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Abstract

Numerical study of the sedimentation of particle suspensions in ducts

by L.A. Altenburg

Sedimentation of particle suspensions is a relevant process to a variety of applications,
such as the reclamation of land and chemical engineering systems. Direct numerical
simulations of the settling of a single, two and multiple solid spheres under gravity in
a square duct have been performed. The simulations involve 4 di�erent Galileo num-
bers, i.e. Ga = 144, 178, 200 and 250 for a �xed solid-to-�uid-density ratio Γ = 1.5
and solid-volume fractions ranging from Φ = 0.005 to Φ = 0.3. It is shown that for
these Ga the particle motions of a single particle are steady vertical, steady oblique,
oblique oscillating and chaotic.
In the simulations for a single particle it has been found that the observed �uctuations
of the vertical particle velocity are due to particle-wall interactions.
Drafting-kissing-tumbling (DKT), which is a key mechanism in the formation of par-
ticle clusters, has been observed in the two particles simulations and show that DKT
initiates when the particles are almost aligned vertically and move in the same direc-
tion in the horizontal plane. DKT could occur even when the particles are several
particle diameters apart.
In the simulations of multiple particles only the steady vertical, steady oblique and
oblique oscillating regimes have been considered and the particles are initially ran-
domly distributed in the computational domain. It is shown for these regimes that for
solid-volume fractions Φ ≤ 0.01 an increase of the settling velocity of the suspensions
compared to the value of a single particle is observed for all regimes, while for higher
solid-volume fractions a hindered settling e�ect occurs. The statistics of a spatial
parameter related to the angle of a particle and its nearest neighbour show that the
particles align vertically more than a set of random distributed particles for solid-
volume fractions Φ ≤ 0.01. This indicates the formation of particle clusters. These
�ndings are supported by multiple instances of DKT observed in the animations of
the simulations. Finally, it has been observed for all regimes that the vertical particle
velocity �uctuations relative to the settling velocity of the suspension increase roughly
with Φ1/3.
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Chapter 1

Introduction

1.1 Motivation

Particle-laden �ow is one of the main topics in the �eld of �uid dynamics. It involves
complex multiphase interactions between a carrier phase and a dispersed phase, which
are present in the form of a viscous �uid and (heavy) particles, respectively.
This study focuses on the the gravity-driven motion of multiple particles in an other-
wise quiescent �uid. Examples of this �ow con�guration are removal of solid particles
by sedimentation in a clari�er (waste-water treatment), the reclamation of land by
propelling sand of dredging ships, which is also known as 'rainbowing' and chemi-
cal engineering systems, such as a �uidized bed reactor (FBR). The last mentioned
usually involves a �uidization process, whereas the �rst two examples involve a sed-
imentation process. However from earlier studies by Richardson and Zaki [1] it can
be concluded that sedimentation and �uidization of particles show similar dynamical
behaviour. This �ow con�guration is also of interest in seismological studies, such as
the settling of dust in the ocean after an earthquake.

Figure 1.1 From left to right: A clari�er for treating waste water, a dredging ship during
a 'rainbowing' process and a schematic of the �ow in a FBR.
(Sources: www.tpomag.com, www.marineinsight.com and en.wikipedia.org)
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1.2 Background

The collective behaviour of multiple particles (suspensions) sedimenting in an other-
wise quiescent �uid is a challenging topic, of which full understanding has not been
attained yet. This behaviour can be examined by looking at certain properties, such
as the average settling velocity of the particles and their spatial distribution.
To explain the collective behaviour of sedimenting solid particles in dilute suspen-
sions, it is important to understand the dynamics of a single isolated particle and
the interplay between a small number of particles. In this chapter, earlier research
on these subjects is presented. Starting with the sedimentation of a single particle,
followed by the interplay between two particles and ending with collective behaviour
of many particles in (dilute) suspensions. The �rst two subjects will be referred to as
the microscale level, whereas the latter will be referred to as the macroscale level or
the collective. Solid particles occur in many shapes in nature. However in the present
work only spherical particles are considered, because of their simplicity, i.e. spheres
act the same way in all directions.

1.2.1 Sedimentation of a single spherical particle

The research on a single sphere falling under gravity surrounded by a �uid starts with
Stokes Law, which describes the drag force acting on slowly settling spherical objects
in a viscous �uid, i.e. a low Reynolds number con�guration (Re� 1).
In this so-called Stokes regime a sphere will settle along a straight vertical path and
will reach a constant terminal velocity UT , where the drag force FD and buoyancy
force FB balance:

π

8
CD(Re) ρf D

2
p U

2
T

FD

=
πD3

p

6
|ρp − ρf |g

FB

(1.1)

Where
CD(Re) = drag coe�cient as function of Reynolds number (Re),

Re =
ρfDpUT
µf

,

Dp = diameter of the spherical particle,
ρp = mass density of the spherical particle,
ρf = mass density of the �uid,
g = magnitude of the gravitational acceleration.

From Figure 1.2, a familiar graph seen in the �eld of �uid mechanics, the drag coef-
�cient in the Stokes regime can be deduced and reads CD = 24/Re. It then follows

from equation 1.1 that the terminal particle velocity UT =
| ρp
ρf
−1|gD2

p

18µf
.

At higher Reynolds numbers, Stokes Law will no longer hold and the �ow around the
sphere becomes more complex leading to wake instabilities and accompanying path
instabilities.
For the settling of a freely moving sphere in a quiescent �uid it follows from dimen-
sional analysis, that these instabilities depend on two non-dimensional parameters,
i.e. the solid-to-�uid-density ratio Γ =

ρp
ρf

and the Galileo number Ga. The

derivation of these parameters will be described in Appendix A.1-A.2.
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Figure 1.2 Drag coe�cient as a function of the Reynolds Number for the �ow over a
sphere. Picture from the work of Boiko et al.[2].

The Ga-number is a measure for the ratio between the gravitational and viscous forces
acting on a submerged particle and can be written in the form of a Reynolds number:
Ga = UL

νf
, where U = (|Γ− 1|gDp)

1/2 is a characteristic velocity scale, L = Dp is a

characteristic length scale and νf is the kinematic viscosity of the �uid. This two-
parameter space has been extensively studied both numerically by Jenny et al.[3] and
experimentally by Veldhuis and Biesheuvel among others [4, 5].

Figure 1.3 shows the numerical results by Jenny et al., where the regimes in the
two-parameter space indicate the particle trajectory. In the present work the solid-
to-�uid-density ratio Γ = 1.5, therefore the following path instabilities will occur with
increasing Ga-number:
The sphere will have a steady vertical trajectory up to Ga ≈ 155 (Regime I). Beyond
this value the trajectory will be steady oblique up to Ga ≈ 185 (Regime II). Further
increase in Ga results in an oblique oscillating trajectory of the sphere up to Ga ≈ 215
(Regime III) and �nally the trajectory of the sphere becomes chaotic for Ga & 215
(Regime VI).

Figure 1.3 Numerical results of trajectories of a freely moving sphere in the
two-parameter (Ga,Γ) space by Jenny et al.[3]. The red crosses indicate the Ga,Γ-couples
used in the present work (see Section 1.4).
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More recently Uhlmann and Du²ek [6] performed benchmark studies for Ga numbers
ranging from 144 to 250 and a solid-to-�uid-density ratio Γ = 1.5 to provide detailed
data describing the settling of a sphere in a quiescent �uid. A visualization of the wake
structures and particle motion of the four regimes is shown in Figure 1.4. The picture
is taken from Uhlmann and Doychev [7] and summarizes the results of Uhlmann and
Du²ek [6] regarding the settling of a single solid sphere.

Figure 1.4 Visualization taken from [7]: The four regimes of a single sphere settling
under gravity in an otherwise quiescent �uid. From left to right: Ga = 144, 178, 190, 250 and
Γ = 1.5. The purple iso-surface indicates the vertical component of the �uid velocity equal
to 1.2U and the grey iso-surface visualizes the vortex structures by means of the λ2-method.
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1.2.2 Sedimentation of two spherical particles

Besides the study of the motion of a single particle, it is important to mention a typical
phenomenon in particle laden �ows known as "drafting-kissing-tumbling" (DKT).
This phenomenon has been demonstrated both experimentally by Fortes et al.[8] and
numerically by Feng et al. among others [9�11].
DKT could occur when two particles are falling with their line-of-center (slightly)
aligned in the direction of the gravity (vertical). The trailing particle may experience
a smaller drag force than the leading particle when it enters the wake of the leading
particle. Therefore the velocity of the trailing particle will be higher than the leading
particle and they thus approach each other, which is known as "drafting". When
the trailing particle touches the leading particle, the two particles will momentarily
fall as a single body aligned with the vertical, which is known as "kissing".
This vertical alignment of the trailing and leading particle is unstable and causes the
particles to tumble, resulting in the trailing particle overtaking the leading particle,
known as "tumbling". Subsequently the particles will either repel each other or
the DKT process repeats. In Figure 1.5 photographs of the �uidization experiment
by Fortes et al.[8] visualize the DKT phenomenon. Note that DKT is similar in
�uidization and sedimentation, since the dynamics is controlled by suctions of the
wakes of spheres in relative motion.

Figure 1.5 Photographs of the �uidization experiment by Fortes et al.[8]. The three
photographs show drafting (left), kissing (middle) and tumbling (right) for

Re =
ufDp

νf
= 800, where uf is the average �uid velocity.
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1.2.3 Sedimentation of multiple spherical particles

The motion of a single particle settling under gravity (in an otherwise quiescent �uid)
is determined by two parameters, i.e. the solid-to-�uid-density ratio Γ and the
Galileo number Ga. When studying the motion of multiple particles settling un-
der gravity, another parameter has to be taken into account. This parameter is the
solid-volume fraction Φ. Extensive research has been done with regard to the sed-
imentation of dilute and dense suspensions of solid spheres.

In 1954 pioneers Richardson and Zaki investigated the sedimentation of dense suspen-
sions (Φ > 0.04). In their experiments they examined the e�ect of the solid-volume
fraction of a suspension on its settling velocity [1]. As a result an empirical equation
was developed, known as the Richardson-Zaki equation 1.2, which gives a prediction of
the suspension settling velocity as a function of the solid-volume fraction and an exper-
imentally determined exponent n. n is found to be a function of

Dp
Dt

and Rep(=
UTDp
νf

),

where Dt corresponds to the diameter of the tube used in their experiments. In Table
1.1 values for n as function of

Dp
Dt

and Rep are given.

US(Φ)

UT
= (1− Φ)n (1.2)

Where
US(Φ) = Settling velocity of the suspension,
UT = Terminal settling velocity of a single sphere,
Φ = Solid-volume fraction of the suspension,
n = Richardson-Zaki hindered settling index.

Table 1.1: n as function of
Dp

Dt
and Rep. These relations are valid

for 0 < Dt

Dp
< 2500.

n = 4.65 + 19.5 · DpDt for Rep < 0.2

n = (4.35 + 17.5 · DpDt ) ·Re−0.03
p for 0.2 < Rep < 1

n = (4.45 + 18 · DpDt ) ·Re−0.1
p for 1 < Rep < 200

n = 4.45 ·Re−0.1
p for 200 < Rep < 500

n = 2.39 for Rep > 500

To compare sedimentation and �uidization velocities suspensions, Richardson and
Zaki performed experiments in which �uidization is followed by sedimentation. It can
be concluded from their results that both the sedimentation and �uidization velocity
are the same functions of the solid-volume fraction Φ and exponent n.

Baldock et al.[12] also performed experiments to investigate the reduction in the sed-
imentation (or �uidization) velocity as a function of the solid-volume fraction Φ and
exponent n, known as the hindered settling e�ect. Their experiment was similar to
the one Richardson and Zaki performed, however, instead of spherical particles, they
used natural sands of di�erent grain sizes and sphericity. They found that the values
of n di�er signi�cantly from those suggested by Richardson and Zaki for spheres of
equal sizes and that the values for n are larger, corresponding to a signi�cantly greater
hindered settling e�ect.
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One of the �rst to perform direct numerical simulations of dilute suspensions of solid
spheres (Φ = 0.002) were Kajishima and Takiguchi [13]. In their simulations the e�ect
of particle rotation was not accounted for. They observed the formation of particle
clusters, in the case where Γ = 8.8, Ga ≈ 210 (Rep ≈ 3001), which resulted in an
enhancement in the average settling velocity of the particles. The latter result was
explained by the DKT process (see Section 1.2.2).
Later Kajishima and Takiguchi [14] performed simulations for identical parameters,
but now taking particle rotation into account. No clusters were formed for this case,
hence the rotational motion of particles has a signi�cant in�uence in the (re)generation
of particle clusters.

In 2014, Uhlmann and Doychev [7] numerically investigated the sedimentation of dilute
suspensions of solid spheres (Φ = 0.005). In their study four cases were simulated,
two involving multiple particles (M121 and M178) and two involving a single particle
(S121 and S178) for reason of validation and comparison. These speci�c cases and
their (physical) parameters are listed in Table 1.2.

Table 1.2: Cases (and their physical parameters) investigated by
Uhlmann and Doychev [7] and Huisman et al.[15].

Ga Γ Φ

(M)121 1.5 5× 10−3

(M)178 1.5 5× 10−3

(S)121 1.5 5.3× 10−5

(S)178 1.5 2.7× 10−5

(M)178* 1.5 4.8× 10−4

Recall that M121 and M178 correspond to a steady vertical path and a steady oblique
trajectory, respectively, when considering a single isolated sphere.
The simulations were performed in triply periodic computational boxes and the nu-
merical method used was the IBM of Uhlmann [16] (Immersed Boundary Method).
Their work resulted in new insights in the behaviour of dilute sedimenting suspen-
sions. No clusters were formed in the M121 case, whereas clear column clusters were
observed for M178. Due to particle clustering the average particle settling velocity
increased by 12% compared to the value of a single settling particle (S178), while there
is no signi�cant di�erence in the average particle settling velocity in case M121 com-
pared to the value of a single settling particle (S121). However, the average relative
particle settling velocity with respect to the local �uid velocity (return �ow), which
is averaged over a spherical shell around the particle, showed no signi�cant di�erence
with the terminal velocity of a single particle. This means that the particles prefer-
entially sample downward �uid motions. Figure 1.6 summarizes the aforementioned
�ndings regarding the average particle velocity by Uhlmann and Doychev.

1Ga and Rep are related to each other and an approximate relation can be derived from Morison's

equation, which describes the force balance for a particle in gravitational motion, see Appendix B.1
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Figure 1.6 The average particle settling velocity (UpV ) as a function of time by Uhlmann
and Doychev [7]. Solid lines indicate the average particle velocity normalized with the
particle diameter and the kinematic viscosity for M121 and M178. Dashed lines indicate the
terminal velocity of a corresponding single sphere (S121 and S178). The settling velocity
with respect to the local �uid velocity in the particles' vicinity is indicated by �lled circular
symbols.

The results from Uhlmann and Doychev were also experimentally veri�ed by Huisman
et al. [15]. In their experiment they investigated the settling of multiple particles with
a Galileo number Ga varying from 110 to 310, a solid-to-�uid-density ratio Γ = 2.5
and solid-volume fractions Φ varying from 10−4 to 10−3.
For comparison a numerical case, M178*, was added, which is identical to the M178
case of Uhlmann and Doychev [7], except for the solid-volume fraction (Φ = 4.8×10−4,
see Table1.2). In Figure 1.7 the results of Huisman et al.[15], concerning the velocity
of the particles, are displayed. Figure 1.7(b) shows the probability density functions
of the vertical average particle velocities normalized by the settling velocity of a single
(isolated) sphere UT . The largest enhancement in the average particle velocity is for
Ga = 170, which is notably higher than for Ga = 110 and Ga = 310. For Ga = 110
this is expected, since the particles are expected to have a steady vertical trajectory
(Regime I). For the Ga = 310, their most probable explanation for this behaviour
is that the chaotic wakes of the Ga = 310 particles might prohibit the formation of
column clusters.

Figure 1.7 Particle velocity results of the experiments performed by Huisman et al.[15]
(a) Velocity probability density functions as a function of Ga obtained from multiple
experiments. (b) Probability density functions of the vertical particle velocity normalized
by the settling velocity of a single (isolated) sphere UT . UT is indicated by the dashed lines.
Note that M178* is the numerical simulation with Γ = 1.5, whereas Γ = 2.5 for the
experiments.
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The results from Uhlmann and Doychev regarding the average particle settling veloc-
ity seem to contradict Richardson and Zaki, since Uhlmann and Doychev observe that
an increase in the solid-volume fraction Φ results in an increase in the average settling
velocity of the particles. This contradiction can be clari�ed by the presence or absence
of particle clusters. If there is no signi�cant particle clustering, than the �ndings of
Richardson and Zaki 1.2 hold. This is also validated by numerical studies by Fornari
et al.[17]. It is important to emphasize the di�erence between the conditions in the
experiments by Richardson and Zaki and the �ow con�guration in the simulations
by Uhlmann and Doychev. The simulations were focused on dilute suspensions of
solid spheres (Φ = 0.005), whereas Richardson and Zaki have examined more dense
suspensions (Φ > 0.04) in their experiments. There is also a di�erence in the bound-
ary conditions. In Uhlmann's simulations periodic boundary conditions in all three
directions (x,y,z) were used. While in the experiments there was no periodicity in the
horizontal directions(x,y), since a tube was used, which acts as a wall in the horizontal
directions.

In this study the sedimentation of particles in a con�ned geometry is considered.
Earlier work on this subject [18�20] reveals a macroscopic �ow, known as intrinsic

convection, which could in�uence the sedimentation of suspensions. A sketch of in-
trinsic convection is given in Figure 1.8. Intrinsic convection is a global convection in
addition to settling of the particles relative to the �uid. An intrinsic �ow could be
formed due to the depletion of particles near the wall. Kuusela et al.[20] performed
simulations at low particle Reynolds numbers (Rep < 10) and found a depletion of
particles at the walls for low solid-volume fractions, whereas an excess of particles is
observed for high solid-volume fractions.

Figure 1.8 Sketch of intrinsic convection. Picture taken from [18].
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1.3 Objective

In this study the gravity-induced settling of a suspension of solid particles in an other
quiescent �uid is considered.
The main objective of this study is to investigate the e�ect of the solid-volume fraction
of a suspension of solid spheres on its dynamical features taking into account wall
e�ects. Dynamical features of interest are the average particle settling velocity and
the spatial distribution of the sedimenting suspension of solid spheres. Accounting
for walls in the horizontal directions(x,y), by means of a square tube, gives a better
resemblance of the experimental conditions, such as the cylindrical tubes used in the
experiments of Richardson and Zaki [1] and the square tube used in the experiments
by Huisman et al.[15].

1.4 Approach

From literature and dimensional analysis, it can be concluded that the sedimentation
of suspensions of solid spheres in an otherwise quiescent �uid depends on upon three
parameters: the solid-to-�uid-density ratio Γ, the Galileo number Ga and the solid-
volume fraction Φ.

Solid-to-�uid-density ratio Γ
In this study a �xed solid-to-�uid-density ratio Γ = 1.5 is chosen. This corresponds
to the value of plastic materials (polyester,PVC) in water.

Galileo number Ga
Concerning the Galileo number four values are considered, corresponding to di�erent
regimes of motion of a single sphere (see Figure 1.3):

� Ga = 144: steady vertical trajectory
� Ga = 178: steady oblique trajectory
� Ga = 200: oscillating oblique trajectory
� Ga = 250: chaotic trajectory

The combination of the solid-to-�uid-density ratio and the Galileo numbers corre-
sponds to a particle Reynolds ranging from 185 to 362 according to Morison's equa-
tion for a sphere (see Appendix B.1).

Solid-volume fraction Φ
To investigate the in�uence of the solid-volume fraction the following values are con-
sidered:

� Φ = 0.005
� Φ = 0.010
� Φ = 0.025
� Φ = 0.050
� Φ = 0.100
� Φ = 0.200
� Φ = 0.300
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The solid-volume fractions are chosen, so that the method employed in this work could
be validated and to investigate the collective behaviour for higher solid-volume frac-
tions, which resemble the conditions of the experiments by Richardson and Zaki [1].
Results by Uhlmann and Du²ek [6], Uhlmann and Doychev [7] and Huisman et al.[15]
are used to validate and compare the results for the sedimentation of a single sphere
and multiple spheres in the present work. Please note that the studies by Uhlmann
are performed in triply periodic boxes.

Direct numerical simulations are performed in order to reach the objective. The nu-
merical method employed in the simulations is the immersed boundary method (IBM)
of Breugem [21]. This method is an improvement on the method used in the works of
Uhlmann [6, 7, 16]. The improvement is due to three modi�cations made in the IBM
of Uhlmann resulting in a second-order spatial accuracy and an improved numerical
stability. For details on the characteristics of an immersed boundary method and the
modi�cations made by Breugem, see Appendix C.

For the numerical investigation the following approach is used: First the gravitational
motion of a single sphere (for each Ga,Γ-couple) is simulated to examine and vali-
date its dynamical features. Secondly, simulations involving two falling spheres are
performed to examine whether drafting-kissing-tumbling occurs or not. Finally, sim-
ulations of suspensions of solid spheres with solid-volume fractions Φ are performed
for Ga = 144, 178 and 200 to explore and inspect its (collective) dynamical features.



12

Chapter 2

Computational setup

In this chapter the �ow con�gurations and parameters used to simulate the sedimenta-
tion of a single sphere, two spheres and multiple spheres are explained and illustrated.
The computational domain and boundary conditions used for a single sphere and
two spheres are similar. For the simulation of multiple falling spheres the boundary
condition in the vertical direction di�ers from the one employed in the single/two
sphere setup. The collision model of Glowinski et al.[11] is used to accommodate
for collisions between spheres and between spheres and walls. This model is brie�y
explained in Appendix C. For all simulations a Cartesian coordinate system is used,
where the vertical z-direction is opposite to the direction of gravity. The grid size is
Dp/∆x = 16.

2.1 Flow con�guration single particle

2.1.1 Main setup

The computational domain, used for simulating the sedimentation of a single sphere
taking into account wall e�ects, is sketched in Figure 2.1. The domain has horizontal
lengths Lx = Ly = 6Dp and vertical length Lz = 24Dp. In the simulation an inlet
velocity is imposed at the in�ow plane (blue) with u∞ =

〈
0, 0, w∞

〉
. A Neumann

boundary condition for the velocity is set at the out�ow plane (orange). Walls moving
in the vertical direction are employed at the vertical planes (yellow), which means that
no-slip/no-penetration conditions are imposed. The for-mentioned collision model of
Glowinski was used for collisions between the sphere and the wall.
Neumann boundary conditions for the pressure are imposed at the in�ow plane and
the vertical planes. At the out�ow plane a Dirichlet pressure boundary condition
(p = 0) is imposed.
Applying these boundary conditions results in a moving frame of reference moving
downwards with the magnitude of w∞. A moving frame of reference enables us to
track the sphere in the computational domain for as long as possible, while using a
relatively small computational box. Hence, the simulation is computationally e�cient
(the simulation costs are reduced).

The simulation is divided into two parts, which follow each other consecutively:

PART I In the �rst part the sphere is �xed (xc = yc = 3Dp, zc = 10Dp) and a w∞ is
imposed at the in�ow plane. The time the sphere is held �xed (tfixed) is determined
by the drag force acting on a single �xed sphere. Therefore additional simulations
involving a �xed sphere are performed. The results of these simulations are presented
in Appendix D.1.
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PART II In the second part the simulation continues using the last �ow �eld, but now
the sphere is free to move in the entire computational domain for time tmobile .

The value for w∞ has to be chosen, so that the sphere does not reach either the bottom
or top of the computational domain. The sphere has to remain a distance of 5Dp away
from the in�ow and out�ow plane to ensure that the sphere does not in�uence the
in�ow and the sphere's wake is within the computational domain. The search for an
appropriate value for w∞ starts by solving Mordant's equation for steady motion for
a sphere settling under gravity in free space for a given Ga (see Appendix B.1). The
solution to this equation is the terminal settling velocity of a single sphere in free
space UT . When this solution is corrected by a crude estimate for the e�ect of walls
on the terminal settling velocity of a single sphere (see Appendix B.2), one obtains
a good starting point so that the amount of trials could be reduced in the search for
an appropriate value for w∞ . In Table 2.1 the parameters for the simulations of the
sedimentation of a single sphere are displayed.
For each case a total of 30000 simulation time steps Nt are performed. The total
simulation time di�ers for each case, since the duration of a time step depends on
inlet velocity, which depends on the Galileo number Ga.

Figure 2.1 The computational domain employed in the simulations for the sedimentation
of a single sphere (left) and two spheres (right).
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Table 2.1: Simulation parameters for the sedimentation of a single
sphere.

Case Ga Γ w∞/UT w∞/U Nt tfixed/T tmobile/T

S144A 144 1.5 0.9920 1.2708 30000 52.70 734.98

S178A 178 1.5 0.9500 1.2799 30000 51.93 692.75

S200A 200 1.5 0.9250 1.2786 30000 51.50 678.69

S250A 250 1.5 0.9150 1.3235 30000 48.73 641.38

2.1.2 Wall e�ect setup

A single parameter combination, i.e. Ga = 144 and Γ = 1.5, was chosen to study
the e�ect of the walls on the dynamics of a sphere falling under gravity in a square
tube. Besides case S144A, two additional simulations involving a single sphere were
performed with di�erent cross section dimensions of the square tube (see Table 2.2).

Table 2.2: Additional simulation cases and their parameters for
studying wall e�ects.

Case Ga Γ w∞/UT w∞/U Nt tfixed/T tmobile/T Lx
Dp
× Ly

Dp
× Lz

Dp

S144B 144 1.5 1.0050 1.2874 30000 52.38 730.88 9× 9× 24

S144C 144 1.5 1.0075 1.2906 30000 52.36 730.59 12× 12× 24
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2.2 Flow con�guration two particles

A di�erent approach is used to perform the simulations of two falling spheres, i.e.
simulating the drafting-kissing-tumbling phenomenon. The boundary conditions in
the horizontal directions and the out�ow plane are similar to the conditions described
in Section 2.1. The values for the inlet velocity w∞ imposed at the in�ow plane and
the initial positions for each case are displayed in Table 2.3. Note that the two spheres
are not exactly aligned initially in the vertical direction, but instead a small o�set is
introduced in order to trigger the drafting-kissing-tumbling phenomenon. The domain
is displayed in Figure 2.1 and has horizontal lengths Lx = Ly = 6Dp and vertical
length Lz = 32Dp. This means that the computational domain is extended in the
vertical direction compared to the computational domain used for a single sphere.

The simulation consists of one part in which the spheres are released right from the
start of the simulation. The spheres are released immediately to capture the transient
motion of the two falling spheres and therefore give a better resemblance of two spheres
falling and interacting with each other in the physical world. A small investigation
on the transient motion of a falling sphere was performed in order to ensure that the
spheres remain in the computational domain and a distance of 5Dp away from the
in�ow and out�ow plane for the entire duration of the simulation. This is described
in Appendix B.3.

Table 2.3: Simulation parameters for the sedimentation of two
spheres. Subscript s indicates the sphere number.

Initial sphere positions
Case Ga Γ w∞/U Nt tsim/T

〈
xc
Dp
× yc

Dp
× zc

Dp

〉
s

T144 144 1.5 1.2375 45000 1193.07
〈
3 1

32 , 3
1
32 , 11

〉
1,
〈
231

32 , 2
31
32 , 9

〉
2

T178 178 1.5 1.2665 45000 1100.31
〈
3 1

32 , 3
1
32 , 11

〉
1,
〈
231

32 , 2
31
32 , 9

〉
2

T200 200 1.5 1.2821 45000 1066.76
〈
3 1

32 , 3
1
32 , 16

〉
1,
〈
231

32 , 2
31
32 , 14

〉
2

T250 250 1.5 1.3198 45000 1009.74
〈
3 1

32 , 3
1
32 , 16

〉
1,
〈
231

32 , 2
31
32 , 14

〉
2
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2.3 Flow con�guration multiple particles

The simulations of the sedimentation of suspensions of solid spheres are performed
in a singly periodic computational domain, which means that periodic boundary con-
ditions are employed in the vertical direction. Similar to the single and two sphere
setup, walls are implemented in the horizontal directions. In Figure 2.2 a sketch of
the computational domain is given, where the red and yellow planes indicate the peri-
odic boundaries and the walls, respectively. Since a periodic system containing falling
spheres will not reach a steady state, i.e. the falling spheres will keep accelerating, a
constant vertical pressure gradient (z-direction) was imposed to enforce a zero mean
�ow in the vertical direction. The spheres are randomly distributed in the compu-
tational domain, such that the spheres do not overlap with each other nor the walls
in the horizontal directions. The code for the random distribution of the spheres is
appended in Appendix F.

The solid-volume fraction depends on the number of particles Np and is de�ned by

Φ =
Np

π
6D

3
p

LxLyLz
(2.1)

Where the domain dimensions are indicated in Figure 2.2.

A total of 21 simulations were performed: Seven di�erent solid-volume fractions Φ are
used in the simulations for three di�erent Galileo numbers Ga. The duration of each
simulation is t = 900T . The Galileo numbers considered are Ga = 144, 178, 200, for
which also reference data is available from the one and two spheres cases. An overview
of the parameters is given in Table 2.4.

Table 2.4: Simulation parameters for the sedimentation of multiple
spheres. xxx denotes one of three Galileo numbers Ga = 144, 178, 200.

Case Np
Lx
Dp
× Ly

Dp
× Lz

Dp
Φ

MxxxA 25 6× 6× 72 5.1 · 10−3

MxxxB 25 6× 6× 36 1.0 · 10−2

MxxxC 31 6× 6× 18 2.5 · 10−2

MxxxD 62 6× 6× 18 5.0 · 10−2

MxxxE 124 6× 6× 18 1.0 · 10−1

MxxxF 248 6× 6× 18 2.0 · 10−1

MxxxG 375 6× 6× 18 3.0 · 10−1

Note that the vertical length of the domain Lz is larger for the dilute suspensions (case
MxxxA and MxxxB) compared to the other suspensions (case MxxxC-MxxxG).This
is chosen in order to increase the number of particles Np for a given concentration.

In Appendix D.2 a small investigation on the e�ect of the periodic boundary conditions
is shown.
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Figure 2.2 The computational domains employed in the simulations for the
sedimentation multiple spheres. Left: Domain employed for case MxxxA. Mid: Domain
employed for case MxxxB. Right: Domain employed for the 5 other cases. This particular
setup is used for case M144E.
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Chapter 3

Results

In this chapter the �ndings of the simulations described in Chapter 2 are presented.
The �rst section will cover the simulation results for a single sphere and the simula-
tions focusing on the wall e�ects, in the second section the results of the simulations
involving two spheres are presented and the results of the simulations of multiple
spheres are considered in the third section.

3.1 Single particle

In this section the results of the simulations involving the sedimentation of a single
particle falling under gravity are discussed. The particle velocity relative to the am-
bient �uid velocity is de�ned in Equation 3.1 to avoid confusion when observing the
�gures displayed in this section.

Upr = Up − u∞ (3.1)

Where Upr =
〈
Uprx, Upry, Uprz

〉
and u∞ =

〈
0, 0, w∞

〉
.

The magnitude of the particle velocity in the horizontal plane is therefore de�ned as

UpH =
√
U2
prx + U2

pry (3.2)

And the vertical particle velocity is given by

UpV = Uprz (3.3)

A similar approach holds for the angular velocity of the particle, where the angular
particle velocity in the horizontal direction (ωcH) and the vertical direction ((ωcV ) are
de�ned by

ωcH =
√
ω2
cx + ω2

cy (3.4)

ωcV = ωcz (3.5)

Another parameter is the angle of particle motion with respect to the vertical (α) and
it is de�ned by

tan(α) =
UpH
|UpV |

(3.6)

In this section many results are compared to the �ndings by Uhlmann and Du²ek [6].
Keep in mind that their simulations were performed in triply periodic boxes, i.e. no
walls were implemented.
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3.1.1 Steady vertical regime

In Figure 3.1 the results for the trajectory of the particle in the horizontal plane and
the vertical position of the particle zc in time are illustrated for case S144A.

(a) (b)

Figure 3.1 Results for case S144A (Ga = 144) (a) Temporal evolution of the vertical
position of the particle zc. The blue cross marks the particle's release. (b) Trajectory of a
single sphere in the horizontal plane. The red cross marks the initial position of the particle
and the blue dashed line indicates the region of motion.

Figure 3.1a shows that the particle remains a safe distance away from the in�ow and
out�ow plane for the entire duration of the simulation, so that the in�ow �eld is not
disturbed and the wake of the particle is within the computational domain. It can be
seen in Figure 3.1b that the particle trajectory is not perfectly steady vertical. This
result di�ers from the �ndings by Uhlmann and Du²ek [6], where no motion in the
horizontal direction was found for the steady vertical regime. However, it is impor-
tant to note that there were no walls present in their simulations, instead periodic
boundary conditions were employed. The blue dashed line gives an indication of the
region of particle motion in the horizontal plane. The radius of the region for S144A
is rmotion = 0.7641Dp.

The results regarding the angular particle velocity are displayed in Figure 3.2a. It can
be concluded from this �gure that, in contrast to Uhlmann and Du²ek, the angular
particle velocity components are nonzero. Also note that the particle rotates at a
higher rate in the horizontal direction compared to the rotation rate in the vertical
direction.

Figure 3.2b displays the vertical particle velocity UpV in time. The vertical particle
velocity has been averaged over a time interval from t = 110T to t = 685T to
determine the terminal settling velocity of the particle in the vertical direction UT .
This speci�c interval is chosen for consistency between the four cases. For S144A
the terminal settling velocity of the particle UT = −1.2700U , which corresponds to a
Reynolds number ReT = 182.88.
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(a) (b)

Figure 3.2 Results for case S144A (Ga = 144) (a) Temporal evolution of the vertical
particle velocity UpV . The blue cross marks the particle's release. (b) Temporal evolution of
the magnitude of the angular particle velocity in the horizontal direction ωcH (black solid
line) and in the vertical direction ωcV (red solid line).

3.1.2 Steady oblique regime

In Figure 3.3 the results for the trajectory of the particle in the horizontal plane and
the vertical position of the particle zc in time are illustrated for case S178A.

(a) (b)

Figure 3.3 Results for case S178A (Ga = 178) (a) Temporal evolution of the vertical
position of the particle zc. The blue cross marks the particle's release. (b) Trajectory of a
single sphere in the horizontal plane. The red cross marks the initial position of the particle.

It can be seen in Figure 3.3b that the particle moves in the entire domain and al-
though it may hard to see, the particle never collides with any wall during the entire
simulation.
Similar to S144A the angular particle velocity in the horizontal direction is higher
than the angular particle velocity in the vertical direction. However the magnitude of
the angular particle velocity of S178A di�ers by one order of magnitude compared to
S144A (see Figure 3.4a).

Figure 3.4b shows the vertical particle velocity UpV in time. When the sphere is re-
leased the magnitude of the vertical particle velocity increases initially, causing the
sphere to move downwards (see Figure 3.3a). The vertical particle velocity has been
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averaged over a time interval from t = 110T to t = 685T to determine the terminal
settling velocity of the particle in the vertical direction UT . As earlier mentioned, this
speci�c interval is chosen for consistency between the four cases. For S178A the termi-
nal settling velocity of the particle UT = −1.2777U , which corresponds to a Reynolds
number ReT = 227.43.

(a) (b)

Figure 3.4 Results for case S178A (Ga = 178) (a) Temporal evolution of the vertical
particle velocity UpV . The blue cross marks the particle's release. (b) Temporal evolution of
the magnitude of the angular particle velocity in the horizontal direction ωcH (black solid
line) and in the vertical direction ωcV (red solid line).

Over this time interval (t = 110T − 685T ) the vertical particle velocity �uctuates be-
tween UpV,min = −1.2061U and UpV,max = −1.3085U , which means that the amplitude

of the velocity �uctuations is |UpV,max−UpV,min2 | = 0.0512U . Furthermore, a periodic
behaviour is observed regarding these �uctuations. Therefore, a basic spectral analysis
has been performed to determine which frequency dominates the �uctuations of the
vertical particle velocity (Figure 3.4b). The Fourier transform is a tool to perform this
analysis, since it identi�es the frequency components of a time-domain signal. The
analysis has been performed on the velocity �uctuation signal U ′pV between t = 100T
and t = 744T , where U ′pV is de�ned by UpV minus the average of UpV over the time
interval. Figure 3.5 shows the single-sided amplitude spectrum of U ′pV . The largest

amplitude of the Fourier transform is observed for a frequency f = 0.0284
T , which

means that the periodicity of the vertical particle velocity is characterized by this
frequency. Another observation, based on Figure 3.7, is that the particle approaches
the wall 18 times between t = 100T and t = 744T . This corresponds to a frequency
f = 18

744T −100T = 0.0280
T , which (roughly) corresponds to the frequency found with

the spectral analysis. Hence, it can be concluded that the �uctuations of the vertical
particle velocity are dominated by the interactions with the walls.
Note that the peak amplitude in the Fourier transform does not match the ampli-
tude of the velocity �uctuations in the time domain. This is probably due to spectral
leakage.
The angle of particle motion with respect to the vertical (α) has been plotted against
the simulated time in Figure 3.6. Despite some outliers it can be calculated that α
�uctuates around 7.9◦. This value di�ers signi�cantly from the value obtained by
Uhlmann and Du²ek [6] (α ≈ 5.3◦), where periodic conditions (instead of walls) were
employed.
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Figure 3.5 Single-sided amplitude spectrum of U ′pV (t): the magnitude of the vertical
particle velocity in the frequency domain U ′pV (f) plotted against the frequency normalized
by the characteristic time scale T .

Figure 3.6 The angle of particle motion with respect to the vertical (α) plotted against
time. The blue cross marks the particle's release.

Figure 3.7 shows a pronounced wall e�ect over a distance in the order of one particle
diameter Dp: Both the vertical and horizontal velocity of the particle decrease each
time it approaches a wall and increase when it moves away from the wall. Remark
that the magnitude of the vertical particle velocity reaches a certain maximum value
when it moves away from the wall. In this �gure dwall is de�ned as the nearest distance
of the particle surface to either the walls in the x-direction or the y-direction. The
decrease in the vertical particle velocity as it approaches a wall is explained as follows:
As the �uid between the wall and the particle is getting more and more squeezed as
the particle approaches the wall, the velocity gradient near the surface of the particle
increases. When the velocity gradient increases, the shear stress acting on the particle
surface also increases and thus an increase in drag acting on the particle. Hence, the
vertical particle velocity decreases.
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Since the particle never collides with a wall during the entire simulation and the fact
that the horizontal particle velocity decreases each time it approaches a wall give rise
to the presumption that the particle experiences a lubrication e�ect. However, be-
cause of the relatively large gap between the surface of the particle and the wall in
present simulations, lubrication theory fails. Lubrication models, such as the well-
known lubrication model described in the paper of Davis et al.[22] are valid under
the condition that: dwall/(

1
2Dp) << 1. From Figure 3.7 a minimum gap width of

dwall/(
1
2Dp) = 0.2246 is obtained, hence the lubrication theory is invalid. Although

the for-mentioned does not explain why the particle never collides with the wall, it
does eliminate a plausible explanation.

A possible explanation, found in literature, is a wall-induced lift force acting on the
particle. Takemura and Magnaudet [23] discussed two hydrodynamical mechanisms of
wall-induced lift force for the case of a sphere moving parallel to a wall in an otherwise
quiescent �uid: A vortical mechanism and an irrotational mechanism. The vortical
mechanism is related to the vorticity generated at the sphere surface, which advects
and di�uses downstream and interacts with the wall. This interaction results in a lift
force acting on the sphere directed away from the wall (repulsive force).
The irrotational mechanism is related to the irrotational (or potential) �ow theory.
This theory predicts that the presence of a wall tends to accelerate the �uid in the gap
between the sphere surface and the wall, resulting in a local pressure drop and thus
a lift force acting on the particle directed towards the wall (attractive force). It was
observed in the experiments of Takemura and Magnaudet [23], for a solid sphere with
Reynolds numbers up to Rep ≈ 100, that the vortical mechanism dominates. Hence,
the lift force acting on the sphere is directed away from the wall. Numerical studies
by Zeng et al.[24] con�rm the �ndings by Takemura and Magnaudet. They found that
the vortical mechanism also dominates for Reynolds numbers above Rep ≈ 100 up to
Rep = 300. Furthermore, they observe an increase in the wall-induced lift coe�cient
with increasing Rep above about 100, which is suggested to be due to the formation
of a double-threaded wake structure.

It is shown in Figure 3.8, a double-threaded wake structure was also observed in the
present simulation (case S178A). This strongly supports the explanation of a repulsive
lift force preventing the particle from colliding with the wall.

(a) (b)

Figure 3.7 (a) The vertical particle velocity and (b) the horizontal particle velocity
plotted against the distance to the nearest wall dwall. The blue cross marks the particle's
release. dwall is de�ned by dwall = min(xc, Lx − xc, yc, Ly − yc)− 1

2Dp.
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Figure 3.8 Iso-surface plot revealing the wake structure of the particle close to the wall
for Ga = 178 using the λ2-method (λ2 = −0.015). The wake structure shows a
double-threaded vortex. The λ2-method is explained in Section 3.2.2.
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3.1.3 Oblique oscillating regime

In Figure 3.9 the results for the trajectory of the particle in the horizontal plane and
the vertical position of the particle zc in time are illustrated for case S200A.

(a) (b)

Figure 3.9 Results for case S200A (Ga = 200) (a) Temporal evolution of the vertical
position of the particle zc. The blue cross marks the particle's release. (b) Trajectory of a
single sphere in the horizontal plane. The red cross marks the initial position of the particle.

From Figure 3.9a it can be concluded that the particle remains a safe distance away
from the in- and out�ow plane during the entire simulation. The particle moves
in diagonal pattern in the horizontal plane and for this case collisions between the
particle and the wall do occur, however the number of collisions was 6.
In Figure 3.10 the temporal evolution of the angular and vertical particle velocity are
displayed. For S200A the terminal settling velocity of the particle UT = −1.2780U ,
which corresponds to a Reynolds number ReT = 255.60.

(a) (b)

Figure 3.10 Results for case S200A (Ga = 200) similar to Figure 3.4.

Similar to case S178A (Figure 3.4), periodic velocity �uctuations are observed for
S200A (Figure 3.10). The vertical particle velocity �uctuates between UpV,min =
−1.1679U and UpV,max = −1.3349U over the time interval ranging from t = 110T to

685T , which means that the amplitude of the velocity �uctuations is |UpV,max−UpV,min2 | =
0.0835U . A basic spectral analysis (using the Fourier transform) has been performed
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to determine which frequency dominates the �uctuations of the vertical particle ve-
locity and to possibly extract a frequency related to the expected oscillating motion
(wake) of the particle. For this case, the analysis has been performed on the velocity
�uctuation signal U ′pV between t = 100T and t = 730T . In Figure 3.11 it can be
seen that the largest amplitude of the Fourier transform is observed for a frequency
f = 0.0333

T .
The number of times, between t = 100T and t = 730T , that the particle approaches
the wall over the vertical of the computational domain is 21 (based on Figure 3.12).
This corresponds to a frequency f = 21

730T −100T = 0.0333
T . Therefore, it can be con-

cluded that the �uctuations of the vertical particle velocity are dominated by the
interactions with the walls. The other peak in Figure 3.12 at f = 0.0651

T is most likely
related to the approaches of the particle between two adjacent walls (see Figure 3.9b)
and could therefore not be related to the oscillating motion of the particle.
Similar to S178A, it should be noted that the peak amplitude in the Fourier transform
does not match the amplitude of the velocity �uctuations in the time domain. This
is probably due to spectral leakage.

Figure 3.11 Single-sided amplitude spectrum of U ′pV (t): the magnitude of the vertical
particle velocity in the frequency domain U ′pV (f) plotted against the frequency normalized
by the characteristic time scale T .

Similar to S178A it can be concluded from Figure 3.12 that both the vertical and hor-
izontal velocity of the particle decreases each time it approaches a wall and increases
when it moves away from the wall. Same reasoning as mentioned in Section 3.1.2.

(a) (b)

Figure 3.12 (a) The vertical particle velocity and (b) the horizontal particle velocity
plotted against the distance to the nearest wall dwall. The blue cross marks the particle's
release. dwall is de�ned by dwall = min(xc, Lx − xc, yc, Ly − yc)− 1

2Dp.



Chapter 3. Results 27

3.1.4 Chaotic regime

In Figure 3.13 the results for the trajectory of the particle in the horizontal plane and
the vertical position of the particle zc in time are illustrated for case S250A.

(a) (b)

Figure 3.13 Results for case S250A (Ga = 250) (a) Temporal evolution of the vertical
position of the particle zc. The blue cross marks the particle's release. (b) Trajectory of a
single sphere in the horizontal plane. The red cross marks the initial position of the particle.

For Ga = 250 a chaotic trajectory in the horizontal plane was expected, however
Figure 3.13b shows a distinctive pattern. There is a lot of uncertainty in these results,
since a single con�guration is used to investigate S250A. Uhlmann and Du²ek averaged
over 7 simulation runs with an identical setup, but for each run a di�erent velocity for
the moving frame of reference was set. The investigation on this case is not further
expanded, since it is not the main focus of this work.

(a) (b)

Figure 3.14 Results for case S250A (Ga = 250) similar to Figure 3.4.

Despite the for-mentioned the data for S250A is still analyzed. In Figure 3.14 it can
be seen that the frequency of the �uctuations of the vertical particle velocity is much
higher than the frequencies found in case S178A and S200A. A spectral analysis (Fig-
ure 3.15) for the vertical particle velocity �uctuations over the time interval between
t = 110T and t = 685T has been performed. From this analysis the frequency charac-
terizing these velocity �uctuations is found to be f = 0.0835

T . The number of times the
particle approaches the wall in this time interval is 47 (based on Figure 3.16). This
corresponds to a frequency f = 47

685T −110T = 0.0817
T , which roughly corresponds to the
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frequency found with the spectral analysis. Similar to case S178A and S200A, it can
be concluded that the �uctuations of the vertical particle velocity are dominated by
the interactions with the walls. Additionally, note that over the for-mentioned time
interval the vertical particle velocity �uctuates between UpV,min = −1.2296U and
UpV,max = −1.3462U , which means that the amplitude of the velocity �uctuations is

|UpV,max−UpV,min2 | = 0.0583U .

The terminal settling velocity of the particle UT = −1.3091U , which corresponds to a
Reynolds number ReT = 327.28.

Figure 3.15 Single-sided amplitude spectrum of U ′pV (t): the magnitude of the vertical
particle velocity in the frequency domain U ′pV (f) plotted against the frequency normalized
by the characteristic time scale T .

(a) (b)

Figure 3.16 (a) The vertical particle velocity and (b) the horizontal particle velocity
plotted against the distance to the nearest wall dwall. The blue cross marks the particle's
release. dwall is de�ned by dwall = min(xc, Lx − xc, yc, Ly − yc)− 1

2Dp.
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3.1.5 Wall e�ects

In Figure 3.17 and 3.18 the results for the trajectory of the particle in the horizontal
plane and the vertical particle velocity UpV in time are illustrated for case S144B and
S144C, respectively. From the �gures below and �gures displayed in Section 3.1.1 two
observations could be made.
The �rst observation is the in�uence on the width of the tube (= Lx) on the terminal
settling velocity of the particle UT . When the width of the tube increases the vertical
particle velocity increases, see Figure 3.19. Note that the terminal settling velocity of
the particle UT = −1.2859U for S144B and UT = −1.2903U for S144C, which corre-
sponds to ReT = 185.17 and ReT = 185.80, respectively.

(a) (b)

Figure 3.17 Results for case S144B (Ga = 144) (a) Trajectory of a single sphere in the
horizontal plane. The red cross marks the initial position of the particle and the blue
dashed line indicates the region of motion. (b) Temporal evolution of the vertical particle
velocity UpV . The blue cross marks the particle's release.

Figure 3.19 also contains the graphical representation of Equation B.8 for three di�er-
ent values of UT,free to check whether this equation could be used as a crude estimator
to determine the terminal settling velocity of a sphere in a rectangular duct:

� UT,free = −1.2810U : based on Morison's equation (Appendix B.1).

� UT,free = −1.2920U : based on highly-accurate spectral/spectral-element simu-
lations by Uhlmann and Du²ek [6].

� UT,free = −1.2975U : �tted on the simulation data in this work.

The curves in Figure 3.19 show that Equation B.8 could be used as a crude estimator
to determine the terminal settling velocity of a sphere in a rectangular duct provided
that the value for the terminal settling velocity of a sphere in free space UT,free is set
correctly.

The other observation focuses on the motion of the particle in the horizontal plane.
Recall that for S144A the radius of the region of motion for S144A is rmotion =
0.7641Dp. Which is rmotion = 1.0800Dp and rmotion = 1.9264Dp for case S144B and
S144C, respectively. This means that the radius of the region of motion increases for
wider channels. This result could indicate that besides the fact that a narrow tube
suppresses the vertical particle velocity more than a wider tube, it also suppresses
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the motion of the particle in the horizontal plane. Since the distance between the
particle and the wall is relatively large, it is suggested that a lift force related to
the irrotational (or potential) �ow theory is in�uencing the horizontal motion of the
particle.

(a) (b)

Figure 3.18 Results for case S144C similar to Figure 3.17.

Figure 3.19 The vertical particle velocity plotted against the width of the tube (= Lx)
for Ga = 144. The simulation results are indicated by the black crosses. The dashed lines
correspond to Equation B.8 with UT,free = −1.2810U (blue), UT,free = −1.2920U (red) and
UT,free = −1.2975U (green).
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3.2 Two particles

In this section the results regarding the sedimentation of two spheres are presented.
As a �rst step a qualitative analysis is performed by means of a code written in
MATLAB®. This code makes it possible to visualize the entire simulation in the
3D domain. Comparison of the results regarding the drafting-kissing-tumbling phe-
nomenon is di�cult, since other studies (numerical and experimental) covering this
subject mainly report the occurrence of the phenomenon, rather than quantify the
dynamics accompanying the DKT phenomenon. In this section it is therefore chosen
to describe the results qualitative and (if possible) quantify the dynamical features.

3.2.1 Steady vertical regime

Case T144 corresponds to the sedimentation of two particles with Ga = 144. The
behaviour of both particles in case T144 can be summarized by Figure 3.20, which
displays the coordinates of both particles as a function of time. In the �gure the
anticipated DKT phenomenon is clearly observed after the particles are released at
t = 0. The velocity of the moving frame of reference outperforms the vertical parti-
cle velocity initially, since the particles have not reached their terminal velocity yet,
causing the particles to move upwards in the computational domain. As a result of
the DKT the particles interchange their role, so that the leading particle becomes
the trailing particle and vice versa. After the tumbling stage the particles drift to
opposite corners in the computational domain and remain there for the remainder of
the simulation, while falling with a constant vertical velocity.

Figure 3.20 Position of the particle centroid (xc =
〈
xc, yc, zc

〉
) plotted against time for

both particles. The coordinates of particle 1 and 2 are indicated with the red and blue lines,
respectively. xc: solid lines(-), yc: dotted lines(:) and zc:dash-dotted lines(-.).

Since the two particles fall independently in the computational domain for the re-
mainder of the simulation a greater hindered settling e�ect is expected and therefore
a lower magnitude of the vertical particle velocity. This is con�rmed by Figure 3.21,
since both particles have a lower vertical particle velocity compared to a single sphere
(case S144A). If the vertical particle velocity is averaged over a time interval t = 200T
to t = 1000T , one obtains a terminal settling velocity of both particles of approxi-
mately UT ≈ −1.23U .
Also note that there is a signi�cant increase in the vertical particle velocity of both
particles during the DKT process .
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Figure 3.21 Temporal evolution of the vertical particle velocity for both particles in case
T144. The red solid line(-) and the blue dashed line(�) indicate particle 1 and 2,
respectively. The black dash-dotted line(-.) indicates the terminal settling velocity of a
single particle (case S144A) and is added for comparison.

3.2.2 Steady oblique regime

T178 is an interesting case, since it involves the Galileo number Ga = 178, which
has been extensively studied by Uhlmann and Doychev [7] for a single and multiple
particles. In their work they suggest that wake attraction, in the sense of drafting-
kissing-tumbling, is the key mechanism of particle cluster formation. Figure 3.22
shows the vertical position of the two spheres during the simulation. This �gure con-
tains two time intervals labelled `1' and `2', which will be further discussed below.

Figure 3.22 Temporal evolution of the vertical particle position for both particles in case
T178. The red and blue solid line indicate particle 1 and 2, respectively.
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Interval 1

Although Figure 3.22 suggests that the DKT phenomenon occurs multiple times in
rapid succession, observing an animation of the simulation created with MATLAB®

provides us with di�erent insights: The DKT process was never observed during this
time interval, nor do the particles collide in a horizontal manner. Instead, the two
particles move independently in the domain. The animation also reveals that after
t = 1030T no DKT occurs.

Interval 2

In contrast to box 1, this time interval shows interesting results regarding the wake
attraction between the particles. The particles move around in the computational do-
main at di�erent heights in the time prior to interval 2. At t ≈ 915T particle 1 starts
descending, this point marks the initiation of the drafting stage. Beyond t = 915T
the trailing particle (particle 1) moves towards the leading particle (particle 2), this
is the drafting stage. After the drafting stage, the particles kiss at t ≈ 971T . The
unstable con�guration of the particles during the kissing stage causes the particles to
tumble (t ≈ 978T ) and subsequently the particles repel each other and swap their
vertical positions in the domain.

In Figure 3.23 the three stages of the DKT phenomenon are displayed. The iso-surfaces
in the plots indicate the second largest eigenvalue (λ2) of the tensor S2 +Ω2, where S
and Ω are the symmetric and anti-symmetric parts of the velocity gradient∇u. Vortex
structures can be identi�ed as the connected region where λ2 is negative, hence this is
known as the λ2-method. This method, which has been extensively studied by Jeong
and Hussain [25], gives insights in the wake structures of the sedimenting particles.
The iso-surfaces in Figure 3.23 indicate the regions where λ2 = −0.015.

Figure 3.23 The DKT phenomenon seen in case T178 between t = 900T and t = 1000T .
From left to right: drafting, kissing, tumbling. The red iso-surface highlights the region
where λ2 = −0.015.
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The initiation of the DKT process at t ≈ 915T and not before this time could be
related to the vertical alignment of the particles and the direction of motion in the
horizontal plane. When observing the 3D animation of the simulation it is clear that
the wake attraction starts (the drafting stage) as soon as the particles are almost ver-
tically aligned and both particles move in the same direction in the horizontal plane.
This observation is supported by Figure 3.24a, where the horizontal coordinates of
the particle centroid (xc and yc) are plotted against the time between t = 900T and
t = 1000T .

Note that the particles are a considerable length apart at the onset of the drafting
stage. This distance amounts roughly 5 particle diameters. Figure 3.24b shows both
particles and their wake structure at t ≈ 915T . It can be seen that the wake of the
leading particle interacts with the trailing particle over a distance of roughly 5Dp.
This length was also reported by Fortes et al.[8].

Also take note of the double-threaded structure of the wake. This wake structure is
similar to the wake structure reported in the paper of Uhlmann and Du²ek [6] for the
same Galileo number.

(a)

(b)

Figure 3.24 (a) Temporal evolution of the horizontal particle positions, xc (solid lines)
and yc (dotted lines), for both particles on the time interval between t = 900T and
t = 1000T . The red and blue lines indicate particle 1 and 2, respectively.
(b) The DKT onset at t ≈ 915T . The red iso-surface highlights the region where
λ2 = −0.015.
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Figure 3.25 shows the vertical particle velocity of both particles. It can be seen that
at some time instances the vertical particle velocity of both particles signi�cantly
exceeds the vertical velocity of a single particle (case S178A). These instances are
around t = 200T , 400T , 500T , 900T . When looking at Figure 3.22 it can be seen that
at these times the particles interact with each other in the form of wake-trapping
between the trailing and leading particle or DKT (see Figure 3.23). Also note the
time instances in the plot where vertical particle velocity is much less than the vertical
velocity of a single particle. This corresponds to the end of the tumbling stage, where
the leading particle is `catapulted' upwards so it becomes the trailing particle.
The small velocity �uctuations seen in the plot could not be analyzed by means of a
spectral analysis, since the signal contains too much noise. It is expected that these
small �uctuations are related to the particle-wall interaction as observed for a single
particle (see Section 3.1.2).

Figure 3.25 Temporal evolution of the vertical particle velocity for both particles in case
T178. The red and blue line indicate particle 1 and 2, respectively. The black dash-dotted
line(-.) indicates the terminal settling velocity of a single particle (case S178A) and is added
for comparison.
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3.2.3 Oblique oscillating regime

In Figure 3.26 and by visual inspection it is seen that the particles interact with each
other on the time interval between t = 0 and t = 300T . During this time interval the
particles repeatedly experience drafting-kissing-tumbling. Similar to T178, the DKT
process initiates when the particles are almost vertically aligned and they have a
similar direction of motion in the horizontal plane. It is di�cult to show the direction
of the particles as clearly as Figure 3.24a, because the DKT process occurs several
times in a relatively short time interval.

Figure 3.26 Temporal evolution of the vertical particle position for both particles in case
T200. The red and blue solid line indicate particle 1 and 2, respectively.

Figure 3.27 shows the vertical particle velocity of both particles. The behaviour is
similar to T178 and is explained in Section 3.2.2.

Figure 3.27 Temporal evolution of the vertical particle velocity for both particles in case
T200. The red and blue line indicate particle 1 and 2, respectively. The black dash-dotted
line(-.) indicates the terminal settling velocity of a single particle (case S200A) and is added
for comparison.
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3.2.4 Chaotic regime

This case is not extensively elaborated, since Ga = 250 is not the main focus of
this work. However, one interesting observation is made regarding the trajectories of
the particles. Similar to S250A the paths of both particles are predictable instead
of chaotic. In Figure 3.28 the position of both particle centroids are plotted against
time. From this plot it could be argued that this case was not simulated long enough,
since a di�erent trajectory is observed after t = 800T , which could suggest a change
in dynamical behaviour. Another explanation could be that the particles show inter-
action with each other for the second time in the entire simulation (the �rst time is
right after the start of the simulation).

Figure 3.28 Position of the particle centroid plotted against time for both particles. The
upper plot shows the vertical position zc of both particles. The middle and lower plot show
the coordinates xc and yc of particle 1 and 2, respectively. xc: solid lines(-), yc: dotted
lines(:).
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3.3 Multiple particles

This section focuses mainly on the results regarding the settling velocity of the suspen-
sions with solid-volume fractions Φ. Equations 3.7-3.10 are de�ned to avoid confusion
in terms of terminology.
The average of a particle-related quantity Q(t) over all particles is de�ned by

Qp(tm) =
〈
Qp
〉
p
(tm) =

1

Np

Np∑
i=1

Qip(tm), for all m ∈ [1, Nt] (3.7)

And the time average for that quantity Q(t) is

〈
Q
〉
t

=
1

Nt

Nt∑
m=1

Q(tm) (3.8)

The combination of Equation 3.7 and 3.8 is denoted by
〈
Qp
〉
p,t
, which is the mean

over all particles and time.
The auto-correlation function (ACF) for the vertical particle velocity is used to de-
termine whether enough time steps were used in order for the suspensions to settle.
In general the ACF for a quantity Q(t) is de�ned as

RQQ(τlag) =

〈
Q′(t)Q′(t+ τlag)

〉
p,t〈

Q′(t)Q′(t)
〉
p,t

(3.9)

Where Q′(t) = Q(t)−
〈
Q
〉
p,t

is the �uctuation of the quantity and τlag the lag time.

From the auto-correlation function for the vertical particle velocity, a time step Nstart

could be determined where the vertical particle velocity �uctuations become decor-
related, i.e. RQQ = 0. The settling velocity of the suspension US is then de�ned
as

US =
〈
UpV

〉
p,t
, for all m ∈ [Nstart, Nt] (3.10)

Case M144A, M178A and M200A (Φ = 5.1 · 10−3) have been chosen to determine the
time step Nstart where the vertical particle velocity �uctuations become decorrelated,
since their velocity signal shows the largest �uctuations (see Figure 3.30, 3.37, 3.44).
The auto-correlation functions of the vertical particle velocity for M144A, M178A and
M200A are shown in Figure 3.29.

From this �gure it is determined that the vertical particle velocities become decorre-
lated after t = 200T . This means the settling velocity of the suspension US is based
on the time interval between t = 200T and t = 900T for all cases.
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Figure 3.29 The auto-correlation functions of the vertical particle velocity UpV as a
function of the lag time τlag for M144A (blue line), M178A (red line) and M200A (yellow
line).

3.3.1 Steady vertical regime

In Figure 3.30 the average particle settling velocity UpV has been plotted against
time for all cases (M144A-M144G). First of all the anticipated hindered settling e�ect
is clearly observed, because it can be seen in this �gure that the average particle
settling velocity decreases with increasing solid-volume fraction Φ. Also, a di�erence in
�uctuation level between the dilute and dense suspensions is observed: the �uctuations
of the average particle settling velocity are larger for the dilute cases compared to the
dense cases.

Figure 3.30 The average particle settling velocity plotted against time for all cases (all
solid-volume fractions Φ). The black dashed-dotted line represents the vertical particle
velocity of a single sphere UT (case S144A).

Figure 3.31 shows the settling velocity of the suspension plotted against the solid-
volume fraction. From this plot it can be determined that the settling velocity of
the suspensions with Φ = 5.1 · 10−3 and Φ = 1.0 · 10−2 are increased by 4.1% and
1.2% compared to the value of a single particle. Additionally, this �gure could imply
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that the hindered settling e�ect observed by Richardson and Zaki comes into e�ect
for solid-volume fractions Φ ' 0.01.

Figure 3.31 The settling velocity of the suspension plotted against the solid-volume
fraction for all cases (all solid-volume fractions Φ). The black cross represents the terminal
settling velocity of a single particle UT (case S144A).

Similar to Richardson and Zaki [1] it is interesting to see if there exists a constant
exponent n that relates US and Φ according to Equation 1.2.

Equation 1.2 could be rewritten, so that

logUS(Φ) = n log(1− Φ) + logUT (3.11)

It can be seen in Figure 3.32 that n is not constant, since no straight line is observed
in this plot. This means n does not solely depend on the particle Reynolds number
Rep and the ratio

Dp
Lx

(or
Dp
Dt

), but also on the solid-volume fraction Φ itself.

Figure 3.32 log |US

U | vs. log(1− Φ) for Ga = 144. The black cross indicates the terminal
settling velocity of a single particle UT .
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In Figure 3.33 the distribution of the vertical particle velocity (normalized by the ve-
locity of a single particle) is displayed for three di�erent solid-volume fractions. The
three solid-volume fractions are: Φ = 5.1·10−3 (most dilute suspension), Φ = 5.0·10−2

(a semi-dilute suspension) and Φ = 3.0 · 10−1 (most dense suspension). The velocity
distributions of the other solid-volume fractions are appended in Appendix E.1. Note
that the distribution of the vertical particle velocity is indicated by the normalized
histogram, so that it displays the estimate of the probability density function (PDF)
for the vertical particle velocity. The red line, added in the graphs, is a Gaussian (nor-
mal) distribution with a mean and standard deviation based on the vertical particle
velocity simulation data of all particles. Also note that the simulation data, used to
determine these distributions, is taken between t = 200T and t = 900T .

(a) (b)

(c)

Figure 3.33 Distribution of the vertical particle velocity for Ga = 144 and
(a) Φ = 5.1 · 10−3, (b) Φ = 5.0 · 10−2 and (c) Φ = 3.0 · 10−1. The black dashed line indicates
the settling velocity of a single sphere and the red line indicates the Gaussian distribution
with a mean and standard deviation based on the vertical particle velocity simulation data.

A priori, A non-Gaussian distribution was expected for the dilute suspensions (Φ =
5.1 · 10−3 and Φ = 1.0 · 10−2), because the settling velocity of the suspension is higher
compared to the velocity of a single particle. When this increase is due to particle
interaction (such as DKT), a di�erent distribution of the vertical particle velocity is
expected compared to the case when the same particles do not interact with each
other. Therefore, a non-Gaussian distribution, similar to distributions seen in Figure
1.7, was expected. The for-mentioned suggests that particle clustering is present,
which could be due to wake trapping (drafting) or DKT.
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However, from Figure 3.33 it can be concluded that the vertical particle velocity is
by approximation normally distributed for all solid-volume fractions. This means it
can not be determined, based on this statistic, if particle clustering occurs for the
solid-volume fractions Φ = 5.1 · 10−3 and Φ = 1.0 · 10−2.
Further investigation on the possibility of particle clusters being present in the simula-
tions for the dilute suspensions brings us to an interesting spatial parameter θ, which
is the angle of a particle with its nearest neighbouring particle and the vertical; see the
sketch in Figure 3.35h. The distribution of the angle θ is plotted for all solid-volume
fractions in Figure 3.35. To compare the data, a probability density function of the
angle θ for a set of non-interacting particles, randomly distributed in an arbitrary vol-
ume, has to be speci�ed. For such a set of random distributed particles (RDP), it can
be theoretically derived that the PDF of the angle θ is given by PDFRDP = 1

2sin(θ),
where θ ∈ [0, π]. This PDF is used as a reference and it shows that the particles in the
simulations interact with each other for low solid-volume fraction as their statistics
(see Figure 3.35) strongly di�er from that of random distributed particles: A clear
increase is observed for θ < 30◦ (or θ > 150◦). This means particles are found to align
vertically more than a set of random distributed particles. This enables particles to
enter the wake of leading particles, which results in the formation of particle clusters,
hence the increase in the settling velocity of clustered particles compared to a single
particle settling individually. This hypothesis is supported by Figure 3.34, where a
top view on the computational box for Ga = 144 and Φ = 5.1 · 10−3 is shown for
several time instances and Figure 3.36, where DKT is observed for the same case.

Figure 3.34 Particle locations seen from the top of the computational domain for several
time instances for case M144A (Ga = 144 and Φ = 5.1 · 10−3). It is observed that the
particles align vertically more for di�erent instances in time than the initial setup (t = 0T ).
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(a) (b)

(c) (d)

(e) (f)

(g)
(h)

Figure 3.35 Distribution of the angle θ for Ga = 144 and all solid-volume fractions.
The black dashed line indicates the PDF for random distributed particles PDFRDP . Notice
the increase for θ < 30◦ (or θ > 150◦) for the dilute suspensions (low Φ). (h) The basic
principle of the angle θ.
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From Figure 3.35 it can be seen that for increasing solid-volume fraction Φ, the statistic
regarding the angle θ is starting to look more like that of random distributed particles.
This could indicate that as the solid-volume fraction increases, particle clustering
vanishes and other interactions occur. Besides the two most dilute concentrations,
the distribution of θ for Φ = 2.5 · 10−2 also indicates that the particles tend to align
vertically. However, an increase in the settling velocity was not observed, this is
probably attributed to the hindered settling e�ect.
Regarding Figure 3.33 it can be argued, that the statistics involving the distribution
of the vertical particle velocity are not decisive when identifying particle clustering,
i.e. a Gaussian distribution of the vertical particle velocity does not necessarily mean
that particles do not cluster.
The results, described in this section, con�rm the �ndings by Huisman et al.[15],
who also observed mild clustering in their experiments for the steady vertical regime
(Ga = 110) at even lower solid-volume fractions. Note that in the studies of Uhlmann
and Doychev [7] no signi�cant increase in the settling velocity of the suspension was
observed nor the formation of clusters for Ga = 121 in a triply periodic computational
box. The clustering of particles, resulting in an increase of the settling velocity of the
suspension, might be explained by the presence of intrinsic convection, which could
occur for multiple particles settling in a con�ned geometry.

Figure 3.36 From left to right: Drafting, kissing, tumbling. One of many instances of
DKT seen in the simulations for case M144A (Ga = 144 and Φ = 5.1 · 10−3).
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3.3.2 Steady oblique regime

In Figure 3.37 the average particle settling velocity UpV has been plotted against time
for all cases (M178A-M178G). Similar to the steady vertical regime, the anticipated
hindered settling e�ect is clearly observed and the �uctuations of the average particle
settling velocity are larger for the dilute cases compared to the dense cases.

Figure 3.37 The average particle settling velocity plotted against time for all cases (all
solid-volume fractions Φ). The black dashed-dotted line represents the vertical particle
velocity of a single sphere UT (case S178A).

Figure 3.38 shows the settling velocity of the suspension plotted against the solid-
volume fraction. From this plot it can be determined that the settling velocity of the
suspensions with Φ = 5.1 · 10−3 and Φ = 1.0 · 10−2 are increased by 7.8% and 2.7%
compared to the value of a single particle. These increases are higher compared to the
values seen in the steady vertical regime (previous section) for the same solid-volume
fractions. Similar to the previous section, this �gure could imply that the hindered
settling e�ect observed by Richardson and Zaki comes into e�ect for solid-volume
fractions Φ ' 0.01.

Figure 3.38 The settling velocity of the suspension plotted against the solid-volume
fraction for all cases (all solid-volume fractions Φ). The black cross represents the terminal
settling velocity of a single particle UT (case S178A).
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It can be seen in Figure 3.39 that n (see Equation 3.11) is not constant, since no
straight line is observed in this plot. This indicates, similar tot the steady vertical
regime, that n does not solely depend on the particle Reynolds number Rep and the

ratio
Dp
Lx

(or
Dp
Dt

), but also on the solid-volume fraction Φ itself.

Figure 3.39 log |US

U | vs. log(1− Φ) for Ga = 178. The black cross indicates the terminal
settling velocity of a single particle UT .

(a) (b)

(c)

Figure 3.40 Distribution of the vertical particle velocity for Ga = 178 and
(a) Φ = 5.1 · 10−3, (b) Φ = 5.0 · 10−2 and (c) Φ = 3.0 · 10−1. The black dashed line indicates
the settling velocity of a single sphere and the red line indicates the Gaussian distribution
with a mean and standard deviation based on the vertical particle velocity simulation data.
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In Figure 3.40 the distribution of the vertical particle velocity (normalized by the
velocity of a single particle) is displayed for three di�erent solid-volume fractions.
The three solid-volume fractions are: Φ = 5.1 · 10−3, Φ = 5.0 · 10−2 and Φ = 3.0 ·
10−1. The velocity distributions of the other solid-volume fractions are appended in
Appendix E.1. Note that the distribution of the vertical particle velocity is indicated
by the normalized histogram, so that it displays the estimate of the probability density
function (PDF) for the vertical particle velocity. The red line, added in the graphs,
is a Gaussian distribution with a mean and standard deviation based on the vertical
particle velocity simulation data of all particles.
As is the case in the steady vertical regime, the vertical particle velocity is by ap-
proximation normally distributed for all solid-volume fractions in the steady oblique
regime. So this statistic does not indicate the presence of particle clusters for the
solid-volume fractions Φ = 5.1 · 10−3 and Φ = 1.0 · 10−2.

The distribution of the angle θ (Figure 3.41) shows a familiar sight: Similar to the
steady vertical regime, a clear increase is visible for θ < 30◦ (or θ > 150◦) for the
solid-volume fractions Φ = 5.1 · 10−3, Φ = 1.0 · 10−2,Φ = 2.5 · 10−2 and therefore
their statistics di�er strongly from that of random distributed particles (PDFRDP ,
as described in the previous section). This result indicates that particles do interact
with each other and the particles are found to align vertically more than random
distributed particles. This will result in the clustering of particles and causes the
settling velocity of the particles to fall faster than the particles would individually.
A remarkable di�erence in the distribution of θ for Φ = 5.1 · 10−3 is observed when
comparing Ga = 144 and Ga = 178: Ga = 178 shows a reduction of the distribution
of θ for an angle θ ≈ 90◦, compared to the same solid-volume fraction in the steady
vertical regime (Ga = 144). This means the probability of particles located next to
each other is reduced for the steady oblique regime (compared to the steady vertical
regime). This di�erence was also observed in the work of Huisman et al.[15] and it
possibly explains why the increase of the settling velocity of the suspension is higher
in the steady oblique regime (7.8%) compared to the steady vertical regime (4.1%)
for Φ = 5.1 · 10−3.

Additionally, Figure 3.42 and 3.43 strongly support the hypothesis of cluster forma-
tion. The pictures seen in Figure 3.43 and the two particles simulation (T178) support
the suggestion by Uhlmann and Doychev [7] that DKT is the key mechanism of cluster
formation.



Chapter 3. Results 48

(a) (b)

(c) (d)

(e) (f)

(g)
(h)

Figure 3.41 Distribution of the angle θ for Ga = 178 and all solid-volume fractions.
The black dashed line indicates the PDF for random distributed particles
PDFRDP = 1

2sin(θ). Notice the increase for θ < 30◦ (or θ > 150◦) for the dilute suspensions
(low Φ). (h) The basic principle of the angle θ.
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Figure 3.42 Particle locations seen from the top of the computational domain for several
time instances for case M178A (Ga = 178 and Φ = 5.1 · 10−3). It is observed that the
particles align vertically more for di�erent instances in time than the initial setup (t = 0T ).

Figure 3.43 From left to right: Drafting, kissing, tumbling. One of many instances of
DKT seen in the simulations for case M178A (Ga = 178 and Φ = 5.1 · 10−3).
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3.3.3 Oblique oscillating regime

In Figure 3.44 the average particle settling velocity UpV has been plotted against time
for all cases (M200A-M200G). Similar to the other regimes, the anticipated hindered
settling e�ect is clearly observed and the �uctuations of the average particle settling
velocity are larger for the dilute cases compared to the dense cases.

Figure 3.44 The average particle settling velocity plotted against time for all cases (all
solid-volume fractions Φ). The black dashed-dotted line represents the vertical particle
velocity of a single sphere UT (case S200A).

The results involving the settling velocity of the suspensions for Ga = 200 are similar
to the results for Ga = 178. Both dilute suspensions (Φ = 5.1·10−3 and Φ = 1.0·10−2)
show a signi�cant increase in the magnitude of the settling velocity of the suspension
compared to the value of a single particle (S200A). The increases are 7.1% and 4.0%,
respectively. These increases are of the same level as seen in the steady oblique regime.
Similar to the steady oblique regime, it is also observed in the oblique oscillating
regime that the hindered settling e�ect comes into e�ect for solid-volume fractions
Φ ' 0.01. Finally, it is seen in Figure 3.46 that the exponent n is not constant.

Figure 3.45 The settling velocity of the suspension plotted against the solid-volume
fraction for all cases (all solid-volume fractions Φ). The black cross represents the terminal
settling velocity of a single particle UT (case S200A).
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Figure 3.46 log |US

U | vs. log(1− Φ) for Ga = 200. The black cross indicates the terminal
settling velocity of a single particle UT .

The distributions of the vertical particle velocity and the angle θ can be seen in Fig-
ures 3.47 and 3.48, respectively. Similar statistics, regarding the distribution of the
vertical particle velocity, are observed for the oblique oscillating regime and the other
two regimes (steady vertical and steady oblique).

For Φ = 5.1 · 10−3 and Ga = 200, the distribution for θ is similar to the distribution
seen in the steady vertical regime, while the increase of US (7.1%) is higher compared
to the steady vertical regime (4.1%). This contradicts the suggestion made in the
previous section. Hence, the distribution of θ and the increase of the settling velocity
of the suspension compared to the velocity of a single particle are not related.

(a) (b) (c)

Figure 3.47 Distribution of the vertical particle velocity for Ga = 200 and
(a) Φ = 5.1 · 10−3, (b) Φ = 5.0 · 10−2 and (c) Φ = 3.0 · 10−1. The black dashed line indicates
the settling velocity of a single sphere and the red line indicates the Gaussian distribution
with a mean and standard deviation based on the vertical particle velocity simulation data.
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(a) (b)

(c) (d)

(e) (f)

(g)
(h)

Figure 3.48 Distribution of the angle θ for Ga = 200 and all solid-volume fractions.
The black dashed line indicates the PDF for random distributed particles
PDFRDP = 1

2sin(θ). Notice the increase for θ < 30◦ (or θ > 150◦) for the dilute suspensions
(low Φ). (h) The basic principle of the angle θ.
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It can be seen (similar to the other regimes) that for increasing solid-volume fraction,
the distribution of θ becomes similar to that of random distributed particles, which
could mean that particle clustering vanishes and other interactions occur. The statistic
of θ for the dilute suspensions indicates the formation of clusters. This is supported
by Figure 3.49 and 3.50, which show the particle locations for di�erent time instances
and a visualization of DKT seen in the simulations for Φ = 1.0 · 10−2.

Figure 3.49 Particle locations seen from the top of the computational domain for several
time instances for case M200B (Ga = 200 and Φ = 1.0 · 10−2). It is observed that the
particles align vertically more for di�erent instances in time than the initial setup (t = 0T ).

Figure 3.50 From left to right: Drafting, kissing, tumbling. One of many instances of
DKT seen in the simulations for case M200B (Ga = 200 and Φ = 1.0 · 10−2).
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3.3.4 Vertical particle velocity �uctuations

The standard deviation (or root-mean-square) of the vertical particle velocity (U rmspV )
is the simplest measure of the vertical particle velocity �uctuations. In the work of
Guazzelli and Hinch [26] it is observed that in the Stokes regime, the vertical particle
velocity �uctuations (normalized by US) reach a maximum at Φ ≈ 0.3, which means
the velocity �uctuations are the strongest for this solid-volume fraction. It was shown
for solid-volume fractions Φ < 0.3 that the relation between the vertical particle
velocity �uctuations and the solid-volume fraction is given by Equation 3.12 (for the
Stokes regime).

U rmspV

US
≈ AΦ1/3, with 2 ≤ A ≤ 3 (3.12)

In Figure 3.51 the vertical particle velocity �uctuations normalized by the settling
velocity of the suspension are plotted against the solid-volume fraction for the simu-
lations in the present work. It can be seen for all Galileo numbers that the strongest
velocity �uctuations occur for Φ = 0.3. Since this study focuses on particle Reynolds
numbers in the intermediate regime, a di�erent relation between the vertical particle
velocity �uctuations and the solid-volume fraction is expected. A suggested relation is
given by Equation 3.13 and is plotted in Figure 3.51. It can be seen in this �gure that
Equation 3.13 is a good approximation for the vertical particle velocity �uctuations
given a solid-volume fraction Φ < 0.3. This relation suggests that the vertical particle
velocity �uctuations increase roughly as Φ1/3 for the intermediate particle Reynolds
numbers considered in this work, which is similar to the Stokes regime.

U rmspV

US
≈ BΦ1/3, with 0.6 ≤ B ≤ 0.7 (3.13)

Figure 3.51 Vertical particle velocity �uctuations normalized by US versus the
solid-volume fraction for the three Galileo numbers considered in the multiple particles
simulations. The dashed and dash-dotted line represent Equation 3.13 with B = 0.6 and
B = 0.7, respectively.



55

Chapter 4

Conclusions

Direct numerical simulations of the settling of a single, two and multiple solid spheres
under gravity have been performed. The simulations involve 4 di�erent Galileo num-
bers, i.e. Ga = 144, 178, 200 and 250 for a �xed solid-to-�uid-density ratio Γ = 1.5.
In the study of Jenny et al.[3] it is shown that for these Ga the particle motions of
a single particle are steady vertical, steady oblique, oblique oscillating and chaotic.
The in�uence of these di�erent regimes of motion on the dynamics of suspensions
of solid spheres with solid-volume fractions ranging from Φ = 0.005 to Φ = 0.3 has
been investigated in this work. This is done by observing the dynamics of a single
particle, two particles and eventually multiple particles. To resemble the conditions
of an experiment, such as the experiments of Richardson and Zaki [1] and Huisman
et al.[15], it is chosen to implement a square duct.

From the simulations of a single settling sphere it is shown that the �uctuations of
the vertical particle velocity for Ga = 178, 200, 250 are dominated by particle-wall
interactions. For these Galileo numbers, the vertical particle velocity decreases when
it approaches a wall and increases to a maximum value when it moves away from the
wall. In the steady oblique regime the particle never collides with the wall, which is
probably due to a wake-induced lift force acting on the particle directed away from
the wall. The motion of the particle for Ga = 144 was found to be not perfectly
steady vertical, since it has been shown that it also moves in the horizontal plane. It
is observed that the movement in the horizontal plane is suppressed, when the square
duct employed in the simulations becomes narrower, i.e. increasing

Dp
Lx

. It is suggested
that this is due to a lift force related to the potential �ow theory.

Drafting-kissing-tumbling has been investigated in the simulations of two settling
spheres. Instances of DKT in these simulations show an increase of the vertical par-
ticle velocity of both the trailing and leading particle during the drafting stage. It
is also found that DKT initiates when the particles are almost vertically aligned and
move in the same direction in the horizontal plane. DKT could even occur when the
particles are several particle diameters apart.

The results of the settling of suspensions for Ga = 144, 178, 200 show that the hin-
dered settling e�ect (see de�nition in Section 1.2.3) comes into e�ect for solid-volume
fractions Φ ' 0.01. The results also show that the exponent n is not constant for this
range of solid-volume fractions, which indicates that n is not solely dependent on the
Rep and the ratio

Dp
Dt

, but also on the solid-volume fraction Φ itself.
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For the solid-volume fractions Φ ≤ 0.01 an increase in the settling velocity of the
suspensions US compared to the value of a single particle is observed for all regimes
(vertical, oblique, oblique oscillating). The increases are higher in the steady oblique
and oblique oscillating regime compared to the steady vertical regime.

For all the regimes it has been shown that the vertical particle velocity is roughly nor-
mally distributed for all solid-volume fractions. For the dilute suspensions (Φ ≤ 0.01),
the distribution of the angle θ (the angle of a particle with its nearest neighbouring
particle and the vertical) shows that particles are found to align vertically more than
random distributed particles. This statistic indicates that particles do interact with
each other and causes the trailing particles to enter the wake of leading particles,
which results in the formation of particle clusters and thus an increase in the settling
velocity of the suspension. These �ndings are supported by instances of DKT ob-
served in the animations of the simulations and by looking at the particle locations
from the top of the computational domain at several time instances.

Huisman et al.[15] also observed particle clustering in the steady vertical regime (at
an even lower solid-volume fraction), while in the studies of Uhlmann and Doychev
[7] no signi�cant increase in the settling velocity of the suspension was observed nor
the formation of clusters in a triply periodic computational box for the same regime.
The clustering of particles in the steady vertical regime, resulting in an increase of the
settling velocity of the suspension, might be explained by large-scale �ows, such as
intrinsic convection, caused by the settling of multiple particles in a con�ned geometry.

Furthermore, the distribution of the angle θ is found to resemble the PDF of the θ
for random distributed particles as the solid-volume fraction increases, which would
indicate that with increasing Φ, particle clustering vanishes and other interactions
in�uence the sedimentation of the particles.

Finally, it has been observed for all regimes (corresponding to intermediate Reynolds
numbers) that the vertical particle velocity �uctuations relative to the settling velocity
of the suspension increase roughly with Φ1/3, which is similar to the Stokes regime.
These relative �uctuations are the highest for Φ = 0.3 in the present simulations.

As a future perspective, it would be interesting to investigate the sedimentation of
multiple (spherical) particles for di�erent cross-section dimensions of the duct, to see
whether the clustering of particles vanishes for the steady vertical regime when the
cross-section dimensions are chosen large enough. It is also interesting to investigate
the relative vertical particle velocity �uctuations for higher solid-volume fractions Φ >
0.3, to see for which Φ it shows a maximum value for intermediate Reynolds numbers
(in the Stokes regime it is found that the maximum relative velocity �uctuations
occur for Φ = 0.3). Finally, a subject of interest is to determine whether clustering
of particles in dilute suspensions is dominated by macroscale e�ects (such as intrinsic
convection) or microscale e�ects (such as the DKT mechanism) or a combination of
both.
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Appendix A

Governing equations

A.1 Equations for �ows with solid particles

In this study an incompressible Newtonian �ow is assumed and describes the motion
of spherical solid particles with diameter Dp in a quiescent Newtonian �uid.

Fluid phase

The �uid phase is described by the equation for conservation of mass A.1 and the
Navier-Stokes equation for an incompressible Newtonian �ow A.2:

∇ · u = 0 (A.1)

ρf

(∂u

∂t
+∇ · uu

)
1

= −∇p
2

+µf∇2u

3

(A.2)

where u is the �ow velocity, p is the modi�ed pressure (the total pressure minus the
contribution from the hydrostatic pressure), ρf is the mass density and µf is the dy-
namic viscosity of the �uid.
The terms correspond to inertial forces (1), pressure forces (2) and viscous forces (3).

Solid phase

The velocity of a particle segment at position X located on the surface ∂V of the
particle:

Ups(X) = uc + ωc × r (A.3)

where r = X − xc is the position vector relative to the center of the particle. uc is
the translational velocity of the particle centroid, whereas ωc is the angular velocity
of the particle. The translational and rotational velocities are described by Equation
A.4 and A.5, respectively. These equations are known as the Newton-Euler equations
for solid spheres.

ρpVp
duc
dt

=

∮
∂V
τ · n dA+ (ρp − ρf )Vpg (A.4)

Ip
dωc
dt

=

∮
∂V

r× (τ · n) dA (A.5)

ρp is the mass density and Vp is the volume of the particle.
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Ip is the moment of inertia of the particle. In this study the main focus is on spherical
particles with diameter Dp, hence the volume is Vp = π

6D
3
p and the moment of inertia

is Ip = π
60ρpD

5
p.

τ = −pI + µf (∇u + ∇uT ) is the stress tensor for a Newtonian �uid with unit ten-
sor I, n is the outward pointing unit normal at the surface ∂V of the particle and
the gravitational vector g = −gk, where k is the unit vector in the positive z-direction

Coupling solid and �uid phase

Equations A.1, A.2, A.4 and A.5 form a system of di�erential equations. These
equations are coupled through a no-slip and no-penetration condition at the surface
of the particle A.6. The �uid and particle motion are obtained by solving the system
of di�erential equations with the interface condition.

u = Ups ∀X ∈ ∂V (A.6)
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A.2 Non-dimensionalized equations and free parameters

Non-dimensionalization of the Navier-Stokes and Newton-Euler equations results in di-
mensionless parameters characteristic for particle-laden �ows. For the non-dimensionalization
a characteristic length scale L and velocity scale U are used to obtain the following
dimensionless variables.

Navier-Stokes:

∇∗ = L∇, u∗ = u/U , t∗ = t/(L/U),

p∗ = p/(ρfU2).

Newton-Euler:

U∗p = Up/U , uc
∗ = uc/U , ω∗c = ωc · (L/U)

r∗ = r/L, X∗ = X/L, x∗c = xc/L
A∗ = A/L2, τ ∗ = τ/(ρfU2).

Substituting these dimensionless variables into Equation A.1-A.6 results in the fol-
lowing non-dimensionalized equations for the �uid and solid phase:

∇∗ · u∗ = 0 (A.7)

∂u∗

∂t∗
+ u∗ · ∇u∗ = −∇∗p∗ +

νf
UL
∇∗2u∗ (A.8)

U∗p(X
∗) = u∗c + ω∗c × r∗ (A.9)

Γ
( Dp

L

)3du∗c
dt∗

=
6

π

∮
∂V
τ ∗ · n dA∗− (Γ− 1)gL

U2
k (A.10)

Γ
( Dp

L

)5dωc
dt

=
60

π

∮
∂V

r∗ × (τ ∗ · n) dA∗ (A.11)

u∗ = U∗p ∀X∗ ∈ ∂V (A.12)
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The four dimensionless parameters boxed in Equation A.7-A.12 are:

� Reynolds number Re ≡ ULνf

� Particle densimetric Froude num- Fr ≡ U√
|Γ−1|gL

ber

� Solid-to-�uid-density ratio Γ

� Particle diameter-to-characteristic
Dp
L

length scale ratio

Dynamic similarity requires these four dimensionless numbers to be kept constant.
Fortunately, the number of free parameters is reduced to two by a proper choice of
the characteristic length and velocity scales (L, U):

L = Dp
Dp

L
= 1 Γ

U =
√
|Γ− 1|gDp Fr = 1 Re =

√
|Γ− 1|gD3

p

ν2
f

= Ga

So it can be concluded from the dimensional analysis of the Navier-Stokes and Newton-
euler equations, that the parameters characterizing particle laden �ows are the solid-
to-�uid-density ratio Γ =

ρp
ρf

and the Galileo number Ga.
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Appendix B

Sphere dynamics

B.1 Morison's equation for a sphere settling under gravity

in free space

The Galileo number Ga and the solid-to-�uid-density ratio Γ are related to the particle
Reynolds number Rep. Their relation can be approximated with Morison's equation1

for unsteady particle motion (Morison et al.[27]). In case of a spherical particle in
gravitational motion in free space, Morison's equation reads:

ρpVp
dUpz
dt

1

= (ρp − ρf )Vpg

2

− 1

2
ρfVp

dUpz
dt

3

−CDAfs
1

2
ρfU

2
pz

4

(B.1)

Where Afs is the frontal surface area of the particle, which is Afs = π
4D

2
p for a sphere.

The terms correspond to particle inertia (1), buoyancy force (2), added mass (3) and
drag force (4).

Equation B.1 can be rewritten to obtain the non-dimensional form of Morison's equa-
tion for unsteady motion of a sphere settling under gravity:

[(Γ +
1

2
) ·Ga]

dRep
d(t/T )

= Ga2 − 3

4
CD(Rep) ·Re2

p (B.2)

With Rep =
UpzDp
νf

and where T = L/U is a characteristic time scale. L and U are

listed in A.2.

Di�erent empirical relations between the drag coe�cient and the particle Reynolds
number were obtained throughout the twentieth century [28]. For this study the
relation from Abraham [29] is used, which reads:

CD(Rep) = (

√
24

Rep
+ 0.5407)2 (B.3)

When a sphere is falling at its terminal velocity, the right hand side of Equation B.2
becomes zero. Then Equation B.2 reduces to:

0 = Ga2 − 3

4
CD(ReT ) ·Re2

T (B.4)

Where ReT is the Reynolds number at the sphere's terminal settling velocity UT .
Equation B.4 is the non-dimensional form of Morison's equation for steady motion
of a sphere settling under gravity in free space. This equation relates Ga and ReT

1in literature also referred to as MOJS equation to recognize the contributions of the originators:

Morison, O'Brien, Johnson and Schaaf
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and since Ga is given, the equation can be solved for ReT using the Newton�Raphson
method. Table B.1 shows the solutions of Equation B.4 for Ga = 144, 178, 200, 250.

Table B.1: Solutions to Equation B.4 for the Ga numbers of interest
in this work.

Ga ReT UT /U

144 184.46 1.2810

178 239.82 1.3473

200 276.46 1.3823

250 361.60 1.4464
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B.2 Wall e�ects on terminal settling velocity of a sphere

in a quiescent �uid

The e�ect of walls on the settling of a sphere in an otherwise quiescent �uid, i.e. a
sphere falling under gravity in a cylindrical duct, has been extensively investigated
[30, 31]. From these studies, it follows that for cylindrical ducts the absolute terminal
setting velocity could be approximated quite well by the equation:

UT,duct =

(
D2
d −D2

p

D2
d

)
UT,free (B.5)

Where Dd is the diameter of the duct and Dp is the sphere diameter. UT,duct is the
absolute terminal settling velocity of a the sphere and UT,free is the terminal settling
velocity of a sphere falling in a quiescent �uid in an in�nite medium (no walls).

Figure B.1 The schematic of a sphere with diameter Dp falling in a duct.

In this study a similar equation for rectangular ducts is desired. Since a good approxi-
mation of UT,duct is required in order to track the sphere in the computational domain
for as long as possible. From mass conservation it follows that there is an upward �uid
�ow, when the sphere is moving downwards (see Figure B.1). For a rectangular duct
(Lx × Ly) it follows that the averaged upward �uid velocity at the sphere midplane
is:

uup = −
( π

4D
2
p

LxLy − π
4D

2
p

)
UT,duct (B.6)

Thus the relative terminal velocity of the sphere relative the the surrounding �uid at
the sphere midplane reads:

UT,rel = UT,duct − uup =

(
1 +

1
4LxLy
πD2

p
− 1

)
UT,duct (B.7)

As a crude estimation, UT,rel is replaced with UT,free in order to give an approximation
of UT,duct. After applying the substitution and rearranging the terms in Equation B.7
the following equation for UT,duct is obtained:
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UT,duct =

(
1−

π
4D

2
p

LxLy

)
UT,free (B.8)

Where UT,free is estimated from Morison's equation for a sphere settling under gravity
(Appendix B.1):

UT,free
U

=
ReT
Ga

(B.9)

The value for UT,duct acts as a starting point for approximating w∞, which is the �uid
velocity imposed at the in�ow plane in the simulations.
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B.3 Transient motion of a sphere

The transient motion of a sphere falling under gravity has been extensively studied.
This section features an equation for the transient motion, which was acquired through
experimental work by Mordant and Pinton [32]. Their experimental work focuses on
Reynolds numbers between 40 and 7000. Since this study focuses on Reynolds numbers
within this range and because of the elegance of their equation, it is used in this work
to predict the transient motion in the vertical direction of a single sphere when an
in�ow is imposed. Two additional simulations were performed to validate the equation
by Mordant and Pinton.
Non-dimensionalized by the terminal settling velocity obtained from the simulation
UTsim and a characteristic time scale τ0 obtained by Mordant and Pinton, the equation
reads:

UpV
UTsim

= 1− exp(− t

τ0
), with

τ0

T
=

√
4

3CD,Tsim
(Γ +

1

2
) (B.10)

CD,Tsim is the drag coe�cient based on Equation B.3, where Rep is based on the ter-
minal velocity (UTsim) obtained from the simulations, UpV is the vertical component
of particle velocity and T = L/U .

To obtain the simulated data, a closed computational box with walls was used in
which a sphere was released in a �uid at rest. The domain has to be large enough
in the z-direction, allowing the particle to reach its terminal velocity before reaching
the bottom of the domain. Hence, the domain dimensions are Lx = Ly = 6Dp

and Lz = 54Dp. The particle's initial position coordinates are xc = yc = 3Dp and
zc = 50Dp. Figure B.2 shows the simulation results of the vertical velocity of the
particle together with the graphical representation of Equation B.10 for Ga = 144
and Ga = 178. From this �gure it can be concluded that Equation B.10 gives a
good approximation of the transient motion of the particle in the vertical direction.
Therefore this equation is used to determine the vertical trajectory of the particle
when a moving frame of reference is used.

(a) (b)

Figure B.2 Non-dimensionalized vertical velocity of a sphere for (a) Ga = 144 and (b)
Ga = 178 obtained from the simulations. The black solid line indicates the simulation data
and the red dashed line represents Equation B.10.
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The equation to determine the vertical position of the sphere centroid when a moving
frame of reference (mf) moving with w∞ downwards is used, reads:

zmfc (t) = zc(0) +

∫ t

0
UmfpV dt with UmfpV = UabspV − (−w∞) (B.11)

Where UabspV is the vertical particle velocity in the absolute frame of reference and is
given by Equation B.10. When the integral in Equation B.11 is solved and the whole
equation is non-dimensionalized one obtains:

zmfc (t)

Dp
=
zc(0)

Dp
+

(UTsim + w∞)t

Dp
+
UTsimτ0

Dp
[exp(− t

τ0
)− 1] (B.12)

Note that the value for UTsim is always negative, since the sphere falls in the negative
z-direction. The value of UTsim is obtained from the for-mentioned simulation and
reads UTsim = −1.2600 and UTsim = −1.3487 for Ga = 144 and Ga = 178, respec-
tively.

The value for w∞ is de�ned positive. When the values for w∞, stated in Table
2.3 (T144 and T178), are substituted in Equation B.12, a prediction of the vertical
position of the center of the sphere as a function of time could be given. In Figure
B.3 the predicted vertical position of the sphere centroid is given for Ga = 144 and
Ga = 178.

(a) (b)

Figure B.3 Predicted vertical position for a single sphere in a moving frame of reference
(moving with w∞ downwards) as a function of time.
(a) Ga = 144 and w∞ = 1.2375. (b) Ga = 178 and w∞ = 1.2665. In both cases the initial
position of the sphere zc(0) = 11Dp.

Ideally, one should match the terminal settling velocity UTsim and the velocity of the
moving frame w∞ (UTsim+w∞ = 0), so that the particle remains in the computational
domain for an in�nite amount of time. It can be seen in Figure B.3 that this is
not the case, since the prediction shows that the particle will fall downwards in the
moving frame (the particle falls faster than the moving frame is moving). This is
done intentionally, since the prediction does not take into account the interaction
between the particle and the walls and the interaction with the other particle in
simulation T144 and T178. These interactions result in a decrease in the vertical
particle velocity, which makes the particle move upwards in the moving frame of
reference. Therefore it is chosen to set the magnitude of w∞ lower than the magnitude
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of UTsim, since it is undesirable for the particle to get close to either the bottom or
top of the computational domain.
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Appendix C

Immersed boundary method and

collision model

Immersed boundary method

The Immersed Boundary Method (IBM) was originally developed by Charles Peskin
[33]. The IBM is particularly �tted for multiphase �ows involving a solid and a �uid
phase. The method makes use of two di�erent grids for the solid and �uid phase. For
the �uid phase a �xed, simple-structured (Cartesian) grid is used , referred to as the
Eulerian grid. The solid phase is represented by an uniform grid moving with the
particle surface. This grid is referred to as the Lagrangian grid and it is immersed in
the Eulerian grid. Both grids are illustrated in Figure C.1.

Figure C.1 A visualization of the Eulerian and Lagrangian grid used in the work of
Breugem [21].

The no-slip/no-penetration condition (Equation A.6) on the surface of the particle is
not employed directly. Instead, a force is applied to the �ow in the vicinity of the
particle surface, such that it satis�es the condition by a good approximation. This
means that a force term has to be added to the RHS of the Navier-Stokes equation
(Equation A.2), resulting in the following equation:

ρf

(∂u

∂t
+∇ · uu

)
= −∇p+ µf∇2u + ρf f (C.1)

Equations C.1,A.1,A.4,A.5 are solved for the entire domain.
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The use of a simple-structured grid, which does not require regridding when the
particles move, makes the IBM computationally more e�cient than methods with a
body-�tted grid. Unfortunately, the IBM is less accurate than a method with a body-
�tted grid, since there is an error in the approximation of the no-slip/no-penetration
condition.
Since the original IBM of Peskin, multiple IBM versions were developed to increase
the accuracy while maintaining the computational e�ciency. One of these versions
is the IBM of Breugem [21], which is employed in this work. Breugem improved
Uhlmann's IBM [16] by: (1) applying a multidirect forcing scheme proposed by Luo
et al.[34] to improve the approximation of the no-slip/no-penetration condition, (2) a
correction for the excess in the e�ective particle diameter by a slight retraction of the
Lagrangian grid from the surface towards the interior of the particle, (3) enhancing
the numerical stability for solid-to-�uid-density ratios near unity by a direct account
of the inertia of the �uid contained within the particle.

Collision model

The collision model employed in this study is the model described by Glowinski et al.
[11]. This model provides for elastic collisions, i.e. there is no loss in kinetic energy
as a result of a collision. This is achieved by adding a collision force and torque term
(Fc and Tc) to the right hand side of Equation A.4 and A.5, respectively. The paper
of Breugem [21] provides a clear description of the description model:

�De�ne dij = xc,j−xc,i as the distance vector between the centroid of sphere i and the

centroid of another sphere labelled j. The distance vector points from sphere i towards

sphere j. The collision model becomes active when the distance ||dij || between the

centroids of the two spheres is smaller than Dp + dc, where dc is a threshold distance

that has to be speci�ed. In case the threshold distance is exceeded, the collision force

on sphere i due to a collision with a sphere j is computed according to:

Fc,ij = −ρpVp||g||
εc

( ||dij || −Dp − dc
dc

)2 dij
||dij ||

(C.2)

where εc is a nondimensional parameter that has to be speci�ed.�

Equation C.2 holds for collisions of spheres with equal radii. The equation for the
collision between a sphere and the wall is obtained by replacing Dp by Rp in Equation
C.2 and ||dij || = dwall = min(xc, Lx − xc, yc, Ly − yc). In all simulations the collision
parameters are εc = 0.1, dc/Dp = 1/16 and Tc = 0.

A simulation was performed to validate the collision model. In this simulation all
forces on the particle are neglected except for the collision force. The particle is given
an initial velocity of Up =

〈
0,U , 0

〉
, i.e. the particle moves towards the wall in the

y-direction with a constant velocity. Figure C.2 shows the particle velocity in the y-
direction in time. It can be concluded from this �gure that there is no loss of kinetic
energy, when the particle collides with the wall. Hence, the collisions are perfectly
elastic.
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Figure C.2 The y-component of the particle velocity in time. The particle moves between
the two walls in the y-direction. The line resembles a step function, which indicates perfect
elastic collisions between the walls and the particle.
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Appendix D

Additional simulations

D.1 Flow around a �xed sphere

Additional simulations involving the �ow around a �xed sphere are performed prior
to the simulations involving a single mobile sphere in order to extract (physical) pa-
rameters. These parameters are useful, when setting up the parameters for the single
sphere simulations.

The computational box used for the �xed sphere simulations is similar to the one used
for the sedimentation of a single sphere 2.1. In Table D.1 the in�ow parameters for
the simulations of the �ow around a �xed sphere are displayed. Note that the values
for w∞/U are obtained by solving Morison's equation for steady motion of a sphere
settling under gravity B.4 (see Table B.1). The particle is held �xed at xc = yc = 3Dp

and zc = 6Dp. For each case a simulation was performed with the duration of 4000
time steps. The duration of a time step depends on the inlet velocity at the in�ow
plane, which depends on the Galileo number Ga.

Table D.1: Simulation parameters and results for the �ow around a
�xed sphere.

Case Ga w∞/U Lr

F144 144 1.2810 1.239

F178 178 1.3473 1.414

F200 200 1.3823 1.477

F250 250 1.4464 1.643

For the single sphere simulations it is desired that the �ow around the �xed sphere
is fully developed before releasing it. In this study the drag coe�cient CD was used
in order to determine the �ow to be fully developed. In Figure D.1 CD is plotted
against the time steps tsteps. From this plot it can be concluded that CD becomes
constant for all cases after 2000 time steps. Therefore the sphere is held �xed for 2000
time steps in the single sphere simulations for all four cases (S144, S178 , S200, S250)
corresponding to tfixed = 52.70T , 51.93T , 51.50T , 48.73T respectively (see Table
2.1).
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Figure D.1 Drag coe�cient CD plotted against the simulated time steps tsteps for the
four �xed sphere cases.

Contour plots of the �uid velocity in the vertical direction w in the xz-plane and the
yz-plane through the sphere centroid are given in Figures D.2-D.5. The re-circulation
length Lr, which is the largest distance between the sphere surface and any point on
the contour level w = 0, is marked in the plots with a red cross. The re-circulation
length acts as an indicator for the wake length.
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Figure D.2 Case F144. Contours at the xz-plane (left) and the yz-plane (right) through
the sphere centroid. The distance between the surface of the sphere and the red cross
indicates the re-circulation length. The black dash-dotted line encircles the re-circulation
region. The re-circulation length Lr = 1.239.

Figure D.3 Case F178. Contours at the xz-plane (left) and the yz-plane (right) through
the sphere centroid. The distance between the surface of the sphere and the red cross
indicates the re-circulation length. The black dash-dotted line encircles the re-circulation
region. The re-circulation length Lr = 1.414.
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Figure D.4 Case F200. Contours at the xz-plane (left) and the yz-plane (right) through
the sphere centroid. The distance between the surface of the sphere and the red cross
indicates the re-circulation length. The black dash-dotted line encircles the re-circulation
region. The re-circulation length Lr = 1.477.

Figure D.5 Case F250. Contours at the xz-plane (left) and the yz-plane (right) through
the sphere centroid.The distance between the surface of the sphere and the red cross
indicates the re-circulation length. The black dash-dotted line encircles the re-circulation
region.The re-circulation length Lr = 1.643.
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D.2 E�ect of periodic boundary conditions

For the most dilute suspension (Φ = 5.1 · 10−3) multiple simulations were performed
considering di�erent domain heights Lz. Figure D.6 shows the settling velocity of the
suspension as a function of the domain height for Ga = 144, 178 and 200. From this
plot it is concluded that by choosing a domain height Lz = 72Dp for the most dilute
suspension, the periodic boundary e�ects are signi�cantly reduced.

Figure D.6 Settling velocity of the suspension as a function of the domain height for
Ga = 144 (blue crosses), Ga = 178 (red crosses) and Ga = 200 (yellow crosses) for the most
dilute suspension (Φ = 5.1 · 10−3).
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Appendix E

Additional results

E.1 PDFs of the vertical particle velocity

The PDFs of the vertical particle velocity for solid-volume fractions Φ = 1.0·10−2, 2.5·
10−2, 1.0 · 10−1, 2.0 · 10−1 for Ga = 144 are given in Figure E.1.

(a) (b)

(c) (d)

Figure E.1 Distribution of the vertical particle velocity for Ga = 144. The black dashed
line indicates the settling velocity of a single sphere and the red line indicates the Gaussian
distribution with a mean and standard deviation based on the vertical particle velocity
simulation data.
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The PDFs of the vertical particle velocity for solid-volume fractions Φ = 1.0·10−2, 2.5·
10−2, 1.0 · 10−1, 2.0 · 10−1 for Ga = 178 are given in Figure E.2.

(a) (b)

(c) (d)

Figure E.2 Distribution of the vertical particle velocity for Ga = 178. The black dashed
line indicates the settling velocity of a single sphere and the red line indicates the Gaussian
distribution with a mean and standard deviation based on the vertical particle velocity
simulation data.
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The PDFs of the vertical particle velocity for solid-volume fractions Φ = 1.0·10−2, 2.5·
10−2, 1.0 · 10−1, 2.0 · 10−1 for Ga = 200 are given in Figure E.3.

(a) (b)

(c) (d)

Figure E.3 Distribution of the vertical particle velocity for Ga = 200. The black dashed
line indicates the settling velocity of a single sphere and the red line indicates the Gaussian
distribution with a mean and standard deviation based on the vertical particle velocity
simulation data.
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Appendix F

Random generator for particle

distribution

The code below was implemented in the Fortran to generate a random particle distri-
bution.

1 %% Program to generate random 3d particle positions within ...
computation domain without overlap

2 %% START
3 clc;close all;clear
4

5 %% RANDOM NUMBER GENERATOR
6 % Random number generator set to Non-Repeatability (=shuffle),where
7 % Repeatability (=default)
8 rng shuffle
9

10 %% PARAMETES
11 % Set desired solid-volume fraction
12 Phi = 0.005;
13

14 % Diameter of the sphere
15 D_p = 1;
16

17 % Radius of the sphere
18 R_p = D_p/2;
19

20 % Set minimum distance between particles and between particle and wall
21 gap = 1/13;
22

23 % Domain dimensions
24 Lx = 6;
25 Ly = 6;
26 Lz = 36;
27

28 % Minimal allowable distance between the particle centroids
29 minAllowableDistance_p = 2*(R_p + gap);
30

31 % Minimal allowable distance between the particle centroid and wall
32 minAllowableDistance_w = R_p + gap;
33

34 % Number of particles
35 N_p = ceil((Phi*Lx*Ly*Lz*6)/(pi*D_p^3));
36

37 % Actual solid-volume fraction
38 concentration_check = (N_p*(pi/6)*D_p^3)/(Lx*Ly*Lz);
39

40

41
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42 % Initialize first sphere centroid position.
43 keeperX(1) = Lx/2;
44 keeperY(1) = Ly/2;
45 keeperZ(1) = Lz/2;
46

47 counter = 2;
48

49 while counter ≤ N_p
50

51 % Get a trial point.
52 trialX = Lx*rand(1,1);
53 trialY = Ly*rand(1,1);
54 trialZ = Lz*rand(1,1);
55

56 for i=1:length(keeperX)
57 % Determine the distances between the trail point and the ...

existing points.
58 distances(i) = sqrt((trialX-keeperX(i))^2 + ...

(trialY-keeperY(i))^2 + (trialZ-keeperZ(i))^2);
59 end
60

61 minDistance = min(distances);
62

63 % Check if the minimal distance between the trial point and the
64 % existing points is allowed and to check wether the trial ...

point is
65 % within the computational domain
66 if minDistance > minAllowableDistance_p
67 if trialX > minAllowableDistance_w && trialX < ...

(Lx-minAllowableDistance_w)
68 if trialY > minAllowableDistance_w && trialY < ...

(Ly-minAllowableDistance_w)
69 if trialZ > minAllowableDistance_w && trialZ < ...

(Lz-minAllowableDistance_w)
70 keeperX(counter) = trialX;
71 keeperY(counter) = trialY;
72 keeperZ(counter) = trialZ;
73 counter = counter + 1;
74 end
75 end
76 end
77 else
78

79 end
80

81 end
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