears in each 𝑟 − 1 rows . As for the cross
terms, we let 1 ≤ 𝑛 ≠ 𝑚 ≤ 𝑟. If 𝑛 < 𝑚, then 𝑝𝑛𝑝𝑚 does not appear in the rows which the entries are
(∑𝑛𝑘=1 𝑝𝑘)

2
and (∑𝑟𝑘=𝑚′ 𝑝𝑘)

2
, where 𝑛 < 𝑚′ ≤ 𝑚. There are 𝑛 − 𝑚 such rows. Similarly, if 𝑛 > 𝑚, then

𝑝𝑛𝑝𝑚 will not appear in 𝑚−𝑛 rows. Hence, for any 1 ≤ 𝑛 ≠ 𝑚 ≤ 𝑟, there are [(𝑟 − 1) − |𝑛 −𝑚|] terms
of 𝑝𝑛𝑝𝑚. Hence (3.12) is true.

Now, we let 𝐩 = (𝑝1, … , 𝑝𝑟) ∈ 𝒫𝑟, then

𝔼𝐪 [𝑆RPS(𝐩, 𝑋)] =
𝑟

∑
𝑗=1
𝑆RPS(𝐩, 𝑗)𝑞𝑗

=
𝑟

∑
𝑗=1
{32 −

1
2(𝑟 − 1)

𝑟−1

∑
𝑖=1
[(

𝑖

∑
𝑘=1

𝑝𝑘)

2

+ (
𝑟

∑
𝑘=𝑖+1

𝑝𝑘)

2

] − 1
𝑟 − 1

𝑟

∑
𝑖=1
|𝑖 − 𝑗|𝑝𝑖}𝑞𝑗

= 3
2 −

1
2(𝑟 − 1)

𝑟−1

∑
𝑖=1
[(

𝑖

∑
𝑘=1

𝑝𝑘)

2

+ (
𝑟

∑
𝑘=𝑖+1

𝑝𝑘)

2

] − 1
𝑟 − 1

𝑟

∑
𝑗=1
𝑞𝑗{

𝑟

∑
𝑖=1
|𝑖 − 𝑗|𝑝𝑖}

= 3
2 −

1
2(𝑟 − 1)

𝑟

∑
𝑘=1

𝑟

∑
𝑙=1
[(𝑟 − 1) − |𝑘 − 𝑙|]𝑝𝑘𝑝𝑙 −

1
𝑟 − 1

𝑟

∑
𝑗=1
𝑞𝑗{

𝑟

∑
𝑖=1
|𝑖 − 𝑗|𝑝𝑖}.

We would like to find 𝐩 such that 𝐩 maximizes 𝔼𝐪 [𝑆RPS(𝐩, 𝑋)], subject to ∑
𝑟
𝑗=1 𝑝𝑗 = 1. To this end, we

use the Lagrange multiplier, and therefore we solve

𝐩̌ = argmax
𝐩∈𝒫𝑟

{𝔼𝐪 [𝑆RPS(𝐩, 𝑋)] + 𝜆(
𝑟

∑
𝑗=1
𝑝𝑗 − 1)} =∶ argmax

𝐩∈𝒫𝑟
𝑓(𝐩, 𝜆).

Then, if we differentiate 𝑓 w.r.t. some entry in 𝑝𝑚 in 𝐩, we obtain

𝜕𝑓
𝜕𝑝𝑚

(𝐩, 𝜆) = − 1
𝑟 − 1

𝑟

∑
𝑖=1
[(𝑟 − 1) − |𝑚 − 𝑖|]𝑝𝑖 −

1
𝑟 − 1

𝑟

∑
𝑗=1
|𝑚 − 𝑗|𝑞𝑗 + 𝜆,

𝜕2𝑓
𝜕𝑝2𝑚

(𝐩, 𝜆) = −1.

The second derivative test then guarantees that the maximum exists. To find the stationary point, we
use the constraint that the 𝑝𝑖 ’s sum up to 1. So we then have

𝜕𝑓
𝜕𝑝𝑚

(𝐩, 𝜆) = −1 + 1
𝑟 − 1

𝑟

∑
𝑖=1
|𝑚 − 𝑖|𝑝𝑖 −

1
𝑟 − 1

𝑟

∑
𝑗=1
|𝑚 − 𝑗|𝑞𝑗 + 𝜆

= 𝜆 − 1 + 1
𝑟 − 1

𝑟

∑
𝑗=1
|𝑚 − 𝑗|(𝑝𝑗 − 𝑞𝑗).



3.2. The (continuous) ranked probability score 17

Which means
𝜕𝑓
𝜕𝑝𝑚

(𝐩, 𝜆) = 0 ⟹ 1
𝑟 − 1

𝑟

∑
𝑗=1
|𝑚 − 𝑗|(𝑝𝑗 − 𝑞𝑗) = (𝑟 − 1)(1 − 𝜆).

The trick that is used in Murphy (1966), is to subtract the above equation with another adjacent equation
to eliminate (𝑟 − 1)(1 − 𝜆). So then for 1 ≤ 𝑚 ≤ 𝑟 − 1, we have

𝑟

∑
𝑗=1
|𝑚 − 𝑗|(𝑝𝑗 − 𝑞𝑗) −

𝑟

∑
𝑗=1
|𝑚 + 1 − 𝑗|(𝑝𝑗 − 𝑞𝑗) = 0

⟺
𝑟

∑
𝑗=𝑚+1

(𝑝𝑗 − 𝑞𝑗) −
𝑚

∑
𝑗=1
(𝑝𝑗 − 𝑞𝑗) = 0

⟺
𝑚

∑
𝑗=1
(𝑝𝑗 − 𝑞𝑗) =

𝑟

∑
𝑗=1
(𝑝𝑗 − 𝑞𝑗) −

𝑚

∑
𝑗=1
(𝑝𝑗 − 𝑞𝑗)

⟺ 2
𝑚

∑
𝑗=1
(𝑝𝑗 − 𝑞𝑗) = 0, (3.13)

where we again use the constraint. Equation (3.13) is true if and only if 𝑝𝑗 = 𝑞𝑗 for any 1 ≤ 𝑗 ≤ 𝑚
and 1 ≤ 𝑚 ≤ 𝑟 − 1. Hence, 𝐩̌ = 𝐪. This maximizer is unique and so the scoring rule is indeed strictly
proper.

Lastly, we would like to show another way to formulate the RPS. This will be needed when we link
the RPS with the CRPS. It turns out that the RPS is an affine transformation of a certain function that
depends on the forecast probabilities.

Lemma 3.2.3. Let 𝐩 = (𝑝1, … , 𝑝𝑟) ∈ 𝒫𝑟 and 𝑗 ∈ Ω = {1,… , 𝑟}. Let

𝐺𝑖 =
𝑖

∑
𝑘=1

𝑝𝑖 and therefore 1 − 𝐺𝑖 =
𝑟

∑
𝑘=𝑖+1

𝑝𝑖 . (3.14)

Then,

𝑆RPS(𝐩, 𝑗) = 1 +
1

𝑟 − 1 (−
𝑟−1

∑
𝑖=1
𝐺2𝑖 + 2

𝑟−1

∑
𝑖=𝑗
𝐺𝑖 − (𝑟 − 𝑗)) .

Proof. From the definition the RPS, and using (3.14) yields

𝑆RPS(𝐩, 𝑗) =
3
2 −

1
2(𝑟 − 1)

𝑟−1

∑
𝑖=1
[𝐺2𝑖 + (1 − 𝐺𝑖)2] −

1
𝑟 − 1

𝑟

∑
𝑖=1
|𝑖 − 𝑗|𝑝𝑖

= 3
2 −

1
2(𝑟 − 1)

𝑟−1

∑
𝑖=1
[2𝐺2𝑖 + 1 − 2𝐺𝑖] −

1
𝑟 − 1

𝑟

∑
𝑖=1
|𝑖 − 𝑗|𝑝𝑖

= 3
2 −

1
𝑟 − 1

𝑟−1

∑
𝑖=1
[𝐺2𝑖 − 𝐺𝑖] −

1
2 −

1
𝑟 − 1

𝑟

∑
𝑖=1
|𝑖 − 𝑗|𝑝𝑖

= 1 − 1
𝑟 − 1

𝑟−1

∑
𝑖=1
[𝐺2𝑖 − 𝐺𝑖] −

1
𝑟 − 1

𝑟

∑
𝑖=1
|𝑖 − 𝑗|𝑝𝑖 . (3.15)

Now, note that
𝑟

∑
𝑖=1
|𝑖 − 𝑗|𝑝𝑖 =

𝑗−1

∑
𝑖=1
(𝑗 − 𝑖)𝑝𝑖 +

𝑟

∑
𝑖=𝑗+1

(𝑖 − 𝑗)𝑝𝑖
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= (𝑝1 + 𝑝1 +⋯+ 𝑝1⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝
(𝑗−1) terms

) + (𝑝2 +⋯+ 𝑝2⏝⎵⎵⎵⏟⎵⎵⎵⏝
(𝑗−2) terms

) + ⋯ + (𝑝𝑗−1 + 𝑝𝑗−1⏝⎵⎵⎵⏟⎵⎵⎵⏝
2 terms

) + 𝑝𝑗−1⏟
1 term

+ 𝑝𝑗+1⏟
1 term

+(𝑝𝑗+2 + 𝑝𝑗+2⏝⎵⎵⎵⏟⎵⎵⎵⏝
2 terms

) + ⋯ + (𝑝𝑟 + 𝑝𝑟 +⋯+ 𝑝𝑟⏝⎵⎵⎵⎵⏟⎵⎵⎵⎵⏝
(𝑟−𝑗) terms

)

= 𝑝1 + (𝑝1 + 𝑝2) + ⋯(𝑝1 +⋯+ 𝑝𝑗−1)⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
(𝑗−1) terms

(3.16)

+ (𝑝𝑗+1 + 𝑝𝑗+2 +⋯𝑝𝑟) + (𝑝𝑗+2 +⋯+ 𝑝𝑟) + ⋯ + 𝑝𝑟⏝⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏟⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⏝
(𝑟−𝑗) terms

=
𝑗−1

∑
𝑖=1

𝑖

∑
𝑘=1

𝑘𝑝𝑘 +
𝑟−1

∑
𝑖=𝑗

𝑟

∑
𝑘=𝑖+1

𝑝𝑘

=
𝑗−1

∑
𝑖=1
𝐺𝑖 +

𝑟−1

∑
𝑖=𝑗
(1 − 𝐺𝑖)

=
𝑗−1

∑
𝑖=1
𝐺𝑖 + (𝑟 − 𝑗) −

𝑟−1

∑
𝑖=𝑗
𝐺𝑖 . (3.17)

We combine (3.15) and (3.17) to get

𝑆RPS(𝐩, 𝑗) = 1 −
1

𝑟 − 1

𝑟−1

∑
𝑖=1
[𝐺2𝑖 − 𝐺𝑖] −

1
𝑟 − 1 [

𝑗−1

∑
𝑖=1
𝐺𝑖 −

𝑟−1

∑
𝑖=𝑗
𝐺𝑖 + (𝑟 − 𝑗)]

= 1 + 1
𝑟 − 1 (−

𝑟−1

∑
𝑖=1
𝐺2𝑖 +

𝑟−1

∑
𝑖=1
𝐺𝑖 −

𝑗−1

∑
𝑖=1
𝐺𝑖 +

𝑟−1

∑
𝑖=𝑗
𝐺𝑖 − (𝑟 − 𝑗))

= 1 + 1
𝑟 − 1 (−

𝑟−1

∑
𝑖=1
𝐺2𝑖 + 2

𝑟−1

∑
𝑖=𝑗
𝐺𝑖 − (𝑟 − 𝑗))

3.2.2. The continuous ranked probability score
In the previous section, we showed examples of (strictly) proper scoring rules defined on finite sam-
ple space. The convex class of probability measures in these examples consists of probability mass
functions. We will discuss a scoring rule that takes directly the distribution function as input, together
with an observed real-valued number. It turns out that this scoring rule is a generalization of the Brier
score, and this scoring rule is referred to as the continuous ranked probability score (CRPS).

The connection between the CRPS and the Brier score becomes clear if we discuss how the CRPS
is constructed. The CRPS is introduced by Matheson and Winkler (1976), and the motivation behind
the score is to assess the probabilistic forecasts using the continuous probability distributions directly.
Consider first the Brier score in Example 3.1.2, with the class 𝒫2 and the sample space {0, 1}. Then,
for 𝑝 ∈ 𝒫2, the Brier score may also be written as

𝑆Brier(𝑝, 𝑗) = −𝑝2𝟙(𝑗 ≠ 𝜔) − (1 − 𝑝)2𝟙(𝑗 = 𝜔).

If the event 𝜔 occurs and the forecaster predicts that event with probability mass 𝑝, then the reward
for the forecaster is −(1 − 𝑝)2, the reward is −𝑝2 otherwise. Now, when the sample space is ℝ, then
we usually compute the probability using the distribution function 𝐹. Matheson and Winkler (1976)
generalizes the Brier score by replacing 𝑝 with 𝐹. Further, instead of checking whether a value is
observed, we check if the observed value is at least a fixed real number. That is for 𝑥, 𝑡 ∈ ℝ, we define
the score as follows

𝑆(𝐹, 𝑥) = −𝐹(𝑡)2𝟙(𝑡 < 𝑥) − (1 − 𝐹(𝑡))2𝟙(𝑡 ≥ 𝑥). (3.18)
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The score in (3.18) depends on the threshold 𝑡. To remove such dependencies, all possible threshold
value are integrated, i.e. we integrate (3.18) w.r.t. 𝑡 on ℝ. This yields

𝑆∗(𝐹, 𝑥) = −∫
ℝ
𝐹2(𝑡)𝟙(𝑡 < 𝑥) 𝑑𝑡 − ∫

ℝ
(1 − 𝐹(𝑡))2𝟙(𝑡 ≥ 𝑥) 𝑑𝑡

= −∫
ℝ
𝐹2(𝑡)(1 − 𝟙(𝑡 ≥ 𝑥)) 𝑑𝑡 − ∫

ℝ
(1 − 𝐹(𝑡))2𝟙(𝑡 ≥ 𝑥) 𝑑𝑡

= −∫
ℝ
𝐹2(𝑡) − 𝐹2(𝑡)𝟙(𝑡 ≥ 𝑥) + 𝟙(𝑡 ≥ 𝑥) − 2𝐹(𝑡)𝟙(𝑡 ≥ 𝑥) + 𝐹2(𝑡)𝟙(𝑡 ≥ 𝑥) 𝑑𝑡

= −∫
ℝ
𝐹2(𝑡) − 2𝐹(𝑡)𝟙(𝑡 ≥ 𝑥) + 𝟙(𝑡 ≥ 𝑥) 𝑑𝑡

= −∫
ℝ
[𝐹(𝑡) − 𝟙(𝑡 ≥ 𝑥)]2 𝑑𝑡. (3.19)

The score in (3.19) is called the continuous ranked probability score (CRPS). We formally define the
score in the following.

Definition 3.2.4. Let ℬ(ℝ) be the Borel set of ℝ and (ℝ, ℬ(ℝ)) is the measurable space. Let 𝒫 be the
convex class of probability measures ℙ such that they are defined on ℬ(ℝ). Let 𝐹 be the cumulative
distribution function, which identifies the probability measure ℙ ∈ 𝒫. The CRPS is defined as

CRPS(𝐹, 𝑥) = −∫
ℝ
[𝐹(𝑡) − 𝟙(𝑡 ≥ 𝑥)]2 𝑑𝑡. (3.20)

There is an equivalent formulation of the CRPS, which is used to test the hypothesis that two dis-
tributions are equal. We will use this formulation to show the CRPS is strictly proper. To achieve this,
we need the following lemma from Baringhaus and Franz (2004, Lemma 2.1).

Lemma 3.2.5. Let 𝑋 and 𝑌 be two independent real-valued random variables, such that their first
moments are finite. Let 𝐹 and 𝐺 be the distribution function of 𝑋 and 𝑌 respectively. Then

𝔼[|𝑋 − 𝑌|] = ∫
ℝ
𝐹(𝑡)(1 − 𝐺(𝑡)) 𝑑𝑡 + ∫

ℝ
(1 − 𝐹(𝑡))𝐺(𝑡) 𝑑𝑡.

Proof. Note that for any 𝑥, 𝑦 ∈ ℝ, then

|𝑥 − 𝑦| = ∫
ℝ
𝟙(𝑥 ≤ 𝑡 < 𝑦) + 𝟙(𝑦 ≤ 𝑡 < 𝑥) 𝑑𝑡. (3.21)

Indeed, let 𝜆 be the Lebesgue measure. If 𝑥 < 𝑦, then 𝟙(𝑦 ≤ 𝑡 < 𝑥) = 0, and so

|𝑥 − 𝑦| = ∫
ℝ
𝟙(𝑥 ≤ 𝑡 < 𝑦) 𝑑𝑡 = 𝜆([𝑥, 𝑦)) = 𝑥 − 𝑦.

If 𝑦 > 𝑥, then 𝟙(𝑥 ≤ 𝑡 < 𝑦) = 0, which means that

|𝑥 − 𝑦| = ∫
ℝ
𝟙(𝑦 ≤ 𝑡 < 𝑥) 𝑑𝑡 = 𝜆([𝑦, 𝑥)) = 𝑦 − 𝑥.

In case that 𝑥 = 𝑦, then 𝟙(𝑥 ≤ 𝑡 < 𝑦) = 𝟙(𝑦 ≤ 𝑡 < 𝑥) = 0. So the integral representation in (3.21) is
true. Therefore,

𝔼[|𝑋 − 𝑌|] = 𝔼 [∫
ℝ
𝟙(𝑋 ≤ 𝑡 < 𝑌) + 𝟙(𝑌 ≤ 𝑡 < 𝑋) 𝑑𝑡] .

Since the indicator function is a measurable function, by Fubini-Tonelli’s theorem, we have

𝔼[|𝑋 − 𝑌|] = 𝔼 [∫
ℝ
𝟙(𝑋 ≤ 𝑡 < 𝑌) + 𝟙(𝑌 ≤ 𝑡 < 𝑋) 𝑑𝑡]

= ∫
ℝ
𝔼[𝟙(𝑋 ≤ 𝑡 < 𝑌)] + 𝔼[𝟙(𝑌 ≤ 𝑡 < 𝑋)] 𝑑𝑡
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= ∫
ℝ
ℙ(𝑋 ≤ 𝑡 < 𝑌) + ℙ(𝑌 ≤ 𝑡 < 𝑋) 𝑑𝑡

= ∫
ℝ
ℙ(𝑋 ≤ 𝑡)ℙ(𝑌 > 𝑡) + ℙ(𝑌 ≤ 𝑡)ℙ(𝑋 > 𝑡) 𝑑𝑡

= ∫
ℝ
𝐹(𝑡)(1 − 𝐺(𝑡)) 𝑑𝑡 + ∫

ℝ
(1 − 𝐹(𝑡))𝐺(𝑡) 𝑑𝑡.

The following statement shows that a new formulation of the CRPS is equivalent to the one in
Definition 3.2.4. It also shows that the score has the same unit as the observations. This result is
stated in Gneiting and Raftery (2007) and we check that it is indeed correct.

Lemma 3.2.6. Let 𝒫 be a convex class of probability measures on a measurable space (Ω, ℱ). Let
CRPS ∶ 𝒫 × Ω → ℝ be a scoring rule as defined in (3.20). Let 𝑋 be a random variable with distribution
function 𝐹, which uniquely identifies the probability measure ℙ ∈ 𝒫. Suppose 𝑋′ is an independent
copy of 𝑋. Then, for any 𝑥 ∈ Ω,

CRPS(𝐹, 𝑥) = 1
2𝔼[|𝑋 − 𝑋

′|] − 𝔼[|𝑋 − 𝑥|].

Proof. By Lemma 3.2.5, we have

𝔼[|𝑋 − 𝑋′|] = 2∫
ℝ
𝐹(𝑡)(1 − 𝐹(𝑡)) 𝑑𝑡 = 2∫

ℝ
𝐹(𝑡) − 𝐹2(𝑡) 𝑑𝑡,

and by (3.21) and Fubini-Tonelli’s theorem,

𝔼[|𝑋 − 𝑥|] = ∫
ℝ
𝐹(𝑡)𝟙(𝑡 < 𝑥) 𝑑𝑡 + ∫

ℝ
(1 − 𝐹(𝑡))𝟙(𝑡 ≥ 𝑥) 𝑑𝑡

= ∫
ℝ
𝐹(𝑡)(1 − 𝟙(𝑡 ≥ 𝑥)) 𝑑𝑡 + ∫

ℝ
(1 − 𝐹(𝑡))𝟙(𝑡 ≥ 𝑥) 𝑑𝑡.

Therefore,

1
2𝔼[|𝑋 − 𝑋

′|] − 𝔼[|𝑋 − 𝑥|] = ∫
ℝ
𝐹(𝑡) − 𝐹2(𝑡) − 𝐹(𝑡)(1 − 𝟙(𝑡 ≥ 𝑥)) − (1 − 𝐹(𝑡))𝟙(𝑡 ≥ 𝑥) 𝑑𝑡

= ∫
ℝ
−𝐹2(𝑡) + 2𝐹(𝑡)𝟙(𝑡 ≥ 𝑥) − 𝟙(𝑡 ≥ 𝑥) 𝑑𝑡

= −∫
ℝ
(𝐹(𝑡) − 𝟙(𝑡 ≥ 𝑥))2 𝑑𝑡,

which is the definition of CRPS.

We use Lemma 3.2.5 and Lemma 3.2.6 to show that CRPS is strictly proper. Although we use the
lemmas here, one can also show this property by using the definition of CRPS directly.

Theorem 3.2.7. The CRPS is a proper scoring rule relative to 𝒫, the convex class of Borel probability
measures. It is strictly proper relative to a class of Borel probability measures with finite first moment.

Proof. Let ℙ,ℚ ∈ 𝒫, where ℙ and ℚ are identified by the distribution function 𝐹 and 𝐺 respectively. Let
𝑋, 𝑋′, 𝑌, 𝑌′ be mutually independent random variables. Let 𝐹 (resp. 𝐺) be the distribution function of
𝑋, 𝑋′ (resp. 𝑌, 𝑌′). For any 𝑥 ∈ ℝ,

CRPS(𝐺, 𝑥) − CRPS(𝐹, 𝑥) = 1
2𝔼[|𝑌 − 𝑌

′|] − 12𝔼[|𝑋 − 𝑋
′|] − 𝔼[|𝑌 − 𝑥|] + 𝔼[|𝑋 − 𝑥|]

= ∫
ℝ
{𝐺(𝑡) − 𝐺2(𝑡) − 𝐹(𝑡) + 𝐹2(𝑡) − 𝐺(𝑡)(1 − 𝟙(𝑡 ≥ 𝑥))

− (1 − 𝐺(𝑡))𝟙(𝑡 ≥ 𝑥) + 𝐹(𝑡)(1 − 𝟙(𝑡 ≥ 𝑥)) + (1 − 𝐹(𝑡))𝟙(𝑡 ≥ 𝑥)} 𝑑𝑡
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= ∫
ℝ
𝐹2(𝑡) − 𝐺2(𝑡) + 2(𝐺(𝑡) − 𝐹(𝑡))𝟙(𝑡 ≥ 𝑥) 𝑑𝑡.

By using Fubini-Tonelli, we obtain

𝔼𝐺[CRPS(𝐺, 𝑥)] − 𝔼𝐺[CRPS(𝐹, 𝑥)] = ∫
ℝ
{∫

ℝ
𝐹2(𝑡) − 𝐺2(𝑡) + 2(𝐺(𝑡) − 𝐹(𝑡))𝟙(𝑡 ≥ 𝑥) 𝑑𝑡} 𝑑𝐺(𝑥)

= ∫
ℝ
{∫

ℝ
𝐹2(𝑡) − 𝐺2(𝑡) + 2(𝐺(𝑡) − 𝐹(𝑡))𝟙(𝑡 ≥ 𝑥) 𝑑𝐺(𝑥)} 𝑑𝑡

= ∫
ℝ
𝐹2(𝑡) − 𝐺2(𝑡) + 2(𝐺(𝑡) − 𝐹(𝑡)){∫

ℝ
𝟙(𝑡 ≥ 𝑥)𝑑𝐺(𝑥)} 𝑑𝑡

= ∫
ℝ
𝐹2(𝑡) − 𝐺2(𝑡) + 2(𝐺(𝑡) − 𝐹(𝑡))𝐺(𝑡) 𝑑𝑡

= ∫
ℝ
(𝐺(𝑡) − 𝐹(𝑡))2 𝑑𝑡 ≥ 0.

We can use the Fubini-Tonelli theorem because the integrand is a measurable function. Hence, the
CRPS scoring rule is indeed a proper scoring rule. Suppose 𝐹 and 𝐺 have finite first moment. If 𝐹 = 𝐺,
then it is clear that

𝔼𝐺[CRPS(𝐺, 𝑥)] − 𝔼𝐺[CRPS(𝐹, 𝑥)] = ∫
ℝ
(𝐹(𝑡) − 𝐹(𝑡))2 𝑑𝑡 = 0.

If 𝐹 ≠ 𝐺, then
𝔼𝐺[CRPS(𝐺, 𝑥)] − 𝔼𝐺[CRPS(𝐹, 𝑥)] = ∫

ℝ
(𝐹(𝑡) − 𝐺(𝑡))2 𝑑𝑡 > 0.

We have confirmed that CRPS is strictly proper, yet we need to explain the relationship between
this score and the ranked probability score (see Section 3.2.1). According to Matheson and Winkler
(1976), these two are equivalent in a sense that both are affine transformations of a certain function.
To see this, Matheson and Winkler (1976) starts by generalizing CRPS by assuming that the integrated
variable 𝑡 is random and it follows a distribution 𝑅(𝑡). Therefore, we get a new scoring rule, which we
denote as 𝑆∗∗. From the computations to get (3.19) yield

𝑆∗∗(𝐺, 𝑥) = −∫
𝑥

−∞
𝐺2(𝑡) 𝑑𝑅(𝑡) − ∫

∞

𝑥
(1 − 𝐺(𝑡))2 𝑑𝑅(𝑡). (3.22)

If 𝑅(𝑡) is a step function, i.e. for 𝑡1 < ⋯ < 𝑡𝑟,

𝑅(𝑢) =
𝑟−1

∑
𝑘=1

𝑟𝑘𝟙(𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1),

then if 𝑥 = 𝑡𝑗, and 𝐺(𝑟𝑘) ∶= 𝐺𝑘, we have

𝑆∗∗(𝐺, 𝑡𝑗) = −
𝑗−1

∑
𝑘=1

𝐺2𝑘𝑟𝑘 −
𝑟−1

∑
𝑘=𝑗
(1 − 𝐺𝑘)2𝑟𝑘 . (3.23)

In case that 𝑟𝑘 = 1/𝑟 for any 𝑘 = 1,… , 𝑟 − 1, we have

𝑆∗∗(𝐺, 𝑡𝑗) = −
1
𝑟 (

𝑗−1

∑
𝑘=1

𝐺2𝑘 +
𝑟−1

∑
𝑘=𝑗
(1 − 𝐺𝑘)2)

= −1𝑟 (
𝑗−1

∑
𝑘=1

𝐺2𝑘 +
𝑟−1

∑
𝑘=𝑗
(1 − 2𝐺𝑘 + 𝐺2𝑘))
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= −1𝑟 (
𝑗−1

∑
𝑘=1

𝐺2𝑘 + (𝑟 − 𝑗) − 2
𝑟−1

∑
𝑘=𝑗

𝐺𝑘 +
𝑟−1

∑
𝑘=𝑗

𝐺2𝑘) . (3.24)

Since
𝑟−1

∑
𝑘=𝑗

𝐺2𝑘 =
𝑟−1

∑
𝑘=1

𝐺2𝑘 −
𝑗−1

∑
𝑘=1

𝐺2𝑘 , (3.25)

both (3.24) and (3.25) yield

𝑆∗∗(𝐺, 𝑡𝑗) = −
1
𝑟 (

𝑗−1

∑
𝑘=1

𝐺2𝑘 + (𝑟 − 𝑗) − 2
𝑟−1

∑
𝑘=𝑗

𝐺𝑘 +
𝑟−1

∑
𝑘=1

𝐺2𝑘 −
𝑗−1

∑
𝑘=1

𝐺2𝑘)

= 1
𝑟 (−

𝑟−1

∑
𝑘=1

𝐺2𝑘 + 2
𝑟−1

∑
𝑘=𝑗

𝐺𝑘 − (𝑟 − 𝑗)) . (3.26)

We compare the result from Lemma 3.2.3 with (3.26). While the RPS is an affine transformation of
−∑𝑟−1𝑘=1 𝐺2𝑘 +2∑

𝑟−1
𝑘=𝑗 𝐺𝑘−(𝑟−𝑗), the CRPS is a linear transformation of it. In any case, both the of these

score are affine transformations of −∑𝑟−1𝑘=1 𝐺2𝑘 + 2∑
𝑟−1
𝑘=𝑗 𝐺𝑘 − (𝑟 − 𝑗).

3.3. The connection of scoring rules with information theory
So far, we use scoring rules tomeasure the quality of the forecasts. However, if 𝑆 is a negatively oriented
and a proper scoring rule, then we can also view scoring rules as a loss function. The expectation
𝔼ℚ[𝑆(ℙ, ⋅)] is then the expected loss of using ℙ to predict events, while the true distribution of the
events is ℚ. By (3.2), we then want the expected loss to be minimized, where ℚ is a minimizer of the
expected loss. This minimizer is unique if 𝑆 is strictly proper. If we choose a particular 𝑆, we can in fact
obtain entropy and Kullback-Leibler divergence back. In this section, we discuss the connection the
terminologies used in the information theory and review a generalization of these notions.

Although we have mentioned the entropy and the Kullback-Leibler divergence in the previous sec-
tion, let us recall and define them more properly in this section.

Definition 3.3.1 (The Shannon entropy). Let (Ω, ℱ,ℚ) be a probability space, such that Ω is finite. Let
𝑋 be a random variable with probability mass function 𝑞𝑥 ∶= ℚ(𝑋 = 𝑥), where 𝑥 ∈ Ω. The entropy or
the Shannon entropy is defined as

𝐻(ℚ) ∶= 𝔼𝑞[− log 𝑞(𝑋)] = −∑
𝑥∈Ω

𝑞𝑥 log(𝑞𝑥). (3.27)

The Shannon entropy indicates the average information that is contained in 𝑋 (Yeung, 2002). Equiv-
alently, it measures the uncertainty of the outcome of 𝑋. The larger the entropy of a random variable,
the more uncertain one can predict an outcome of 𝑋.

If one wish to measure how ”far” the two measures 𝑝 and 𝑞 are apart, we can use a well-known
measure called the Kullback-Leibler divergence. This measure is non-negative and equal to zero if and
only if 𝑝 = 𝑞. This measure is not a distance measure in a metric sense because it is not symmetric.
Below is a definition of the Kullback-Leibler divergence.

Definition 3.3.2 (The Kullback-Leibler divergence). Let Ω be a finite sample space. Let 𝑃 and 𝑄 be
probability distribution onΩ, with probability mass functions 𝑝𝑥 and 𝑞𝑥 respectively. The Kullback-Leibler
divergence is defined as follows:

𝐷KL(𝑃||𝑄) = ∑
𝑥∈Ω

𝑝𝑥 log
𝑝𝑥
𝑞𝑥
= −∑

𝑥∈Ω
𝑝𝑥 log

𝑞𝑥
𝑝𝑥
.

Now let us rewrite the Shannon entropy. Let Ω be a finite sample space and𝒫 be a family distribution
over Ω. Suppose a random variable 𝑋 follows an unknown distribution 𝑃 ∈ 𝒫. Let 𝒢 be a family of
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probability mass function of 𝑞. The entropy can also be written as

𝐻(𝑃) = inf
𝑞∈𝒢

𝔼𝑃[− log 𝑞(𝑋)], (3.28)

which is a consequence of the fact that 𝐷KL(𝑃||𝑄) ≥ 0 and equality is obtained if and only if 𝑃 = 𝑄.
This statement is called the information inequality in Theorem 2.6.3 from Cover and Thomas (2005).
To see that (3.28) is true, take any 𝑞 ∈ 𝒢. Then,

𝔼𝑃[− log 𝑞(𝑋)] = −∑
𝑥∈Ω

𝑝𝑥 log 𝑞𝑥

= −∑
𝑥∈Ω

𝑝𝑥 log(
𝑞𝑥
𝑝𝑥
𝑝𝑥)

= −∑
𝑥∈Ω

[𝑝𝑥 log(
𝑞𝑥
𝑝𝑥
) + 𝑝𝑥 log𝑝𝑥]

= 𝐷KL(𝑃||𝑄) + 𝐻(𝑃) ≥ 𝐻(𝑃),

where we use that 𝐷KL(𝑃||𝑄) ≥ 0 and 𝐻(𝑃) ≥ 0 since the probability mass function is always non-
negative and 𝑝𝑥 ∈ [0, 1] for any 𝑥 ∈ Ω. Then the equality is obtained if and only if 𝑝 = 𝑞.

In (3.28), we observe that the entropy is the smallest possible ”value” under the logarithmic loss.
Grünwald and Dawid (2004) generalizes this definition by considering an arbitrary loss function 𝐿 ∶
𝒫 × Ω → ℝ. The generalized entropy function is then the following:

Definition 3.3.3. Let (Ω, ℱ) be a measurable space and 𝒫 be a class of probability measures on (Ω, ℱ).
The generalized entropy function associated with the loss function 𝐿 ∶ 𝒫 × Ω → ℝ is defined by

𝐻(𝑃) ∶= inf
𝑄∈𝒫

𝔼𝑃[𝐿(𝑄, ⋅)]. (3.29)

Now, we relate (3.29) with the scoring rule. If the scoring rule 𝑆 is interpreted as a loss function (i.e.
the scoring rule is negatively oriented), then the definition remains the same. If the scoring rule is seen
as a reward system, then (3.29) becomes

𝐻(𝑃) ∶= sup
𝑄∈𝒫

𝔼𝑃[𝑆(𝑄, ⋅)], (3.30)

where 𝑆 is a proper scoring rule. Indeed, consider the logarithmic scoring rule which we orient positively.
Then,

𝔼𝑃[log 𝑞(𝑋)] = 𝐻(𝑃) − 𝐷𝐾𝐿(𝑃||𝑄) ≤ 𝐻(𝑃),
because 𝐻(𝑃) ≥ 0 and −𝐷𝐾𝐿(𝑃||𝑄) ≤ 0. To ensure that there exists 𝑄 ∈ 𝒫 such that 𝔼𝑃[𝑆(𝑄, ⋅)] is
maximum, we need 𝑆 to be proper.

Grünwald and Dawid (2004) also defines the divergence between two distributions.

Definition 3.3.4. For any 𝑃, 𝑄 in class 𝒫 and proper scoring rule 𝑆, the divergence function of 𝑃 and 𝑄
is

𝑑(𝑃, 𝑄) ∶= 𝐻(𝑄) − 𝔼𝑄[𝑆(𝑃, ⋅)] = 𝔼𝑄[𝑆(𝑄, ⋅)] − 𝔼𝑄[𝑆(𝑃, ⋅)].

The divergence function 𝑑(𝑃, 𝑄) is non-negative because the distribution 𝑄 maximizes the expected
reward, and it is positive if and only if 𝑆 is strictly proper. Additionally, 𝑑(𝑃, 𝑄) is not necessarily equal to
𝑑(𝑄, 𝑃). Indeed, if 𝑆 is the logarithmic scoring rule, then the divergence function is the Kullback-Leibler
divergence, which is known to be asymmetric (Sason, 2022). As a remark, if 𝑆 is negatively oriented,
the divergence function is

𝑑(𝑃, 𝑄) = 𝔼𝑄[𝑆(𝑃, ⋅)] − 𝐻(𝑄),
which is still non-negative.

Let us compute the generalized entropy function and the divergence function for the Brier, pseudo-
spherical, logarithmic score and CRPS.
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Example 3.3.5. For the Brier score,

𝐻(𝐪) = 𝔼𝐪[𝑆Brier(𝐪, ⋅)] = ∑
𝑗∈Ω

𝑆Brier(𝐪, 𝑗)𝑞𝑗

=∑
𝑗∈Ω
(2𝑞𝑗 − 1 − ∑

𝜔∈Ω
𝑞2𝜔)𝑞𝑗

= 2∑
𝑗∈Ω

𝑞2𝑗 − 1 − ∑
𝜔∈Ω

𝑞2𝜔

=∑
𝑗∈Ω

𝑞2𝑗 − 1.

The divergence function is already computed, which is

𝑑(𝐪, 𝐩) = ∑
𝑗∈Ω
(𝑞𝑗 − 𝑝𝑗)2,

the squared Euclidian norm (see Example 3.1.2). △
Example 3.3.6. We use the results from Example 3.1.3 to compute 𝐻(𝐪) and 𝑑(𝐩, 𝐪) of the pseudo-
spherical score. The generalized entropy function is

𝐻(𝐪) = (∑
𝑗∈Ω

𝑞𝛼𝑗 )

1/𝛼

,

and the divergence function is

𝑑(𝐩, 𝐪) = (∑
𝑗∈Ω

𝑞𝛼𝑗 )

1/𝛼

− (∑
𝑗∈Ω

𝑝𝛼−1𝑗 𝑞𝑗)(∑
𝑘∈Ω

𝑝𝛼𝑘)

−(𝛼−1)/𝛼

.

△
Example 3.3.7. For the positively oriented logarithmic score,

𝐻(𝐪) = ∑
𝑗∈Ω

𝑞𝑗 log(𝑞𝑗),

which is the negative (Shannon) entropy. The divergence function is the Kullback-Leibler divergence
as we have shown previously in Example 3.1.4:

𝑑(𝐩, 𝐪) = ∑
𝑗∈Ω

log(
𝑞𝑗
𝑝𝑗
)𝑞𝑗 = −∑

𝑗∈Ω
log(

𝑝𝑗
𝑞𝑗
)𝑞𝑗 .

△
Example 3.3.8. For the CRPS, the generalized entropy function is

𝐻(𝐺) = ∫
ℝ
∫
ℝ
(𝐺(𝑡) − 𝟙(𝑡 ≥ 𝑥))2 𝑑𝑡 𝑑𝐺(𝑥)

= ∫
ℝ
∫
ℝ
𝐺2(𝑡) − 2𝐺(𝑡)𝟙(𝑡 ≥ 𝑥) + 𝟙(𝑡 ≥ 𝑥) 𝑑𝑡 𝑑𝐺(𝑥)

= ∫
ℝ
∫
ℝ
𝐺2(𝑡) − 2𝐺(𝑡)𝟙(𝑡 ≥ 𝑥) + 𝟙(𝑡 ≥ 𝑥) 𝑑𝐺(𝑥) 𝑑𝑡

= ∫
ℝ
𝐺2(𝑡) − 2𝐺2(𝑡) + 𝐺(𝑡) 𝑑𝑡



3.3. The connection of scoring rules with information theory 25

= ∫
ℝ
𝐺(𝑡)(1 − 𝐺(𝑡)) 𝑑𝑡.

The divergence function associated with CRPS is

𝑑(𝐹, 𝐺) = ∫
ℝ
(𝐹(𝑡) − 𝐺(𝑡))2 𝑑𝑡.

△





4
Distributional Regression with Likelihood

Ratio Order Constraint
Recall from Chapter 1, that the goal of distributional regression is to estimate the cumulative distri-
bution function of the response variable given the covariates. We will restrict ourselves to univariate
regression. In usual linear regression, we model the relationship between the response and the co-
variate by its conditional expectation. Then, we assume the expected response variable, given the
covariate, is linear in the parameters. In isotonic regression, we only suppose that the relationship
between the response and the covariates is monotonic. In other words, for any 𝑥1 < 𝑥2 we have
𝔼[𝑌|𝑋 = 𝑥𝑖] ≤ 𝔼[𝑌|𝑋 = 𝑥2].

In isotonic distributional regression, we impose a certain order on the conditional distribution func-
tion. Let 𝑦 ↦ 𝐹(⋅|𝑥) denote the conditional distribution of 𝑌|𝑋 = 𝑥. Suppose we want that for any given
covariates 𝑥1 ≤ 𝑥2, we have 𝐹(𝑦|𝑥1) ≥ 𝐹(𝑦|𝑥2) for all 𝑦. Then we have seen in Chapter 2 that we
impose the usual stochastic order: [𝑌|𝑋 = 𝑥1] ≤st [𝑌|𝑋 = 𝑥2]. Distributional regression under this con-
straint has been studied by Henzi et al. (2021). We also have seen that the likelihood ratio order is the
strongest order compared with the hazard ratio and the usual stochastic order. Therefore, it is natural to
develop a new estimation technique with likelihood ratio order as the constraint. Fortunately, Mösching
and Dümbgen (2024) have developed such a technique, which we describe later in this chapter.

The structure of this chapter goes as follows. We start by discussing distributional regression for
the parametric case. In Section 4.1, we model the conditional distribution using the normal distribution.
It turns out that imposing likelihood ratio order when we choose this particular model, yields the isotonic
regression. We then shift focus to a non-parametric approach to estimating the conditional distributions
in Section 4.2. Here, we explain the estimator that Mösching and Dümbgen (2024) proposed. The
method utilizes empirical likelihood and maximizes the likelihood function to obtain the estimators.

Before we proceed with the chapter, let us describe the setting and define some notations that we will
use throughout this chapter. Let 𝒟𝑛 ∶= (𝑋𝑖 , 𝑌𝑖)𝑛𝑖=1 = (𝑥𝑖 , 𝑦𝑖)𝑛𝑖=1 denotes a data set with 𝑛 observations.
Both (𝑌𝑖)𝑛𝑖=1 and 𝐗 ∶= (𝑋𝑖)𝑛𝑖=1 are real-valued random variables. Suppose each (𝑋𝑖 , 𝑌𝑖) are identically
distributed from 𝑃 and (𝑌𝑖)𝑛𝑖=1 is independent given 𝐗. We denote 𝐹𝑌|𝑥(𝑦|𝑥) ∶= ℙ(𝑌 ≤ 𝑦|𝑋 = 𝑥) to be
the conditional distribution of 𝑌|𝑋 = 𝑥, and we assume that it has a density function 𝑓(𝑦|𝑥). We use
𝒟𝑛 to estimate the family of conditional distributions 𝐹𝑌|𝑥(𝑦|𝑥), such that

𝑥1 < 𝑥2 and 𝑦1 < 𝑦2 ⟹ 𝑓(𝑦2|𝑥1)𝑓(𝑦1|𝑥2) ≤ 𝑓(𝑦1|𝑥1)𝑓(𝑦2|𝑥2), (4.1)

that is, [𝑌|𝑋 = 𝑥1] ≤lr [𝑌|𝑋 = 𝑥2] (see Section 2.3 for a definition of this order). The resulting estimator
will be denoted by 𝐹𝑌|𝑋.

4.1. The parametric estimation case: normal distribution
We have shown in Example 2.3.3 several instances in which random variables that follow normal distri-
butions respect the likelihood ratio order. In this regression setting, we will first assume that the mean
and the variance parameter depend on 𝐗. More formally, suppose that a given data set 𝒟𝑛 follows

27
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from an unknown distribution 𝑃, but we know that 𝑌|𝑋𝑖 ∼ 𝒩(𝜇(𝑋𝑖), 𝜎(𝑋𝑖)2) for any 1 ≤ 𝑖 ≤ 𝑛, such that
𝑥 ↦ 𝜇(𝑥) and 𝑥 ↦ 𝜎(𝑥) is an arbitrary functions of 𝑥. Let (𝑥𝑖 , 𝑦𝑖)𝑛𝑖=1 be the realization of 𝒟𝑛. The goal
is to estimate 𝜇(𝑥𝑖) and, if possible, as well as 𝜎(𝑥𝑖) for each 1 ≤ 𝑖 ≤ 𝑛 under the likelihood ratio order
constraint by using 𝒟𝑛. It turns out that when the conditional distribution is modelled using the normal
distribution under the likelihood order constraint, optimizing the likelihood of the model is equivalent to
isotonic regression (see Appendix C).

We first find under what condition [𝑌|𝑋𝑠 = 𝑥𝑠] ≤lr [𝑌|𝑋𝑡 = 𝑥𝑡], where 𝑥𝑠 ≤ 𝑥𝑡. Let 𝑓𝑌|𝑋𝑖(𝑦|𝑥𝑖) be the
density function of𝒩(𝜇(𝑥𝑖), 𝜎(𝑥𝑖)2). Then, for any 𝑦 ∈ ℝ,

𝑓𝑌|𝑋𝑡(𝑦|𝑥𝑡)
𝑓𝑌|𝑋𝑠(𝑦|𝑥𝑠)

= 𝜎(𝑥𝑠)
𝜎(𝑥𝑡)

exp((𝑦 − 𝜇(𝑥𝑠))
2

2𝜎(𝑥𝑠)2
− (𝑦 − 𝜇(𝑥𝑡))

2

2𝜎(𝑥𝑡)2
)

= 𝜎(𝑥𝑠)
𝜎(𝑥𝑡)

exp(𝜎(𝑥𝑡)
2(𝑦 − 𝜇(𝑥𝑠))2 − 𝜎(𝑥𝑠)2(𝑦 − 𝜇(𝑥𝑡))2

2𝜎(𝑥𝑠)2𝜎(𝑥𝑡)2
)

= 𝜎(𝑥𝑠)
𝜎(𝑥𝑡)

×

exp(𝑦
2(𝜎(𝑥𝑡)2 − 𝜎(𝑥𝑠)2) + 2𝑦(𝜇(𝑥𝑡)𝜎(𝑥𝑠)2 − 𝜇(𝑥𝑠)𝜎(𝑥𝑡)2) + 𝜇(𝑥𝑠)2𝜎(𝑥𝑡)2 − 𝜇(𝑥𝑡)2𝜎(𝑥𝑠)2

2𝜎(𝑥𝑠)2𝜎(𝑥𝑡)2
) .

From these results, we are unable to conclude that the density ratio is increasing 𝑦 due to an unknown
behavior of 𝑦 ↦ 𝑦2(𝜎(𝑥𝑡)2 − 𝜎(𝑥𝑠)2) . To remove this term, we can let 𝜎(𝑥𝑡) = 𝜎(𝑥𝑠) =∶ 𝜎, i.e. the
distribution of 𝑌|𝑋𝑖 has equal variance. Then, we are left with the following result

𝑓𝑌|𝑋𝑡(𝑦|𝑥𝑡)
𝑓𝑌|𝑋𝑠(𝑦|𝑥𝑠)

= exp(2𝑦(𝜇(𝑥𝑡) − 𝜇(𝑥𝑠)) + 𝜇(𝑥𝑠)
2 − 𝜇(𝑥𝑡)2

2𝜎2 ) . (4.2)

In this case, the ratio is increasing in 𝑦 if and only if 𝜇(𝑥𝑠) ≤ 𝜇(𝑥𝑡) for any 𝑥𝑠 ≤ 𝑥𝑡. It means that 𝑥 ↦ 𝜇(𝑥)
is an isotonic function of 𝑥 ∈ ℝ. Indeed, if 𝑥 ↦ 𝜇(𝑥) is isotonic, then 𝑥𝑠 ≤ 𝑥𝑡 implies 𝜇(𝑥𝑠) ≤ 𝜇(𝑥𝑠),
which yields [𝑌|𝑋𝑠 = 𝑥𝑠] ∼ 𝒩(𝜇(𝑥𝑠), 𝜎2) is smaller than [𝑌|𝑋𝑡 = 𝑥𝑡] ∼ 𝒩(𝜇(𝑥𝑡), 𝜎2) in the likelihood
ratio.

With this reason, we assume that [𝑌|𝑋𝑖 = 𝑥𝑖] ∼ 𝒩(𝜇(𝑥𝑖), 𝜎2) for all 1 ≤ 𝑖 ≤ 𝑛. Suppose for now
that 𝜇(𝑥𝑖) and 𝜎2 for any 1 ≤ 𝑖 ≤ 𝑛 are unknown. We compute the likelihood 𝐿(𝜇(𝑥), 𝜎2|𝒟𝑛) for each
1 ≤ 𝑖 ≤ 𝑛. We have

𝐿(𝜇(𝑥), 𝜎2|𝒟𝑛) ∶= 𝐿(𝜇(𝑥), 𝜎2|𝒟𝑛) =
𝑛

∏
𝑖=1

1
𝜎√2𝜋

exp(− 1
2𝜎2 (𝑦𝑖 − 𝜇(𝑥𝑖))

2)

= ( 1
𝜎√2𝜋

)
𝑛
exp(− 1

2𝜎2
𝑛

∑
𝑖=1
(𝑦𝑖 − 𝜇(𝑥𝑖))2) .

So the log-likelihood is

log 𝐿(𝜇(𝐱), 𝜎2|𝒟𝑛) = −
𝑛
2 log(2𝜋) −

𝑛
2 log𝜎

2 − 1
2𝜎2

𝑛

∑
𝑖=1
(𝑦𝑖 − 𝜇(𝑥𝑖))2. (4.3)

Let 𝜇(𝑥) be the estimated 𝜇(𝑥) and 𝜎2 is the estimated 𝜎2. Then we should solve the following opti-
mization problem without likelihood ratio order constraint:

(𝜇(𝑥), 𝜎2) ∶= argmax
𝜇(𝑥),𝜎2

{−𝑛2 log𝜎
2 − 1

2𝜎2
𝑛

∑
𝑖=1
(𝑦𝑖 − 𝜇(𝑥𝑖))2} .

To add the likelihood ratio order constraint, let us first sort the realizations𝒟𝑛 since the order matters:

{𝑥1, … , 𝑥𝑛} = {𝑥(1), … , 𝑥(𝓁)} and {𝑦1, … , 𝑦𝑛} = {𝑦(1), … , 𝑦(𝑚)},
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where 𝑥(1) < … < 𝑥(𝓁) and 𝑦(1) < … < 𝑦(𝑚) for some 1 ≤ 𝓁,𝑚 ≤ 𝑛. Then the log-likelihood in (4.3)
becomes

log 𝐿(𝜇(𝑥), 𝜎2|𝒟𝑛) = −
𝑛
2 log(2𝜋) −

𝑛
2 log𝜎

2 − 1
2𝜎2

𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘(𝑦(𝑘) − 𝜇(𝑥(𝑗)))2.

As we have explained previously, the likelihood ratio is increasing if 𝑥 ↦ 𝜇(𝑥) is an isotonic function.
Therefore, we add the following constraint on 𝜇(𝑥):

𝜇(𝑥(𝑗)) ≤ 𝜇(𝑥(𝑗+1)) ∀ 1 ≤ 𝑗 < 𝓁.

So, we state the optimization problem as the following:

(𝜇(𝑥), 𝜎2) ∶= argmax
𝜇(𝑥),𝜎2

{−𝑛2 log𝜎
2 − 1

2𝜎2
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘(𝑦(𝑘) − 𝜇(𝑥(𝑗)))2} (4.4)

s.t. 𝜇(𝑥(𝑗)) ≤ 𝜇(𝑥(𝑗+1)) ∀ 1 ≤ 𝑗 < 𝓁.

Note that if we choose a specific model for 𝜇, such that it is an isotonic function of 𝑥, then we can
also remove this constraint. For instance, let 𝜇(𝑥) = 𝛼 + 𝛽𝑥 where 𝛼 and 𝛽 ≥ 0. Then, the solution of
the optimization problem is the same as the solution that is obtained from the ordinary least squares
method. See Lemma E.1 in Appendix E for more detailed computations.

Another remark is that 𝜎2 is independent of the constraint. Therefore, we can maximize the log-
likelihood w.r.t. 𝜎2. We have

𝜕𝐿
𝜕𝜎2 (𝜇(𝑥), 𝜎

2|𝒟𝑛) = −
𝑛
2
1
𝜎2 +

1
2𝜎4

𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘(𝑦(𝑘) − 𝜇(𝑥(𝑗)))2 = 0

⟺ 𝜎2 = 1
𝑛

𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘(𝑦(𝑘) − 𝜇(𝑥(𝑗)))2.

If we substitute 𝜎2 with 𝜎2, the optimization problem in (4.4) becomes

𝜇(𝑥) ∶= argmax
𝜇(𝑥)

{−𝑛2 log(
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘(𝑦(𝑘) − 𝜇(𝑥(𝑗)))2)}

s.t. 𝜇(𝑥(𝑗)) ≤ 𝜇(𝑥(𝑗+1)) ∀ 1 ≤ 𝑗 < 𝓁.

Equivalently, if we replace the log-likelihood with the negative log-likelihood, we want to solve

𝜇(𝑥) ∶= argmin
𝜇(𝑥)

{
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘(𝑦(𝑘) − 𝜇(𝑥(𝑗)))2} (4.5)

s.t. 𝜇(𝑥(𝑗)) ≤ 𝜇(𝑥(𝑗+1)) ∀ 1 ≤ 𝑗 < 𝓁. (4.6)

As it turns out, the minimization problem in (4.5) is an isotonic regression (see Appendix C). To see
this, let

𝑤𝑗+ ∶=
𝑚

∑
𝑘=1

𝑤𝑗𝑘 and 𝑦𝑗 ∶=
∑𝑚𝑘=1𝑤𝑗𝑘𝑦(𝑘)

𝑤𝑗+
.

Then,

𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘(𝑦(𝑘) − 𝜇(𝑥(𝑗)))2 =
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘(𝑦(𝑘) − 𝑦𝑗 + 𝑦𝑗 − 𝜇(𝑥(𝑗)))2
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=
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘(𝑦(𝑘) − 𝑦𝑗)2 + 2
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘(𝑦(𝑘) − 𝑦𝑗)(𝑦𝑗 − 𝜇(𝑥(𝑗)))

+
𝓁

∑
𝑗=1
𝑤𝑗+(𝑦𝑗 − 𝜇(𝑥(𝑗)))2

The first sum is independent of 𝜇(𝑥), and the second term is equal to zero (see Lemma E.2 in Appendix
E). Hence, the minimization problem in (4.5) with the constraint (4.6) becomes

𝜇(𝑥) ∶= argmin
𝜇(𝑥)

{
𝓁

∑
𝑗=1
𝑤𝑗+(𝑦𝑗 − 𝜇(𝑥(𝑗)))2}

s.t. 𝜇(𝑥(𝑗)) ≤ 𝜇(𝑥(𝑗+1)) ∀ 1 ≤ 𝑗 < 𝓁.

Therefore, in this particular case, distributional regression under likelihood ratio order constraint is
equivalent to isotonic regression of 𝑦𝑗 with weights 𝑤𝑗+.

4.2. The non-parametric case
Now that we have treated the parametric case, we will discuss an estimator in which the model be-
longs to a much bigger class of distributions. In particular, Mösching and Dümbgen (2024) choose to
model the conditional distributions that belong to some discrete distributions with unknown probabili-
ties. These weights are then estimated subject to the likelihood ratio order constraint. In this section,
we will explain how Mösching and Dümbgen (2024) estimate these unknown weights. The idea is to
construct an empirical likelihood. In Section 4.2.1, we review what empirical likelihood is and apply it to
the distributional regression problem. The empirical likelihood is rewritten in such a way that the max-
imization problem can be solved numerically by using a well-known method from isotonic regression.
These will be explained in more detail in Section 4.2.2 and Section 4.2.3.

To apply this method, we sort the response and the covariate values in 𝒟𝑛 from the smallest to
the largest value. We also remove ties in the value, and so we use the following observations for the
estimation:

{𝑋1, … , 𝑋𝑛} = {𝑥1, … , 𝑥𝓁} and {𝑌1, … , 𝑌𝑛} = {𝑦1, … , 𝑦𝑚},
with 𝑥1 < ⋯ < 𝑥𝓁 and 𝑦1 < ⋯ < 𝑦𝑚. The following constant defines how many observations have the
same values as (𝑥𝑗 , 𝑦𝑘), where 1 ≤ 𝑗 ≤ 𝓁 and 1 ≤ 𝑘 ≤ 𝑚. We define

𝑤𝑗𝑘 ∶= # {𝑖 ∶ (𝑋𝑖 , 𝑌𝑖) = (𝑥𝑗 , 𝑦𝑘)} .

4.2.1. The construction of the likelihood: empirical likelihood
To estimate the conditional distributions 𝐹𝑌|𝑥𝑗 for each 1 ≤ 𝑗 ≤ 𝓁, Mösching and Dümbgen (2024)
used the empirical likelihood approach. Let us briefly review what this approach is, and apply it for the
estimation problem.

The empirical approach uses the empirical likelihood of a cumulative distribution function, which is
then maximized to get a non-parametric estimate of the distribution. The following is the definition of
the empirical likelihood of a distribution from Owen (2001, p. 6)

Definition 4.2.1 (The empirical likelihood). Let (𝑋𝑖)𝑛𝑖=1 be any i.i.d. real-valued random variables. The
empirical likelihood is

𝐿(𝐹) ∶=
𝑛

∏
𝑖=1
[𝐹(𝑋𝑖) − 𝐹(𝑋𝑖−)],

where 𝐹(𝑥) = ℙ(𝑋 ≤ 𝑥) and 𝐹(𝑥−) = ℙ(𝑋 < 𝑥).

Note that if the distribution function is continuous, then the empirical likelihood is zero. If (𝑋𝑖)𝑛𝑖=1 is
a sequence of discrete random variables and i.i.d. of 𝐹, then 𝐹(𝑥) − 𝐹(𝑥−) = ℙ(𝑋𝑖 = 𝑥). To have a
non-zero likelihood, we must assign non-zero probabilities to each observation.
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When we maximize the empirical likelihood unconstrained, we will get the cumulative empirical
distribution function (ECDF). This result is also stated and proven in Theorem 2.1 in Owen (2001, p. 7).
However, we decide to show it in a different way. Therefore, the ECDF is a non-parametric maximum
likelihood estimator of a distribution. We state this result and reprove it in the following theorem.

Theorem 4.2.2. Let (𝑋𝑖)𝑛𝑖=1 be any i.i.d. real-valued random variables. Let 𝐹𝑛 be the ECDF of (𝑋𝑖)𝑛𝑖=1,
i.e.

𝐹𝑛(𝑥) ∶=
1
𝑛

𝑛

∑
𝑖=1
𝟙(𝑋𝑖 ≤ 𝑥).

Let 𝐹 be any cumulative distribution function. Then 𝐹𝑛 maximizes the empirical likelihood 𝐿(𝐹).

Proof. Let {𝑋1, … , 𝑋𝑛} = {𝑥1, … , 𝑥𝓁} such that 𝑥1 < 𝑥2 < ⋯ < 𝑥𝓁 for some 1 ≤ 𝓁 ≤ 𝑛. W.l.o.g. we
assume that 𝑝𝑗 ≠ 0. Let 𝑛𝑗 = # {𝑖 ∶ 𝑋𝑖 = 𝑥𝑗} > 0, so that ∑𝓁𝑗=1 𝑛𝑗 = 𝑛 and 𝑝𝑗 ∶= 𝐹(𝑋𝑗) − 𝐹(𝑋𝑗−). Then,

𝑓(𝐩) ∶= log 𝐿(𝐹) =
𝓁

∑
𝑗=1
𝑛𝑗 log𝑝𝑗 . (4.7)

We would like to maximize (4.7) subject to ∑𝓁𝑗=1 𝑝𝑗 = 1. So then (4.7) is simply a function of 𝐩 ∶=
(𝑝1, … , 𝑝𝓁), which is defined on a set

𝑆 ∶= {𝐩 ∈ (0,∞)𝓁 ∶
𝓁

∑
𝑗=1
𝑝𝑗 = 1} .

We use the Lagrange multiplier to solve this optimization problem. Let

ℒ(𝐩, 𝜆) ∶= log 𝐿(𝐹) + 𝜆(1 −
𝓁

∑
𝑗=1
𝑝𝑗) .

Then, for any 1 ≤ 𝑗 ≤ 𝓁,
𝜕ℒ
𝜕𝑝𝑗

(𝐩, 𝜆) =
𝑛𝑗
𝑝𝑗
− 𝜆 = 0 ⟹ 𝑝𝑗 =

𝑛𝑗
𝜆 .

From the constraint, we obtain that

𝓁

∑
𝑗=1
𝑝𝑗 =

1
𝜆

𝓁

∑
𝑗=1
𝑛𝑗 = 1 ⟹ 𝜆 =

𝓁

∑
𝑗=1
𝑛𝑗 = 𝑛.

Therefore,
𝑝𝑗 =

𝑛𝑗
𝑛 .

Let 𝐩̂ ∶= 𝑛−1(𝑛1, … , 𝑛𝓁), then 𝐩̂ maximizes 𝑓(𝐩). This is because the function 𝑓(𝐩) is strictly concave
in 𝐩, hence 𝐩̂ is the unique maximizer of 𝑓(𝐩). In the case that 𝓁 = 𝑛, we have that 𝑛𝑗 = 1, so that
𝑝𝑗 = 1/𝑛 for any 1 ≤ 𝑗 ≤ 𝓁. These are the probabilities for the ECDF.

We now go back to our distributional regression problem. We would like to estimate 𝐹𝑌|𝑥, for any
𝑥 ∈ 𝒳 using 𝒟𝑛. To use the empirical likelihood approach, we first assume that 𝐹𝑌|𝑥 has a support
{𝑦1, … , 𝑦𝑚} for each observed 𝑥𝑗 ∈ 𝒳, 1 ≤ 𝑗 ≤ 𝓁. Then the ECDF for each 𝑥𝑗 ∈ 𝒳 is

𝐹𝑌|𝑥𝑗(𝑦|𝑥𝑗) ∶=
𝑚

∑
𝑘=1

𝑞𝑗𝑘𝟙(𝑦𝑘 ≤ 𝑦),
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where 𝑞𝑗𝑘 can be understood as the probability of observing 𝑦𝑘 given the value 𝑥𝑗, which is unknown.
The empirical likelihood is then

𝐿(𝐹𝑌|𝑥1 , … , 𝐹𝑌|𝑥𝓁) =
𝑛

∏
𝑗=1

𝑛

∏
𝑘=1

[𝐹𝑌|𝑥𝑗(𝑌𝑘|𝑥𝑗) − 𝐹𝑌|𝑥𝑗(𝑌𝑖 − |𝑥𝑗)]

=
𝓁

∏
𝑗=1

𝑚

∏
𝑘=1

[𝐹𝑌|𝑥𝑗(𝑦𝑘|𝑥𝑗) − 𝐹𝑌|𝑥𝑗(𝑦𝑘 − |𝑥𝑗)]
𝑤𝑗𝑘

=
𝓁

∏
𝑗=1

𝑚

∏
𝑘=1

𝑞𝑤𝑗𝑘𝑗𝑘 ,

and so its empirical log-likelihood is

Λ(𝐪) ∶= log 𝐿(𝐹𝑌|𝑥1 , … , 𝐹𝑌|𝑥𝓁) =
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘 log 𝑞𝑗𝑘 , (4.8)

where 𝐪 ∈ [0, 1]𝓁×𝑚. If we add the likelihood ratio order constraint (4.1), then the optimization problem
that we want to solve is

𝐪̂ ∶= argmax
𝐪∈[0,1]𝓁×𝑚

Λ(𝐪)

s.t.
𝑚

∑
𝑘=1

𝑞𝑗𝑘 = 1, ∀1 ≤ 𝑗 ≤ 𝓁, (4.9)

𝑞𝑗1𝑘2𝑞𝑗2𝑘1 ≤ 𝑞𝑗1𝑘1𝑞𝑗2𝑘2 , ∀1 ≤ 𝑗1 < 𝑗2 ≤ 𝓁, 1 ≤ 𝑘1 < 𝑘2 ≤ 𝑚. (4.10)

The constraint of the form in (4.10) will appear often throughout this chapter, and so we refer to this form
of constraint as the ”likelihood ratio order constraint”. This optimization problem has 𝓁 constraints to
ensure that weights 𝑞𝑗𝑘 are summed up to one for each 𝑗. There are further (𝓁2)(

𝑚
2 ) inequality constraints

for the likelihood ratio order constraints. It turns out that we can reduce the number of constraints, by
relating this optimization problem with estimating the joint distribution (𝑋, 𝑌) under the likelihood order
constraint.

4.2.2. The empirical likelihood of the joint distribution
As mentioned at the end of the previous section, we can reduce the number of constraints. Instead of
estimating the conditional distribution for each covariate value, one can estimate the joint distribution
(𝑋, 𝑌) using the empirical approach as well. Mösching and Dümbgen (2024) showed that these two
estimation problems are equivalent.

The ECDF of the observed values (𝑥𝑗 , 𝑦𝑘)𝑗,𝑘 is

𝐹𝑋,𝑌(𝑥, 𝑦) =
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

ℎ𝑗𝑘𝟙(𝑥𝑗 ≤ 𝑥, 𝑦𝑘 ≤ 𝑦),

where ℎ𝑗𝑘 ≥ 0 and ℎ++ ∶= ∑
𝓁
𝑗=1 ∑

𝑚
𝑘=1 ℎ𝑗𝑘 = 1. When we construct the empirical likelihood, we obtain

the same likelihood as in (4.8). However, the number of constraints that we use for this optimization
problem is (𝓁2)(

𝑚
2 ) + 1, instead of (𝓁2)(

𝑚
2 ) + 𝓁. The optimization problem that we then want to solve is

𝐡̂ ∶= argmax
𝐡∈[0,1]𝓁×𝑚

𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘 log ℎ𝑗𝑘 = argmax
𝐡∈[0,1]𝓁×𝑚

Λ(𝐡) (4.11)

s.t. ℎ++ = 1, (4.12)
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ℎ𝑗1𝑘2ℎ𝑗2𝑘1 ≤ ℎ𝑗1𝑘1ℎ𝑗2𝑘2 , ∀1 ≤ 𝑗1 < 𝑗2 ≤ 𝓁, 1 ≤ 𝑘1 < 𝑘2 ≤ 𝑚. (4.13)

As a remark, since ℎ𝑗𝑘 may interpreted as a probability mass function, then the additional constraint
(4.13) implies that we estimate an unknown TP2 distribution. The term TP2 stands for ’total positive of
order 2’. To see more details about TP2 distribution, we refer the reader to Appendix B.

Note that we can remove the constraint (4.12) by using the Lagrange multiplier. Let

ℒ(𝐡, 𝜆) = Λ(𝐡) + 𝜆(1 − ℎ++).

Then for any 1 ≤ 𝑗 ≤ 𝓁 and 1 ≤ 𝑘 ≤ 𝑚,

𝜕ℒ
𝜕ℎ𝑗𝑘

=
𝑤𝑗𝑘
ℎ𝑗𝑘

− 𝜆 and
𝜕ℒ
𝜕𝜆 = 1 − ℎ++.

Set both equations to zero and we solve for 𝜆. We have

ℎ𝑗𝑘 =
𝑤𝑗𝑘
𝜆 ⟹

𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

ℎ𝑗𝑘 =
∑𝓁𝑗=1 ∑

𝑚
𝑘=1𝑤𝑗𝑘
𝜆 ⟹ 1 = 𝑛

𝜆 ⟹ 𝜆 = 𝑛.

Let Λ∗(𝐡) = ℒ(𝐡, 𝑛), then we need to show that the following optimization problem

𝐡̂ = argmax
𝐡∈[0,∞)𝓁×𝑚

Λ∗(𝐡) = argmax
𝐡∈[0,∞)𝓁×𝑚

Λ(𝐡) + 𝑛(1 − ℎ++) (4.14)

s.t. ℎ𝑗1𝑘2ℎ𝑗2𝑘1 ≤ ℎ𝑗1𝑘1ℎ𝑗2𝑘2 , ∀1 ≤ 𝑗1 < 𝑗2 ≤ 𝓁, 1 ≤ 𝑘1 < 𝑘2 ≤ 𝑚,

also solves (4.11) with constraints (4.12) and (4.13). Indeed, take any 𝐡 ∈ [0, 1]𝓁×𝑚 such that ℎ++ = 1
and Λ∗(𝐡) > −∞. Let 𝐡̃ ∶= (ℎ𝑗𝑘/ℎ++)𝑗,𝑘, then it is clear that 𝐡̃ satisfies (4.13) if and only if 𝐡 also
satisfies this constraint and 𝐡̃++ = 1. Therefore Λ∗(̃𝐡) = Λ(̃𝐡). Further,

Λ∗(𝐡) =
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘 log ℎ𝑗𝑘 + 𝑛(1 − ℎ++)

=
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘 log(
ℎ𝑗𝑘
ℎ++

ℎ++) + 𝑛(1 − ℎ++)

= Λ(̃𝐡) + 𝑛(log ℎ++ − ℎ++ + 1)
≤ Λ(̃𝐡) = Λ∗(̃𝐡),

where the inequality is obtained by using log 𝑥 ≤ 𝑥−1 for any 𝑥 ∈ [0,∞). The inequality Λ∗(𝐡) ≤ Λ∗(̃𝐡)
becomes equality if and only if ℎ++ = 1, meaning that 𝐡 = 𝐡̃. Hence, a maximizer of Λ∗ also maximizes
Λ, because it satisfies the likelihood ratio order and the entries have to sum up to 1.

Lastly, the maximizer of Λ∗(𝐡) also maximizes Λ(𝐪), and vice versa. For an arbitrary 𝐡 ∈ [0,∞)𝓁×𝑚
such that Λ(𝐡) > −∞, write

ℎ𝑗𝑘 = 𝑝𝑗𝑞𝑗𝑘 , with 𝑝𝑗 ∶=
𝑚

∑
𝑘=1

ℎ𝑗𝑘 = ℎ𝑗+ and 𝑞𝑗𝑘 ∶=
ℎ𝑗𝑘
ℎ𝑗+

.

Note 𝐪 = [𝑞𝑗𝑘]𝑗,𝑘 ∈ [0,∞)𝓁×𝑚, and 𝐡 satisfies the likelihood ratio order constraint if and only if 𝐪 does.
Then,

Λ(𝐡) =
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘 log ℎ𝑗𝑘 =
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘(log𝑝𝑗 + log 𝑞𝑗𝑘) =
𝓁

∑
𝑗=1
𝑤𝑗+ log𝑝𝑗 + Λ(𝐪),

also,

ℎ++ =
𝓁

∑
𝑗=1
ℎ𝑗+ =

𝓁

∑
𝑗=1
𝑝𝑗 and 𝑛 =

𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘 =
𝓁

∑
𝑗=1
𝑤𝑗+.
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Hence, we rewrite (4.14) into the following expression

Λ∗(𝐡) = Λ(𝐡) + 𝑛(1 − ℎ++)

= Λ(𝐪) +
𝓁

∑
𝑗=1
𝑤𝑗+ log𝑝𝑗 +

𝓁

∑
𝑗=1
𝑤𝑗+ (1 −

𝓁

∑
𝑗=1
𝑝𝑗)

= Λ(𝐪) +
𝓁

∑
𝑗=1
(𝑤𝑗+ log𝑝𝑗 − 𝑛𝑝𝑗 +𝑤𝑗+).

Let 𝐩 = (𝑝1, … , 𝑝𝓁) and Μ(𝐩) ∶= ∑𝓁𝑗=1(𝑤𝑗+ log𝑝𝑗 − 𝑛𝑝𝑗 + 𝑤𝑗+), then Μ(𝐩) is uniquely maximized at
(𝑤𝑗+/𝑛)𝑙𝑗=1. This easily verified by differentiating Μ(𝐩) w.r.t. 𝐩 and solve Μ(𝐩)/𝑑𝐩 = 0. Note that
(𝑤𝑗+/𝑛)𝑙𝑗=1 sums up to 1. The uniqueness and existence of the maximizer is guaranteed because
Μ(𝐩) is convex. Now the equivalence of the two estimation problems can be explained by using the
maximizer ℎ̂𝑗+ = 𝑝𝑗 = 𝑤𝑗+/𝑛.

• Assume 𝐡̂ is a maximizer of Λ∗(𝐡) under the likelihood order constraint. Then 𝑞𝑗𝑘 ∶= ℎ̂𝑗𝑘/ℎ̂𝑗+ is
also a maximizer of Λ(𝐪) that satisfies the constrains (4.9) and (4.10).

• If 𝐪̂ maximizes Λ(𝐪) that satisfies the constraints (4.9) and (4.10), then ℎ̂𝑗𝑘 = 𝑝𝑗𝑞𝑗𝑘 maximizes
Λ∗(𝐡) under the likelihood ratio order constraint.

The equivalence of the estimation problem implies that we only need to find 𝐡 that maximizes Λ∗(𝐡).
We next describe the procedure of finding 𝐡 that maximizes Λ∗(𝐡), under the likelihood ratio constraint
in (4.13).

4.2.3. Estimation procedure
By estimating the joint distribution of (𝑋, 𝑌), we have seen in the previous section that the number of
constraints is less than in the original problem. The optimization problem is further relaxed through
the use a Lagrange multiplier. Now, we discuss the estimation procedure proposed by Mösching and
Dümbgen (2024). Before we proceed, we need to discuss the reduction of the number of parameters
and how the number of constraints can be further minimized drastically. Then, after rewriting and
reparameterizing the objective again, the optimization problem is solved by using an iterative algorithm.
The algorithm computes a new proposal and performs a linear search so that the objective function
decreases. However, we will not discuss in detail how the linear search is done.

The reduction of the dimension and the number of constraints
The parameter space 𝐡 is in [0,∞)𝓁×𝑚. This space can be reduced to a smaller space, consequently
reducing the number of constraints.

Define a set 𝒫, which consists of pair (𝑗, 𝑘) such that 𝑚𝑗 ≤ 𝑘 ≤ 𝑀𝑗, where

𝑚𝑗 ∶=min{𝑘 ∶ 𝑤𝑗′𝑘 > 0 for some 𝑗′ ≥ 𝑗} and 𝑀𝑗 ∶=max{𝑘 ∶ 𝑤𝑗′𝑘 > 0 for some 𝑗′ ≤ 𝑗},

or equivalently there exists 𝓁𝑘 and 𝐿𝑘 such that 𝓁𝑘 ≤ 𝓁 ≤ 𝐿𝑘, where

𝓁𝑘 ∶=min{𝓁 ∶ 𝑤𝑗𝑘′ > 0 for some 𝑘′ ≥ 𝑘} and 𝐿𝑘 ∶=max{𝓁 ∶ 𝑤𝑗𝑘′ > 0 for some 𝑘′ ≤ 𝑘}.

An illustration of 𝒫 is in Figure 4.1. We observe that (𝑗, 𝑘) ∉ 𝒫 if at (𝑗, 𝑘) there are no observed points
in one of the shaded areas. As a remark, the set 𝒫 may also be defined as follows:

𝒫 ∶= {(𝑗, 𝑘) ∶ 𝑤𝑗1 ,𝑘2 , 𝑤𝑗2 ,𝑘1 > 0 for some 1 ≤ 𝑗1 ≤ 𝑗 ≤ 𝑗2 and 1 ≤ 𝑘1 ≤ 𝑘 ≤ 𝑘2 ≤ 𝑚}. (4.15)

The indices of the observed points are certainly in 𝒫. In the example in Figure 4.1, the location of a
point 𝑃, which is (5, 4) is in 𝒫 because we can choose 𝑗1 = 4, 𝑘2 = 4 and 𝑗2 = 5, 𝑘1 = 3. An equivalent
representation of 𝒫 is

𝒫 = {(𝑗,𝑚𝑗) ∶ 1 ≤ 𝑗 ≤ 𝓁} ∪
𝑚

⋃
𝑘=2
{(𝑗, 𝑘) ∶ 𝓁𝑘 ≤ 𝑗 ≤ 𝐿𝑘−1}. (4.16)



4.2. The non-parametric case 35

Let 𝐴 ∶= {(𝑗,𝑚𝑗) ∶ 1 ≤ 𝑗 ≤ 𝓁}. The set 𝐴 represent the ”lowest” points on 𝑗. In the example of Figure 4.1,
the elements (4, 3) and (5, 3) are examples of points in 𝐴. The points on the left of (6, 4), e.g. the points
(4, 4) and (5, 4) are in the set ⋃𝑚𝑘=2{(𝑗, 𝑘) ∶ 𝓁𝑘 ≤ 𝑗 ≤ 𝐿𝑘−1}. So the latter set is a collection of points on
the left of (𝑗, 𝐿𝑘), up until the point (𝑗, 𝓁𝑘), for each 𝑘 = 2,… ,𝑚. Another equivalent representation of 𝒫
is

𝒫 = 𝐴 ∪ {(𝑗, 𝑘) ∶ 1 ≤ 𝑗 ≤ 𝓁,𝑚𝑗 < 𝑘 ≤ 𝑀𝑗}.
The points in the set {(𝑗, 𝑘) ∶ 1 ≤ 𝑗 ≤ 𝓁,𝑚𝑗 < 𝑘 ≤ 𝑀𝑗} essentially represents the points above 𝑚𝑗 up
until 𝑀𝑗 for each 1 ≤ 𝑗 ≤ 𝓁.

𝑗

𝑘

1 2 3 4 5 6 7 8

1

2

3

4

5

•

• •

•

•

•

•

•

•𝑃

𝑚5 = 3
𝑀5 = 4

𝓁4 = 4 𝐿4 = 6

Figure 4.1: In this example, we have 𝓁 = 7 and𝑚 = 5. The red dots are observations such that 𝑤𝑗𝑘 > 0 and the black dots are
the unobserved points. These dots represent 𝒫. The shaded area in the bottom right can be used to find𝑚𝑗 or 𝐿𝑘. The shaded
area in the top left is used to find𝑀𝑗 or 𝓁𝑘. The point 𝑃 is at (5, 4) and it belongs to 𝒫 because we can find𝑚5 and𝑀5 such that
𝑚5 ≤ 4 ≤ 𝑀5.

The points whose indices are outside of 𝒫 does not worsen Λ∗ and the number of constraints is
drastically reduced. These properties of 𝒫 are stated in Lemma 1 in Mösching and Dümbgen (2024).
We state the results of this lemma below without proof.

1. We have ℎ𝑗𝑘 > 0 for any (𝑗, 𝑘) ∈ 𝒫, if 𝐡 satisfies the likelihood ratio order constraint and Λ∗(𝐡) >
−∞.

2. Let 𝐡̃ ∶= (𝟙((𝑗, 𝑘) ∈ 𝒫)ℎ𝑗𝑘)𝑗,𝑘, then 𝐡̃ also satisfies the likelihood ratio order and Λ∗(̃𝐡) ≥ Λ∗(𝐡)
with equality if and only if 𝐡 = 𝐡̃.

3. We can replace the likelihood ratio order constraint by

ℎ𝑗−1,𝑘ℎ𝑗,𝑘−1 ≤ ℎ𝑗−1,𝑘−1ℎ𝑗,𝑘 , 1 < 𝑗 ≤ 𝓁.1 < 𝑘 ≤ 𝑚, (4.17)

if 𝐡 ∈ [0,∞)𝓁×𝑚 such that {(𝑗, 𝑘) ∶ ℎ𝑗𝑘 > 0} = 𝒫. Consequently, the number of constraints reduces
to (𝓁 − 1)(𝑚 − 1) inequalities, which is much smaller than (𝓁2)(

𝑚
2 ) for large 𝓁 and 𝑚.

From property (1) and (2), we set ℎ𝑗𝑘 ∶= 0 for any (𝑗, 𝑘) ∉ 𝒫, and ℎ𝑗𝑘 > 0 for any (𝑗, 𝑘) ∈ 𝒫. Instead
of the parameter space being in [0,∞)𝓁×𝑚, we now focus on 𝐡 ∈ (0,∞)𝒫. Further for any 1 < 𝑗 ≤ 𝓁
and 1 < 𝑘 ≤ 𝑚, it is sufficient that (𝑗 − 1, 𝑘), (𝑗, 𝑘 − 1) ∈ 𝒫 so that (𝑗, 𝑘), (𝑗 − 1, 𝑘 − 1) ∈ 𝒫. Indeed,
if (𝑗 − 1, 𝑘), (𝑗, 𝑘 − 1) ∈ 𝒫, then we choose 𝑗1 = 𝑗 − 1, 𝑗2 = 𝑗 and 𝑘1 = 𝑘 − 1, 𝑘2 = 𝑘 to prove that
(𝑗, 𝑘), (𝑗 − 1, 𝑘 − 1) ∈ 𝒫. Hence (4.17) becomes

ℎ𝑗−1,𝑘ℎ𝑗,𝑘−1 ≤ ℎ𝑗−1,𝑘−1ℎ𝑗,𝑘 if (𝑗 − 1, 𝑘), (𝑗, 𝑘 − 1) ∈ 𝒫. (4.18)
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Reparametrization of the parameter and reformulate the constraints
The purpose of reparametrization of the parameter is to transform the non-linear constraints into linear
constraints. The feasible set also becomes a convex set. Furthermore, it will turn out that one can use
a method from isotonic regression such as PAVA (see Appendix C), to find a search direction for the
next iteration. For convenience purposes, we consider the negative log-likelihood and the objective is
now to minimize it subject to the constraints.

First, we transform each entry of the matrix 𝐡̃ = (𝟙{(𝑗, 𝑘) ∈ 𝒫)ℎ𝑗𝑘}𝑗,𝑘 by using logarithm. Let 𝜽 ∶=
(log ℎ𝑗𝑘)(𝑗,𝑘)∈𝒫 = (𝜃𝑗𝑘)(𝑗,𝑘)∈𝒫, then the objective function Λ∗(𝐡) in (4.14) becomes

∑
(𝑗,𝑘)∈𝒫

(−𝑤𝑗𝑘𝜃𝑗𝑘 − 𝑛(1 − exp(𝜃𝑗𝑘))).

So, the goal is to minimize
𝑓(𝜽) ∶= ∑

(𝑗,𝑘)∈𝒫
(−𝑤𝑗𝑘𝜃𝑗𝑘 + 𝑛 exp(𝜃𝑗𝑘)), (4.19)

subject to
𝜃𝑗𝑘 − 𝜃𝑗,𝑘−1 + 𝜃𝑗−1,𝑘−1 − 𝜃𝑗−1,𝑘 ≥ 0, 1 < 𝑗 ≤ 𝓁, 1 < 𝑘 ≤ 𝑚,

which is the constraint in (4.17).
Now, consider a transformation 𝑇(𝜽) of 𝜽 for all 1 ≤ 𝑗 ≤ 𝓁, defined as follows:

𝑇𝑗𝑘(𝜽) ∶= 𝜃𝑗𝑘 ∶= {
𝜃𝑗,𝑚𝑗 if 𝑘 = 𝑚𝑗 ,
𝜃𝑗𝑘 − 𝜃𝑗,𝑘−1 if 𝑚𝑗 < 𝑘 ≤ 𝑀𝑗

Note that 𝜃𝑗𝑘 = ∑
𝑘
𝑘′=𝑚𝑗 𝜃𝑗𝑘′ , for all 1 ≤ 𝑗 ≤ 𝓁 and 𝑚𝑗 ≤ 𝑘 ≤ 𝑀𝑗. Then, substituting 𝜃𝑗𝑘 with ∑𝑘𝑘′=𝑚𝑗 𝜃𝑗𝑘′

yields

𝑓(𝜽̃) = ∑
(𝑗,𝑘)∈𝒫

(−𝑤𝑗𝑘 (
𝑘

∑
𝑘′=𝑚𝑗

𝜃𝑗𝑘′)+ 𝑛 exp(
𝑘

∑
𝑘′=𝑚𝑗

𝜃𝑗𝑘′))

=
𝓁

∑
𝑗=1

𝑀𝑗

∑
𝑘=𝑚𝑗

(−𝑤𝑗𝑘 (
𝑘

∑
𝑘′=𝑚𝑗

𝜃𝑗𝑘′)+ 𝑛 exp(
𝑘

∑
𝑘′=𝑚𝑗

𝜃𝑗𝑘′)) .

For computing the first term of the summand, let us fix 1 ≤ 𝑗 ≤ 𝓁, we then have

𝑀𝑗

∑
𝑘=𝑚𝑗

−𝑤𝑗𝑘 (
𝑘

∑
𝑘′=𝑚𝑗

𝜃𝑗𝑘′) = −(𝑤𝑗,𝑚𝑗 +⋯+𝑤𝑗,𝑀𝑗)𝜃𝑗,𝑚𝑗 − (𝑤𝑗,𝑚𝑗+1 +⋯+𝑤𝑗,𝑀𝑗)𝜃𝑗,𝑚𝑗+1 −⋯−

−𝑤𝑗,𝑀𝑗𝜃𝑗,𝑀𝑗

=
𝑀𝑗

∑
𝑘=𝑚𝑗

(
𝑀𝑗

∑
𝑘′=𝑘

𝑤𝑗𝑘′)𝜃𝑗𝑘 .

Let 𝑤𝑗𝑘 = ∑
𝑀𝑗
𝑘′=𝑘 𝑤𝑗𝑘′ , then the objective function becomes

𝑓(𝜽̃) =
𝓁

∑
𝑗=1

𝑀𝑗

∑
𝑘=𝑚𝑗

(−𝑤𝑗𝑘𝜃𝑗𝑘 + 𝑛 exp(
𝑘

∑
𝑘′=𝑚𝑗

𝜃𝑗𝑘′)) .

As for the constraints, we take the log on both sides of the equation in (4.18). This yields

𝜃𝑗−1,𝑘−1 + 𝜃𝑗𝑘 − 𝜃𝑗−1,𝑘 − 𝜃𝑗,𝑘−1 ≥ 0, if (𝑗 − 1, 𝑘), (𝑗, 𝑘 − 1) ∈ 𝒫. (4.20)
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Equivalently, we have
𝜃𝑗𝑘 ≥ 𝜃𝑗−1,𝑘 , if (𝑗 − 1, 𝑘), (𝑗, 𝑘 − 1) ∈ 𝒫. (4.21)

In (4.21), we observe that 𝜃𝑗𝑘 is increasing in index 𝑗. By a definition of 𝒫 in (4.16), the constraint in
(4.21) becomes

(𝜃𝑗𝑘)
𝐿𝑘−1−𝓁𝑘+1
𝑗=𝓁𝑘

is an increasing sequence, for 1 ≤ 𝑘 ≤ 𝑚, 𝐿𝑘−1 − 𝓁𝑘 + 1 ≥ 2.

Obtaining the search direction
Let us summarize what has been done and state some results from Mösching and Dümbgen (2024)
without proof. First of all, the function 𝑓(𝜽) in (4.19) is strictly convex. Let Θ be the set of 𝜽 such that
(4.20) is satisfied, then the set Θ is a convex set. Theorem 1 in Mösching and Dümbgen (2024) shows
that 𝑓(𝜽) has a minimum in the set Θ.

Next, we reparameterize 𝜽 by 𝜽̃. We then obtain a function 𝑓(𝜽̃), with a new constraint (4.21).
Let Θ̃ be a set of 𝜽̃ such that it satisfies (4.21). The function 𝑓 and the feasible set Θ̃ are still strictly
convex and convex respectively. To solve this minimization problem, the function 𝑓 will be approximated
by a quadratic function. The minimizer of the quadratic function yields the search direction. The full
description of how to obtain the new point for the next iteration will not be explained here. We refer the
reader to Section 3.5 in Mösching and Dümbgen (2024) for the explanation.

Let us apply second-order Taylor expansion of 𝑓 at 𝜽̃. First of all, we apply derivatives and the inner
product only for indices in 𝒫, i.e.

⟨𝐱, 𝐲⟩ = ∑
(𝑗,𝑘)∈𝒫

𝑥𝑗𝑘𝑦𝑗𝑘 and ∇𝑓(𝐱̃) = (𝜕𝑓(𝑥̃)𝜕𝑥̃𝑗𝑘
)
(𝑗,𝑘)∈𝒫

.

We have

𝑓(𝐱̃) ≈ 𝑓(𝜽̃) + ⟨∇𝑓(𝜽̃), (𝐱̃ − 𝜽̃)⟩ + 12 ∑
(𝑗,𝑘)∈𝒫

𝜕2𝑓
𝜕𝑥̃2𝑗𝑘

(𝜽̃)(𝑥̃𝑗𝑘 − 𝜃𝑗𝑘)2. (4.22)

For the computation of ∇𝑓(𝐱̃), we refer the reader to Lemma E.4 in Appendix E. Recall that 𝜃𝑗𝑘 =
∑𝑘𝑘′=𝑚𝑗 𝜃𝑗𝑘′ by the definition of 𝜽̃. Therefore, by Lemma E.4, we get for any (𝑗, 𝑘) ∈ 𝒫,

∇𝑓(𝜽̃) = (−𝑤𝑗𝑘 + 𝑛
𝑀𝑗

∑
𝑘′=𝑘

exp(𝜃𝑗𝑘′))
(𝑗,𝑘)∈𝒫

and
𝜕2𝑓
𝜕𝑥̃2𝑗𝑘

(𝜽̃) = 𝑛
𝑀𝑗

∑
𝑘′=𝑘

exp(𝜃𝑗𝑘′). (4.23)

Note that the cross partial derivatives of 𝑓 is equal to zero. Indeed, it is clear from ∇𝑓(𝐱̃) that for any
1 ≤ 𝑗 ≤ 𝓁, 𝑘 = 𝑚𝑗 and 𝑗′ ≠ 𝑗, then

𝜕𝑓
𝜕𝑥̃𝑗𝑘𝜕𝑥̃𝑗′𝑘

= 𝜕𝑓
𝜕𝑥̃𝑗′𝑘𝜕𝑥̃𝑗𝑘

= 0.

In case that 2 ≤ 𝑘 ≤ 𝑚 and 𝓁𝑘 ≤ 𝑗 ≤ 𝐿𝑘−1, if we choose 𝑘 ≠ 𝑘∗, then we consider 𝓁𝑘∗ ≤ 𝑗′ ≤ 𝐿𝑘∗−1
which is a different coordinate of 𝐱̃ that is absent in,

(∇𝑓(𝜽̃))(𝑗,𝑘) = −𝑤𝑗𝑘 + 𝑛
𝑀𝑗

∑
𝑘′=𝑘

exp(𝜃𝑗𝑘′).

The second-order Taylor expansion of 𝑓 at 𝜽̃ is then applied by combining (4.22) and (4.23). This
yields

𝑓(𝐱̃) ≈ 𝑓(𝜽̃) + 12 ∑
(𝑗,𝑘)∈𝒫

𝜕2𝑓
𝜕𝑥̃2𝑗𝑘

(𝜽̃) (2( 𝜕
2𝑓
𝜕𝑥̃2𝑗𝑘

(𝜽̃))
−1 𝜕𝑓
𝜕𝑥̃𝑗𝑘

(𝜽̃)(𝑥̃𝑗𝑘 − 𝜃𝑗𝑘) + 𝑥̃2𝑗𝑘 − 2𝑥̃𝑗𝑘𝜃𝑗𝑘 + 𝜃2𝑗𝑘)
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= 𝑓(𝜽̃) + 12 ∑
(𝑗,𝑘)∈𝒫

𝜕2𝑓
𝜕𝑥̃2𝑗𝑘

(𝜽̃) [(𝑥̃𝑗𝑘 − 𝜃𝑗𝑘 + (
𝜕2𝑓
𝜕𝑥̃2𝑗𝑘

(𝜽̃))
−1 𝜕𝑓
𝜕𝑥̃𝑗𝑘

(𝜽̃))

2

− (( 𝜕
2𝑓
𝜕𝑥̃2𝑗𝑘

(𝜽̃))
−1 𝜕𝑓
𝜕𝑥̃𝑗𝑘

(𝜽̃))

2

] .

Let

const(𝜽) ∶= 𝑓(𝜽̃) − 12 ∑
(𝑗,𝑘)∈𝒫

𝜕2𝑓
𝜕𝑥̃2𝑗𝑘

(𝜽̃) (( 𝜕
2𝑓
𝜕𝑥̃2𝑗𝑘

(𝜽̃))
−1 𝜕𝑓
𝜕𝑥̃𝑗𝑘

(𝜽̃))

2

,

then (4.22) becomes

𝑓(𝐱̃) ≈ const(𝜽) + 12 ∑
(𝑗,𝑘)∈𝒫

𝜕2𝑓
𝜕𝑥̃2𝑗𝑘

(𝜽̃) (𝑥̃𝑗𝑘 − (𝜃𝑗𝑘 − (
𝜕2𝑓
𝜕𝑥̃2𝑗𝑘

(𝜽̃))
−1 𝜕𝑓
𝜕𝑥̃𝑗𝑘

(𝜽̃)))

2

= const(𝜽) + 12

𝓁

∑
𝑗=1

𝜕2𝑓
𝜕𝑥̃2𝑗,𝑚𝑗

(𝜽̃) (𝑥̃𝑗,𝑚𝑗 − (𝜃𝑗,𝑚𝑗 − (
𝜕2𝑓
𝜕𝑥̃2𝑗,𝑚𝑗

(𝜽̃))
−1

𝜕𝑓
𝜕𝑥̃𝑗,𝑚𝑗

(𝜽̃)))

2

+ 12

𝑚

∑
𝑘=2

𝐿𝑘−1
∑
𝑗=𝓁𝑘

𝜕2𝑓
𝜕𝑥̃2𝑗𝑘

(𝜽̃) (𝑥̃𝑗𝑘 − (𝜃𝑗𝑘 − (
𝜕2𝑓
𝜕𝑥̃2𝑗𝑘

(𝜽̃))
−1 𝜕𝑓
𝜕𝑥̃𝑗𝑘

(𝜽̃)))

2

.

Fix 𝑘 such that 1 < 𝑘 ≤ 𝑚. We note the minimization of the quadratic approximation of the objective
function with the feasible set Θ̃ yields the isotonic regression of (𝑥𝑗𝑘)𝐿𝑘−1𝑗=𝓁𝑘 with weights 𝜕2𝑓

𝜕𝑥2𝑗𝑘
(𝜽̃). Let

𝜈̃𝑗𝑘(𝜽) ∶=
𝜕2𝑓
𝜕𝑥̃2𝑗𝑘

(𝜽̃) = 𝑛
𝑀𝑗

∑
𝑘′=𝑘

exp(𝜃𝑗𝑘′) and 𝛾̃𝑗𝑘(𝜽) ∶= 𝜃𝑗𝑘 − 𝜈̃−1𝑗𝑘
𝜕𝑓
𝜕𝑥̃𝑗𝑘

(𝜽̃)

= 𝑇𝑗𝑘(𝜽) + 𝜈̃𝑗𝑘(𝜽)−1𝑤𝑗𝑘 − 1,

Then the proposed search direction is the solution to the following optimization problem

𝜓(𝜽) ∶= argmin
𝐱̃∈Θ̃

∑
(𝑗,𝑘)∈𝒫

𝜈̃𝑗𝑘(𝜽) (𝑥̃𝑗𝑘 − 𝛾̃𝑗𝑘(𝜽))
2 .

The above problem is solvable by using PAVA algorithm on (𝑥𝑗𝑘)𝐿𝑘−1𝑗=𝓁𝑘 for each 1 < 𝑘 ≤ 𝑚.
After the algorithm proposes a search direction, the algorithm then computes a new point for the

next iteration. Let 𝜽𝑠 be the output of the algorithm at 𝑠-th iteration. Then, the new point is 𝜽𝑠+1 =
(1−𝑡)𝜽𝑠+𝑡𝜓(𝜽𝑠), which remains in Θ̃ due to its convexity property. The goal is to find the best 𝑡, such
that the objective function 𝑓 in (4.19) decreases. We omit the details of how to find the suitable 𝑡.



5
Minimization of The Empirical Risk with
The Likelihood Ratio Order Constraint

In Chapter 4, Mösching and Dümbgen (2024) estimate the conditional distributions by maximizing an
empirical likelihood function. In this chapter, we propose another method to estimate conditional dis-
tribution functions. This method uses the empirical risk as the objective function with CRPS as the
loss function. We use CRPS as the scoring rule because it is proper and is strictly proper when the
probability measure has a finite first moment. We then require the minimizer of the empirical risk to
satisfy the likelihood ratio order constraint.

To this end, we start with computing the empirical risk and formulating the constraints (Section 5.1).
It turns out that the objective function is convex, and we give a counterexample that proves the non-
convexity of the feasible set (Section 5.2). To ensure that the feasible set is convex, we apply a log
transformation on the estimand with a price of losing the convexity property of the objective function as
will be seen in Section 5.3.

Before we start, let us define and recall several notions and notations that we will use throughout
this chapter. Similar to at the beginning of Chapter 4, we use 𝒟𝑛 = (𝑋𝑖 , 𝑌𝑖)𝑛𝑖=1 to denote a data set. For
any 1 ≤ 𝑖 ≤ 𝑛, let 𝑌(𝑋𝑖) = 𝑌𝑖 ∶= [𝑌|𝑋 = 𝑋𝑖] and suppose it has a finite first moment and it follows an
unknown distribution 𝐺𝑌|𝑋𝑖 . We further require that for any 𝑥𝑖 ≤ 𝑥𝑗 and 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛, we have

𝑌(𝑋𝑖) ≤lr 𝑌(𝑋𝑗).
We will construct the ”best” estimator 𝐹𝑌|𝑋𝑖 of 𝐺𝑌|𝑋𝑖 , in a sense that it minimizes the excepted CRPS
using the estimator 𝐹𝑌|𝑋𝑖 , while 𝑌(𝑋𝑖) has a true distribution 𝐺𝑌|𝑋𝑖 , for each 𝑖 = 1,… , 𝑛. Formulated
differently, we require 𝐹𝑌|𝑋𝑖 to have the following property

𝔼𝐺𝑌|𝑋𝑖 [CRPS(𝐹𝑌|𝑋𝑖 , 𝑌(𝑋𝑖))] ≈ 𝔼𝐺𝑌|𝑋𝑖 [CRPS(𝐺𝑌|𝑋𝑖 , 𝑌(𝑋𝑖))], for each 𝑖 = 1,… , 𝑛.

Instead of taking the expectation of CRPS(𝐹𝑌|𝑋 , 𝑌(𝑋)) w.r.t. the distribution 𝐺𝑌|𝑋, we compute the
risk w.r.t. to the joint distribution of (𝑋, 𝑌). Assume that (𝑋, 𝑌) ∼ 𝑃 and 𝒟𝑛 consists of 𝑛 realizations of
(𝑋, 𝑌). Let 𝑃𝑋 be the marginal distribution of 𝑋. Then,

𝔼(𝑋,𝑌)∼𝑃[CRPS(𝐹𝑌|𝑋 , 𝑌(𝑋)] = 𝔼𝑃𝑋 [𝔼𝐺𝑌|𝑋 [CRPS(𝐹𝑌|𝑋 , 𝑌(𝑋))]]

≥ 𝔼𝑃𝑋 [𝔼𝐺𝑌|𝑋 [CRPS(𝐺𝑌|𝑋 , 𝑌(𝑋))]]
= 𝔼(𝑋,𝑌)∼𝑃[CRPS(𝐺𝑌|𝑋 , 𝑌(𝑋))].

Due to the (strict) propriety property of CRPS, the inequality above is equal if and only if 𝐹𝑌|𝑋 = 𝐺𝑌|𝑋.
Since the joint distribution 𝑃 is unknown, we will use the empirical risk to estimate the expectation, i.e.

𝔼(𝑋,𝑌)∼𝑃[CRPS(𝐹𝑌|𝑋 , 𝑌(𝑋)] ≈
1
𝑛

𝑛

∑
𝑖=1

CRPS(𝐹𝑌|𝑋𝑖 , 𝑌(𝑋𝑖)) =
1
𝑛

𝑛

∑
𝑖=1

CRPS(𝐹𝑌|𝑋𝑖 , 𝑌𝑖). (5.1)

The above quantity will be computed by choosing a specific model for 𝐹𝑌|𝑋𝑖 of each 1 ≤ 𝑖 ≤ 𝑛, which
allows us to formulate the function that we wish to minimize.

39
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5.1. Formulating the objective function and the constraints
The model choice of the conditional distributions is the same as in Mösching and Dümbgen (2024).
Before the estimation procedure, we sort the covariate and the response values in 𝒟𝑛 from the smallest
to the largest value:

{𝑋1, … , 𝑋𝑛} = {𝑥1, … , 𝑥𝓁} and {𝑌1, … , 𝑌𝑛} = {𝑦1, … , 𝑦𝑚},

where (𝑥𝑗)𝓁𝑗=1 and (𝑦𝑘)𝑚𝑘=1 are strictly increasing sequences. Let 𝑤𝑗𝑘 ∶= #{𝑖 ∶ (𝑋𝑖 , 𝑌𝑖) = (𝑥𝑗 , 𝑦𝑘)}. We
then model the conditional distribution by assuming that 𝐹𝑌|𝑥𝑗 has a support {𝑦1, … , 𝑦𝑚} with probability
mass function

𝑓(𝑦𝑘|𝑥𝑗) ∶= 𝑞𝑗𝑘 for all 1 ≤ 𝑗 ≤ 𝓁, 1 ≤ 𝑘 ≤ 𝑚.

Therefore, the conditional distributions for any 1 ≤ 𝑗 ≤ 𝓁 are

𝐹(𝑦|𝑥𝑗) =
𝑚

∑
𝑘=1

𝑞𝑗𝑘𝟙{𝑦𝑘 ≤ 𝑦},

which means that the empirical risk in (5.1) becomes

1
𝑛

𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘CRPS(𝐹𝑌|𝑥𝑗 , 𝑦𝑘).

We denote the expression above with 𝑅(𝐪), where 𝐪 is a vector of size 𝓁 ⋅ 𝑚 and

𝐪 = (𝑞11, … , 𝑞1𝑚 , … , 𝑞𝑗1, … , 𝑞𝑗𝑚 , … , 𝑞𝓁1, … , 𝑞𝓁𝑚)⊤.

We compute the score when we predict the probability of observing 𝑦𝑘 using 𝐹𝑌|𝑥𝑗 . For any 1 ≤ 𝑗 ≤ 𝓁
and 1 ≤ 𝑘 ≤ 𝑚, we have

CRPS(𝐹𝑌|𝑥𝑗 , 𝑦𝑘) = ∫ℝ
[
𝑚

∑
𝑘′=1

𝑞𝑗𝑘′𝟙{𝑦𝑘′ ≤ 𝑧} − 𝟙{𝑦𝑘 ≤ 𝑧}]

2

𝑑𝑧.

We write ℝ as a set of disjoint intervals:

ℝ = (−∞, 𝑦1) ∪ (
𝑚−1

⋃
𝑘=1

[𝑦𝑘 , 𝑦𝑘+1)) ∪ [𝑦𝑚 , ∞).

Let 𝑀 > 0, 𝐹𝑗𝑡 ∶= ∑
𝑡
𝑘′=1 𝑞𝑗𝑘′ and Δ𝑦𝑡 = 𝑦𝑡+1 − 𝑦𝑡, we then have

CRPS(𝐹𝑌|𝑥𝑗 , 𝑦𝑘) =
𝑚−1

∑
𝑡=1

∫
𝑦𝑡+1

𝑦𝑡
[
𝑚

∑
𝑘′=1

𝑞𝑗𝑘′𝟙{𝑦𝑘′ ≤ 𝑧} − 𝟙{𝑦𝑘 ≤ 𝑧}]

2

𝑑𝑧 + lim
𝑀→∞

∫
𝑦𝑚+𝑀

𝑦𝑚
[𝐹𝑗𝑚 − 1]

2 𝑑𝑧

=
𝑚−1

∑
𝑡=1

{[𝐹𝑗𝑡 − 𝟙{𝑡 ≥ 𝑘}]
2 Δ𝑦𝑡} + lim

𝑀→∞
𝑀 [𝐹𝑗𝑚 − 1]

2

=
𝑘−1

∑
𝑡=1

𝐹2𝑗𝑡Δ𝑦𝑡 +
𝑚−1

∑
𝑡=𝑘
(1 − 𝐹𝑗𝑡)2Δ𝑦𝑡 + lim

𝑀→∞
𝑀 [𝐹𝑗𝑚 − 1]

2

=
𝑚−1

∑
𝑡=1

𝐹2𝑗𝑡Δ𝑦𝑡 − 2
𝑚−1

∑
𝑡=𝑘

𝐹𝑗𝑡Δ𝑦𝑡 + (𝑦𝑚 − 𝑦𝑘) + lim
𝑀→∞

𝑀 [𝐹𝑗𝑚 − 1]
2 .



5.2. The convexity of the objective function and the feasible set 41

Let 𝑀 > 0 be sufficiently large. The empirical risk is then

𝑅(𝐪) = 1
𝑛

𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘 {
𝑚−1

∑
𝑡=1

𝐹2𝑗𝑡Δ𝑦𝑡 − 2
𝑚−1

∑
𝑡=𝑘

𝐹𝑗𝑡Δ𝑦𝑡 + (𝑦𝑚 − 𝑦𝑘)} +
𝑀
𝑛

𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘[𝐹𝑗𝑚 − 1]2.

The optimization problem is therefore

min
𝐪∈𝒞

𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘 {
𝑚−1

∑
𝑡=1

𝐹2𝑗𝑡Δ𝑦𝑡 − 2
𝑚−1

∑
𝑡=𝑘

𝐹𝑗𝑡Δ𝑦𝑡} +𝑀
𝓁

∑
𝑗=1
𝑤𝑗+[𝐹𝑗𝑚 − 1]2, (5.2)

where 𝑤𝑗+ = ∑
𝑚
𝑘=1𝑤𝑗𝑘 and 𝒞 is some feasible region.

At last, we determine the feasible region 𝒞. For that, we discuss the constraints we impose for this
minimization problem. Firstly, we want that for any 1 ≤ 𝑗 ≤ 𝓁 and 1 ≤ 𝑘 ≤ 𝓁, the function 𝐹𝑗𝑘 is a well-
defined conditional distribution function, that is, 𝐹𝑗𝑚 = 1 for all 1 ≤ 𝑗 ≤ 𝓁. This constraint is accounted
for by the second term of 𝑅(𝐪). If 𝐪 ∈ [0,∞)𝓁⋅𝑚 and 𝑀 > 0 is large, then

𝐹𝑗𝑚 =
𝑚

∑
𝑘′=1

𝑞𝑗𝑘′ ≈ 1, ∀1 ≤ 𝑗 ≤ 𝓁,

and 𝑞𝑗𝑘 ∈ [0, 1] for all 1 ≤ 𝑗 ≤ 𝓁, 1 ≤ 𝑘 ≤ 𝑚. Furthermore, we add the constraint to ensure that the
likelihood ratio is increasing, i.e.

𝑞𝑗1𝑘1𝑞𝑗2𝑘2 ≥ 𝑞𝑗2𝑘1𝑞𝑗1𝑘2 ∀1 ≤ 𝑗1 < 𝑗2 ≤ 𝓁, ∀1 ≤ 𝑘1 < 𝑘2 ≤ 𝑚.

This means that the feasible region is

𝒞 ∶= {𝐪 ∈ [0,∞)𝓁⋅𝑚 ∶ 𝑞𝑗1𝑘1𝑞𝑗2𝑘2 ≥ 𝑞𝑗2𝑘1𝑞𝑗1𝑘2 ∀1 ≤ 𝑗1 < 𝑗2 ≤ 𝓁, ∀1 ≤ 𝑘1 < 𝑘2 ≤ 𝑚} .

Note that for any 1 ≤ 𝑗1 < 𝑗2 ≤ 𝓁 and 1 ≤ 𝑘1 < 𝑘2 ≤ 𝑚,

𝑞𝑗1𝑘1𝑞𝑗2𝑘2 ≥ 𝑞𝑗2𝑘1𝑞𝑗1𝑘2 ⟺ 𝑞𝑗1𝑘1𝑞𝑗2𝑘2 − 𝑞𝑗2𝑘1𝑞𝑗1𝑘2 ≥ 0 ⟺ det(𝑞𝑗1𝑘1 𝑞𝑗1𝑘2
𝑞𝑗2𝑘1 𝑞𝑗2𝑘2

) ≥ 0.

Therefore, the set 𝒞 may also be formulated as follows

𝒞 ∶= {𝐪 ∈ [0,∞)𝓁⋅𝑚 ∶ det(𝑞𝑗1𝑘1 𝑞𝑗1𝑘2
𝑞𝑗2𝑘1 𝑞𝑗2𝑘2

) ≥ 0 ∀1 ≤ 𝑗1 < 𝑗2 ≤ 𝓁, ∀1 ≤ 𝑘1 < 𝑘2 ≤ 𝑚} . (5.3)

In the subsequent section, we investigate the convexity of the objective function and the feasible set.

5.2. The convexity of the objective function and the feasible set
In an optimization problem, we wish that the objective function is strictly convex and the feasible set
is convex. It ensures that if the objective function has a minimum in the feasible set, the minimizer is
unique. Therefore, we investigate the convexity of the objective function and the feasible set for our
problem. It turns out that the objective function in (5.2) has a minimum and is strictly convex in the
domain [0,∞)𝓁⋅𝑚. The convexity property of the objective function is proven in Section 5.2.1. After
that, we show that the objective function for the unconstrained problem has a minimum (Section 5.2.2).
Unfortunately, the feasible set in (5.3) is a non-convex set, which we illustrate with a counterexample
in Section 5.2.3.

5.2.1. The objective function is convex
To show that the objective function (5.2) is convex, we will show that the Hessian matrix is positive
definite. We prove this claim by using the LU-decomposition of the Hessian matrix. It will turn out that
the pivots of the upper triangular matrix are all positive, which means that all of its eigenvalues are
positive.
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Let 𝜙𝑀(𝐪) be the objective function in (5.2), i.e.

𝜙𝑀(𝐪) ∶=
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘 {
𝑚−1

∑
𝑡=1

(
𝑡

∑
𝑘′=1

𝑞𝑗𝑘′)

2

Δ𝑦𝑡 − 2
𝑚−1

∑
𝑡=𝑘

(
𝑡

∑
𝑘′=1

𝑞𝑗𝑘′)Δ𝑦𝑡} +𝑀
𝓁

∑
𝑗=1
𝑤𝑗+ [

𝑚

∑
𝑘′=1

𝑞𝑗𝑘′ − 1]

2

.

We have for any 1 ≤ 𝑗 ≤ 𝓁 and 1 ≤ 𝑘 ≤ 𝑚 − 1,

𝜕𝜙𝑀
𝜕𝑞𝑗𝑘

= 2𝑤𝑗+ {
𝑚−1

∑
𝑡=𝑘

(
𝑡

∑
𝑘′=1

𝑞𝑢𝑘′)Δ𝑦𝑡} − 2(𝑦𝑚 − 𝑦𝑘)
𝑘

∑
𝑘′=1

𝑤𝑗𝑘′ − 2
𝑚−1

∑
𝑘′=𝑘+1

𝑤𝑗𝑘′(𝑦𝑚 − 𝑦𝑘′)

+ 2𝑀𝑤𝑗+ (
𝑚

∑
𝑘′=1

𝑞𝑗𝑘′ − 1)

= 2𝑤𝑗+ {(𝑦𝑚 − 𝑦𝑘) (
𝑘−1

∑
𝑘′=1

𝑞𝑗𝑘′ + 𝑞𝑗𝑘) +
𝑚−1

∑
𝑘′=𝑘+1

𝑞𝑗𝑘′(𝑦𝑚 − 𝑦𝑘′)}

− 2(𝑦𝑚 − 𝑦𝑘)
𝑘

∑
𝑘′=1

𝑤𝑗𝑘′ − 2
𝑚−1

∑
𝑘′=𝑘+1

𝑤𝑢𝑘′(𝑦𝑚 − 𝑦𝑘′) + 2𝑀𝑤𝑗+ (
𝑚

∑
𝑘′=1

𝑞𝑗𝑘′ − 1) ,

𝜕𝜙𝑀
𝜕𝑞𝑗𝑚

= 2𝑀𝑤𝑗+ (
𝑚

∑
𝑘′=1

𝑞𝑗𝑘′ − 1) .

As for the second derivatives, the Hessian matrix is an 𝓁 ⋅𝑚× 𝓁 ⋅𝑚. The diagonal entries are for all
1 ≤ 𝑗 ≤ 𝓁 and 1 ≤ 𝑘 ≤ 𝑚 − 1

𝜕2𝜙𝑀
𝜕𝑞2𝑗𝑘

= 2𝑤𝑗+(𝑦𝑚 − 𝑦𝑘) + 2𝑀𝑤𝑗+

𝜕2𝜙𝑀
𝜕𝑞2𝑗𝑚

= 2𝑀𝑤𝑗+

As for the other entries, first note that for any 1 ≤ 𝑗 ≠ 𝑗′ ≤ 𝓁 and 1 ≤ 𝑘, 𝑘′ ≤ 𝑚,

𝜕2𝜙𝑀
𝜕𝑞𝑗′𝑘′𝜕𝑞𝑗𝑘

= 0 and
𝜕2𝜙𝑀

𝜕𝑞𝑗𝑘′𝜕𝑞𝑗𝑘
≠ 0.

For any 1 ≤ 𝑗 ≤ 𝓁, let 1 ≤ 𝑘 ≠ 𝑘′ ≤ 𝑚, then

𝜕2𝜙𝑀
𝜕𝑞𝑗𝑘′𝜕𝑞𝑗𝑘

=
⎧⎪
⎨⎪⎩

2𝑤𝑗+(𝑦𝑚 − 𝑦𝑘′) + 2𝑀𝑤𝑗+ if 1 ≤ 𝑘 < 𝑘′ ≤ 𝑚 − 1
2𝑤𝑗+(𝑦𝑚 − 𝑦𝑘) + 2𝑀𝑤𝑗+ if 1 ≤ 𝑘′ < 𝑘 ≤ 𝑚 − 1
2𝑀𝑤𝑗+ if 𝑘 = 𝑚, 1 ≤ 𝑘′ ≤ 𝑚 − 1
2𝑀𝑤𝑗+ if 1 ≤ 𝑘 ≤ 𝑚 − 1, 𝑘′ = 𝑚.

This means that the Hessian matrix is a diagonal block matrix, in which each block is an 𝑚 × 𝑚
matrix. The Hessian matrix of 𝜙𝑀 is then

∇2𝜙𝑀 =
⎛
⎜

⎝

𝐴1,(1∶𝑚) 0 0 ⋯ 0 0
0 𝐴2,(1∶𝑚) 0 ⋯ 0 0
0 0 𝐴3,(1∶𝑚) ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ ⋮ 𝐴𝓁,(1∶𝑚)

⎞
⎟

⎠
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where for any 1 ≤ 𝑗 ≤ 𝓁, the matrix 𝐴𝑗,(1∶𝑚) ∈ ℝ𝑚×𝑚 and is defined as follows,

⎛
⎜
⎜

⎝

2𝑤𝑗+(𝑦𝑚 − 𝑦1) + 2𝑀𝑤𝑗+ 2𝑤𝑗+(𝑦𝑚 − 𝑦2) + 2𝑀𝑤𝑗+ ⋯ 2𝑤𝑗+(𝑦𝑚 − 𝑦𝑚−1) + 2𝑀𝑤𝑗+ 2𝑀𝑤𝑗+
2𝑤𝑗+(𝑦𝑚 − 𝑦2) + 2𝑀𝑤𝑗+ 2𝑤𝑗+(𝑦𝑚 − 𝑦2) + 2𝑀𝑤𝑗+ ⋯ 2𝑤𝑗+(𝑦𝑚 − 𝑦𝑚−1) + 2𝑀𝑤𝑗+ 2𝑀𝑤𝑗+
2𝑤𝑗+(𝑦𝑚 − 𝑦3) + 2𝑀𝑤𝑗+ 2𝑤𝑗+(𝑦𝑚 − 𝑦3) + 2𝑀𝑤𝑗+ ⋯ 2𝑤𝑗+(𝑦𝑚 − 𝑦𝑚−1) + 2𝑀𝑤𝑗+ 2𝑀𝑤𝑗+

⋮ ⋮ ⋱ ⋮ ⋮
2𝑤𝑗+(𝑦𝑚 − 𝑦𝑚−1) + 2𝑀𝑤𝑗+ 2𝑤𝑗+(𝑦𝑚 − 𝑦𝑚−1) + 2𝑀𝑤𝑗+ ⋯ 2𝑤𝑗+(𝑦𝑚 − 𝑦𝑚−1) + 2𝑀𝑤𝑗+ 2𝑀𝑤𝑗+

2𝑀𝑤𝑗+ 2𝑀𝑤𝑗+ ⋯ 2𝑀𝑤𝑗+ 2𝑀𝑤𝑗+

⎞
⎟
⎟

⎠
Note that all of the entries of the matrix above are positive. Furthermore, let 𝑐𝑖 = 𝑐𝑖(𝑗) ∶= 2𝑤𝑗+(𝑦𝑚 −
𝑦𝑖) + 2𝑀𝑤𝑗+, then 𝑐1 > 𝑐2 > ⋯ > 𝑐𝑚. Each block 𝐴𝑗,(1∶𝑚) is a symmetric matrix and so ∇2𝜙𝑀 is
symmetric. For each 1 ≤ 𝑗 ≤ 𝓁, the matrix 𝐴𝑗,(1∶𝑚) is positive definite and therefore so is ∇2𝜙𝑀. The
positive definiteness of 𝐴𝑗,(1∶𝑚) is shown in the following lemma.

Lemma 5.2.1. Let 𝐴 ∈ ℝ𝑚×𝑚 be a matrix. Let 𝑎𝑖𝑘 denote the entries of 𝐴, where for all 1 ≤ 𝑖, 𝑘 ≤ 𝑚,

𝑎𝑖𝑘 = {
𝑐𝑘 if 𝑖 < 𝑘,
𝑐𝑖 if 𝑖 ≥ 𝑘,

and (𝑐𝑘)𝑚𝑘=1 is an arbitrary real-valued sequence such that 𝑐1 > 𝑐2 > ⋯ > 𝑐𝑚 > 0. The matrix 𝐴 is
positive definite.

Proof. The matrix 𝐴 is defined as follows,

𝐀 =
⎛
⎜
⎜

⎝

𝑐1 𝑐2 𝑐3 ⋯ 𝑐𝑚−1 𝑐𝑚
𝑐2 𝑐2 𝑐3 ⋯ 𝑐𝑚−1 𝑐𝑚
𝑐3 𝑐3 𝑐3 ⋯ 𝑐𝑚−1 𝑐𝑚
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑐𝑚−1 𝑐𝑚−1 𝑐𝑚−1 ⋯ 𝑐𝑚−1 𝑐𝑚
𝑐𝑚 𝑐𝑚 𝑐𝑚 ⋯ 𝑐𝑚 𝑐𝑚

⎞
⎟
⎟

⎠

.

To show that 𝐴 is positive definite, we show that 𝐴 has an LU-decomposition with positive pivots (Meyer,
2023, p. 559). Let

𝐋 =
⎛
⎜
⎜

⎝

1 0 0 ⋯ 0 0
𝑐2/𝑐1 1 0 ⋯ 0 0
𝑐3/𝑐1 𝑐3/𝑐2 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝑐𝑚−1/𝑐1 𝑐𝑚−1/𝑐2 𝑐𝑚−1/𝑐3 ⋯ 1 0
𝑐𝑚/𝑐1 𝑐𝑚/𝑐2 𝑐𝑚/𝑐3 ⋯ 𝑐𝑚/𝑐𝑚−1 1

⎞
⎟
⎟

⎠
and

𝐔 =

⎛
⎜
⎜
⎜
⎜

⎝

𝑐1 𝑐2 𝑐3 ⋯ 𝑐𝑚−1 𝑐𝑚
0 𝑐2

𝑐1
(𝑐1 − 𝑐2)

𝑐3
𝑐1
(𝑐1 − 𝑐2) ⋯ 𝑐𝑚−1

𝑐1
(𝑐1 − 𝑐2)

𝑐𝑚
𝑐1
(𝑐1 − 𝑐2)

0 0 𝑐3
𝑐2
(𝑐2 − 𝑐3) ⋯ 𝑐𝑚−1

𝑐2
(𝑐2 − 𝑐3)

𝑐𝑚
𝑐2
(𝑐2 − 𝑐3)

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝑐𝑚−1

𝑐𝑚−2
(𝑐𝑚−1 − 𝑐𝑚−2)

𝑐𝑚
𝑐𝑚−2

(𝑐𝑚−1 − 𝑐𝑚−2)
0 0 0 ⋯ 0 𝑐𝑚

𝑐𝑚−1
(𝑐𝑚−1 − 𝑐𝑚)

⎞
⎟
⎟
⎟
⎟

⎠

.

The entries of matrices of 𝐿 and 𝑈 are denoted as (𝓁𝑖𝑗)𝑖,𝑗 and (𝑢𝑖𝑗)𝑖,𝑗 respectively, where

𝓁𝑖𝑗 = {
𝑐𝑖/𝑐𝑗 if 𝑖 ≥ 𝑗,
0 if 𝑖 < 𝑗, and 𝑢𝑖𝑗 = {

𝑐𝑗 if 𝑖 = 1,
𝑐𝑗/𝑐𝑖−1(𝑐𝑖−1 − 𝑐𝑖) if 𝑖 ≤ 𝑗,
0 if 𝑖 > 𝑗.

Now, we compute the entries of the outcome 𝐿𝑈. We have for any 1 ≤ 𝑘 ≤ 𝑚,

𝑚

∑
𝑗=1
𝓁1𝑗𝑢𝑗𝑘 = 𝓁11𝑢1𝑘 = 𝑢1𝑘 = 𝑐𝑘 = 𝑎1𝑘
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If 1 < 𝑖 ≤ 𝑚 and 1 ≤ 𝑘 ≤ 𝑚 such that 𝑖 < 𝑘, then
𝑚

∑
𝑗=1
𝓁𝑖𝑗𝑢𝑗𝑘 = 𝓁𝑖1𝑢1𝑘 +

𝑚

∑
𝑗=2
𝓁𝑖𝑗𝑢𝑗𝑘

= 𝑐𝑖
𝑐1
𝑐𝑘 + ∑

2≤𝑗≤𝑖
𝓁𝑖𝑗𝑢𝑗𝑘 + ∑

𝑖<𝑗≤𝑚
𝓁𝑖𝑗𝑢𝑗𝑘

= 𝑐𝑖
𝑐1
𝑐𝑘 + ∑

2≤𝑗≤𝑖
𝓁𝑖𝑗𝑢𝑗𝑘

= 𝑐𝑖
𝑐1
𝑐𝑘 +

𝑖

∑
𝑗=2

𝑐𝑖
𝑐𝑗
𝑐𝑘
𝑐𝑗−1

(𝑐𝑗−1 − 𝑐𝑗)

= 𝑐𝑖
𝑐1
𝑐𝑘 +

𝑖−1

∑
𝑗=2

𝑐𝑖
𝑐𝑗
𝑐𝑘
𝑐𝑗−1

(𝑐𝑗−1 − 𝑐𝑗) +
𝑐𝑘
𝑐𝑖−1

(𝑐𝑖−1 − 𝑐𝑖)

= 𝑐𝑖
𝑐1
𝑐𝑘 + 𝑐𝑖𝑐𝑘

𝑖−1

∑
𝑗=2
( 1𝑐𝑗

− 1
𝑐𝑗−1

) + 𝑐𝑘 −
𝑐𝑖
𝑐𝑖−1

𝑐𝑘

= 𝑐𝑖
𝑐1
𝑐𝑘 + 𝑐𝑖𝑐𝑘 (

1
𝑐𝑖−1

− 1
𝑐1
) + 𝑐𝑘 −

𝑐𝑖
𝑐𝑖−1

𝑐𝑘 = 𝑐𝑘 = 𝑎𝑖𝑘 .

In case 𝑖 ≥ 𝑘, we do similar computations as before,
𝑚

∑
𝑗=1
𝓁𝑖𝑗𝑢𝑗𝑘 =

𝑐𝑖
𝑐1
𝑐𝑘 + ∑

2≤𝑗≤𝑘
𝓁𝑖𝑗𝑢𝑗𝑘

= 𝑐𝑖
𝑐1
𝑐𝑘 + 𝑐𝑖𝑐𝑘

𝑘−1

∑
𝑗=2

( 1𝑐𝑗
− 1
𝑐𝑗−1

) + 𝑐𝑖
𝑐𝑘−1

(𝑐𝑘−1 − 𝑐𝑘)

= 𝑐𝑖
𝑐1
𝑐𝑘 + 𝑐𝑖𝑐𝑘 (

1
𝑐𝑘−1

− 1
𝑐1
) + 𝑐𝑖 −

𝑐𝑖
𝑐𝑘−1

𝑐𝑘 = 𝑐𝑖 = 𝑎𝑖𝑘 .

Hence, 𝐀 = 𝐋𝐔. Because 𝑐1 > 𝑐2 > ⋯ > 𝑐𝑚 > 0, all pivots of matrix 𝐔 are positive. Therefore, the
matrix 𝐀 is positive definite.

5.2.2. The existence and uniqueness of the minimum
The strict convexity property ensures that the objective function has a uniqueminimum if it exists. In this
section, we confirm that the function does have a minimum. The idea is to first show that for any fixed
𝐪 ∈ [0,∞)𝓁⋅𝑚, the function value 𝜙𝑀 goes to infinity as we moves increasingly farther from 𝐪. Then, we
restrict 𝜙𝑀 on a bounded domain and use continuity and the compactness of the set to guarantee the
existence of the minimum.

The following lemma shows the existence and the uniqueness of the minimum of 𝜙𝑀.
Lemma 5.2.2. The function 𝜙𝑀(𝐪) has a minimum in [0,∞)𝓁𝑚 and it is unique.

Proof. Let 𝑐 > 1 and fix 𝑀 > 0. Choose 𝐪 ∈ [0,∞)𝓁𝑚 such that for all 1 ≤ 𝑗 ≤ 𝓁, we have ∑𝑚𝑘=1 𝑞𝑗𝑘 = 1,
then,

𝜙𝑀(𝑐𝐪) =
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

[𝑤𝑗𝑘 {𝑐2
𝑚−1

∑
𝑡=1

(
𝑡

∑
𝑘′=1

𝑞𝑗𝑘′)

2

Δ𝑦𝑡 − 2𝑐
𝑚−1

∑
𝑡=𝑘

(
𝑡

∑
𝑘′=1

𝑞𝑗𝑘′)Δ𝑦𝑡}]

+𝑀
𝓁

∑
𝑗=1
[𝑤𝑗+ (

𝑚

∑
𝑘′=1

𝑐𝑞𝑗𝑘′ − 1)

2

]
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≥
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

[𝑤𝑗𝑘 {𝑀(
𝑚

∑
𝑘′=1

𝑐𝑞𝑗𝑘′ − 1)

2

− 2𝑐
𝑚−1

∑
𝑡=𝑘

(
𝑡

∑
𝑘′=1

𝑞𝑗𝑘′)Δ𝑦𝑡}]

≥
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

[𝑤𝑗𝑘 {𝑀(𝑐 − 1)2 − 2𝑐
𝑚−1

∑
𝑡=𝑘

(
𝑚

∑
𝑘′=1

𝑞𝑗𝑘′)Δ𝑦𝑡}]

≥
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

[𝑤𝑗𝑘 {𝑀(𝑐 − 1)2 − 2𝑐(𝑦𝑚 − 𝑦𝑘)}]

≥
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

[𝑤𝑗𝑘 {𝑀(𝑐 − 1)2 − 2𝑐(𝑦𝑚 − 𝑦1)}] = 𝑛(𝑐 − 1)2𝑀 − 2𝑐(𝑦𝑚 − 𝑦1)𝓁𝑚

Note that the lower bound of 𝜙𝑀(𝑐𝐪) is independent on the choice of 𝐪. Furthermore, this bound goes
to infinity as 𝑐 → ∞. In other words, there exists 𝑐′ > 1 such that for any 𝑐 > 𝑐′, we have

𝜙𝑀(𝑐𝐪) ≥ 𝜙𝑀(𝐪).

Now consider the following bounded set

𝒮 ∶= {𝐪 ∈ [0,∞)𝓁⋅𝑚 ∶
𝑚

∑
𝑘=1

𝑞𝑗𝑘 ≤ 𝑐′, for all 1 ≤ 𝑗 ≤ 𝓁} ,

and we restrict the domain of 𝜙𝑀 in 𝒮. Because the function 𝜙𝑀 cannot attain its minimum outside this
set and the function is continuous, then a minimum exists on the compact set 𝒮. The uniqueness is
guaranteed due to 𝜙 being strictly convex in [0,∞)𝓁⋅𝑚.

5.2.3. Counterexample illustrating the non-convexity of the feasible set
In this section, we give a counterexample that shows why the feasible set 𝒞 in (5.3) is a non-convex
set. For the sake of consistency, we replace [0,∞)𝓁⋅𝑚 with [0,∞)𝓁⋅𝑚. So, the feasible set is then

𝒞 ∶= {𝐪 ∈ [0,∞)𝓁⋅𝑚 ∶ det(𝑞𝑗1𝑘1 𝑞𝑗1𝑘2
𝑞𝑗2𝑘1 𝑞𝑗2𝑘2

) ≥ 0 ∀1 ≤ 𝑗1 < 𝑗2 ≤ 𝓁, ∀1 ≤ 𝑘1 < 𝑘2 ≤ 𝑚} . (5.4)

To prove that a set 𝒞 is convex, we want that for any 𝐱, 𝐲 ∈ 𝒞, we have (1 − 𝑡)𝑥 + 𝑡𝑦 ∈ 𝒞 for any
𝑡 ∈ [0, 1]. We choose 𝓁 = 𝑚 = 2 and consider the following vectors

𝐪 = (0.1, 0.7, 0, 0.2)⊤ and 𝐩 = (0.4, 0.2, 0.2, 0.1)⊤.

Then,

det(0.1 0.7
0 0.2) = 0.02 and det(0.4 0.2

0.2 0.1) = 0,

which means that 𝐩, 𝐪 ∈ 𝒞. Now let 𝑡 ∈ [0, 1] and consider (1 − 𝑡)𝐩 + 𝑡𝐪, then we have

det(0.1(1 − 𝑡) + 0.4𝑡 0.7(1 − 𝑡) + 0.2𝑡
0.2𝑡 0.2(1 − 𝑡) + 0.1𝑡) .

For 𝑡 = 1/2, the determinant of the above expression is

(0.05 + 0.2)(0.1 + 0.05) − 0.1(0.35 + 0.1) = 0.0375 − 0.045 = −0.0075 < 0.

There exists 𝑡 ∈ (0, 1) such that (1 − 𝑡)𝐩 + 𝑡𝐪 ∉ 𝒞, therefore the set 𝒞 is not convex.
These results imply that the objective function have local minima. Therefore, we decided to trans-

form the feasible set so that it is convex, with a price of changing the parameter of the objective function.
In the next section, we will see that the objective function with the transformed parameter loses its strict
convexity property.
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5.3. Log transformation of the parameter and quadratic form
We have seen in Section 5.2 that the objective function is convex, but the feasible set is non-convex.
To fix the non-convexity, we transform the parameters so that the feasible set becomes convex. We
then have to estimate the transformed parameter. To ensure that we obtain the original parameter
back uniquely, we choose a transformation that is bijective. To this end, we follow a similar method as
in Mösching and Dümbgen (2024). This results in estimating the transformed parameter with a price
that the objective function loses its convexity property. In this section, we show the truthiness of this
statement by producing an example.

5.3.1. Transforming a non-convex set into a convex set
Recall that we wish the minimizer 𝐪 of the objective function 𝜙𝑀(𝐪) to satisfy

𝑞𝑗1𝑘1𝑞𝑗2𝑘2 ≥ 𝑞𝑗1𝑘2𝑞𝑗2𝑘1 ∀ 1 ≤ 𝑗1 < 𝑗2 ≤ 𝓁, 1 ≤ 𝑘1 < 𝑘2 ≤ 𝑚,

where 𝐪 ∈ [0,∞)𝓁⋅𝑚. Let 𝜽 = log(𝐪) = (𝜃𝑗𝑘)𝑗,𝑘 and take log in both sides of the equation. The inequality
above is then equivalent to

𝜃𝑗1𝑘1 + 𝜃𝑗2𝑘2 − 𝜃𝑗1𝑘2 − 𝜃𝑗2𝑘1 ≥ 0 ∀ 1 ≤ 𝑗1 < 𝑗2 ≤ 𝓁, 1 ≤ 𝑘1 < 𝑘2 ≤ 𝑚,

where 𝜽 ∈ ℝ ∪ {−∞}. Let ℝ−∞ ∶= ℝ ∪ {−∞}, the transformed feasible set that we are considering now
is the set

𝒞 ∶= {𝜽 ∈ ℝ𝓁𝑚−∞ ∶ 𝜃𝑗1𝑘1 − 𝜃𝑗1𝑘2 + 𝜃𝑗2𝑘2 − 𝜃𝑗2𝑘1 ≥ 0, ∀ 1 ≤ 𝑗1 < 𝑗2 ≤ 𝓁, 1 ≤ 𝑘1 < 𝑘2 ≤ 𝑚} . (5.5)

For convention, we allow writing log(0) = −∞ and therefore exp(−∞) = 0. Note that 𝟎 ∈ 𝒞, but 𝟎 ∉ 𝒞.
This is because we may obtain an indeterminate form ∞−∞. To allow a vector with entries of infinity
as well, we allow ∞ − ∞ = −∞ + ∞ = 0 as another convention. Lastly, we also allow the following
operations:

∞+ 𝑐 = 𝑐 +∞ = ∞ ∀𝑐 ∈ (−∞,∞]
−∞+ 𝑐 = 𝑐 −∞ = −∞ ∀𝑐 ∈ [−∞,∞)
𝑐 ⋅ ∞ = ∞ ⋅ 𝑐 = ∞ ∀𝑐 ∈ (0,∞]
𝑐 ⋅ ∞ = ∞ ⋅ 𝑐 = −∞ ∀𝑐 ∈ [−∞, 0)

∞ ⋅ 0 = 0 ⋅ ∞ = 𝑐
∞ = 𝑐

−∞ = 0 ∀𝑐 ∈ (−∞,∞)

Next, we show that 𝒞 is a convex set.

Lemma 5.3.1. The set 𝒞 ⊂ ℝ𝓁𝑚 is a convex set

Proof. Take any 𝜽1 and 𝜽2 from 𝒞 and let 𝑡 ∈ [0, 1]. Now define 𝜽 ∶= (1 − 𝑡)𝜽1 + 𝑡𝜽2 and denote 𝜃(1)𝑗𝑘
and 𝜃(2)𝑗𝑘 as the entries of 𝜽1 and 𝜽2 respectively. Then for any ∀ 1 ≤ 𝑗1 < 𝑗2 ≤ 𝓁, 1 ≤ 𝑘1 < 𝑘2 ≤ 𝑚, it is
clear that we have

(1 − 𝑡) [𝜃(1)𝑗1𝑘1 − 𝜃
(1)
𝑗1𝑘2 + 𝜃

(1)
𝑗2𝑘2 − 𝜃

(1)
𝑗2𝑘1] + 𝑡 [𝜃

(2)
𝑗1𝑘1 − 𝜃

(2)
𝑗1𝑘2 + 𝜃

(2)
𝑗2𝑘2 − 𝜃

(2)
𝑗2𝑘1] ≥ 0.

Hence 𝜽 ∈ 𝒞, and we finish the proof.

5.3.2. Reparametrization of the objective function
Now that the feasible set is a convex set, it remains to check what happens to the objective function
if it is a function of 𝜽. Furthermore, the objective function 𝜙𝑀 is a double sums of quadratic function.
We will rewrite this function so that it is easier to implement it as a code. In particular, we rewrite 𝜙𝑀
in a quadratic form. Besides being easier to implement, we also obtain information about the global
minimum of the unconstrained problem. The example that 𝜙𝑀 is a non-convex function in 𝒞 is shown
here as well.

We start with the empirical risk that we want to minimize:

1
𝑛

𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘CRPS(𝐹𝑌|𝑥𝑗 .𝑦𝑘).
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Fix a large 𝑀 > 0 and recompute the CRPS of 𝐹𝑌|𝑥𝑗 when 𝑦𝑘 is observed :

CRPS(𝐹𝑌|𝑥𝑗 , 𝑦𝑘) =
𝑚−1

∑
𝑡=1

{(
𝑡

∑
𝑘′=1

𝑞𝑗𝑘′ − 𝟙(𝑡 ≥ 𝑘))

2

(𝑦𝑡+1 − 𝑦𝑡)} +𝑀 [
𝑚

∑
𝑘′=1

𝑞𝑗𝑘′ − 1]

2

=
𝑚−1

∑
𝑡=1

{(𝐹𝑗𝑡(𝐪) − 𝟙(𝑡 ≥ 𝑘))
2 (𝑦𝑡+1 − 𝑦𝑡)} + [𝐹𝑗𝑚(𝐪) − 𝟙(𝑚 ≥ 𝑘)]2 (𝑦𝑚 +𝑀 − 𝑦𝑚)

=
𝑚

∑
𝑡=1
{(𝐹𝑗𝑡(𝐪) − 𝟙(𝑡 ≥ 𝑘))

2 (𝑦𝑡+1 − 𝑦𝑡)}

=
𝑚

∑
𝑡=1
{(𝐹𝑗𝑡(𝐪) − 𝟙(𝑡 ≥ 𝑘))

2 Δ𝑦𝑡} .

where 𝐹𝑗𝑡(𝐪) ∶= ∑
𝑡
𝑘′=1 𝑞𝑗𝑘, Δ𝑦𝑡 ∶= 𝑦𝑡+1 − 𝑦𝑡 and we set 𝑦𝑚+1 ∶= 𝑦𝑚 +𝑀. Now let

𝐅(𝐪) ∶= (𝐹11(𝐪), … , 𝐹1𝑚(𝐪), … , 𝐹𝑗1(𝐪), … , 𝐹𝑗𝑚(𝐪), … , 𝐹𝓁1(𝐪), … , 𝐹𝓁𝑚(𝐪))⊤ ∈ ℝ𝓁𝑚

and let 𝐅𝑗(𝐪) ∶= (𝐹𝑗1(𝐪), … , 𝐹𝑗𝑚(𝐪))⊤ ∈ ℝ𝑚 for all 1 ≤ 𝑗 ≤ 𝓁, then

𝐅(𝐪) = (𝐅1(𝐪), … , 𝐅𝓁(𝐪))⊤.

So, the risk function that we want to minimize is

𝑅𝑀(𝐪) ∶=
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

{
𝑚

∑
𝑡=1
(𝐹𝑗𝑡(𝐪) − 𝟙(𝑡 ≥ 𝑘))

2 𝑤𝑗𝑘Δ𝑦𝑡
𝑛 } .

Now, the goal is to write the risk function as

𝑅𝑀(𝐪) = (𝐅(𝐪) − c)⊤𝐀(𝐅(𝐪) − c) + 𝐾.

First, let us write the summand as a quadratic form. Fix 1 ≤ 𝑗 ≤ 𝓁 and 1 ≤ 𝑘 ≤ 𝑚 and let

𝑄𝑗𝑘(𝐅) ∶=
𝑚

∑
𝑡=1
(𝐹𝑗𝑡 − 𝟙(𝑡 ≥ 𝑘))

2 𝑤𝑗𝑘Δ𝑦𝑡
𝑛 .

Let c𝑗(𝑘) ∶= (𝟙(1 ≥ 𝑘), 𝟙(2 ≥ 𝑘), … , 1)⊤ and a𝑗(𝑘) ∶= (𝟎,… , c𝑗(𝑘), … , 𝟎)⊤, where c𝑗 is from the [(𝑗 −
1)𝑚 + 1]-th until 𝑗𝑚-th location and 𝟎 ∈ ℝ𝑚. Let 𝐀𝑗𝑘 ∈ ℝ𝓁𝑚×𝓁𝑚 be a matrix and let 𝐂𝑗,(1∶𝑚)(𝑘) be an
𝑚 ×𝑚 matrix defined as follows

𝐂𝑗,(1∶𝑚)(𝑘) ∶= (
(𝑤𝑗𝑘/𝑛)Δ𝑦1 0 ⋯ 0

0 (𝑤𝑗𝑘/𝑛)Δ𝑦2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ (𝑤𝑗𝑘/𝑛)Δ𝑦𝑚

) .

The matrix 𝐀𝑗𝑘 is then

𝐀𝑗𝑘 ∶=
⎛
⎜⎜⎜⎜

⎝

0 0 0 ⋯ 0 ⋯ 0
0 0 0 ⋯ 0 ⋯ 0
0 0 0 ⋯ 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝐂𝑗,(1∶𝑚)(𝑘) ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 0 0 0

⎞
⎟⎟⎟⎟

⎠

,
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where 𝐂𝑗,(1∶𝑚)(𝑘) is at the 𝑗-th diagonal block. So then

𝑅𝑀(𝐪) =
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1
(𝐅(𝐪) − a𝑗(𝑘))⊤𝐀𝑗𝑘(𝐅(𝐪) − a𝑗(𝑘)).

Computing the above equation so that we can complete the squares:

𝑅𝑀(𝐪) =
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝐅(𝐪)⊤𝐀𝑗𝑘𝐅(𝐪) − 2a𝑗(𝑘)⊤𝐀𝑗𝑘𝐅(𝐪) + a𝑗(𝑘)⊤𝐀𝑗𝑘a𝑗(𝑘)

= 𝐅(𝐪)⊤ (
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝐀𝑗𝑘)𝐅(𝐪) − 2(
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

a𝑗(𝑘)⊤𝐀𝑗𝑘)𝐅(𝐪) +
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

a𝑗(𝑘)⊤𝐀𝑗𝑘a𝑗(𝑘).

Let

𝐀 ∶=
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝐀𝑗𝑘 ,

c ∶=
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝐀𝑗𝑘a𝑗(𝑘),

𝐾 ∶=
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

a𝑗(𝑘)⊤𝐀𝑗𝑘a𝑗(𝑘) − c⊤𝐀−1c.

Note that matrix 𝐀 ∈ ℝ𝓁𝑚×𝓁𝑚 is defined as followed

𝐀 =
𝑚

∑
𝑘=1

⎛
⎜⎜⎜⎜

⎝

𝐂1,(1∶𝑚)(𝑘) 0 0 ⋯ 0 ⋯ 0
0 𝐂2,(1∶𝑚)(𝑘) 0 ⋯ 0 ⋯ 0
0 0 𝐂3,(1∶𝑚)(𝑘) ⋯ 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝐂𝑗,(1∶𝑚)(𝑘) ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 0 0 𝐂𝓁,(1∶𝑚)(𝑘)

⎞
⎟⎟⎟⎟

⎠

,

where for any 1 ≤ 𝑗 ≤ 𝓁,

𝑚

∑
𝑘=1

𝐂𝑗,(1∶𝑚)(𝑘) =
⎛
⎜⎜⎜⎜

⎝

(𝑤𝑗+/𝑛)Δ𝑦1 0 0 ⋯ 0 ⋯ 0
0 (𝑤𝑗+/𝑛)Δ𝑦2 0 ⋯ 0 ⋯ 0
0 0 (𝑤𝑗+/𝑛)Δ𝑦3 ⋯ 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ (𝑤𝑗+/𝑛)Δ𝑦𝑘′ ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 0 0 (𝑤𝑗+/𝑛)Δ𝑦𝑚

⎞
⎟⎟⎟⎟

⎠

.

This matrix is invertible since it is a diagonal matrix and the entries are positive. Hence,

𝑅(𝐪) = (𝐅(𝐪) − 𝐀−1c)⊤𝐀(𝐅(𝐪) − 𝐀−1c) − c⊤𝐀−1c+
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

a𝑗(𝑘)⊤𝐀𝑗𝑘a𝑗(𝑘). (5.6)

Lastly, note that we can write 𝐅(𝐪) as a product of an invertible matrix times a vector 𝐪. Indeed, for
any 1 ≤ 𝑗 ≤ 𝓁,

𝐅𝑗(𝐪) =
⎛
⎜
⎜

⎝

𝐹𝑗1(𝐪)
𝐹𝑗2(𝐪)
𝐹𝑗3(𝐪)
⋮

𝐹𝑗,𝑚−1(𝐪)
𝐹𝑗𝑚(𝐪)

⎞
⎟
⎟

⎠

=
⎛
⎜
⎜

⎝

1 0 0 ⋯ 0 0
1 1 0 ⋯ 0 0
1 1 1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
1 1 1 ⋯ 1 0
1 1 1 ⋯ 1 1

⎞
⎟
⎟

⎠

⎛
⎜
⎜

⎝

𝑞𝑗1
𝑞𝑗2
𝑞𝑗3
⋮

𝑞𝑗,𝑚−1
𝑞𝑗𝑚

⎞
⎟
⎟

⎠

=∶ 𝐋𝑗𝐪𝑗
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where 𝐋𝑗 is 𝑚 ×𝑚 lower-triangular matrix and 𝐪𝑗 is a vector of length 𝑚. Therefore,

𝐅(𝐪) = (
𝐅1(𝐪)
𝐅2(𝐪)
⋮

𝐅𝓁(𝐪)
) = (

𝐋1 𝟎 ⋯ 𝟎
𝟎 𝐋2 ⋯ 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝐋𝓁

)(
𝐪1
𝐪2
⋮
𝐪𝓁

) =∶ 𝐋𝐪,

where the diagonal block matrix 𝐋 ∈ ℝ𝓁𝑚⋅𝓁𝑚. The matrix 𝐋 is still invertible because it is a diagonal
block matrix in which each block is invertible. We can therefore write (5.6) as follows

𝑅𝑀(𝐪) = (𝐋𝐪 − 𝐋𝐋−1𝐀−1c)⊤𝐀(𝐋𝐪 − 𝐋𝐋−1𝐀−1c) + 𝐾
= (𝐪 − 𝐋−1𝐀−1c)⊤𝐋⊤𝐀𝐋(𝐪 − 𝐋−1𝐀−1c) + 𝐾.

As a function of 𝜽, we then have

𝑅𝑀(𝜽) = (𝑒𝜽 − 𝐋−1𝐀−1c)⊤𝐋⊤𝐀𝐋(𝑒𝜽 − 𝐋−1𝐀−1c) + 𝐾.

The function 𝑅𝑀(𝜽) is not in a quadratic form anymore because 𝜽 ↦ 𝑒𝜽 is a non-linear transformation
of 𝜽.

The function 𝑅𝑀(𝜽) is furthermore not convex as illustrated in Figure 5.1. We generate 𝜽1, 𝜽2 ∈ ℝ4
randomly, where each entry of 𝜽1 and 𝜽2 are independently sampled from 𝒩(−3, 0) and standard
normal distribution respectively. The entries of these vectors should satisfy the likelihood ratio order
constraint

𝜃11 − 𝜃12 + 𝜃22 − 𝜃21 ≥ 0.
From this simulation, we discover an example that shows 𝑅𝑀(𝜽) is not convex. Let𝜙𝑀(𝜽) ∶= 𝑅𝑀(𝜽)−𝐾,

𝜽1 ∶= (−2.6, −4.1, −3.1, −3.5)⊤ and 𝜽2 ∶= (−0.3, −0.3, −2,−1.4)⊤.

Then 𝜽1 and 𝜽2 satisfy the likelihood ratio order constraint, but there exists 𝜆 ∈ [0, 1] such that

𝜙𝑀((1 − 𝜆)𝜽1 + 𝜆𝜽2) > (1 − 𝜆)𝜙𝑀(𝜽1) + 𝜆𝜙𝑀(𝜽2).
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Figure 5.1: A plot illustrating why 𝑅𝑀(𝜽) is a non-convex function. Define 𝜙̃𝑀(𝜽) ∶= 𝑅𝑀(𝜽)−𝐾. The red and blue curve represent
the function 𝜆 ↦ 𝜙̃𝑀((1 − 𝜆)𝜽1 + 𝜆𝜽2) and 𝜆 ↦ 𝜙̃𝑀(𝜽1) + 𝜆𝜙̃𝑀(𝜽2) respectively. We choose 𝜽1 ∶= (−2.6, −4.1, −3.1, −3.5)⊤
and 𝜽2 ∶= (−0.3, −0.3, −2,−1.4)⊤.





6
Numerical Minimization of The Empirical

Risk: The Gradient Projection Method

In Chapter 5, we have shown that the objective function is convex, but the feasible set is non-convex.
After transforming the parameters into a logarithmic scale, we achieved the convexity of the feasible
set. Unfortunately, the objective function with the transformed parameters loses its convexity property.
Consequently, applying a numerical optimization method to our minimization problem no guarantees
a global minimizer. Additionally, due to a large number of constraints, the minimization problem is
impractical to program.

Despite these problems, we still attempt to numerically solve the objective function with the likelihood
ratio order constraint. The impracticality problem can be fixed by reducing the number of constraints
drastically. This is due to the linear dependence of the constraints (Section 6.1). We will see that
the constraint is rewritten as a matrix inequality. Due to the presence of this inequality, we solve the
minimization problem by the gradient projection method described in Section 6.2. In Section 6.3, we
modify the algorithm in Section 6.2 to sequentially approximates the conditional distribution functions.
In Section 6.4, we do a small simulation study where we visually compare the performance of the
proposed algorithms, compared to the one proposed by Mösching and Dümbgen (2024).

6.1. Reduction of the number of constraints
Recall from Chapter 5 that the feasible set 𝒞 of the minimization problem is defined in (5.5). For later
computation, we now let 𝒞 as follows

𝒞 ∶= {𝜽 ∈ ℝ𝓁𝑚−∞ ∶ −𝜃𝑗1𝑘1 + 𝜃𝑗1𝑘2 + 𝜃𝑗2𝑘1 − 𝜃𝑗2𝑘2 ≤ 0, ∀ 1 ≤ 𝑗1 < 𝑗2 ≤ 𝓁, 1 ≤ 𝑘1 < 𝑘2 ≤ 𝑚} .

Because the constraints are linear combinations of 𝜽, we can express the constraints as a matrix
inequality, which has a size of (𝓁2)(

𝑚
2 ) × 𝓁𝑚. Due to memory limits in a computer, it is not possible to

store a large matrix. For instance, suppose 𝓁 = 100 and 𝑚 = 100, then R requires approximately 1800
Gb memories to store the matrix 1. In this section, we show that the number of constraints is reducible
to a matrix of size (𝓁 − 1)(𝑚 − 1) × 𝓁𝑚.

Let us start with an example of a matrix that represents 𝒞 with small 𝓁 and 𝑚.

Example 6.1.1. Let 𝓁 = 2 and 𝑚 = 4, then the matrix inequality that represents 𝒞 is of size 6 × 8.

1In R, we can use object.size() to approximate the memory size needed to store an R-object.
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Below is the matrix inequality

⎛
⎜
⎜

⎝

−1 1 0 0 1 −1 0 0
−1 0 1 0 1 0 −1 0
−1 0 0 1 1 0 0 −1
0 −1 1 0 0 1 −1 0
0 −1 0 1 0 1 0 −1
0 0 −1 1 0 0 1 −1

⎞
⎟
⎟

⎠

⎛
⎜
⎜
⎜
⎜
⎜

⎝

𝜃11
𝜃12
𝜃13
𝜃14
𝜃21
𝜃22
𝜃23
𝜃24

⎞
⎟
⎟
⎟
⎟
⎟

⎠

≤ 𝟎.

Let 𝐓 be the matrix above, then note that 𝐓 is not a full-rank matrix. Let 𝐑𝑢 be the row vector of the
𝑢-th row of matrix 𝐓. Then

𝐑2 = 𝐑1 + 𝐑4; 𝐑3 = 𝐑1 + 𝐑5; 𝐑5 = 𝐑4 + 𝐑6.
⇕

𝐑3 = 𝐑1 + 𝐑4 + 𝐑6;

Now define a matrix 𝐓̃ ∈ ℝ3×8, in which each row consists of entries of 𝐑1, 𝐑4 and 𝐑6:

𝐓̃ = (
−1 1 0 0 1 −1 0 0
0 −1 1 0 0 1 −1 0
0 0 −1 1 0 0 1 −1

) .

Then 𝐓̃ is a full-rank matrix. If 𝐓̃𝜽 ≤ 𝟎, then 𝐓𝜽 ≤ 𝟎; and vice versa. Let ⟨𝐱, 𝐲⟩ be the usual inproduct
in ℝ𝓁𝑚. Note that the converse of the statement follows immediately. Suppose 𝐓̃𝜽 ≤ 𝟎, then for
𝑢 ∈ {1, 4, 6} we have ⟨𝐑⊤𝑢 , 𝜽⟩ ≤ 0. Furthermore,

⟨𝐑⊤2 , 𝜽⟩ = ⟨𝐑⊤1 , 𝜽⟩ + ⟨𝐑⊤4 , 𝜽⟩ ≤ 0,
⟨𝐑⊤3 , 𝜽⟩ = ⟨𝐑⊤1 , 𝜽⟩ + ⟨𝐑⊤4 , 𝜽⟩ + ⟨𝐑⊤6 , 𝜽⟩ ≤ 0,

⟨𝐑⊤5 , 𝜽⟩ = ⟨𝐑⊤4 , 𝜽⟩ + ⟨𝐑⊤6 , 𝜽⟩ ≤ 0,

Therefore, we can replace the matrix 𝐓 with 𝐓̃, which has a smaller number of rows and it is a full-rank
matrix. The matrix inequality 𝐓̃𝜽 ≤ 𝟎 is equivalent to the following constraint for 𝜽,

−𝜃𝑗−1,𝑘−1 + 𝜃𝑗−1,𝑘 + 𝜃𝑗,𝑘−1 − 𝜃𝑗,𝑘 ≤ 0 ∀1 < 𝑗 ≤ 𝓁, 1 < 𝑘 ≤ 𝑚.

△

Let

𝒞red. ∶= {𝜽 ∈ ℝ𝓁𝑚−∞ ∶ −𝜃𝑗−1,𝑘−1 + 𝜃𝑗−1,𝑘 + 𝜃𝑗,𝑘−1 − 𝜃𝑗,𝑘 ≤ 0 ∀1 < 𝑗 ≤ 𝓁, 1 < 𝑘 ≤ 𝑚} ,

for a general 𝓁 and 𝑚. Following from Example 6.1.1, we have that the constraint in 𝒞 is equivalent
to the constraint in 𝒞red.. This has been proved in Mösching and Dümbgen (2024) for 𝜽 ∈ ℝ𝒫. In
our case, we have 𝜽 ∈ ℝ𝓁𝑚−∞, and the constraints are still equivalent by following the arguments from
the aforementioned article. This implies that the number of constraints are reduced from (𝓁2)(

𝑚
2 ) to

(𝓁 − 1)(𝑚 − 1) number of constraints. We state this result in the following lemma.

Lemma 6.1.2. Let 𝜽 ∈ ℝ𝓁𝑚−∞. Then

−𝜃𝑗1𝑘1 + 𝜃𝑗1𝑘2 + 𝜃𝑗2𝑘1 − 𝜃𝑗2𝑘2 ≤ 0, ∀ 1 ≤ 𝑗1 < 𝑗2 ≤ 𝓁, 1 ≤ 𝑘1 < 𝑘2 ≤ 𝑚 (6.1)

is equivalent to
−𝜃𝑗−1,𝑘−1 + 𝜃𝑗−1,𝑘 + 𝜃𝑗,𝑘−1 − 𝜃𝑗,𝑘 ≤ 0 ∀1 < 𝑗 ≤ 𝓁, 1 < 𝑘 ≤ 𝑚. (6.2)

Proof. Take any 𝜽 ∈ ℝ𝓁𝑚−∞. If 𝜽 satisfies (6.1), then it is immediate that 𝜽 satisfies (6.2). Indeed, the
inequality in (6.2) is still true by letting 𝑗1 = 𝑗 − 1, 𝑗2 = 𝑗 and 𝑘1 = 𝑘 − 1 and 𝑘2 = 𝑘 for any 1 < 𝑗 ≤ 𝓁
and 1 < 𝑘 ≤ 𝑚.
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Now suppose that 𝜽 satisfies (6.2) and let 1 ≤ 𝑗1 < 𝑗2 ≤ 𝓁 and 1 ≤ 𝑘1 < 𝑘2 ≤ 𝑚 be arbitrary. Let
𝑗 ∈ {𝑗1 + 1,… , 𝑗2} and 𝑘 ∈ {𝑘1 + 1,… , 𝑘2}. Then we have

−𝜃𝑗−1,𝑘1 + 𝜃𝑗−1,𝑘2 + 𝜃𝑗,𝑘1 − 𝜃𝑗,𝑘2 =
𝑘2
∑

𝑘=𝑘1+1
−𝜃𝑗−1,𝑘−1 + 𝜃𝑗−1,𝑘 + 𝜃𝑗,𝑘−1 − 𝜃𝑗,𝑘 ≤ 0. (6.3)

The inequality is true because of (6.2) and 𝑗 ∈ {𝑗1 + 1,… , 𝑗2} and 𝑘 ∈ {𝑘1 + 1,… , 𝑘2}. Next, by (6.3),

−𝜃𝑗1𝑘1 + 𝜃𝑗1𝑘2 + 𝜃𝑗2𝑘1 − 𝜃𝑗2𝑘2 =
𝑗2
∑

𝑗=𝑗1+1
−𝜃𝑗−1,𝑘1 + 𝜃𝑗−1,𝑘2 + 𝜃𝑗,𝑘1 − 𝜃𝑗,𝑘2 ≤ 0.

Hence if 𝜽 satisfies (6.2), then it also satisfies (6.1).

Let 𝐓̃ ∈ ℝ(𝓁−1)(𝑚−1)×𝓁𝑚 such that 𝐓̃𝜽 ≤ 𝟎 is equivalent to 𝜽 ∈ 𝒞red.. The matrix 𝐓̃ has a rank
(𝓁 − 1)(𝑚 − 1), which means that 𝐓̃ is a full-rank matrix. Indeed, recall that

𝜽 = (𝜃11, … , 𝜃1𝑘 , … , 𝜃1𝑚 , … , 𝜃𝑗1, … , 𝜃𝑗𝑘 , … , 𝜃𝑗𝑚 , … , 𝜃𝓁1, … , 𝜃𝓁𝑘 , … , 𝜃𝓁𝑚)⊤.

At row 𝐑𝑢 of 𝐓̃, where 1 ≤ 𝑢 ≤ (𝓁 − 1)(𝑚 − 1), the first non-zero element is at (𝑗 − 2)𝑚 + 𝑘 − 1 for
1 < 𝑗 < 𝓁 and 1 < 𝑘 ≤ 𝑚. If we construct 𝐓̃ as in Example 6.1.1, then the first non-zero entry is shifted
to the right as 𝑢 increases. It means that the elements below the first non-zero entry are zero, which
makes it the pivot of 𝐑𝑢. Each row has such pivot and hence the matrix 𝐓̃ is a full-ranked matrix.

6.2. The implementation of the gradient projection method
Now that the number of constraints is reduced, we proceed to implement an algorithm that solves the
following minimization problem

𝜽̂ ∶= argmin
𝜽∈ℝ𝓁𝑚−∞

𝜙𝑀(𝜽) = argmin
𝜽∈ℝ𝓁𝑚−∞

(𝑒𝜽 − 𝐋−1𝐀−1c)⊤𝐋⊤𝐀𝐋(𝑒𝜽 − 𝐋−1𝐀−1c)

s.t. 𝐓̃𝜽 ≤ 𝟎.

To solve this, we choose the modification of the gradient projection method of Rosen (1960), proposed
by Du and Zhang (1989). This iterative method ensures that in each iteration, the new proposed point
stays feasible and it minimizes the objective function. The modification of this method ensures that
the iterative method converges to a Karush-Kuhn-Tucker (KKT) point or it generates a sequence of 𝜽𝑠
such that every accumulation point is a KKT point. For details of the unmodified version of the method
we refer the reader to Appendix D. The solution of the algorithm, however, is not necessarily a global
minimum because 𝜙𝑀 is a non-convex function.

Table 6.1: A list of parameters that we need to create matrices for computing the objective function 𝜙̃𝑀

Parameter Description
𝑛 the number of observations
𝓁 the number of unique covariate values
𝑚 the number of unique response values
𝐱 a vector of size 𝓁 such that 𝑥1 < ⋯ < 𝑥𝓁
𝐲 a vector of size 𝑚 such that 𝑦1 < ⋯ < 𝑦𝑚

Δ𝐲
a vector of size 𝑚 such that for 1 ≤ 𝑘 < 𝑚, the 𝑘-th entry
is 𝑦𝑘+1 − 𝑦𝑘 and the 𝑚-th entry is a large positive
number 𝑀

𝐰 an 𝓁 × 𝑚 matrix such that 𝑤𝑗𝑘 is the number of observed (𝑥𝑗 , 𝑦𝑘)
𝐰𝑗+ a vector of size 𝓁, where the 𝑗-th entry is ∑𝑚𝑘=1𝑤𝑗𝑘
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Before applying the algorithm, we prepare the dataset by computing the necessary parameters for
the objective function 𝜙𝑀. For instance, we need to extract 𝓁 and 𝑚 from the dataset to determine the
size of the matrices. We further need to sort the covariate and the response values from the lowest
to the highest values. With the response values, we also need to compute the difference between
each consecutive response value. In Table 6.1, we summarize all of the necessary parameters of
the dataset we extract before proceeding to the main algorithm. With these parameters, we can then
construct matrices 𝐀, 𝐋, a vector 𝐜, as defined in Section 5.3.2 and the matrix 𝐓̃ that represents the
constraints for 𝜽 in 𝒞red..

Once the necessary matrices and vectors are constructed, we enter the initialization step and pro-
ceed with the main procedure of the gradient projection method which consists of two steps. We
describe the procedures in Algorithm 1 and Algorithm 2. In these algorithms we use 𝑠max to stop the
algorithm early if required.

We add several remarks on the Algorithm 1. First of all, the modification of the gradient projection
method occurs in the choice of the direction vector 𝐝. In the unmodified version, the algorithm uses 𝐝𝐼𝐼𝑠
for the direction vector if 𝐰 ≱ 𝟎 and there is no 𝐝𝐼𝑠. Further, if 𝑐 = 0 and 𝐝𝐼𝑠 ≠ 𝟎, then 𝐝𝐼𝑠 will always
be assigned to 𝐝𝑠. This coincides with the unmodified gradient projection method in Appendix D. If 𝐌
is an empty matrix or if 𝐝𝐼𝑠 = 𝟎, then the algorithm is also similar to the unmodified gradient projection
method. Regarding the gradient of 𝜙𝑀, we compute it in the following way:

∇𝜙𝑀(𝜽) = 2𝐄(𝜽)(𝐋⊤𝐀𝐋)(𝑒𝜽 − 𝐋−1𝐀−1𝐜),

where 𝐄(𝜽) is a diagonal 𝓁𝑚 × 𝓁𝑚 matrix with 𝑒𝜽 as the diagonal entries2.
To comment further on the Algorithm 2, if 𝐝 ≤ 𝟎 we use the L-BFGS-B algorithm to compute 𝜆𝑠,

otherwise we use a method that combines both the golden section search and successive parabolic
interpolation3. The L-BFGS-B algorithm uses the gradient projection method and the quasi-Newton
method. The former is used for finding the set of binding constraints and the latter is used to ap-
proximate the Hessian matrix of 𝜙𝑀. We refer the reader to Byrd et al. (1995) for more detail on the
L-BFGS-B algorithm. In the alternative case, the golden section search method is used to reduce the
length of the interval for finding the minimum. Meanwhile, the successive parabolic interpolation en-
sures faster convergence to the minimum. For these two methods we refer the reader to Brent (2003,
p. 146) for a description of the algorithm. We also recommend Bazaraa et al. (2006, p. 350) for an the
explanation of the golden section search method.

The last part that we need to address is the method for generating a feasible point 𝜽0. To this end,
we use the uniquely sorted response values from the given dataset. Next, we sample independent new
response values 𝐲0 ∶= (𝑦(0)𝑘 )𝑚𝑘=1 from a uniform distribution on the interval [𝑦1, 𝑦𝑘]. For each 𝑗 = 1,… , 𝓁
and 𝑥𝑗 ∈ 𝐱, we then compute

𝑓(0)𝑌|𝑋(𝑦|𝑥𝑗) =
1

𝜉(𝑥𝑗)
𝑦𝜉(𝑥𝑗)−1𝑒−𝑦𝟙{𝑦 > 0},

where 𝜉(𝑥𝑗) = 𝑥𝑗 + 𝑎 and 𝑎 ∈ {10, 20}. Here, the function 𝑓(0)𝑌|𝑋 is a density function of a gamma
distribution with shape function 𝜉(𝑥𝑗) and scale 1. The shape function 𝜉(𝑥𝑗) is an isotonic function
and the scale is a constant. Therefore, the densities admit the likelihood ratio order if 𝑥𝑗 < 𝑥𝑗′ and
1 ≤ 𝑗, 𝑗′ ≤ 𝓁. Thus, 𝜽0 = (log 𝑓(0)𝑌|𝑋(𝑦

(0)
𝑘 |𝑥𝑗))𝑗,𝑘 ∈ ℝ𝓁𝑚, where 1 ≤ 𝑗 ≤ 𝓁 and 1 ≤ 𝑘 ≤ 𝑚, is a feasible

starting point.

6.3. Sequentially estimating the conditional distribution functions
In Algorithm 2, the algorithm determines 𝜆, which tells us how far to move from 𝜽𝑠 in the direction of 𝐝
such that the function value decreases. Using a common 𝜆, we move all entries of 𝜽𝑠 in the direction
of 𝐝 and obtain a new point for the next iteration, 𝜽𝑠+1. In this section, we adjust the Algorithms 1 and
2 so that for any fixed 1 ≤ 𝑗 ≤ 𝑚, we apply the algorithm only on a vector 𝜽𝑗 ∶= (𝜃𝑗1, … , 𝜃𝑗𝑚)⊤. Further,
for each 1 ≤ 𝑗 ≤ 𝑚, we obtain 𝜆𝑗 instead of 𝜆. For 𝑗 = 1, we solve the unconstrained minimization

2Let 𝐟(𝐱) be a function, where 𝐱 ∈ ℝ𝑑 and 𝐀 ∈ ℝ𝑑×𝑑 is a symmetric matrix, then 𝑑
𝑑𝐱 𝐟(𝐱)

⊤𝐀𝐟(𝐱) = 𝑑
𝑑𝐱 𝐟(𝐱)(𝐀 + 𝐀

⊤)𝐟(𝐱) =
2 𝑑
𝑑𝐱 𝐟(𝐱)𝐀𝐟(𝐱). Here,

𝑑
𝑑𝐱 𝐟(𝐱) is the Jacobian matrix of 𝐟(𝐱).

3If 𝐝 ≤ 𝟎, then we use optim() and choose method = ’L-BFGS-B’. If 𝐝 ≰ 𝟎, then we use optimize()
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Algorithm 1: The main step that returns the estimated minimizer 𝜽̂
Input: Dataset, the maximum number of iteration 𝑠max, 𝑀 > 0, 𝑐 > 0 and 𝐛
Compute the parameters that are listed in Table 6.1 ;
Construct the matrix constraint 𝐓̃ of size (𝓁 − 1)(𝑚 − 1) × 𝓁𝑚;
Generate a starting point 𝜽0 ∈ ℝ𝓁⋅𝑚 such that 𝐓̃𝜽0 ≤ 𝟎;
Decompose 𝐓̃ and 𝐛 into (𝐓̃1, 𝐓̃2) and (𝐛1, 𝐛2) respectively such that 𝐓̃1𝜽0 = 𝐛1 and 𝐓̃2𝜽0 < 𝐛2;
𝑠← 0;
𝜽𝑠 ← 𝜽0;
while TRUE do

if 𝑠 = 𝑠max then
break

end
𝐌← 𝐓̃1;
Compute ∇𝜙𝑀(𝜽𝑠);
if 𝐌 is an empty matrix then

if ∇𝜙𝑀(𝜽𝑠) = 𝟎 then
break

end
else

𝐝𝑠 ← −∇𝜙𝑀(𝜽𝑠);
Do Algorithm 2 ;
𝑠← 𝑠 + 1;

end
end
else

𝐏← 𝐈 − 𝐌⊤(𝐌𝐌⊤)−1𝐌;
𝐝𝐼𝑠 ← −𝐏∇𝜙𝑀(𝜽𝑠);
𝐰← −[(𝐌𝐌⊤)−1𝐌]∇𝜙𝑀(𝜽𝑠);
if 𝐰 ≥ 𝟎 then

if 𝐝𝐼𝑠 = 𝟎 then
break

end
else

𝐝𝑠 ← 𝐝𝐼𝑠;
Do Algorithm 2;
𝑠← 𝑠 + 1;

end
end
else

𝑤ℎ ←min𝑗 𝑤𝑗;
Remove the ℎ-th row from 𝐓̃1 and call it 𝐌̂;
𝐏̂←𝐈 − 𝐌̂⊤(𝐌̂𝐌̂⊤)−1𝐌̂;
𝐝𝐼𝐼𝑠 ← −𝐏̂∇𝜙𝑀(𝜽𝑠);
𝐝𝑠 ←𝐝𝐼𝑠 if ||𝐝𝐼𝑠||/|𝑤ℎ| > 𝑐; otherwise 𝐝𝐼𝐼𝑠 ;
Do Algorithm 2;
𝑠← 𝑠 + 1;

end
end

end
Output: The estimated minimizer 𝜽𝑠
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Algorithm 2: The line search step that returns a new point 𝜽𝑠, 𝐛2, and the matrices 𝐓̃1 and 𝐓̃2
Input: Step 𝑠 ≥ 0, 𝐓̃2, 𝐓̃, a vector 𝜽 and 𝐛2 from Algorithm 1, and a direction vector 𝐝
𝐛̂← 𝐛2 − 𝐓̃2𝜽;
𝐝← 𝐓̃2𝐝;
if 𝐝 ≤ 𝟎 then

𝜆𝑠 ← argmin𝜆 𝜙𝑀(𝜽𝑠 + 𝜆𝐝) such that 𝜆 ≥ 0;
end
else

𝜆max ←min{𝑏̂𝑗/𝑑𝑗 ∶ 𝑑𝑗 > 0} ;
𝜆𝑠 ←argmin𝜆 𝜙𝑀(𝜽𝑠 + 𝜆𝐝) such that 0 ≤ 𝜆 ≤ 𝜆max;

end
𝜽𝑠 ← 𝜽𝑠 + 𝜆𝑠𝐝;
Decompose 𝐓̃ into 𝐓̃1 and 𝐓̃2 such that 𝐓̃1𝜽𝑠 = 𝟎 and 𝐓̃2𝜽𝑠 < 𝟎;
Output: The new 𝜽𝑠, 𝐛2, and the matrices 𝐓̃1 and 𝐓̃2

problem. For 𝑗 > 1, we use the gradient projection method so that the likelihood ratio order constraint
is satisfied. To this end, we start by discussing the changes in the objective function. Subsequently,
we also change the constraint and adjust the algorithms from the previous section.

6.3.1. The adjustment of the objective function and the constraint
Let us recall the matrices and vectors required to construct the objective function 𝜙𝑀 in Section 6.2.
We refer the reader to Section 5.3.2 for the definitions of these matrices and vectors. We first have
𝜽 ∈ ℝ𝓁⋅𝑚−∞ , which the entries are defined as

𝜽 = (𝜃11, … , 𝜃1𝑘 , … , 𝜃1𝑚 , … , 𝜃𝑗1, … , 𝜃𝑗𝑘 , … , 𝜃𝑗𝑚 , … , 𝜃𝓁1, … , 𝜃𝓁𝑘 , … , 𝜃𝓁𝑚)⊤.

Let 𝜽𝑗 ∶= (𝜃𝑗1, … , 𝜃𝑗𝑚)⊤ ∈ ℝ𝑚−∞ for any 𝑗 = 1,… , 𝓁, then 𝜽 = (𝜽1, … , 𝜽𝓁)⊤. The matrix 𝐋 is a diagonal
block matrix of size 𝓁𝑚×𝓁𝑚, where each block is an𝑚×𝑚 lower triangular matrix, denoted as 𝐋𝑗. The
matrix 𝐀 has the same type and size of matrix as in 𝐋, but each block in 𝐀 is an 𝑚 ×𝑚 matrix defined
as

𝐀𝑗 ∶=
⎛
⎜⎜⎜⎜

⎝

(𝑤𝑗+/𝑛)Δ𝑦1 0 0 ⋯ 0 ⋯ 0
0 (𝑤𝑗+/𝑛)Δ𝑦2 0 ⋯ 0 ⋯ 0
0 0 (𝑤𝑗+/𝑛)Δ𝑦3 ⋯ 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ (𝑤𝑗+/𝑛)Δ𝑦𝑘′ ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 0 0 (𝑤𝑗+/𝑛)Δ𝑦𝑚

⎞
⎟⎟⎟⎟

⎠

.

Lastly, a vector 𝐜 ∈ ℝ𝓁𝑚 consists of vectors 𝐜𝑗 ∈ ℝ𝑚 where

𝐜𝑗 ∶=
𝑚

∑
𝑘=1

(
(𝑤𝑗𝑘/𝑛)Δ𝑦1 0 ⋯ 0

0 (𝑤𝑗𝑘/𝑛)Δ𝑦2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ (𝑤𝑗𝑘/𝑛)Δ𝑦𝑚

)(
𝟙(1 ≥ 𝑘)
𝟙(2 ≥ 𝑘)

⋮
1

) = 1
𝑛 (

𝑤𝑗1Δ𝑦1
(𝑤𝑗1 +𝑤𝑗2)Δ𝑦2

⋮
𝑤𝑗+Δ𝑦𝑚 .

) .

We use the vectors 𝜽𝑗, 𝐜𝑗, and the matrices 𝐀𝑗 and 𝐋𝑗 to compute

𝜙𝑀(𝜽𝑗) = (𝑒𝜽𝑗 − 𝐋−1𝑗 𝐀−1𝑗 c𝑗)⊤𝐋⊤𝑗 𝐀𝑗𝐋𝑗(𝑒𝜽𝑗 − 𝐋−1𝑗 𝐀−1𝑗 c𝑗).

Minimizing 𝜙𝑀(𝜽𝐽) corresponds to minimizing

1
𝑛

𝑚

∑
𝑘=1

𝑤𝑗𝑘CRPS(𝐹𝑌|𝑥𝑗 , 𝑦𝑘),

for a fixed 1 ≤ 𝑗 ≤ 𝑚.
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Regarding the constraint for 𝜽, the inequality in (6.2) is equivalent to

𝜃𝑗,𝑘−1 − 𝜃𝑗,𝑘 ≤ 𝜃𝑗−1,𝑘−1 − 𝜃𝑗−1,𝑘
for all 1 < 𝑗 ≤ 𝓁 and 1 < 𝑘 ≤ 𝑚. For the adjusted algorithm, we first solve

𝜽̂1 = argmin
𝜽1∈ℝ𝑚−∞

𝜙𝑀(𝜽1)

numerically by the method of steepest descent method. For 1 < 𝑗 ≤ 𝑚, we solve

𝜽̂𝑗 = argmin
𝜽𝑗∈𝒞red.,j

𝜙𝑀(𝜽𝑗)

with a feasible convex set

𝒞red.,𝑗 ∶= {𝜽𝑗 ∈ ℝ𝑚−∞ ∶ 𝜃𝑗,𝑘−1 − 𝜃𝑗,𝑘 ≤ 𝜃𝑗−1,𝑘−1 − 𝜃𝑗−1,𝑘 1 < 𝑘 ≤ 𝑚}.

Let 𝐓̌ be a matrix of size (𝑚−1)×𝑚, such that its main diagonal entries are 1, its superdiagonal entries
are −1 and 0 otherwise. Then, for any 1 < 𝑗 ≤ 𝓁,

𝐓̌𝜽𝑗 ≤ 𝐓̌𝜽̂𝑗−1 if and only if 𝜽𝑗 ∈ 𝒞red.,𝑗 .

The matrix 𝐓̌ is a full-rank matrix, with rank 𝑚 − 1.
As a remark, for each 𝑗 = 1,… , 𝓁, we need to propose an initial feasible point 𝜽(0)𝑗 . To reduce the

work on programming, we reuse the initial point generated for Algorithm 1. However, from our numerical
experiment, we discover that for this new algorithm the starting point might be infeasible. To correct
the initial point so that it becomes feasible, we do as follows. Fix 1 < 𝑗 ≤ 𝑚, and let

−Δ𝜽(0)𝑗 ∶= ⎛⎜

⎝

𝜃(0)𝑗1 − 𝜃(0)𝑗2
𝜃(0)𝑗2 − 𝜃(0)𝑗3

⋮
𝜃(0)𝑗,𝑚−1 − 𝜃

(0)
𝑗𝑚

⎞
⎟

⎠

= 𝐓̌𝜽(0)𝑗 and − Δ𝜽̂𝑗−1 ∶=
⎛
⎜

⎝

𝜃𝑗−1,1 − 𝜃𝑗−1,2
𝜃𝑗−1,2 − 𝜃𝑗−1,3

⋮
𝜃𝑗−1,𝑚−1 − 𝜃𝑗−1,𝑚

⎞
⎟

⎠

= 𝐓̌𝜽̂𝑗−1,

which are vectors of size𝑚−1. Suppose −Δ𝜽(0)𝑗 ≰ −Δ𝜽̂𝑗−1, then there exists a non-empty set of index
𝐼 ⊆ {1,… ,𝑚 − 1} such that for any 𝑖 ∈ 𝐼,

−Δ𝜃(0)𝑗𝑖 = 𝜃(0)𝑗,𝑖 − 𝜃
(0)
𝑗,𝑖+1 > 𝜃𝑗−1,𝑖 − 𝜃𝑗−1,𝑖+1 = −Δ𝜃𝑗−1,𝑖 .

Now we replace −Δ𝜽(0)𝑗 with −Δ𝜽̌(0)𝑗 where its entries are defined as followed:

−Δ𝜃(0)𝑗𝑖 = {−Δ𝜃𝑗−1,𝑖 , if 𝑖 ∈ 𝐼
−Δ𝜃(0)𝑗𝑖 , if 𝑖 ∉ 𝐼.

Then the new initial point is

𝜽̌(0)𝑗 ∶=
⎛
⎜
⎜

⎝

𝜃(0)𝑗1
𝜃(0)𝑗1 + Δ𝜃(0)𝑗1

𝜃(0)𝑗1 + Δ𝜃(0)𝑗1 + Δ𝜃(0)𝑗2
⋮

𝜃(0)𝑗1 + ∑𝑚−1𝑘=1 𝜃
(0)
𝑗𝑘

⎞
⎟
⎟

⎠

,

which is feasible because 𝐓̌𝜽̌(0)𝑗 = −Δ𝜽̌(0)𝑗 ≤ 𝐓̌𝜽̂𝑗−1 by definition of −Δ𝜽̌(0)𝑗 .

6.3.2. The description of the adjusted algorithm
The first algorithm that we describe is for solving the minimization problem

𝜽̂1 = argmin
𝜽1∈ℝ𝑚−∞

𝜙𝑀(𝜽1).
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For this problem, we use the method of steepest descent. This iterative method uses 𝐝 = −∇𝜙𝑀 for
the direction vector. It then performs a line search to determine how far we should move from a given
point in the direction of 𝐝. More information on this method can be found in Bazaraa et al. (2006, p.
384). The implementation of the steepest descent method is in Algorithm 3.

At the beginning of Algorithm 3, we construct a large size of matrices 𝐋, 𝐋−1, 𝐀, 𝐀−1, and a vector 𝐜.
From these matrices and vector, we extract a sub-matrix and sub-vector that correspond to computing
𝜙𝑀(𝜽𝑗). The locations of these sub-matrices and sub-vectors are already determined in Section 5.3.2,
which is the (𝑗 − 1) ∗𝑚+1-th through (𝑗𝑚)-th entries. Since the matrices are diagonal block matrices,
we only need these blocks to compute the objective function and apply the steepest descent method.

Algorithm 3: The steepest descent algorithm for approximating 𝜽̂1
Input: Dataset, the maximum number of iteration 𝑠max, 𝑀 > 0, 𝑐 > 0
Compute the parameters that are listed in Table 6.1 ;
Construct the matrices 𝐋, 𝐋−1, 𝐀, 𝐀−1 and a vector 𝐜 ;
Generate a starting point 𝜽(0) ∈ ℝ𝓁𝑚 ;
𝑠← 0, 𝑗← 1, loc← ((𝑗 − 1) ∗ 𝑚 + 1) ∶ (𝑗𝑚) ;
𝐀𝑗 ← 𝐀[loc, loc], 𝐀−1𝑗 ← 𝐀−1[loc, loc], 𝐋𝑗 ← 𝐋[loc, loc], 𝐋−1𝑗 ← 𝐋−1[loc, loc], 𝐜𝑗 ←
𝐜[loc] ;
𝜽(0)𝑗 ←𝜽(0)[loc] ;
𝐝𝑠 ← −∇𝜙𝑀(𝜽(0)𝑗 ) ;
while TRUE do

𝜽(𝑠)𝑗 ← 𝜽(0)𝑗 ;
if 𝑠 = 𝑠max then

break
end
if ||𝐝𝑠|| < 𝜀 then

break
end
else

𝜆𝑠 ← argmin𝜆 𝜙𝑀(𝜽
(𝑠)
𝑗 + 𝜆𝐝𝑠) such that 𝜆 ≥ 0;

𝑠← 𝑠 + 1;
𝜽(𝑠)𝑗 ← 𝜽(𝑠)𝑗 + 𝜆𝑠𝐝𝑠;
𝐝𝑠 ← −∇𝜙𝑀(𝜽(𝑠)𝑗 ) ;

end
end
Output: The approximated 𝜽̂1

As for Algorithm 4, we apply the gradient projection method for each 𝑗 = 2,… ,𝑚. For each 𝑗, we
extract the necessary matrices for computing 𝜙𝑀 in the same manner as in Algorithm 3. We then
correct the initial starting point if it is infeasible, as discussed in Section 6.3.1. Afterwards, we enter the
while loop as described in Algorithm 1.

6.4. Simulation studies
In this section, we compare the estimator proposed by Mösching and Dümbgen (2024) with the one
developed in this thesis. For comparison purposes, we generate a dataset using the same density
function as in the aforementioned article. We then visually assess the performance of the estimated
conditional distribution functions, contrasting it with the estimator proposed by Mösching and Dümbgen
(2024). Before we present the results, we explain how the dataset is generated which we follow from
Mösching and Dümbgen (2024).
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Algorithm 4: The method of gradient projection for approximating 𝜽̂𝑗 for each 𝑗 = 2,… ,𝑚. This
is the continuation of Algorithm 3

Input: Dataset, the maximum number of iteration 𝑠max, 𝑀 > 0, and 𝑐 > 0
For every 𝑗 = 2, 3, … ,𝑚 do

loc← ((𝑗 − 1) ∗ 𝑚 + 1) ∶ (𝑗𝑚) ;
𝐀𝑗 ← 𝐀[loc, loc], 𝐀−1𝑗 ← 𝐀−1[loc, loc], 𝐋𝑗 ← 𝐋[loc, loc], 𝐋−1𝑗 ← 𝐋−1[loc, loc], 𝐜𝑗 ←
𝐜[loc] ;
𝜽(0)𝑗 ←𝜽(0)[loc] ;
−Δ𝜽(0)𝑗 ← 𝐓̌𝜽(0)𝑗 ;
−Δ𝜽̂𝑗−1 ← 𝐓̌𝜽̂𝑗−1;
if −Δ𝜽(0)𝑗 ≰ −Δ𝜽̂𝑗−1 then

𝐼 ← {𝑖 ∶ −Δ𝜃(0)𝑗𝑖 > −Δ𝜃𝑗−1,𝑖};
−Δ𝜽̌(0)𝑗 ← −Δ𝜽(0)𝑗 ;
−Δ𝜽̌(0)𝑗 [𝐼]← −Δ𝜽̂𝑗−1[𝐼];
𝜽(0)𝑗 ← the cumulative sum of a vector (𝜃(0)𝑗1 , Δ𝜽

(0)⊤
𝑗 )⊤ ;

end
Decompose 𝐓̌ and 𝐛 into (𝐓̌1, 𝐓̌2) and (𝐛1, 𝐛2) respectively such that 𝐓̌1𝜽(0)𝑗 = 𝐛1 and
𝐓̌2𝜽(0)𝑗 < 𝐛2;
Do the while loop from Algoritm 1 with constraint matrix 𝐓̌, the binding constraint matrix 𝐓̌1,
the starting point 𝜽(0)𝑗 and a vector 𝐛2. Save the result in 𝜽̂𝑗;

end
Output: The approximated 𝜽̂𝑗 for 𝑗 = 2,… ,𝑚.

6.4.1. Generating the dataset
In order to generate the dataset, we first generate the covariate values, which we then use to generate
the corresponding response values. To generate the covariate values 𝑋1, … , 𝑋𝑛, we draw each 𝑋𝑖
independently for 𝑖 = 1,… , 𝑛, where each 𝑋𝑖 takes value in a set

𝒳 ∶= 1 + 3
𝓁0
⋅ {1, 2, … , 𝓁0},

and 𝓁0 ∈ ℕ. The sampling is done with replacement so that it is possible to obtain ties among the 𝑋𝑖.
To generate the response values given 𝑋1, … , 𝑋𝑛, we sample 𝑌1, … , 𝑌𝑛 from the gamma distribution

with the following density function

𝑔𝑌|𝑋(𝑦|𝑥) ∶=
1

Γ(𝑘(𝑥))𝑏(𝑥)𝑘(𝑥) 𝑦
𝑘(𝑥)−1𝑒−𝑦/𝑏(𝑥)𝟙{𝑦 > 0} (6.4)

where the shape function 𝑘(𝑥) ∶ 𝒳 → ℝ≥0 and the shape function 𝑏(𝑥) ∶ 𝒳 → ℝ≥0 are defined as
follows: 𝑘(𝑥) ∶= 2+(𝑥+1)2 and 𝑏(𝑥) ∶= 1−𝑒−10𝑥. Both 𝑘(𝑥) and 𝑏(𝑥) are isotonic if 𝑥 ≥ 0. Therefore
by Example 2.3.5, we have that [𝑌|𝑋 = 𝑥𝑖] ≤lr [𝑌|𝑋 = 𝑥𝑖′] if 𝑥𝑖 < 𝑥𝑖′ . The sample size of the generated
data set is 𝑛 = 15 and we set 𝓁0 = 1000. To allow the possibility of ties the response values are
rounded to one decimal place.

6.4.2. Comparing the results of the estimated conditional distributions
For consistent comparison, we use the same generated dataset when using algorithms in Section 6.2
and Section 6.3. The generated dataset has 𝓁 = 𝑚 = 15. The starting feasible points for these
algorithms are not necessary. We choose 𝑐 = 1000 for both algorithms. Regarding the parameter 𝑀,
we set 𝑀 = 1000 for Algorithm 1 and 𝑀 = 104 for Algorithm 3 and Algorithm 4.

In this simulation study, we aim to plot the estimated conditional distribution functions. Each figure
we produce includes four functions of 𝑦: the true conditional distribution function with density (6.4),
the estimated conditional distribution using algorithms in Section 6.2 or in Section 6.3, the distribution
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function computed using the initial feasible point, and the estimated conditional distribution using al-
gorithms from Mösching and Dümbgen (2024). We denote these functions as 𝐺𝑌|𝑥𝑗 , 𝐹𝑌|𝑥𝑗 , 𝐹𝑌|𝑥𝑗 , 𝐹

(0)
𝑌|𝑥𝑗

and 𝐹𝑌|𝑥𝑗 respectively. Let 𝔽𝑌|𝑥𝑗 ∈ {𝐹𝑌|𝑥𝑗 , 𝐹𝑌|𝑥𝑗 , 𝐹
(0)
𝑌|𝑥𝑗 , 𝐹𝑌|𝑥𝑗}, then with the output of the algorithms, we

compute 𝔽𝑌|𝑥𝑗 in the following manner:

𝔽𝑌|𝑥𝑗(𝑦𝑘|𝑥𝑗) =
1

∑𝑚𝑘′=1 exp(𝜗𝑗𝑘′)

𝑘

∑
𝑘′=1

exp(𝜗𝑗𝑘′) ∀1 ≤ 𝑗 ≤ 𝓁, 1 ≤ 𝑘 ≤ 𝑚,

where 𝜗𝑗𝑘 ∈ {𝜃𝑗𝑘 , 𝜃𝑗𝑘 , 𝜃(0)𝑗𝑘 , 𝜃𝑗𝑘}. We still normalize 𝔽𝑌|𝑥𝑗 since ∑
𝑚
𝑘′=1 exp(𝜗𝑗𝑘′) is not exactly equal to

one or smaller than one for 𝔽𝑌|𝑥𝑗 ∈ {𝐹𝑌|𝑥𝑗 , 𝐹𝑌|𝑥𝑗 , 𝐹
(0)
𝑌|𝑥𝑗}. Additionally, we assume that the conditional

distributions has support {𝑦1, … , 𝑦𝑚} for any 1 ≤ 𝑗 ≤ 𝓁. As a remark, the computation of 𝐹𝑌|𝑥𝑗 and
therefore the normalization, is already computed from the LRDistReg package. Finally, we plot 𝐺𝑌|𝑥𝑗
and 𝔽𝑌|𝑥𝑗 , where 𝑗 = 1, 7, 15. The corresponding covariate values are 𝑥1 = 1.054, 𝑥7 = 1.624 and
𝑥15 = 3.94.

We first present the results of using algorithms in Section 6.2 in Figure 6.1. We set 𝑠max = 3000
and 𝑎 = 20 for generating the initial feasible point 𝜽0. We observe that 𝐹𝑌|𝑥7 and 𝐹𝑌|𝑥7 are closely
aligned. However, the algorithm of Mösching and Dümbgen algorithm performs better for estimating
𝐺𝑌|𝑥𝑗 , for 𝑗 = 1, 7, 15. While 𝐹𝑌|𝑥1 over estimates 𝐺𝑌|𝑥1 , the estimator 𝐹𝑌|𝑥1 severely underestimate
𝐺𝑌|𝑥1 , especially on approximately 𝑦 ∈ [0, 6]. For 𝑗 = 15, the estimator 𝐹𝑌|𝑥15 lies close to the true
distribution. However, the estimator 𝐹𝑌|𝑥15 performs poorly in estimating 𝐺𝑌|𝑥15 .
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Figure 6.1: The plot of {𝐹𝑌|𝑥𝑗 , 𝐹
(0)
𝑌|𝑥𝑗 , 𝐹𝑌|𝑥𝑗 } with the true distributions 𝐺𝑌|𝑥𝑗 for 𝑗 = 1, 7, 15. The function 𝐹(0)𝑌|𝑥𝑗 is the gamma

distribution with shape 𝑥𝑗 + 20 and scale is 1. The number iterations needed to produce 𝐹𝑌|𝑥𝑗 is 3000.

We then increase the number of maximal iterations 𝑠max to 2 ⋅ 104, with the results displayed in
Figure 6.2. Compared to when 𝑠max = 3000, the estimators 𝐹𝑌|𝑥𝑗 for 𝑗 = 1, 7, 15, are closer to the
true distribution 𝐺𝑌|𝑥𝑗 . However, we observe that the bias of the estimator 𝐹𝑌|𝑥1 remains large for
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approximately 𝑦 ∈ [0, 6]. Furthermore, there is a notable improvement in 𝐹𝑌|𝑥15 compared to the result
in Figure 6.1. In this instance, the estimator 𝐹𝑌|𝑥15 fits 𝐺𝑌|𝑥15 better, while 𝐹𝑌|𝑥15 overall underestimates
it.
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Figure 6.2: The plot of {𝐹𝑌|𝑥𝑗 , 𝐹
(0)
𝑌|𝑥𝑗 , 𝐹𝑌|𝑥𝑗 } with the true distributions 𝐺𝑌|𝑥𝑗 for 𝑗 = 1, 7, 15. The function 𝐹(0)𝑌|𝑥𝑗 is the gamma

distribution with shape 𝑥𝑗 + 20 and scale is 1. The number iterations needed to produce 𝐹𝑌|𝑥𝑗 is 2 ⋅ 104.

For more figures of 𝐹𝑌|𝑥𝑗 and 𝑗 = 1,… , 𝓁, we refer the reader to Appendix F. Here, we also present
the results of 𝐹𝑌|𝑥𝑗 when 𝑠max is set to 5 ⋅ 104. We observe in these figures that the bias of 𝐹𝑌|𝑥𝑗 for
𝑗 = 1 is smaller for approximately 𝑦 ∈ [0, 6]. Recall from Figure 6.2, it illustrates the poor performance
of the estimator 𝐹𝑌|𝑥1 within this interval.

Lastly, we present the results of estimating 𝐺𝑌|𝑥𝑗 using the algorithm in Section 6.3. Here, we set
𝑠max = 1000.In Figure 6.3, we observe overall poor performance of 𝐹𝑌|𝑥𝑗 . Notably, the function 𝐹𝑌|𝑥1 ,
which is the result of the unconstrained minimization, appears similar to 𝐹𝑌|𝑥1 in Figure 6.1 and Figure
6.2. While the function 𝐹𝑌|𝑥1 fits 𝐺𝑌|𝑥1 reasonably well over a certain interval, for 𝑗 = 7, 15 the function
𝐹𝑌|𝑥𝑗 performs poorly compared to 𝐹𝑌|𝑥𝑗 from Figure 6.2 and 𝐹𝑌|𝑥𝑗 .
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Figure 6.3: The plot of {𝐹𝑌|𝑥𝑗 , 𝐹
(0)
𝑌|𝑥𝑗 , 𝐹𝑌|𝑥𝑗 } with the true distributions 𝐺𝑌|𝑥𝑗 for 𝑗 = 1, 7, 15. The function 𝐹(0)𝑌|𝑥𝑗 is the gamma

distribution with shape 𝑥𝑗 + 20 and scale is 1. The number iterations needed to produce 𝐹𝑌|𝑥𝑗 is 1000.



7
Conclusion

The purpose of this thesis was to implement an algorithm that estimates conditional distribution func-
tions with a likelihood ratio order constraint. The estimated conditional distribution functions minimize
the empirical risk with the CRPS as the loss function while satisfying the imposed constraint. Before
we implemented the algorithm to solve this minimization problem, we transformed the estimand into a
logarithmic scale. This transformation converts the non-convex feasible set into a convex one. How-
ever, the objective function becomes non-convex within this set. To solve the problem numerically, we
use the gradient projection method to find a local minimum that is feasible. During the implementation
of the gradient projection method, we also modified it to estimate the distribution functions sequentially.

In the initial version of the algorithm, we observed that the performance of the estimators are im-
proved as we extend the run time. This observation was based on comparing the initial proposed
function and the estimated function after the algorithm was stopped. Visually, the algorithm accurately
fit the estimated distribution function to the true distribution over some interval. However, we observe
underestimation as well on some parts of the distribution function. Notably, for the distribution function
given the smallest covariate value, the algorithm of Mösching and Dümbgen (2024) tended to overes-
timate the distribution, while the algorithm implemented in this thesis exhibited underestimation. This
underestimation might be caused by the early stopping of the algorithm.

Regarding the modified version of the algorithm, its performance falls short compared to the initial
version. Although under performance is explainable by the early stopping (𝑠max = 1000 for each
𝑗 = 1,… , 𝓁), extending the running time for each 𝑗 would results in a longer total running time. Moreover,
due to the early stopping, poor performance for any 𝑗 − 1 and 1 < 𝑗 ≤ 𝓁 negatively impacts the
performance of the subsequent estimators. These effects accumulate, which leads to overall sub-
optimal estimators.

In contrast, the initial version of the algorithm estimates the distribution functions simultaneously,
which avoids the poor performance of the estimators to cascade. However, the modified algorithm
offers an advantage. Since the algorithm estimates the distribution functions sequentially, the number
of constraints is reduced. Specifically, the size of the matrix constraint is (𝑚 − 1) × 𝑚 instead of
(𝓁− 1)(𝑚−1)× 𝓁𝑚. This might be beneficial when working with a larger dataset, despite the trade-off
in the estimators performance.

7.1. Limitations of the study
We now discuss several limitations of our studies. First, though the running time of the proposed
algorithms were not exactly measured, it took approximately 3 to 4 hours and 8 to 10 hours to obtain
the estimators when 𝑠max = 2 ⋅ 104 and when 𝑠max = 5 ⋅ 104 respectively. We also observed the poor
performances of the estimators, when 𝑠max = 1000. Given these results, we believed that there is
no value in making a predictive performance comparison, since the performance was visibly inferior to
the method proposed by Mösching and Dümbgen (2024). However, performance did improved when
𝑠max = 2 ⋅ 104. Despite this, the length computational time made it impractical to conduct Monte-Carlo
simulations, even with small sample size (𝑛 = 15). Therefore, we are unable to investigate whether
the algorithm proposed by Mösching and Dümbgen (2024) or the one proposed here performs better.
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Another important limitation is that we did not verify whether the estimated probabilities are indeed a
global minimizer of the empirical risk. Unlike the method proposed by Mösching and Dümbgen (2024),
where the authors have proven that the negative log-likelihood function is strictly convex in a convex
feasible set, our optimization problem does not have this property. As a consequence, the algorithms
return a local minimum. If one wants to verify that the algorithms return a global minimizer, one can
generate random initial feasible points and solve the optimization problem using these starting points.
Then compute the value of the objective function for each approximated solution. The smallest value
of the objective function is possibly the approximated global minimum. We decided not to pursue this
investigation as well, due the same reason as why we did not conduct Monte Carlo simulations.

7.2. Concluding remarks and future direction
Considering the limitations and the results presented in this thesis, we conclude that the estimation
procedure in this thesis is impractical to use, compared to the procedure from Mösching and Dümbgen
(2024). Even though, the estimators using a small dataset performs reasonably well.

The main problem lies on the running time to obtain the estimated conditional distribution functions
While the estimator of Mösching and Dümbgen (2024) produce estimates of the distribution functions
in less than a minute, the algorithm in this thesis may took 8 to 10 hours when using a small dataset.
Therefore, we would like to explore other algorithms that could reduce the computational time.

Despite these disadvantages, the CRPS scoring rule is one evaluation tool for probabilistic fore-
casts. A well-predicted event that uses the ’correct’ distribution corresponds to a small loss, otherwise
the loss is large. We hypothesize that on average, the loss of forecasting new events using the estima-
tors presented here is smaller than Mösching and Dümbgen (2024). However, due to the absence of
convexity property of the objective function, this may not be necessarily the true. If we have developed
an algorithm that solves the presented optimization problem efficiently, we can conduct an investigation
that is presented in the previous section.
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A
Additional Information about The

Ranked Probability Score
In this appendix, we explain the construction of the ranked probability score (RPS) in detail. The reason
for that is to explain why there is a term ”ranked” in the name of this scoring rule. The first lemma in this
appendix is found in Epstein (1969). We add small details of the results to understand how the author
arrived at their calculations. The second lemma in this appendix is not in Epstein (1969). The lemma
is necessary so that it is clear that the combination of these two lemma results in the RPS.

The construction of the RPS uses the utility framework. Consider the following situation given in
Murphy (1966). Let Ω = {𝑊,𝑁𝑊}, where 𝑊 is the event of adverse weather and 𝑁𝑊 is the event of
non-adverse weather. Let 𝑃 and 𝐷𝑁𝑃 be the action to protect and not to protect respectively. Let 𝐶
be the cost of taking protective measures and 𝐿 be the loss of not taking the protective measure. If𝑊
occurs, then we should take action 𝑃 which will cost 𝐶. If 𝑃 is not taken then there will be a loss 𝐿. If
𝑁𝑊 occurs, then protection is unnecessary which yields zero loss and zero cost. If the action to protect
is taken anyway, then there will be a cost of 𝐶. These scenarios can be summarized in the following
cost-loss matrix:

𝑊 𝑁𝑊
𝑃 𝐶 𝐶
𝐷𝑁𝑃 𝐿 0

If 𝑊 occurs with probability 𝑝, then the expected cost when action 𝑃 is taken is 𝑝𝐶 + (1 − 𝑝)𝐶 = 𝐶. If
action 𝐷𝑁𝑃 is taken, then the expected loss is 𝑝𝐿. We then take action depending on which expectation
is bigger. If the expected loss is bigger than the expected cost, i.e. 𝑝𝐿 > 𝐶 or equivalently 𝑝 > 𝐶/𝐿,
then we follow the course of action 𝑃. If 𝑝 < 𝐶/𝐿, then the action 𝐷𝑁𝑃 is taken.

The quantity 𝐶/𝐿 is called the cost-loss ratio and it is defined on the interval (0, 1) for a decision
situation to exist. Indeed, if 𝐶/𝐿 > 1, then we will always take the course of action 𝐷𝑁𝑃. If 𝐶/𝐿 ≤ 0,
then the loss is always larger than the cost and so we always take the action 𝑃.

For convenience, we can transform the cost-loss matrix into a utility matrix, so that the preferred
outcome has utility +1, and otherwise it is zero. Then the cost-loss matrix becomes the following utility
matrix:

𝑊 𝑁𝑊
𝑃 1 − 𝐶/𝐿 1 − 𝐶/𝐿
𝐷𝑁𝑃 0 1

If 𝑐𝑖𝑗 and 𝑢𝑖𝑗 are the entries of the cost-loss matrix and the utility matrix respectively. Then the trans-
formation of 𝑐𝑖𝑗 is defined by 𝑢𝑖𝑗 ∶= 1 − 𝑐𝑖𝑗/𝐿. According to this utility matrix, the action of 𝐷𝑁𝑃 while
the weather is𝑊 is the least desirable outcome. The most favourable outcome is when the weather is
non-adverse (𝑁𝑊) and no protective action is taken (𝐷𝑁𝑃). The utility of taking action 𝑃 is 1 − 𝐶/𝐿,
which is close to +1 if the loss 𝐿 is very large. Lastly, by using the utility matrix and the decision rule,
we can define the utility as the following:

𝑈 = (1 − 𝐶/𝐿)𝟙(𝑝 ≥ 𝐶/𝐿) + 𝛿𝟙(𝑝 < 𝐶/𝐿), (A.1)
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where 𝛿 = 1 if 𝑁𝑊 occurs, and equal to 0 otherwise.
Epstein (1969) then generalizes the situation described above for a finite sample space. Let Ω =

{𝑊1, … ,𝑊𝑟}, such that 𝑟 ≥ 2 and the elements are ranked such that the event 𝑊1 is the most adverse
weather and 𝑊𝑟 is non-adverse weather. Let 𝐴𝑗 , 𝑗 ∈ Ω be the action taken such that the protection
measure is successively less complete. Instead of a 2 × 2 cost-loss matrix, we now have a 𝑟 × 𝑟
cost-loss matrix. The entries of this matrix are defined as follows:

𝑐𝑖𝑗 =
⎧⎪
⎨⎪⎩

𝐶(𝑟 − 𝑖)
𝑟 − 1 , if 𝑖 ≤ 𝑗,

𝐶(𝑟 − 𝑖) + 𝐿(𝑖 − 𝑗)
𝑟 − 1 , if 𝑖 > 𝑗.

(A.2)

If the decision is to take a full protective measure, while the observed weather is less adverse than
predicted, then the total cost comes only from the protection. If the protective measure is not sufficient,
since the observed weather is more severe than predicted, then there is a cost from the protection, in
addition to the loss. The loss increases as the action 𝑖 lies further than the action 𝑗, which should have
been taken when weather 𝑗 occurs.

The decision rule and the utility matrix are defined in a similar matter as in the case when 𝑟 = 2.
The cost-loss matrix in the general case is transformed into the utility matrix by defining the following
entries 𝑢𝑖𝑗 = 1 − 𝑐𝑖𝑗/𝐿, where 𝑐𝑖𝑗 is (A.2). The decision rule of taking action 𝑘 would be

𝑘−1

∑
𝑗=1

𝑝𝑗 < 𝐶/𝐿 <
𝑘

∑
𝑗=1
𝑝𝑗 .

Generalizing (A.1), we express the utility 𝑈𝑗 if weather 𝑊𝑗 occurs as a function of the utility matrix, a
vector 𝐩 = (𝑝1, … , 𝑝𝑟) ∈ [0, 1]𝑟 and 0 < 𝐶/𝐿 < 1, which yield

𝑈𝑗 =
𝑟

∑
𝑖=1
𝑢𝑖𝑗𝑑𝑖(𝐩, 𝐶/𝐿),

where

𝑑𝑖(𝐩, 𝐶/𝐿) =
⎧⎪
⎨⎪⎩

1, if
𝑖−1

∑
𝑘=1

𝑝𝑘 < 𝐶/𝐿 ≤
𝑖

∑
𝑘=1

𝑝𝑘 ,

0, otherwise.
Treating 𝐶/𝐿 as a random variable which follows a uniform distribution on (0, 1), we can then com-

pute the expected utility when the weather𝑊𝑗 occurs. We state the result in the following lemma.

Lemma A.1. Let 𝐶/𝐿 be uniformly distributed on interval (0, 1). Then,

𝔼[𝑈𝑗] = 1 −
1

2(𝑟 − 1)

𝑟−1

∑
𝑖=1
[(

𝑖

∑
𝑘=1

𝑝𝑘)

2

] − 1
𝑟 − 1

𝑟

∑
𝑖=𝑗+1

(𝑖 − 𝑗)𝑝𝑖 .

The maximum value of the expected utility when 𝑊𝑗 is observed, is (𝑟 + 𝑗 − 2)/2(𝑟 − 1). Its minimum
value is (𝑗 − 1)/(𝑟 − 1) in the region 𝑗 ≤ (𝑟 + 1)/2, and it becomes 1/2 for 𝑗 > (𝑟 + 1)/2.
Proof. Let 𝑋 ∶= 𝐶/𝐿, then,

𝑢𝑖𝑗 =
⎧⎪
⎨⎪⎩

1 − 𝑋(𝑟 − 𝑖)𝑟 − 1 , if 𝑖 ≤ 𝑗,

1 − 𝑋(𝑟 − 𝑖) + (𝑖 − 𝑗)𝑟 − 1 , if 𝑖 > 𝑗.
(A.3)

we have

𝔼[𝑈𝑗] = ∫
1

0

𝑟

∑
𝑖=1
𝑢𝑖𝑗𝑑𝑖(𝐩, 𝑥) 𝑑𝑥
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= 1
𝑟 − 1 ∫

1

0
{

𝑗

∑
𝑖=1
[𝑟 − 1 − 𝑥(𝑟 − 𝑖)]𝑑𝑖(𝐩, 𝑥) +

𝑟

∑
𝑖=𝑗+1

[𝑟 − 1 − 𝑥(𝑟 − 𝑖) + 𝑗 − 𝑖]𝑑𝑖(𝐩, 𝑥)} 𝑑𝑥

= 1
𝑟 − 1{

𝑗

∑
𝑖=1
∫
1

0
[𝑟 − 1 − 𝑥(𝑟 − 𝑖)]𝑑𝑖(𝐩, 𝑥) 𝑑𝑥 +

𝑟

∑
𝑖=𝑗+1

∫
1

0
[𝑟 − 1 − 𝑥(𝑟 − 𝑖) + 𝑗 − 𝑖]𝑑𝑖(𝐩, 𝑥) 𝑑𝑥}

= 1
𝑟 − 1{

𝑟

∑
𝑖=1
∫
1

0
[𝑟 − 1 − 𝑥(𝑟 − 𝑖)]𝑑𝑖(𝐩, 𝑥) 𝑑𝑥 +

𝑟

∑
𝑖=𝑗+1

∫
1

0
[𝑗 − 𝑖]𝑑𝑖(𝐩, 𝑥) 𝑑𝑥}. (A.4)

Let

𝐺𝑘 =
𝑘

∑
𝑖=1
𝑝𝑖 , and therefore 1 − 𝐺𝑘 =

𝑟

∑
𝑖=𝑘+1

𝑝𝑖 , (A.5)

then combining (A.4) and (A.5) yield

𝔼[𝑈𝑗] =
1

𝑟 − 1{
𝑟

∑
𝑖=1
∫
𝐺𝑖

𝐺𝑖−1
[𝑟 − 1 − 𝑥(𝑟 − 𝑖)] 𝑑𝑥 +

𝑟

∑
𝑖=𝑗+1

∫
𝐺𝑖

𝐺𝑖−1
[𝑗 − 𝑖] 𝑑𝑥}

= 1
𝑟 − 1{

𝑟

∑
𝑖=1
[(𝑟 − 1)𝑥 − 12𝑥

2(𝑟 − 𝑖)]
𝑥=𝐺𝑖

𝑥=𝐺𝑖−1
+

𝑟

∑
𝑖=𝑗+1

[(𝑗 − 𝑖)𝑥]𝑥=𝐺𝑖𝑥=𝐺𝑖−1 }

= 1
𝑟 − 1{

𝑟

∑
𝑖=1
[(𝑟 − 1)(𝐺𝑖 − 𝐺𝑖−1) −

1
2(𝐺

2
𝑖 − 𝐺2𝑖−1)(𝑟 − 𝑖)] +

𝑟

∑
𝑖=𝑗+1

[(𝑗 − 𝑖)(𝐺𝑖 − 𝐺𝑖−1)] }

= 1 − 1
2(𝑟 − 1)

𝑟

∑
𝑖=1
(𝑟 − 𝑖) [𝐺2𝑖 − 𝐺2𝑖−1] −

1
𝑟 − 1

𝑟

∑
𝑖=𝑗+1

(𝑖 − 𝑗)𝑝𝑖

= 1 − 1
2(𝑟 − 1)

𝑟−1

∑
𝑖=1
[(

𝑖

∑
𝑘=1

𝑝𝑘)

2

] − 1
𝑟 − 1

𝑟

∑
𝑖=𝑗+1

(𝑖 − 𝑗)𝑝𝑖 .

The last equality is obtained by the following computation
𝑟

∑
𝑖=1
(𝑟 − 𝑖) [𝐺2𝑖 − 𝐺2𝑖−1] = (𝑟 − 1)𝐺21 + (𝑟 − 2) [𝐺22 − 𝐺21 ]

+ (𝑟 − 3) [𝐺23 − 𝐺22 ] + ⋯ + 2 [𝐺2𝑟−2 − 𝐺2𝑟−3] + [𝐺2𝑟−1 − 𝐺2𝑟−2]
= 𝐺21 (𝑟 − 1 − (𝑟 − 2)) + 𝐺22(𝑟 − 2 − (𝑟 − 3)) + ⋯ + 𝐺2𝑟−2(2 − 1) + 𝐺2𝑟−1

=
𝑟−1

∑
𝑖=1
𝐺2𝑖

=
𝑟−1

∑
𝑖=1
(

𝑖

∑
𝑘=1

𝑝𝑘)

2

.

To analyze how 𝔼[𝑈𝑗] behaves, we first suppose that we predict the weather 𝑊𝑗 with 100% confi-
dence and the weather 𝑊𝑗 is observed for any 𝑗 ∈ Ω. This means for every 𝑗 we perfectly predict 𝑊𝑗,
which corresponds to finding the maximum of the expected utility. Let (𝑝1, … , 𝑝𝑟) be the vector proba-
bility such that it is 1 at the 𝑗-th position and 0 otherwise. Then, the last term in 𝔼[𝑈𝑗] vanishes because
𝑝𝑖 = 0 for any 𝑗 + 1 ≤ 𝑖 ≤ 𝑟. Further, 𝐺𝑖 = 1 whenever 𝑗 ≤ 𝑖 ≤ 𝑟 − 1 and 𝐺𝑖 = 0 otherwise. Hence,

𝔼[𝑈𝑗] = 1 −
1

2(𝑟 − 1)

𝑟−1

∑
𝑖=𝑗
1 = 1 − 𝑟 − 𝑗

2(𝑟 − 1) =
𝑟 + 𝑗 − 2
2(𝑟 − 1) .
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As for the minimum value, suppose we predict the observed weather 𝑊𝑗 incorrectly with 100% confi-
dence. Consider the following two cases:

Case 1: Let (𝑝1, … , 𝑝𝑟) be a probability vector such that 𝑝1 = 1 and 𝑝𝑖 = 0 for any 1 < 𝑖 ≤ 𝑟. Suppose
we observe an event 1 < 𝑗 ≤ 𝑟. Then,

𝔼[𝑈𝑗] = 1 −
1

2(𝑟 − 1)

𝑟−1

∑
𝑖=1
1 = 1

2 .

Case 2: Let (𝑝1, … , 𝑝𝑟) be a probability vector such that 𝑝𝑟 = 1 and 𝑝𝑖 = 0 for any 1 ≤ 𝑖 < 𝑟. Suppose
we observe an event 1 ≤ 𝑗 < 𝑟. Then,

𝔼[𝑈𝑗] = 1 −
1

𝑟 − 1

𝑟

∑
𝑖=𝑗+1

(𝑖 − 𝑗)𝑝𝑖 = 1 −
𝑟 − 𝑗
𝑟 − 1 =

𝑗 − 1
𝑟 − 1.

Combining these two cases yields the minimum expected utility, which is min{(𝑗 − 1)/(𝑟 − 1), 1/2}.
This value increases with 𝑗 in the region 𝑗 ≤ (𝑟+1)/2, and it becomes a constant for 𝑗 > (𝑟+1)/2.

From the Lemma A.1, we observe that the maximum and theminimum of the expected utility depend
on the subsequent observed weather. The maximum value of 𝔼[𝑈𝑗] increases as 𝑗 increases. This
means that the utility is at its best when we perfectly predict the most non-adverse weather. Perfectly
predicting the worst weather does not increase the utility.

For this reason, Epstein (1969) adjusts the scoring scheme so that it is less dependent on what type
of weather occurs. To achieve this, the elements of the sample space are ranked differently. Recall
that in the beginning, we rank them from the most adverse to the least adverse weather. Now we rank
the elements of the sample space from the least adverse to the most adverse weather. The action
sequence (𝐴𝑗)𝑟𝑗=1 is now an action to protect and is subsequently more complete. Then we define 𝑢+𝑖𝑗
to be the entries of the new utility matrix

𝑢+𝑖𝑗 =
⎧
⎪
⎨
⎪
⎩

1 − 𝐶(𝑟 − 𝑖)
𝐿(𝑟 − 1) , if 𝑖 > 𝑗,

1 − 𝐶(𝑟 − 𝑖) + 𝐿(𝑗 − 𝑖)𝐿(𝑟 − 1) , if 𝑖 ≤ 𝑗.
(A.6)

This is similar to 𝑢𝑖𝑗, which is defined in (A.3). The cost-loss ratio 𝐶/𝐿 is still assumed to be random
and it follows from a uniform distribution (0, 1). We then define the following random variable that is
similar to 𝑈𝑗:

𝑈+𝑗 =
𝑟

∑
𝑖=1
𝑢+𝑖𝑗𝑑+𝑖 (𝐩, 𝐶/𝐿),

where

𝑑+𝑖 (𝐩, 𝐶/𝐿) =
⎧

⎨
⎩

1, if
𝑟

∑
𝑘=𝑖+1

𝑝𝑘 < 𝐶/𝐿 ≤
𝑟

∑
𝑘=𝑖
𝑝𝑘 ,

0, otherwise.
Equivalently, 𝑑+𝑖 (𝐩, 𝐶/𝐿) = 1 if and only if (1 − 𝐺𝑖) < 𝐶/𝐿 ≤ (1 − 𝐺𝑖−1), and 0 otherwise. We now state
what the expected utility 𝑈+𝑗 is.

Lemma A.2. Let 𝐶/𝐿 be uniformly distributed on interval (0, 1). Then,

𝔼[𝑈+𝑗 ] = 1 −
1

2(𝑟 − 1)

𝑟−1

∑
𝑖=1
[(

𝑟

∑
𝑘=𝑖+1

𝑝𝑘)

2

] − 1
𝑟 − 1

𝑗

∑
𝑖=1
(𝑗 − 𝑖)𝑝𝑖 .

The maximum value of the expected utility when𝑊𝑗 is observed, is (2𝑟 − 𝑗 − 1)/2(𝑟 − 1). Its minimum
value is (𝑟 − 𝑗)/(𝑟 − 1) in the region 𝑗 ≥ (𝑟 + 1)/2, and it is 1/2 for 𝑗 < (𝑟 + 1)/2.
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Proof. The computation in this proof is similar to the ones in Lemma A.1. Let 𝑋 ∶= 𝐶/𝐿, then we have

𝔼[𝑈+𝑗 ] = ∫
1

0

𝑟

∑
𝑖=1
𝑢+𝑖𝑗𝑑+𝑖 (𝐩, 𝑥) 𝑑𝑥

= 1
𝑟 − 1 ∫

1

0
{

𝑗

∑
𝑖=1
[𝑟 − 1 − 𝑥(𝑟 − 𝑖) + 𝑖 − 𝑗]𝑑+𝑖 (𝐩, 𝑥) +

𝑟

∑
𝑖=𝑗+1

[𝑟 − 1 − 𝑥(𝑟 − 𝑖)]𝑑+𝑖 (𝐩, 𝑥)} 𝑑𝑥

= 1
𝑟 − 1{

𝑗

∑
𝑖=1
∫
1

0
[𝑖 − 𝑗]𝑑+𝑖 (𝐩, 𝑥) 𝑑𝑥 +

𝑟

∑
𝑖=1
∫
1

0
[𝑟 − 1 − 𝑥(𝑟 − 𝑖)]𝑑+𝑖 (𝐩, 𝑥) 𝑑𝑥}

= 1
𝑟 − 1{

𝑗

∑
𝑖=1
∫
1−𝐺𝑖−1

1−𝐺𝑖
[𝑖 − 𝑗] 𝑑𝑥 +

𝑟

∑
𝑖=1
∫
1−𝐺𝑖−1

1−𝐺𝑖
[𝑟 − 1 − 𝑥(𝑟 − 𝑖)] 𝑑𝑥}

= 1
𝑟 − 1{

𝑗

∑
𝑖=1
[𝑖 − 𝑗](𝐺𝑖 − 𝐺𝑖−1) +

𝑟

∑
𝑖=1
[(𝑟 − 1)(𝐺𝑖 − 𝐺𝑖−1) −

1
2((1 − 𝐺𝑖)

2 − (1 − 𝐺𝑖−1)2)(𝑟 − 𝑖)] }

= 1
𝑟 − 1{

𝑗

∑
𝑖=1
(𝑖 − 𝑗)𝑝𝑖 + (𝑟 − 1) −

1
2

𝑟

∑
𝑖=1
[((1 − 𝐺𝑖)2 − (1 − 𝐺𝑖−1)2)(𝑟 − 𝑖)] }

= 1 − 1
2(𝑟 − 1)

𝑟−1

∑
𝑖=1
[(

𝑟

∑
𝑘=𝑖+1

𝑝𝑘)

2

] − 1
𝑟 − 1

𝑗

∑
𝑖=1
(𝑗 − 𝑖)𝑝𝑖 .

To confirm the maximum and the minimum value of the expected utility 𝑈+𝑗 , we follow the step that is
in Lemma A.1. For the maximum expected utility, let (𝑝1, … , 𝑝𝑟) be the vector probability such that it is
1 at the 𝑗-th position and 0 otherwise. Then, the last term in 𝔼[𝑈𝑗] vanishes because 𝑝𝑖 = 0 for any
𝑗 + 1 ≤ 𝑖 ≤ 𝑟. If the observed outcome is 1 < 𝑗 ≤ 𝑟, then,

𝔼[𝑈+𝑗 ] = 1 −
1

2(𝑟 − 1)

𝑗−1

∑
𝑖=1
1 = 1 − 𝑗 − 1

2(𝑟 − 1) =
2𝑟 − 𝑗 − 1
2(𝑟 − 1) .

If 𝑗 = 1, then 𝔼[𝑈+𝑗 ] is simply equal to 1. As for the minimum value, suppose we predict the observed
weather𝑊𝑗 incorrectly with 100% confidence. Consider the following two cases:

Case 1: Let (𝑝1, … , 𝑝𝑟) be a probability vector such that 𝑝1 = 1 and 𝑝𝑖 = 0 for any 1 < 𝑖 ≤ 𝑟. Suppose
we observe an event 1 < 𝑗 ≤ 𝑟. Then, the second term of 𝔼[𝑈+𝑗 ] vanishes. So,

𝔼[𝑈+𝑗 ] = 1 −
1

𝑟 − 1

𝑗−1

∑
𝑖=1
1 = 𝑟 − 𝑗

𝑟 − 1 .

Case 2: Let (𝑝1, … , 𝑝𝑟) be a probability vector such that 𝑝𝑟 = 1 and 𝑝𝑖 = 0 for any 1 ≤ 𝑖 < 𝑟. Suppose
we observe an event 1 ≤ 𝑗 < 𝑟. Then, the last term of 𝔼[𝑈+𝑗 ] = 0. So,

𝔼[𝑈𝑗] = 1 −
1

2(𝑟 − 1)

𝑟−1

∑
𝑖=1
1 = 1

2 .

Combining these two cases yields the minimum expected utility, which ismin{(𝑟−𝑗)/(𝑟−1), 1/2}. This
value is a constant when 𝑗 ≤ (𝑟 + 1)/2, and it decreases in 𝑗 linearly for 𝑗 > (𝑟 + 1)/2.

We observe from Lemma A.2 that the maximal expected utility also depends on the outcome of the
weather. To make the score independent of the type of observed weather, Epstein (1969) combines
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Lemma A.1 and A.2. To be more precise, the ranked probability score is the result of the two lemmas
in this appendix, which we subtract this result from 1 − 𝔼[𝐶/𝐿] (von Holstein, 1970). That is,

𝑆RPS(𝐩, 𝑗) = 𝔼[𝑈𝑗] + 𝔼[𝑈+𝑗 ] − (1 − 𝔼[𝐶/𝐿]).

Indeed,

𝑆RPS(𝐩, 𝑗) = 1 −
1

2(𝑟 − 1)

𝑟−1

∑
𝑖=1
[(

𝑖

∑
𝑘=1

𝑝𝑘)

2

] − 1
𝑟 − 1

𝑟

∑
𝑖=𝑗+1

(𝑖 − 𝑗)𝑝𝑖

+ 1 − 1
2(𝑟 − 1)

𝑟−1

∑
𝑖=1
[(

𝑟

∑
𝑘=𝑖+1

𝑝𝑘)

2

] − 1
𝑟 − 1

𝑗

∑
𝑖=1
(𝑗 − 𝑖)𝑝𝑖 −

1
2

= 3
2 −

1
2(𝑟 − 1)

𝑟−1

∑
𝑖=1
[(

𝑖

∑
𝑘=1

𝑝𝑘)

2

+ (
𝑟

∑
𝑘=𝑖+1

𝑝𝑘)

2

] − 1
𝑟 − 1

𝑟

∑
𝑖=𝑗+1

(𝑖 − 𝑗)𝑝𝑖 −
1

𝑟 − 1

𝑗

∑
𝑖=1
(𝑗 − 𝑖)𝑝𝑖

= 3
2 −

1
2(𝑟 − 1)

𝑟−1

∑
𝑖=1
[(

𝑖

∑
𝑘=1

𝑝𝑘)

2

+ (
𝑟

∑
𝑘=𝑖+1

𝑝𝑘)

2

] − 1
𝑟 − 1

𝑟

∑
𝑖=1
|𝑖 − 𝑗|𝑝𝑖 .

If 𝐶/𝐿 is uniformly distributed, then 1−𝔼[𝐶/𝐿] = 1/2. In a case that the distribution of 𝐶/𝐿 is unknown,
von Holstein (1970) showed how to generate a family of ranked probability scores.



B
On Totally Positive Distribution

Recall from (4.1) that we want the density function of [𝑌|𝑋 = 𝑥𝑠] and [𝑌|𝑋 = 𝑥𝑡] to satisfy the following
relation:

𝑓(𝑦1|𝑥𝑠)𝑓(𝑦2|𝑥𝑡) − 𝑓(𝑦2|𝑥𝑠)𝑓(𝑦1|𝑥𝑡) ≥ 0, (B.1)

for all 𝑥𝑠 < 𝑥𝑡 and 𝑦1 < 𝑦2. Let
𝐊 ∶= (𝑓(𝑦1|𝑥𝑠) 𝑓(𝑦1|𝑥𝑡)

𝑓(𝑦2|𝑥𝑠) 𝑓(𝑦2|𝑥𝑡))

Then (B.1) is equivalent to
det(𝐊) ≥ 0.

This looks similar to a notion of total positivity, which was introduced by Karlin (1968, p. 11).

Definition B.1 (Totally positive function). Let 𝐸, 𝐹 ⊆ ℝ and let 𝐾 ∶ 𝐸×𝐹 → ℝ be a function. The function
𝐾 is totally positive of order 𝑟 (denoted as TP𝑟) if for any

𝑥1 < ⋯ < 𝑥𝑚 , 𝑦1 < ⋯ < 𝑦𝑚 , 𝑥𝑖 ∈ 𝐸, 𝑦𝑖 ∈ 𝐹, 1 ≤ 𝑚 ≤ 𝑟,

we have
𝐾(𝑥1, 𝑦1) 𝐾(𝑥1, 𝑦2) ⋯ 𝐾(𝑥1, 𝑦𝑚)
𝐾(𝑥2, 𝑦1) 𝐾(𝑥2, 𝑦2) ⋯ 𝐾(𝑥2, 𝑦𝑚)

⋮ ⋮ ⋱ ⋮
𝐾(𝑥𝑚 , 𝑦1) 𝐾(𝑥𝑚 , 𝑦2) ⋯ 𝐾(𝑥𝑚 , 𝑦𝑚)

≥ 0.

To connect the notion of likelihood ratio order and a function being totally positive with order 2,
Dümbgen and Mösching (2023) define what is a totally positive distribution of order 2.

Definition B.2 (Totally positive distribution of order 2). Let 𝐴1 < 𝐴2 and 𝐵1 < 𝐵2 (element-wise) be any
Borel sets in ℝ2. A probability distribution ℙ is TP2 distribution if

ℙ(𝐴2 × 𝐵1)ℙ(𝐴1 × 𝐵2) ≤ ℙ(𝐴1 × 𝐵1)ℙ(𝐴2 × 𝐵2).

Let 𝑓 be the density function of a probability distribution ℙ of (𝑋, 𝑌). If 𝑓 is a TP2 function, then ℙ is a
TP2 distribution. The converse is not true however, unless the (𝑋, 𝑌) is a joint discrete random variable.
This is stated in the following theorem, but it is stated as a corollary in Dümbgen and Mösching (2023)
with no proof.

Theorem B.3. Let (𝑋, 𝑌) be a joint discrete random variable with a joint probability mass function
ℎ(𝑥, 𝑦) ∶= ℙ(𝑋 = 𝑥, 𝑌 = 𝑦). The following statements are equivalent:

1. For any 𝑥1 < 𝑥2 with ℙ(𝑋 = 𝑥1), ℙ(𝑋 = 𝑥2) > 0,

[𝑌|𝑋 = 𝑥1] ≤lr [𝑌|𝑋 = 𝑥2].

2. The function ℎ is TP2.
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Proof. This follows directly by using the Bayes’s theorem. Let ℎ(𝑦|𝑥) ∶= ℙ(𝑌 = 𝑦|𝑋 = 𝑥). Then
statement (1) implies for any 𝑦1 < 𝑦2,

ℎ(𝑦1|𝑥1)ℎ(𝑦2|𝑥2) ≥ ℎ(𝑦1|𝑥2)ℎ(𝑦2|𝑥1).

This is equivalent to

ℎ(𝑦1, 𝑥1)ℙ(𝑋 = 𝑥1)ℎ(𝑥2, 𝑦2)ℙ(𝑋 = 𝑥2) ≥ ℎ(𝑦1, 𝑥2)ℙ(𝑋 = 𝑥2)ℎ(𝑥1, 𝑦2)ℙ(𝑋 = 𝑥1),

and so, by removing the common factors, we obtain that ℎ is TP2. The converse can also be shown
using the Bayes’s theorem, i.e. ℎ(𝑥, 𝑦) = ℎ(𝑦|𝑥)ℙ(𝑋 = 𝑥).



C
Isotonic Regression

In this appendix, we review a regression method that models a set of observations such that the fitted
curve is non-decreasing. This regression is called the isotonic regression. We will first define isotonic
regression and we explain this notion graphically as well. The sources that we use in this appendix are
mainly from Barlow et al. (1972) and Robertson et al. (1988).

Before we define isotonic regression, consider the following regression problem. Let (𝑥𝑖 , 𝑦𝑖)𝑛𝑖=1
be a data set with 𝑛 independent observations, and suppose for all 1 ≤ 𝑖 ≤ 𝑛, the random variable
𝑋𝑖|𝑌𝑖 ∼ 𝒩(𝜇(𝑥𝑖), 𝜎2) and known 𝜎2. The goal is to estimate 𝜇(𝑥𝑖) for all 1 ≤ 𝑖 ≤ 𝑛, with the restriction
that

𝜇(𝑥(1)) ≤ 𝜇(𝑥(2)) ≤ ⋯ ≤ 𝜇(𝑥(𝑛)) where 𝑥(1) ≤ 𝑥(2) ≤ ⋯ ≤ 𝑥(𝑛).
Let 𝑦𝑗(𝑥𝑖) be the 𝑗-th observed response at 𝑥𝑖 and 𝑛𝑖 be the number of observed response values at
𝑥𝑖. In the unrestricted case, we can estimate 𝜇(𝑥(𝑖)) by minimizing the following negative log-likelihood
function

− log 𝐿(𝜇(𝑥)|(𝑥𝑖 , 𝑦𝑖)𝑛𝑖=1, 𝜎2) =
𝑛
2 log(2𝜋) +

𝑛
2 log𝜎

2 + 1
2𝜎2

𝑛

∑
𝑖=1

𝑛𝑖
∑
𝑗=1
(𝑦𝑖 − 𝜇(𝑥𝑖))2.

The minimizer of the negative log-likelihood is

𝜇(𝑥(𝑖)) =
1
𝑛𝑖

𝑛𝑖
∑
𝑗=1
𝑦𝑗(𝑥(𝑖)) =∶ 𝑦𝑖 for 1 ≤ 𝑖 ≤ 𝑘,

which is the average response values at 𝑥(𝑖). As for the restricted case (i.e. with the monotonicity
constraint), we have seen in Chapter 4 that the minimization problem of the unrestricted problem can
be rewritten as follows

𝜇(𝑥) ∶= argmin
𝜇(𝑥)

{
𝑛

∑
𝑖=1
𝑛𝑖(𝑦𝑖 − 𝜇(𝑥(𝑗)))2}

s.t. 𝜇(𝑥(𝑖)) ≤ 𝜇(𝑥(𝑖+1)) ∀ 1 ≤ 𝑖 < 𝑛.

This is a particular case of isotonic regression. Below is a formal definition of isotonic regression taken
from Robertson et al. (1988, p. 14).

Definition C.1. Let 𝑔 be a function on 𝑋 and 𝑤 be a positive function on 𝑋. An isotonic function 𝑔∗ on
𝑋 is an isotonic regression of 𝑔 with weights 𝑤 if 𝑔∗ minimizes

∑
𝑥∈𝑋
[𝑔(𝑥) − 𝑓(𝑥)]2𝑤(𝑥),
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in the class of all isotonic functions 𝑓 on 𝑋. That is, for all isotonic functions 𝑓 on 𝑋,

∑
𝑥∈𝑋
[𝑔(𝑥) − 𝑔∗(𝑥)]2𝑤(𝑥) ≤ ∑

𝑥∈𝑋
[𝑔(𝑥) − 𝑓(𝑥)]2𝑤(𝑥).

If we go back to the example where 𝑌|𝑋 is assumed to follow a normal distribution, we have 𝑔(𝑥) =
𝑦𝑗 and 𝑤(𝑥) = 𝑛𝑖. To obtain 𝑔∗, we first explain it through graphical construction of 𝑔∗ (Section C.1.
Then, we give an example of a well-known algorithm that determines the isotonic regression (Section
C.2).

C.1. Graphical construction: Greatest Convex Minorant
In this section we use Barlow et al. (1972, p. 9 - 13) for the explanation of the graphical construction of
𝑔∗. As for the explanation about the greatest convex minorant (GCM), we use Robertson et al. (1988,
p. 7).

Let

𝐺𝑗 =
𝑗

∑
𝑖=1
𝑔(𝑥𝑖)𝑤(𝑥𝑖) and 𝑊𝑗 =

𝑗

∑
𝑖=1
𝑤(𝑥𝑖),

where 𝑥1 < 𝑥2 < … < 𝑥𝑛. For all 1 ≤ 𝑗 ≤ 𝑛, plot the points 𝑃𝑗 = (𝑊𝑗 , 𝐺𝑗), and 𝑃0 ∶= (0, 0) and connect
these points. The slope between 𝑃𝑗 and 𝑃𝑗−1 is

𝐺𝑗 − 𝐺𝑗−1
𝑊𝑗 −𝑊𝑗−1

= 𝑔(𝑥𝑗).

The plot with segments that join the points 𝑃𝑗 and 𝑃𝑗−1 is called the cumulative sum diagram (CSD). It
turns out that 𝑔∗ is the slope of the greatest convex minorant (GCM) of the CSD. Let 𝐺∗(𝑡) be the GCM
of the CSD on [0,𝑊𝑛], then at 𝑡, the function value 𝐺∗(𝑡) is the supremum of all convex functions on
[0,𝑊𝑛] such that 𝐺∗(𝑡) ≤ 𝐺(𝑡). Let 𝐺∗(𝑊𝑗) ∶= 𝐺∗𝑗 and let 𝑃∗𝑗 ∶= (𝑊𝑗 , 𝐺∗𝑗 ), then the CSD and GCM at 𝑃𝑗
are the same, i.e. 𝐺∗𝑗 = 𝐺𝑗. An example of a CSD and its GCM is given in Figure C.1. To obtain 𝑔∗(𝑥𝑗)
from this plot, we simply compute the slope of the segment between 𝑃∗𝑗 and 𝑃∗𝑗−1, i.e.

𝐺∗𝑗 − 𝐺∗𝑗−1
𝑊𝑗 −𝑊𝑗−1

= 𝑔∗(𝑥𝑗).

Note that if 𝐺∗𝑗 < 𝐺𝑗, then 𝑔∗(𝑥𝑗+1) = 𝑔∗(𝑥𝑗) for 𝑗 = 1,… , 𝑛 −1 and the last point 𝐺𝑛 = 𝐺∗𝑛. In Figure C.1,
we therefore have 𝑔∗(𝑥1) = 𝑔∗(𝑥2) = 𝑔∗(𝑥3) < 𝑔∗(𝑥4) = 𝑔∗(𝑥5).

The following result shows that the isotonic regression 𝑔∗ of 𝑔 on 𝑋 is unique (see Theorem 1.1 in
Barlow et al. (1972) or Theorem 1.2.1 in Robertson et al. (1988)).

Theorem C.1. Let 𝑥1 < ⋯ < 𝑥𝑛. Then, 𝑔∗ is the isotonic regression of 𝑔. Indeed, if 𝑓(𝑥) is isotonic on
𝑥, then

𝑛

∑
𝑖=1
[𝑔(𝑥𝑖) − 𝑓(𝑥𝑖)]2𝑤(𝑥𝑖) ≥

𝑛

∑
𝑖=1
[𝑔(𝑥𝑖) − 𝑔∗(𝑥𝑖)]2𝑤(𝑥𝑖) +

𝑛

∑
𝑖=1
[𝑔∗(𝑥𝑖) − 𝑓(𝑥𝑖)]2𝑤(𝑥𝑖). (C.1)

The isotonic regression is unique.

Proof. We have
𝑛

∑
𝑖=1
[𝑔(𝑥𝑖) − 𝑓(𝑥𝑖)]2𝑤(𝑥𝑖) =

𝑛

∑
𝑖=1
[𝑔(𝑥𝑖) − 𝑔∗(𝑥𝑖) + 𝑔∗(𝑥𝑖) − 𝑓(𝑥𝑖)]2𝑤(𝑥𝑖)

=
𝑛

∑
𝑖=1
[𝑔(𝑥𝑖) − 𝑔∗(𝑥𝑖)]2𝑤(𝑥𝑖) +

𝑛

∑
𝑖=1
[𝑔∗(𝑥𝑖) − 𝑓(𝑥𝑖)]2𝑤(𝑥𝑖)

+ 2
𝑛

∑
𝑖=1
[𝑔(𝑥𝑖) − 𝑔∗(𝑥𝑖)][𝑔∗(𝑥𝑖) − 𝑓(𝑥𝑖)]𝑤(𝑥𝑖).
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•
𝑃1

•
𝑃2

•
𝑃3

•
𝑃4

•
𝑃5

CSD

GCM

•
𝑃∗1 •

𝑃∗2

•
𝑃∗4

Figure C.1: The solid line is the cumulative sum diagram (CSD) and the dashed line is the greatest convex minorant (GCM) of
the CSD. The coordinates of 𝑃𝑗’s are (𝑊𝑗 , 𝐺𝑗) and the coordinates of 𝑃∗𝑗 ’s are (𝑊𝑗 , 𝐺∗𝑗 ), for all 𝑗 ∈ {1, 2, 3, 4, 5}. In this instance,
we have 𝑃∗3 = 𝑃3 and 𝑃∗5 = 𝑃5.

So we need to show that

𝑛

∑
𝑖=1
[𝑔(𝑥𝑖) − 𝑔∗(𝑥𝑖)][𝑔∗(𝑥𝑖) − 𝑓(𝑥𝑖)]𝑤(𝑥𝑖) ≥ 0, (C.2)

for all isotonic functions 𝑓. We apply Abel’s partial sum formula, which is also stated and proven in
Lemma E.3 in Appendix E. We let

𝐴𝑖 =
𝑖−1

∑
𝑘=1
[𝑔(𝑥𝑘) − 𝑔∗(𝑥𝑘)]𝑤(𝑥𝑘) = 𝐺𝑖−1 − 𝐺∗𝑖−1,

and 𝑏𝑖 = [𝑔∗(𝑥𝑖) − 𝑓(𝑥𝑖)], for 1 ≤ 𝑖 ≤ 𝑛. Then,

𝑛

∑
𝑖=1
[𝑔(𝑥𝑖) − 𝑔∗(𝑥𝑖)][𝑔∗(𝑥𝑖) − 𝑓(𝑥𝑖)]𝑤(𝑥𝑖) =

𝑛

∑
𝑖=1
[𝐺𝑖−1 − 𝐺∗𝑖−1]{[𝑓(𝑥𝑖) − 𝑓(𝑥𝑖−1)] − [𝑔∗(𝑥𝑖) − 𝑔∗(𝑥𝑖−1)]}

+[𝐺𝑛 − 𝐺∗𝑛][𝑔∗(𝑥𝑛) − 𝑓(𝑥𝑛)],

where we set 𝑓(𝑥0) = 𝑔∗(𝑥0) = 𝐺0 = 𝐺∗0 = 0. Because 𝑃𝑛 = 𝑃∗𝑛 , we have that 𝐺𝑛 = 𝐺∗𝑛. Because
𝐺∗𝑖−1 is the GCM of a CSD, we have 𝐺∗𝑖−1 < 𝐺𝑖−1 which implies 𝑔∗(𝑥𝑖) = 𝑔∗(𝑥𝑖−1). Hence, [𝐺𝑖−1 −
𝐺∗𝑖−1][𝑔∗(𝑥𝑖) − 𝑔∗(𝑥𝑖−1)] = 0 for all 1 ≤ 𝑖 ≤ 𝑛. Lastly, 𝐺∗𝑖−1 ≤ 𝐺𝑖−1 and 𝑓(𝑥𝑖−1) ≤ 𝑓(𝑥𝑖) for all 1 ≤ 𝑖 ≤ 𝑛,
the inequality (C.2) is true.

To verify the uniqueness, let 𝑔# to be another isotonic regression that minimizes

𝑛

∑
𝑖=1
[𝑔(𝑥𝑖) − 𝑓(𝑥𝑖)]2𝑤(𝑥𝑖),

over all isotonic functions 𝑓 on 𝑥. Since both 𝑔∗ and 𝑔# minimizes the sum of squares,

𝑛

∑
𝑖=1
[𝑔(𝑥𝑖) − 𝑔∗(𝑥𝑖)]2𝑤(𝑥𝑖) =

𝑛

∑
𝑖=1
[𝑔(𝑥𝑖) − 𝑔#(𝑥𝑖)]2𝑤(𝑥𝑖). (C.3)



78 C. Isotonic Regression

By (C.1),

𝑛

∑
𝑖=1
[𝑔(𝑥𝑖) − 𝑔#(𝑥𝑖)]2𝑤(𝑥𝑖) ≥

𝑛

∑
𝑖=1
[𝑔(𝑥𝑖) − 𝑔∗(𝑥𝑖)]2𝑤(𝑥𝑖) +

𝑛

∑
𝑖=1
[𝑔∗(𝑥𝑖) − 𝑔#(𝑥𝑖)]2𝑤(𝑥𝑖). (C.4)

Subtract both sides of the inequality in (C.4) by ∑𝑛𝑖=1[𝑔(𝑥𝑖) − 𝑔∗(𝑥𝑖)]2𝑤(𝑥𝑖) and use (C.3) yields,

𝑛

∑
𝑖=1
[𝑔∗(𝑥𝑖) − 𝑔#(𝑥𝑖)]2𝑤(𝑥𝑖) ≤ 0.

Because 𝑤(𝑥𝑖) > 0 and [𝑔∗(𝑥𝑖) − 𝑔#(𝑥𝑖)]2 ≥ 0, we have 𝑔∗(𝑥𝑖) = 𝑔#(𝑥𝑖) for all 1 ≤ 𝑖 ≤ 𝑛.

C.2. The Pool-Adjacent-Violator Algorithm (PAVA)
From Figure C.1, we observe that the construction of the GCM of the CSD can be done by replacing line
segments with larger slope with a smaller slope on an interval [𝑊𝑗−2,𝑊𝑗] such that 𝐺𝑗−1 > 𝐺𝑗. Indeed,
on [𝑊3,𝑊5], the point 𝑃4 lies higher than 𝑃5, which means 𝐺4 > 𝐺5. The GCM of on this interval is the
line segment 𝑃3𝑃5. On [𝑊1,𝑊3], we have 𝐺2 > 𝐺3, which means that we can replace the segment 𝑃2𝑃3
by a line segment 𝑃1𝑃3. However, the slope of the line segment 𝑃1𝑃3 is still larger than the line segment
𝑃0𝑃3. Hence, the GCM of this particular CSD consists of the line segments 𝑃0𝑃3 and 𝑃3𝑃5. The slopes
of these line segments are the isotonic regression.

The PAVA algorithm is widely used to determine the isotonic regression. It starts with the given 𝑔,
which is the solution if 𝑔 is isotonic. Otherwise, there exists an 𝑖 such that 𝑔(𝑥𝑖−1) > 𝑔(𝑥𝑖). The idea is
to pool 𝑥𝑖−1 and 𝑥𝑖 to create a block {𝑥𝑖−1, 𝑥𝑖}. Then, compute the weighted average

Av(𝑖 − 1, 𝑖) ∶= 𝑔(𝑥𝑖−1)𝑤(𝑥𝑖−1) + 𝑔(𝑥𝑖)𝑤(𝑥𝑖)
𝑤(𝑥𝑖−1) + 𝑤(𝑥𝑖)

= 𝐺𝑖 − 𝐺𝑖−2
𝑊𝑖 −𝑊𝑖−2

,

which is equivalently the slope of the line segment 𝑃𝑖−2𝑃𝑖. If after the first iteration, there exists another
𝑗 < 𝑖 such that 𝑔𝑗 is, say, strictly larger than Av(𝑖 − 1, 𝑖), then we compute again the weighted average
but with weight 𝑤(𝑥𝑖−1)+𝑤(𝑥𝑖). This value is in fact equivalent as the slope of the line segment 𝑃𝑗−1𝑃𝑖.
The procedure is repeated until there is no more violator.

Example C.1. To illustrate this algorithm, we give an example of data set that is used to produce the
CSD in Figure C.1. We already sort the values (𝑥𝑖)5𝑖=1 from the smallest to the largest. The data set
is given in Table C.1. We are unable to set 𝑔(𝑥𝑗) = 𝑔∗(𝑥𝑗) for all 𝑗 because it is not isotonic. We have

Table C.1: Example data set used for plotting the CSD in Figure C.1

𝑗 𝑤(𝑥𝑗) 𝑔(𝑥𝑗) 𝑊𝑗 𝐺𝑗
1 1 1 1 1
2 2 3/2 3 4
3 1 -5 4 -1
4 2 3/2 6 2
5 2 -1/2 8 1

𝑔(𝑥2) > 𝑔(𝑥3) and 𝑔(𝑥4) > 𝑔(𝑥5) which violate the isotonicity constraint. So we pool data points that
are non-increasing. In our examples, the pools are {2, 3} and {4, 5}. Now, we compute the weighted
average of the pooled data points:

𝑔(𝑥2)𝑤(𝑥2) + 𝑔(𝑥3)𝑤(𝑥3)
𝑤(𝑥2) + 𝑤(𝑥3)

= 𝐺3 − 𝐺1
𝑊3 −𝑊1

= −23
𝑔(𝑥4)𝑤(𝑥4) + 𝑔(𝑥5)𝑤(𝑥5)

𝑤(𝑥4) + 𝑤(𝑥5)
= 𝐺5 − 𝐺3
𝑊5 −𝑊3

= 1
2

These values are the slopes that connect the segments 𝑃1𝑃3 and 𝑃3𝑃5 respectively. Next, we replace
𝑔(𝑥2) and 𝑔(𝑥3) with 𝑔∗1(𝑥2) = 𝑔∗1(𝑥3) ∶= −2/3, 𝑔(𝑥4) and 𝑔(𝑥5) with 𝑔∗1(𝑥4) = 𝑔∗1(𝑥5) ∶= 1/2 and
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Table C.2: The new data points after the first iteration. There is still a violator, since the average in pool {1} is still larger than
the average in pool {2, 3}.

Pools Weights Average
{1} 1 1
{2,3} 3 -2/3
{4,5} 4 1/2

𝑔∗1(𝑥𝑗) = 𝑔(𝑥𝑗) otherwise. The weights of the new values accumulate, and so the new weights are
𝑤1(𝑥2) = 𝑤1(𝑥3) ∶= 𝑤(𝑥2) + 𝑤(𝑥3) = 3, and similarly, 𝑤1(𝑥4) = 𝑤1(𝑥5) ∶= 𝑤1(𝑥4) + 𝑤1(𝑥5) = 4,
otherwise 𝑤1(𝑥𝑗) = 𝑤1(𝑥𝑗). The result of this iteration is summarized in Table C.2.

The procedure that we have done in the first iteration is repeated until the isotonicity constraint of
𝑔 on 𝑥 is satisfied. Since 𝑔∗1(𝑥1) > 𝑔∗1(𝑥2) still violates the isotonicity constraint, we compute again the
weighted average with the newly computed data points. We have

𝑔∗1(𝑥1)𝑤1(𝑥1) + 𝑔∗1(𝑥2)𝑤1(𝑥2)
𝑤1(𝑥1) + 𝑤1(𝑥2)

= 1 ⋅ 1 + (−2/3) ⋅ 3
4 = −14 .

Hence, the isotonic regression 𝑔∗ is defined as follows

𝑔∗(𝑥1) = 𝑔∗(𝑥2) = 𝑔∗(𝑥3) = −1/4, and 𝑔∗(𝑥4) = 𝑔∗(𝑥5) = 1/2.

△





D
Optimization Theory: The Gradient

Projection Method
This appendix discusses the numerical optimization method we use in Chapter 6. Recall that we want
to minimize a function subject to inequality constraints. Due to these constraints, the steepest direction
method may lead to infeasible points. We use the gradient projection method to ensure that the next
iterated point remains in the feasible set and it improves the objective function.

We start with a recap of basic notions of Karush-Kuhn-Tucker (KKT) optimality conditions. Then we
discuss the algorithm of the gradient project method. We specifically discuss the following optimization
problem:

min 𝑓(𝐱)
s.t. 𝐀𝐱 ≤ 𝟎,

where 𝑓 ∶ ℝ𝑑 → ℝ is differentiable, 𝐱 ∈ ℝ𝑑 and 𝐀 ∈ ℝ𝑛×𝑑. We denote the minimization problem
above as problem P. We use 𝐈 as the notation for the identity matrix with a suitable dimension. We use
Bazaraa et al. (2006) for the main source of this appendix.

First, we define feasible direction, improving feasible direction, and active (binding) constraints.

Definition D.1. Consider the problem P, and a feasible set 𝑆.
• A vector 𝐝 ≠ 𝟎 is a feasible direction at 𝐱 ∈ 𝑆 if there exists a 𝛿 > 0 such that for any 𝜆 ∈ (0, 𝛿),
we have 𝐱 + 𝜆𝐝 ∈ 𝑆 (Bazaraa et al., 2006, p. 538 - 539).

• A vector 𝐝 is an improving feasible direction at 𝐱 ∈ 𝑆, if 𝐝 is a feasible direction, then 𝑓(𝐱+ 𝜆𝐝) <
𝑓(𝐱) (Bazaraa et al., 2006, p. 538 - 539).

• Let 𝐚1, … , 𝐚𝑛 denote the row vectors of matrix 𝐀 from problem P. The active constraints or binding
constraints is the set of indices {𝑖 = 1,… , 𝑛 ∶ ⟨𝐚⊤𝑖 , 𝐱⟩ = 0} (Bazaraa et al., 2006, p. 177).

Lastly, we state a result of the Karush-Kuhn-Tucker (KKT) optimality condition for constrained opti-
mization problem P. We first state the necessary KKT conditions, followed by the sufficient condition.
The theorem below will not be proven, and we refer the reader to Bazaraa et al. (2006, p. 190) and
Bazaraa et al. (2006, p. 195) for the proofs.

Theorem D.2. Consider the problem P and let 𝐱∗ be a feasible solution of P. Let 𝐼 be the set of binding
constraints and (𝐚𝑖)𝑛𝑖=1 denote the row vectors of matrix 𝐀. Suppose (𝐚𝑖)𝑖∈𝐼 are linearly independent.
If 𝐱∗ is a local solution of P, then there exists 𝑢𝑖 ≥ 0, 𝑖 ∈ 𝐼 such that

∇𝑓(𝐱∗) +∑
𝑖∈𝐼
𝑢𝑖𝐚⊤𝑖 = 𝟎.

The above condition is referred to as the KKT condition. If 𝑓 is a convex function on the set {𝐱 ∶ 𝐀𝐱 ≤ 𝟎},
then the KKT conditions are sufficient for the optimality condition.
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D.1. Generating improving feasible direction
In an unconstrained optimization with differentiable objective function, one can solve the problem by
using the steepest descent. Let 𝐝 ∈ ℝ𝑑 such that

lim
𝜆→0+

𝑓(𝐱 + 𝜆𝐝) − 𝑓(𝐱)
𝜆 < 0,

then 𝐝 is called the direction of descent. One can show that for

𝐝 ∶= − ∇𝑓(𝐱)
||∇𝑓(𝐱)|| ,

then the direction is the steepest descent. In each iteration of the steepest descent algorithm, it com-
putes the direction −∇𝑓(𝐱) and subsequently a line search is performed along this direction.

For solving the problem P, we want that the next iterated point stays feasible. To do this, instead
of moving along −∇𝑓(𝐱), we let 𝐝 ∶= −𝐏∇𝑓(𝐱), where 𝐏 is a suitable projection matrix. Suppose
𝐏∇𝑓(𝐱) ≠ 𝟎 and 𝐀⊤ = (𝐀⊤1 , 𝐀⊤2) such that 𝐀1𝐱 = 𝟎, 𝐀2𝐱 < 𝟎, and 𝐀⊤1 is a full-rank matrix. Let 𝐏 =
𝐈 − 𝐀⊤1 (𝐀1𝐀⊤1 )−1𝐀1, then we observe 𝐏 is a projection matrix, i.e. this matrix is symmetric and 𝐏2 = 𝐏.
The matrix 𝐀1𝐀⊤1 is also non-singular because 𝐀1𝐀⊤1 because 𝐀⊤1 is a full-ranked matrix. We further
observe that 𝐀1𝐏 = 𝟎, meaning that 𝐏 projects the gradient of the binding constraints into 𝟎. Therefore,
𝐀1𝐏∇𝑓(𝐱) = 𝟎 which implies that 𝐏𝑓(𝐱) is a vector in the null space of 𝐀1. Hence the matrix 𝐏 projects
∇𝑓(𝐱) onto the null space of 𝐀1.

The following lemma shows that for 𝐝 = −𝐏∇𝑓(𝐱) and 𝐱 satisfies 𝐀𝐱 ≤ 𝟎, the objective function at
𝐱 + 𝜆𝐝 is improved and it remains feasible.

Lemma D.1. Consider the problem P that we want to solve. Let 𝐱 be a feasible point and let 𝐀⊤ =
(𝐀⊤1 , 𝐀⊤2) such that 𝐀1𝐱 = 𝟎 and 𝐀2𝐱 < 𝟎. Let 𝐏 be a projection matrix such that 𝐏∇𝑓(𝐱) ≠ 𝟎 and
𝐝 ∶= −𝐏∇𝑓(𝐱), then there exists 𝛿 > 0 such that

𝑓(𝐱 + 𝜆𝐝) < 𝑓(𝐱) for all 0 < 𝜆 < 𝛿. (D.1)

Let 𝐀1 and assume rank(𝐀1) = 𝑛. If 𝐏 = 𝐈 − 𝐀⊤1 (𝐀1𝐀⊤1 )−1𝐀1, then 𝐝 satisfies (D.1) and 𝐱 + 𝜆𝐝 is a
feasible point for all 𝜆 ∈ (0, 𝛿).
Proof. Because 𝑓 is differentiable, we have

lim
𝜆→0+

𝑓(𝐱 + 𝜆𝐝) − 𝑓(𝐱)
𝜆 = ⟨∇𝑓(𝐱), 𝐝⟩.

Indeed, by applying first-order Taylor expression of the expression in the limit around 𝐱 we have

𝑓(𝐱 + 𝜆𝐝) − 𝑓(𝐱)
𝜆 = ⟨∇𝑓(𝐱), 𝐝⟩ + 𝑂(𝜆2),

and let 𝜆 → 0+. Since 𝐏 is idempotent and symmetric, we have

⟨∇𝑓(𝐱), 𝐝⟩ = −∇𝑓(𝐱)⊤𝐏∇𝑓(𝐱) = −∇𝑓(𝐱)⊤𝐏⊤𝐏∇𝑓(𝐱) = −||𝐏∇𝑓(𝐱)||2 < 0.
This implies that 𝐝 = −𝐏∇𝑓(𝐱) is an improving direction. If 𝐏 = 𝐈 − 𝐀⊤1 (𝐀1𝐀⊤1 )−1𝐀1, then

𝐀1𝐝 = −𝐀1𝐏∇𝑓(𝐱) = −𝐀1(𝐈 − 𝐀⊤1 (𝐀1𝐀⊤1 )−1𝐀1)∇𝑓(𝐱) = 𝟎.
Therefore for some 𝛿 > 0, we have 𝐀1(𝐱 + 𝜆𝐝) = 𝟎 for any 𝜆 ∈ (0, 𝛿). Since 𝐀2(𝐱 + 𝜆𝐝) < 𝟎 remains
true for small enough 𝜆, we conclude that 𝐱 + 𝜆𝐝 ∈ 𝑆, where 𝑆 = {𝑥 ∈ ℝ𝑑 ∶ 𝐴𝐱 ≤ 𝟎}.

In case when 𝐝 = 𝟎 at 𝐱, then we either have a point that satisfies a KKT conditions, or we need to
adjust the projection matrix to compute a new improving feasible direction. Indeed, assume 𝐏∇𝑓(𝐱) = 𝟎
and let 𝐮 ∶= −(𝐀1𝐀⊤1 )−1𝐀1∇𝑓(𝐱), then

𝐏∇𝑓(𝐱) = (𝐈 − 𝐀⊤1 (𝐀1𝐀⊤1 )−1𝐀1)∇𝑓(𝐱) = ∇𝑓(𝐱) + 𝐀⊤1𝐮 = 𝟎. (D.2)

We observe that if 𝐮 ≥ 𝟎, then 𝐱 satisfies the KKT conditions. If 𝐮 ≱ 𝟎 then we will choose an entry
𝑢𝑗 such that 𝑢𝑗 < 0. The corresponding row of 𝐀1 is then removed to create a new matrix 𝐀̂1. Let 𝐏̂
be the new projection matrix that is constructed similarly but replacing 𝐀1 with 𝐀̂1. Then the direction
−𝐏∇𝑓(𝐱) is an improving feasible direction.
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Lemma D.2. Consider the problem P that we want to solve. Let 𝐱 be a feasible point and let 𝐀⊤ =
(𝐀⊤1 , 𝐀⊤2) such that 𝐀1𝐱 = 𝟎 and 𝐀2𝐱 < 𝟎. Let 𝐮 ∶= −(𝐀1𝐀⊤1 )−1𝐀1∇𝑓(𝐱) and 𝐀1 is a full-rank matrix.
Suppose 𝐮 ≠ 0 and 𝑢𝑗 is the negative entry of 𝐮. Let 𝐀̂1 be amatrix that is obtained from 𝐀1 by removing
the 𝑗-th row 𝐀1. If 𝐏̂ ∶= 𝐈 − 𝐀̂⊤1 (𝐀̂1𝐀̂⊤1 )−1𝐀̂1, then 𝐝 = −𝐏̂∇𝑓(𝐱) is an improving feasible direction.

Proof. Assume 𝐮 ≱ 𝟎 and let 𝑢𝑗 < 0, which is the 𝑗-th entry of 𝐮. Let 𝐏̂ be the projection matrix as
defined in the statement. We start by proving that 𝐏̂∇𝑓(𝐱) ≠ 𝟎 by contradiction. Suppose 𝐏̂∇𝑓(𝐱) = 𝟎.
Let 𝐮̂ = −(𝐀̂1𝐀̂⊤1 )−1𝐀̂1∇𝑓(𝐱), then

𝐏̂∇𝑓(𝐱) = (𝐈 − 𝐀̂⊤1 (𝐀̂1𝐀̂⊤1 )−1𝐀̂1)∇𝑓(𝐱) = ∇𝑓(𝐱) + 𝐀̂⊤1 𝐮̂ = 𝟎.

Note that from (D.2), we have

∇𝑓(𝐱) + 𝐀⊤1𝐮 = ∇𝑓(𝐱) + 𝐀̂⊤1𝐮∗ + 𝑢𝑗𝐫⊤𝑗 = 𝟎, (D.3)

where 𝐫𝑗 is the 𝑗-th row of 𝐀1. This means that

∇𝑓(𝐱) + 𝐀̂⊤1 𝐮̂ − (∇𝑓(𝐱) + 𝐀̂⊤1𝐮∗ + 𝑢𝑗𝐫⊤𝑗 ) = 𝐀̂⊤1 (𝐮̂ − 𝐮∗) − 𝑢𝑗𝐫⊤𝑗 = 𝟎.

Because 𝑢𝑗 ≠ 0, it implies that the rows of 𝐀1 are linearly dependent. It contradicts the assumption that
𝐴1 is a full-rank matrix. So 𝐏̂∇𝑓(𝐱) ≠ 𝟎 and therefore 𝐝 = −𝐏̂∇𝑓(𝐱) is an improving direction by Lemma
D.1.

It remains to show that for some 𝛿 > 0, a point 𝐱 + 𝜆𝐝 satisfies 𝐀𝐱 ≤ 𝟎 for any 𝜆 ∈ (0, 𝛿). We have
that

𝐀̂1𝐝 = −𝐀̂1𝐏̂∇𝑓(𝐱) = −𝐀̂1(𝐈 − 𝐀̂⊤1 (𝐀̂1𝐀̂⊤1 )−1𝐀̂1)∇𝑓(𝐱) = 𝟎.
This yields

𝐀1𝐝 = (
𝐀̂1𝐝
𝐫𝑗𝐝

) = ( 𝟎𝐫𝑗𝐝) .

It is therefore sufficient to show that 𝐫𝑗𝐝 ≤ 𝟎. Multiply both sides of Equation (D.3) by 𝐫𝑗𝐏̂ yields

𝐫𝑗𝐏̂∇𝑓(𝐱) + 𝐫𝑗𝐏̂𝐀̂⊤1𝐮∗ + 𝑢𝑗𝐫𝑗𝐏̂𝐫⊤𝑗 = 𝟎 ⟺ −𝐫𝑗𝐝 + 𝑢𝑗𝐫𝑗𝐏̂𝐫⊤𝑗 = 0.

Because the projection matrix 𝐏̂ is positive semi-definite and 𝑢𝑗 < 0, we have that 𝑟𝑗𝐝 ≤ 𝟎. Hence
𝐀1𝐝 ≤ 𝟎. We conclude that 𝐝 is a feasible direction.

D.2. Line search for the next iteration
We have seen how a projection matrix is constructed such that the next iterated point stays feasible
and it improves the objective function. Let 𝐱𝑠 be the result of the 𝑠-th iteration such that it is feasible
and 𝐝𝑠 is the direction vector. The next iterated point is defined as 𝐱𝑠+1 = 𝐱𝑠 + 𝜆𝑠𝐝𝑠. In this section,
we formulate the optimization problem for finding 𝜆𝑠.

We solve the following one-dimensional optimization problem:

min 𝑓(𝐱𝑠 + 𝜆𝐝𝑠)
s.t 𝐀(𝐱𝑠 + 𝜆𝐝𝑠) ≤ 𝟎
𝜆 ≥ 0.

The optimization problem can in fact be relaxed such that there is only one constraint. Let 𝐀⊤ be
decomposed into (𝐀⊤1 , 𝐀⊤2) in the same way as in Lemma D.1. Since 𝐀1𝐱𝑠 = 𝟎, and we have in the
proof of Lemma D.2 that 𝐀1𝐝 ≤ 𝟎, we conclude 𝐀1(𝐱𝑠 + 𝜆𝐝𝑠) ≤ 𝟎 for all 𝜆 ≥ 0. Next, we need 𝜆 ≥ 0
such that 𝐀2(𝐱𝑠+𝜆𝐝𝑠) ≤ 𝟎, i.e. 𝜆𝐀2𝐝𝑠 ≤ −𝐀2𝐱𝑠. Because 𝐀2𝐱𝑠 ≤ 𝟎, if 𝐀2𝐝𝑠 ≤ 𝟎, then 𝜆𝐀2𝐝𝑠 ≤ −𝐀2𝐱𝑠
is true for any 𝜆 ≥ 0. If 𝐀2𝐝𝑠 ≰ 𝟎, then we need to choose 𝜆 such that 𝜆 ≤ (−𝐀2𝐱𝑠)𝑗/(𝐀2𝐝𝑠)𝑗 such that
the 𝑗-th entry of 𝐀2𝐝𝑠 is positive. Therefore, the line search problem becomes

min 𝑓(𝐱𝑠 + 𝜆𝐝𝑠)
s.t 0 ≤ 𝜆 ≤ 𝜆max,
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where

𝜆max = {
min{𝑏̂𝑖/𝑑𝑖 ∶ 𝑑𝑖 > 0} if 𝐝 ≰ 𝟎,
∞ if 𝐝 ≤ 𝟎.

and
𝐛̂ ∶= −𝐀2𝐱𝑠; 𝐝 = 𝐀2𝐝𝑠 .



E
Other Technical Computations

Lemma E.1. Given a data set 𝒟𝑛 = (𝑥𝑖 , 𝑦𝑖)𝑛𝑖=1, let

{𝑥1, … , 𝑥𝑛} = {𝑥(1), … , 𝑥(𝓁)} and {𝑦1, … , 𝑦𝑛} = {𝑦(1), … , 𝑦(𝑚)},

where 𝑥(1) < … < 𝑥(𝓁) and 𝑦(1) < … < 𝑦(𝑚) for some 1 ≤ 𝓁,𝑚 ≤ 𝑛. Let 𝑤𝑗𝑘 = #{𝑖 ∶ (𝑥𝑖 , 𝑦𝑖) = (𝑥(𝑗), 𝑦(𝑘))}.
Then

𝛼 = 𝑦 − 𝛽𝑥, 𝛽 = 𝑥𝑦 − 𝑦 ⋅ 𝑥
𝑥2 − 𝑥

, and 𝜎2 = 1
𝑛

𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘(𝑦(𝑘) − 𝛼 − 𝛽𝑥(𝑗))2,

solve the following optimization problem:

argmax
(𝛼,𝛽,𝜎2)∈ℝ2×𝑅>0

{−𝑛2 log𝜎
2 − 1

2𝜎2
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘(𝑦(𝑘) − 𝛼 − 𝛽𝑥(𝑗))2} .

Proof. We obtain the following partial derivatives:

𝜕
𝜕𝛼ℒ(𝛼, 𝛽, 𝜎

2) = 1
𝜎2

𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘(𝑦(𝑘) − 𝛼 − 𝛽𝑥(𝑗))

𝜕
𝜕𝛽ℒ(𝛼, 𝛽, 𝜎

2) = 1
𝜎2

𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘𝑥(𝑗)(𝑦(𝑘) − 𝛼 − 𝛽𝑥(𝑗))

𝜕
𝜕𝜎2ℒ(𝛼, 𝛽, 𝜎

2) = − 𝑛
2𝜎2 +

1
2𝜎4

𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘(𝑦(𝑘) − 𝛼 − 𝛽𝑥(𝑗))2.

Now, let 𝑤𝑗+ ∶= ∑
𝑚
𝑘=1𝑤𝑗𝑘 and 𝑤+𝑘 ∶= ∑

𝓁
𝑗=1𝑤𝑗𝑘, then

𝜕
𝜕𝛼ℒ(𝛼, 𝛽, 𝜎

2) = 0 ⟺
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘(𝑦(𝑘) − 𝛼 − 𝛽𝑥(𝑗)) = 0

⟺
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘(𝑦(𝑘) − 𝛽𝑥(𝑗)) − 𝛼
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘 = 0

⟺ 𝛼 = 1
𝑛

𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘(𝑦(𝑘) − 𝛽𝑥(𝑗))
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⟺ 𝛼 = 1
𝑛

𝑚

∑
𝑘=1

𝑤+𝑘𝑦(𝑘) − 𝛽
1
𝑛

𝓁

∑
𝑗=1
𝑤𝑗+𝑥(𝑗)

⟺ 𝛼 = 𝑦 − 𝛽𝑥.

𝜕
𝜕𝛽ℒ(𝛼, 𝛽, 𝜎

2) = 0 ⟺
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘𝑥(𝑗)(𝑦(𝑘) − 𝛼 − 𝛽𝑥(𝑗)) = 0

⟺ 𝑛 (𝑥𝑦 − 𝛼𝑥 − 𝛽𝑥2) = 0

⟺ 𝑥𝑦 − 𝑦 ⋅ 𝑥 + 𝛽𝑥2 − 𝛽𝑥2 = 0

⟺ 𝛽 = 𝑥𝑦 − 𝑦 ⋅ 𝑥
𝑥2 − 𝑥

𝜕
𝜕𝜎2ℒ(𝛼, 𝛽, 𝜎

2) = 0 ⟺ 𝜎2 = 1
𝑛

𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘(𝑦(𝑘) − 𝛼 − 𝛽𝑥(𝑗))2

These critical points maximize the log-likelihood and they are unique log function is strictly concave.

Lemma E.2. Given a data set 𝒟𝑛 = (𝑥𝑖 , 𝑦𝑖)𝑛𝑖=1, let
{𝑥1, … , 𝑥𝑛} = {𝑥(1), … , 𝑥(𝓁)} and {𝑦1, … , 𝑦𝑛} = {𝑦(1), … , 𝑦(𝑚)},

where 𝑥(1) < … < 𝑥(𝓁) and 𝑦(1) < … < 𝑦(𝑚) for some 1 ≤ 𝓁,𝑚 ≤ 𝑛. Let 𝑤𝑗𝑘 = #{𝑖 ∶ (𝑥𝑖 , 𝑦𝑖) = (𝑥(𝑗), 𝑦(𝑘))}
and we define

𝑤𝑗+ ∶=
𝑚

∑
𝑘=1

𝑤𝑗𝑘 and 𝑦𝑗 ∶=
∑𝑚𝑘=1𝑤𝑗𝑘𝑦(𝑘)
∑𝑚𝑘=1𝑤𝑗𝑘

=
∑𝑚𝑘=1𝑤𝑗𝑘𝑦(𝑘)

𝑤𝑗+
.

Then,
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘(𝑦(𝑘) − 𝑦𝑗)(𝑦𝑗 − 𝜇(𝑥(𝑗))) = 0

Proof. We have
𝓁

∑
𝑗=1

𝑚

∑
𝑘=1

𝑤𝑗𝑘(𝑦(𝑘) − 𝑦𝑗)(𝑦𝑗 − 𝜇(𝑥(𝑗))) =
𝓁

∑
𝑗=1
[𝑦𝑗 ⋅ (

𝑚

∑
𝑘=1

𝑤𝑗𝑘𝑦(𝑘))] −
𝓁

∑
𝑗=1
[𝜇(𝑥(𝑗)) ⋅ (

𝑚

∑
𝑘=1

𝑤𝑗𝑘𝑦(𝑘))]

−
𝓁

∑
𝑗=1
[(𝑦𝑗)

2
⋅ (

𝑚

∑
𝑘=1

𝑤𝑗𝑘)] +
𝓁

∑
𝑗=1
[𝑦𝑗𝜇(𝑥(𝑗)) ⋅ (

𝑚

∑
𝑘=1

𝑤𝑗𝑘)]

=
𝓁

∑
𝑗=1
[𝑦𝑗 ⋅ (

𝑚

∑
𝑘=1

𝑤𝑗𝑘𝑦(𝑘))] −
𝓁

∑
𝑗=1
[𝜇(𝑥(𝑗)) ⋅ (

𝑚

∑
𝑘=1

𝑤𝑗𝑘𝑦(𝑘))]

−
𝓁

∑
𝑗=1
(𝑦𝑗)

2
𝑤𝑗+ +

𝓁

∑
𝑗=1
𝑦𝑗𝜇(𝑥(𝑗))𝑤𝑗+

=
𝓁

∑
𝑗=1

(∑𝑚𝑘=1𝑤𝑗𝑘𝑦(𝑘))
2

𝑤𝑗+
−

𝓁

∑
𝑗=1
[𝜇(𝑥(𝑗)) ⋅ (

𝑚

∑
𝑘=1

𝑤𝑗𝑘𝑦(𝑘))]

−
𝓁

∑
𝑗=1

(∑𝑚𝑘=1𝑤𝑗𝑘𝑦(𝑘))
2

𝑤𝑗+
+

𝓁

∑
𝑗=1
[𝜇(𝑥(𝑗)) ⋅ (

𝑚

∑
𝑘=1

𝑤𝑗𝑘𝑦(𝑘))]

= 0.
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LemmaE.3 (Abel’s partial summation formula, adjusted fromExercise 13 page 34 in Busamand Freitag
(2009)). Let (𝑎𝑖)𝑛𝑖=1 and (𝑏𝑖)𝑛𝑖=1 be real-valued sequence and define

𝐴𝑖 = 𝑎1 + 𝑎2 +⋯+ 𝑎𝑖−1, for some 𝑖 ≥ 1,
where we set 𝐴1 ∶= 0 and 𝑏0 ∶= 0. Then, for each 𝑛 ≥ 1,

𝑛

∑
𝑖=1
𝑎𝑖𝑏𝑖 =

𝑛

∑
𝑖=1
𝐴𝑖(𝑏𝑖−1 − 𝑏𝑖) + 𝐴𝑛+1𝑏𝑛 .

Proof. We have,
𝑛

∑
𝑖=1
𝑎𝑖𝑏𝑖 =

𝑛

∑
𝑖=1
(𝐴𝑖+1 − 𝐴𝑖)𝑏𝑖

=
𝑛

∑
𝑖=1
𝐴𝑖+1𝑏𝑖 −

𝑛

∑
𝑖=1
𝐴𝑖𝑏𝑖

=
𝑛+1

∑
𝑖=2

𝐴𝑖𝑏𝑖−1 −
𝑛

∑
𝑗=1
𝐴𝑖𝑏𝑖

=
𝑛

∑
𝑖=1
𝐴𝑖𝑏𝑖−1 −

𝑛

∑
𝑖=1
𝐴𝑖𝑏𝑖 − 𝐴1𝑏0 + 𝐴𝑛+1𝑏𝑛

=
𝑛

∑
𝑖=1
𝐴𝑖(𝑏𝑖−1 − 𝑏𝑖) + 𝐴𝑛+1𝑏𝑛 .

Lemma E.4. Let

𝑓(𝐱̃) =
𝓁

∑
𝑗=1

𝑀𝑗

∑
𝑘=𝑚𝑗

(−𝑤𝑗𝑘𝑥̃𝑗𝑘 + 𝑛 exp(
𝑘

∑
𝑘′=𝑚𝑗

𝑥̃𝑗𝑘′)) and ∇𝑓(𝐱̃) = (𝜕𝑓(𝐱̃)𝜕𝑥̃𝑗𝑘
)
(𝑗,𝑘)∈𝒫

.

Then for any (𝑗, 𝑘) ∈ 𝒫,
𝜕𝑓(𝑥̃)
𝜕𝑥̃𝑗𝑘

= −𝑤𝑗𝑘 + 𝑛
𝑀𝑗

∑
𝑘′=𝑘

exp(
𝑘′

∑
𝑠=𝑚𝑗

𝑥̃𝑗𝑠) .

Proof. Fix 1 ≤ 𝑗 ≤ 𝓁 and 𝑚𝑗 ≤ 𝑘 ≤ 𝑀𝑗. We have

𝑀𝑗

∑
𝑘=𝑚𝑗

(−𝑤𝑗𝑘𝑥̃𝑗𝑘 + 𝑛 exp(
𝑘

∑
𝑘′=𝑚𝑗

𝑥̃𝑗𝑘′)) = (−𝑤𝑗𝑚𝑗 𝑥̃𝑗𝑚𝑗 + 𝑛 exp(𝑥̃𝑗𝑚𝑗))

+ (−𝑤𝑗,𝑚𝑗+1𝑥̃𝑗,𝑚𝑗+1 + 𝑛 exp(𝑥̃𝑗𝑚𝑗 + 𝑥̃𝑗,𝑚𝑗+1)) + ⋯

+ (−𝑤𝑗𝑘𝑥̃𝑗𝑘 + 𝑛 exp(𝑥̃𝑗𝑚𝑗 +⋯+ 𝑥̃𝑗𝑘)) + ⋯
+ (−𝑤𝑗𝑀𝑗 𝑥̃𝑗𝑀𝑗 + 𝑛 exp(𝑥̃𝑗𝑚𝑗 +⋯+ 𝑥̃𝑗𝑘 +⋯+ 𝑥̃𝑗𝑀𝑗)).

Therefore, differentiating the above expression w.r.t. 𝑥̃𝑗𝑘 yields

𝜕𝑓(𝑥̃)
𝜕𝑥̃𝑗𝑘

= −𝑤𝑗𝑘 + 𝑛
𝑀𝑗

∑
𝑘′=𝑘

exp(
𝑘′

∑
𝑠=𝑚𝑗

𝑥̃𝑗𝑠) .

This is because 𝑥̃𝑗𝑘 appears in the exponential 𝑀𝑗 − 𝑘 + 1 times.
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F.1. Figures with parameter 𝑠max = 20000
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Figure F.1: The plot of {𝐹𝑌|𝑥𝑗 , 𝐹
(0)
𝑌|𝑥𝑗 , 𝐹𝑌|𝑥𝑗 } with the true distributions 𝐺𝑌|𝑥𝑗 for 𝑗 = 1, 2, 3. The function 𝐹(0)𝑌|𝑥𝑗 is the gamma

distribution with shape 𝑥𝑗 + 20 and scale is 1. The number iterations needed to produce 𝐹𝑌|𝑥𝑗 is 20000.
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Figure F.2: The plot of {𝐹𝑌|𝑥𝑗 , 𝐹
(0)
𝑌|𝑥𝑗 , 𝐹𝑌|𝑥𝑗 } with the true distributions 𝐺𝑌|𝑥𝑗 for 𝑗 = 4, 5, 6. The function 𝐹(0)𝑌|𝑥𝑗 is the gamma

distribution with shape 𝑥𝑗 + 20 and scale is 1. The number iterations needed to produce 𝐹𝑌|𝑥𝑗 is 20000.
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Figure F.3: The plot of {𝐹𝑌|𝑥𝑗 , 𝐹
(0)
𝑌|𝑥𝑗 , 𝐹𝑌|𝑥𝑗 } with the true distributions 𝐺𝑌|𝑥𝑗 for 𝑗 = 7, 8, 9. The function 𝐹(0)𝑌|𝑥𝑗 is the gamma

distribution with shape 𝑥𝑗 + 20 and scale is 1. The number iterations needed to produce 𝐹𝑌|𝑥𝑗 is 20000.
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Figure F.4: The plot of {𝐹𝑌|𝑥𝑗 , 𝐹
(0)
𝑌|𝑥𝑗 , 𝐹𝑌|𝑥𝑗 } with the true distributions 𝐺𝑌|𝑥𝑗 for 𝑗 = 10, 11, 12. The function 𝐹(0)𝑌|𝑥𝑗 is the gamma

distribution with shape 𝑥𝑗 + 20 and scale is 1. The number iterations needed to produce 𝐹𝑌|𝑥𝑗 is 20000.
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Figure F.5: The plot of {𝐹𝑌|𝑥𝑗 , 𝐹
(0)
𝑌|𝑥𝑗 , 𝐹𝑌|𝑥𝑗 } with the true distributions 𝐺𝑌|𝑥𝑗 for 𝑗 = 13, 14, 16. The function 𝐹(0)𝑌|𝑥𝑗 is the gamma

distribution with shape 𝑥𝑗 + 20 and scale is 1. The number iterations needed to produce 𝐹𝑌|𝑥𝑗 is 20000.
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F.2. Figures with parameter 𝑠max = 50000
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Figure F.6: The plot of {𝐹𝑌|𝑥𝑗 , 𝐹
(0)
𝑌|𝑥𝑗 , 𝐹𝑌|𝑥𝑗 } with the true distributions 𝐺𝑌|𝑥𝑗 for 𝑗 = 1, 2, 3. The function 𝐹(0)𝑌|𝑥𝑗 is the gamma

distribution with shape 𝑥𝑗 + 20 and scale is 1. The number iterations needed to produce 𝐹𝑌|𝑥𝑗 is 50000.

x =
 1.168

x =
 1.261

x =
 1.534

10 20 30

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

y

F
Y

 | 
x

CDF50000

CDF0

CDFMösching

Theoretical 
 Distribution

Figure F.7: The plot of {𝐹𝑌|𝑥𝑗 , 𝐹
(0)
𝑌|𝑥𝑗 , 𝐹𝑌|𝑥𝑗 } with the true distributions 𝐺𝑌|𝑥𝑗 for 𝑗 = 4, 5, 6. The function 𝐹(0)𝑌|𝑥𝑗 is the gamma

distribution with shape 𝑥𝑗 + 20 and scale is 1. The number iterations needed to produce 𝐹𝑌|𝑥𝑗 is 50000.
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Figure F.8: The plot of {𝐹𝑌|𝑥𝑗 , 𝐹
(0)
𝑌|𝑥𝑗 , 𝐹𝑌|𝑥𝑗 } with the true distributions 𝐺𝑌|𝑥𝑗 for 𝑗 = 7, 8, 9. The function 𝐹(0)𝑌|𝑥𝑗 is the gamma

distribution with shape 𝑥𝑗 + 20 and scale is 1. The number iterations needed to produce 𝐹𝑌|𝑥𝑗 is 50000.
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Figure F.9: The plot of {𝐹𝑌|𝑥𝑗 , 𝐹
(0)
𝑌|𝑥𝑗 , 𝐹𝑌|𝑥𝑗 } with the true distributions 𝐺𝑌|𝑥𝑗 for 𝑗 = 10, 11, 12. The function 𝐹(0)𝑌|𝑥𝑗 is the gamma

distribution with shape 𝑥𝑗 + 20 and scale is 1. The number iterations needed to produce 𝐹𝑌|𝑥𝑗 is 50000.
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Figure F.10: The plot of {𝐹𝑌|𝑥𝑗 , 𝐹
(0)
𝑌|𝑥𝑗 , 𝐹𝑌|𝑥𝑗 } with the true distributions 𝐺𝑌|𝑥𝑗 for 𝑗 = 13, 14, 15. The function 𝐹(0)𝑌|𝑥𝑗 is the gamma

distribution with shape 𝑥𝑗 + 20 and scale is 1. The number iterations needed to produce 𝐹𝑌|𝑥𝑗 is 50000.
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