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Preface

Artificial Intelligence is increasingly becoming an integral part of our daily lives. However, with its rapid
advancement, a question arises: are human problems decreasing or increasing with the introduction
of AI? This question can be a complex sociological, cognitive, and computer science problem. It may
take a long time for humans to reach a point where AI, humans, and society coexist as equals. While
there may not be much I can do to solve this now, it is time for me to leap forward. My journey at TU
Delft has exposed me to the fascinating potential of LLMs. It seems these models could be a significant
step toward solving many of humanity’s problems. Motivated by this potential, I discussed my interests
with Professor Jie Yang and Gaole He, and together we selected a topic that truly captivated me.

When I embarked on my research journey, I felt a little nervous due to my limited experience with tuning
LLMs, a relatively new and complex field. However, as I delved deeper into learning and reading, I
gradually gained confidence and expertise. This journey has been like sailing in an uncharted ocean;
the tiny bright spot on the horizon could be just an island or a mainland. Through this thesis research, I
have not only enhanced the learning capabilities of LLMs but also uncovered new areas for exploration
in my future career. This process has been profoundly enlightening, revealing numerous possibilities for
my professional growth and development. It has taught me resilience, adaptability, and the importance
of continuous learning, which are invaluable lessons for my future endeavors.

I owe a great deal of gratitude to many people who have supported me throughout this journey. I am
deeply grateful to Dr. Maria Soledad Pera for her invaluable guidance in helping me narrow down the
research topic and for her willingness to answer my numerous questions. Her insights and expertise
have been instrumental in shaping the direction of my research. I am deeply thankful to Professor Jie
Yang for guiding me through the research process and for making me genuinely enjoy being part of
this field. His dedication and expertise have been truly inspiring, making my journey in this research
an incredibly rewarding experience. My sincere thanks go to Gaole He, my daily supervisor, whose
unparalleled kindness and patience in answering my questions about the project have been truly invalu-
able. His constant support, thorough guidance, and remarkable dedication have been instrumental in
my research journey and I am incredibly fortunate to have had his mentorship. I also want to extend
my heartfelt thanks to my parents, who have supported and raised me for the past twenty years. Their
encouragement and love have been the foundation of my journey, and I am deeply grateful for all they
have done to help me reach this point. Special thanks to my best friend, Charlie, whom I met in middle
school. His insights and perspectives have profoundly shaped my intellectual journey and fueled my
passion for exploring new ideas. I am grateful for his enduring support and friendship. Lastly, I am
grateful to my girlfriend, whose constant companionship and humor have been a source of joy and mo-
tivation. I am incredibly fortunate to have her by my side, and her presence has made this experience
all the more meaningful and fulfilling.

Jiacheng Zhang
Delft, July 2024
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Abstract

While most large language models (LLMs) are powerful, they are primarily designed for general pur-
poses. Consequently, many enterprises and institutions have now focused on developing domain-
specific models. In the realm of education, an expert LLM can significantly enhance students’ ability
to find information more effectively and reach their learning goals. Nevertheless, the training of such
expert models in education remains largely unexplored. This study explores this research gap by de-
veloping a framework to transform semi-structured educational web data into structured datasets and
perform instruction tuning on foundation models. Additionally, we conduct a comprehensive perfor-
mance analysis to determine how various training factors affect model performance.

We first employed a systematic and cost-effective approach involving web data extraction, data clean-
ing, validation, task design based on student surveys, and automated instruction instance generation
using LLMs. Human evaluations confirmed the quality, especially the relevance and accuracy of these
datasets.

This study then investigates the impact of various training techniques on domain-specific educational
large language models (LLMs) performance. Our experiments reveal that further pre-training enhances
model performance, especially with domain-specific terminology, although the performance gains de-
crease as the dataset size increases. Furthermore, multi-task training also improves model relevance,
accuracy, and clarity, but less correlated tasks and datasets can present challenges. These challenges
include increased complexity and potential degradation in performance due to the model having to
switch between diverse tasks. Lastly, this study conducts a comparative analysis of different models
and it highlights trade-offs between computational resources and performance.

The findings demonstrate that a structured approach to dataset generation and strategic training can
effectively develop domain-specific LLMs in education. This research benefits the development of
educational LLMs and provides a foundation for future researchers to build more specialized models
in various domains.
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1
Introduction

1.1. Motivation
The field of Natural Language Processing (NLP) has seen remarkable advancements with the introduc-
tion of Large Language Models (LLMs) such as GPT-3 [10]. These models have significantly enhanced
capabilities in text understanding and generation, making them valuable tools across various domains.
Among these powerful LLMs, one of the most well-known commercial products is ChatGPT, which
provides services to approximately 200 million users worldwide [11]. LLMs like ChatGPT are primarily
designed for general-purpose applications. They excel in a wide range of tasks, from generating coher-
ent text to answering complex questions and even creating code snippets. However, their versatility
comes from being trained on a vast and diverse corpus of data, making them adept at handling a variety
of subjects but not necessarily optimized for any specific domain. Additionally, ChatGPT may not have
access to a company’s internal data, such as product sales information or user interaction details. This
limits its effectiveness in performing highly specialized tasks that require proprietary or domain-specific
knowledge.

Recognizing the potential and limits of LLMs like GPT, several companies have begun to train and
deploy their own domain-specific LLMs for internal data analysis and processing. These tailoredmodels
are fine-tuned on industry-specific datasets, which enables them to perform specialized tasks with
greater accuracy and efficiency than general-purpose LLMs. For instance, financial institutions like
JP-Morgan Chase have developed LLMs to analyze market trends and generate investment insights
[34]. And healthcare organizations have created models to assist in medical diagnostics and research
[38].

In contrast, the field of education, particularly within universities, has seen limited efforts towards devel-
oping domain-specific LLMs. Despite the significant potential benefits, such as improving educational
content queries and recommendations, few studies or organizations have worked in this area. This gap
highlights the attention for focused research and development to create domain-specific LLMs based
on educational data. The domain-specific LLMs in education could help students utilize the univer-
sity’s resources more effectively when they are faced with overloading information from educational
websites. The Stanford Alpaca project demonstrates a method to enhance the capabilities of LLMs by
constructing training datasets through LLMs and performing instruction tuning on foundational models
[40]. However, the Alpaca project remains a general-purpose fine-tuning method, so the question of
how to generate education-specific datasets and train an expert model in the education field remains
unexplored.

In all, this research aims to address this gap by focusing on the development of domain-specific LLMs
for the educational sector. By leveraging instruction tuning and automating the creation of high-quality,
domain-specific datasets, this work seeks to enhance the domain adaptation capabilities of LLMs in pro-
viding accurate, relevant, and contextually appropriate responses for educational purposes. Through
this effort, the research aims to contribute to the university’s online educational data, ultimately bene-
fiting students and educators alike.

1



1.2. Problem Statement 2

1.2. Problem Statement
To train domain-specific LLMs in education from foundation models, it is crucial for the model to access
and learn from educational data. In this research, the educational data are sourced from TU Delft’s
course selection website and papers repository. Unlike the structured datasets used in the Alpaca
project, which were written by human experts, educational webpages typically store and present data
in HTML form, which is semi-structured. LLMs cannot directly parse and learn from these websites.
Therefore, this research aims to explore how to extract and transform necessary information from ed-
ucational web pages into structured instruction-tuning datasets.

Moreover, to perform instruction tuning on the model with educational data, developers must pre-define
tasks related to the educational field that themodel will be fine-tuned on in the later stages. It is essential
to research what kind of tasks are needed and beneficial for users in the educational field. The process
of transforming web data into high-quality, task-specific datasets also remains unexplored.

Lastly, assuming there is a structured instruction-tuning dataset in education, this research will focus
on how training factors affect model performance. An evaluation process and empirical analysis are
necessary to understand the relationship between these factors and the model’s effectiveness.

Thus, this research addresses two main questions:

RQ1: Howcanwe transform semi-structured educational website data into an instruction-tuning
task dataset that the model can learn from?

Firstly, this research question involves exploring various techniques for web scraping and the use of
automated tools to handle the structures of educational websites and convert the semi-structured HTML
data into well-organized, structured datasets.

Moreover, it is also necessary to focus on identifying the specific educational tasks that are most benefi-
cial for users, creating templates for these tasks, and generating instruction-tuning datasets. Ensuring
the generated datasets are fact-based and meet the instructional needs of students is crucial.

RQ2: What are the impacts of different training techniques on the performance of domain-
specific educational LLMs, and how do these techniques affect the models?

This question examines how various training methodologies influence the performance of educational
LLMs. It includes investigating the effect of further-pretraining, comparing the performance of models
trained on single versus multiple tasks, and evaluating different training strategies. The research aims
to provide insights into optimizing the training process to enhance the effectiveness and accuracy of
educational LLMs.

1.3. Challenges
In developing domain-specific language models for education, several key challenges must be ad-
dressed to ensure effective and efficient model performance. These challenges span data extraction,
task design, privacy concerns, and resource optimization. Below are the main challenges identified in
this research:

Complexity of Data: Extracting key information from educational websites poses a significant chal-
lenge due to the semi-structured nature of online data, often presented in HTML format. Developing
a pipeline to extract structured datasets from this semi-structured data without losing any critical in-
formation is essential. This process requires sophisticated methods to accurately parse, clean, and
transform the data into a format suitable for instruction tuning.

Desigining Appropriate Instructional Tasks: Identifying suitable instructional tasks for the later
model learning process is both rigorous and difficult. It is necessary to conduct comprehensive sur-
veys and a thorough review of related literature to ensure that the selected tasks are appropriate and
effective for instruction tuning. This step is crucial to tailor the LLM’s capabilities to meet the specific
needs of the educational domain.

Trade-off between Privacy Measures and Performance: Much of the online educational data at TU
Delft is subject to strict privacy measures due to university regulations. Utilizing this data in commercial
online LLM APIs could potentially lead to privacy breaches. Therefore, this research must balance
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security concerns with task generation performance by exploring various large language models to
ensure both privacy and efficiency are maintained.

Fine-tuning Under Limited Computing Resources: Fine-tuning large language models for the ed-
ucational domain can consume substantial computing resources, such as GPU and memory. This
research must address how to effectively fine-tune these models under limited computing resources.
Ensuring that the models are efficiently fine-tuned to handle diverse educational queries while optimiz-
ing resource usage is a critical challenge.

1.4. Contributions
This research provides significant benefits to both the research and industry fields focused on training
educational domain-specific LLMs. Firstly, it demonstrates an effective method for extracting informa-
tion from both static and dynamic educational websites, ensuring the quality and accuracy of the ex-
tracted data. This work presents a practical approach to data extraction, and it addresses the challenge
of handling semi-structured online data, transforming it into structured datasets suitable for instruction
tuning.

Additionally, this research involves conducting surveys among university students to understand their
specific needs and preferences regarding educational expert LLMs that possess key information from
various educational websites. The insights gained from these surveys inform the design of instruction
tuning tasks, ensuring they are relevant and beneficial to the end users. By aligning the instruction
tuning tasks with student needs, the research enhances the practical applicability of the trained models.

The study also leverages open-source LLMs like Mixtral to generate instruction-tuning datasets that
are cost-effective and low-cost in humans. By automating the creation of these datasets, Mixtral re-
duces the need for extensive human annotation, which is both time-consuming and costly. This pro-
cess involved designing task-specific templates based on student surveys to ensure the tasks meet
student need, and then using Mixtral to populate these templates with accurate and relevant informa-
tion from educational web data. Compared to previous instruction dataset generation approaches, this
method maintains data quality while minimizing associated costs compared to the previous. It brings
feasibility for institutions to develop domain-specific LLMs on a budget without compromising accuracy.
This method can be adopted by other researchers and practitioners to create large-scale, high-quality
datasets tailored to their specific needs.

Furthermore, this research examines various training techniques and factors that influence model per-
formance. It explores the combination of further pre-training and instruction tuning under limited com-
puting resources, demonstrating how these methods can affect model performance. The study also
investigates the impact of multi-task training on model responses, providing valuable insights into opti-
mizing training processes for educational LLMs when there are various input data sources. These in-
sights offer readers practical guidance on how to effectively design a strategy consisting of pre-training
andmulti-task instruction tuning to improvemodel outcomes, especially when operating under resource
constraints.

Overall, this research contributes to the development and evaluation of domain-specific LLMs in ed-
ucation. By proposing a comprehensive framework from educational web data extraction, and task
generation to fine-tuning, the research could ultimately benefit students, educators, and researchers
in the educational field. It presents a clear, actionable framework that can be adapted and applied to
various educational contexts, offering a structured approach to developing effective, domain-specific
language models that address real-world educational needs.

Here is the current structure for this thesis research in later chapters.

1. Background: This section will delve into the current advancements of NLP and LLMs, with a
special focus on instruction tuning. It also introduces the data sources of this research.

2. RelatedWork: This section will focus on the analysis of current work related to dataset generation
and instruction tuning projects. It also covers the recent study on how LLMs could work in the
field of education.

3. Methodology (2 Stages): This section details the two stages of the development of the data
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transformation pipeline. It describes the process of automatically extracting educational data
from the university’s public website and converting educational resources into instruction-tuning
datasets. The stages include data extraction, data preprocessing, and dataset preparation for
training LLMs. The final stage involves processes and planned experiments of instruction tuning
to optimize and analyze the performance of the models for specific educational tasks.

4. Experiment and Result: In this segment, the experiments conducted using the developed pipeline
with educational data will be thoroughly documented. The evaluation will adopt a comprehensive
framework involving human expert evaluations, and machine metrics to assess the performance
of instruction-tuned models. This multi-faceted approach will provide a deeper understanding of
the model’s effectiveness in practical applications, going beyond traditional metrics like BLEU to
include qualitative insights and user evaluation.

5. Conclusion: This section will summarize the key findings of the research, addressing how the
methodologies applied in this study successfully transformed semi-structured educational data
into effective instruction-tuning datasets. It will also discuss the impacts of different training tech-
niques on the performance of domain-specific educational LLMs. And it offers insights into future
research directions and potential improvements in model training and application.



2
Background

2.1. Large Language Models
Before we introduce the technique of instruction tuning, it is necessary to first study several advanced
LLMs since LLMs are fast-evolving, and these models will serve as the foundation models for training
in the methodology section. Understanding the architecture, training data, and innovations of these
LLMs is crucial to effectively applying instruction tuning techniques. In this section, we will explore
three prominent LLMs: Gemma, Llama3, and Mixtral 8x Series, examining their key features to provide
a comprehensive foundation for their subsequent training and performance analysis.

2.1.1. Gemma
Developed by DeepMind and the Google AI Research team, Gemma has become one of the latest
open-source large language models with multiple versions [41]. The design of Gemma is based on
Google’s early-stage Gemini model and it enhances the model’s language generation, summarization,
understanding, and reasoning abilities by introducing several new techniques based on transformer
and attention mechanism.

Gemma is pre-trained in various data sources such as documents online, newspapers, and open-
source coding projects. The total size of training data is around 6T tokens of text. Google currently
releases two sizes of pre-trained model: 7 billion and 2 billion parameter versions for different compu-
tational resources so it not only supports running on GPU/TPU but also CPU solely devices. The team
also releases the pretrain and fine-tuned checkpoints which allow future researchers to continue tuning
the model.

The novelty of Gemma is the usage of Multi-Query Attention (MQA) and it helps to accelerate the
inference time of both sizes of models compared to the original multi-head attention (MHA) mechanism
applied in the previous Gemini model [37]. The classic MHA transformer architecture uses the key (K)
and value (V) tensors that need to be loaded and reloaded with the model inference settings increased.
This design can consume computing memory a lot and slow down the running time. MQA adapts this
problem by sharing the single set of key(K) and value(V) among multiple heads[2, 41].

Moreover, Gemma is one of the first open-sourced models that applies RoPE (Rotary Positional Em-
beddings) [39]. During the pre-trained stages of LLMs where sentences are fed into the model, the
model needs to have the embedding that represents each word for the input sentence. In particular,
the sequence or order of the words that appear in a sentence should be stored so that positional em-
beddings are invented in which each word is transformed into a vector in the same size of dimension.
However, classic positional embedding can reach a size limitation of input sentence sequence that un-
dermines the model to memorize long paragraphs or determine the word positions beyond this limit[44].
In contrast, the RoPE mechanism lets the model understand and memorize a long sequence of input
by rotating the sequence position in the vector space: it calculates an angle for the word’s position in a
sentence so the word rotates when the word has further positions.

5
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Figure 2.1: Illustration of the RoPE mechanism [39]

Due to several new techniques involved in Gemma, it can memorize large vocabulary and embedding
weights and it performs well on multiple benchmarks such as HellaSwag, GSM8k, AGIEval compared
to other LLMs [41]. Meanwhile, the fine-tuning and inferencing computation requirement is relatively
low and the inferencing time is accelerated compared to Gemini.

2.1.2. Llama3
Meta Llama 3 is the latest open-source Large Language Model during the research of this thesis [18].
Building on the successes of its predecessors Llama2[42, 26], Llama 3 incorporates numerous innova-
tions to enhance performance and usability. To accommodate various computational resources, Meta
has released Llama 3 models in different sizes, including versions with 8 billion and 70 billion parame-
ters, making it accessible for use on GPUs, TPUs, and even CPUs.

Llama 3 is trained on an extensive dataset comprising over 15 trillion tokens, sourced from a diverse
array of publicly available texts, including documents, news articles, and open-source coding projects.
This training dataset is seven times larger than that used for Llama 2, enabling the model to capture
a broader and richer understanding of language. In addition, data-filtering techiqnues are involved in
getting better pre-train datasets.

Built upon Llama2, the newer Llama is still implemented based on the previous version’s decoder-
only transformer architecture[42]. Moreover, LLama3 extends the size of the tokenizer’s vocabulary to
128k. This reduces the need to break down common words or phrases into multiple subword tokens,
which in turn minimizes tokenization loss and enhances the model’s ability to understand and generate
text more accurately [26]. A more comprehensive vocabulary also reduces the average number of
tokens per sentence. Fewer tokens per sentence mean that the model can process text more efficiently
during both training and inference phases, potentially reducing computational costs and speeding up
processing times.
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Another key innovation in Llama 3 is the adoption of Grouped Query Attention (GQA), which balances
computational efficiency and model performance [54]. Traditional MHA, as used in previous models
consumes substantial memory and slows down inference[9]. While MQA implemented in Gemma can
improve inference efficiency, several new studies show MQA is still potentially hard to capture complex
patterns. MQA computes single attention among the whole input sequence only once, so that it may
not capture all important details when the input sequence is long and its topics are discrete. As result,
the Meta team implements GQA which is an intermediate approach between MHA and MQA, it splits
queries into groups, and in each one a single pair of key and value head is stored. Then MQA com-
putes attention within each group so the mechanism improves machine understanding while not lose
important information from a general view.

Figure 2.2: Architecture of Several Attention Mechanisms [36]

Llama 3 excels across multiple benchmarks, demonstrating state-of-the-art performance on a wide
range of tasks, including reasoning, code generation, and instruction following. It significantly outper-
forms previous models. This remarkable performance is attributed to improvements in pretraining and
post-training processes, which include advanced techniques like supervised fine-tuning (SFT), rejection
sampling, proximal policy optimization (PPO), and direct preference optimization (DPO).

2.1.3. Mixtral 8x Series
In 2024, Mixtral 8x7B stands out as a pioneering open-source large language model with its sparse
mixture of 8 expert models (SMoE) [19]. Mixtral is pre-trained on an extensive dataset containing mul-
tilingual text from various sources, including online documents, newspapers, and open-source coding
projects, with a total size of 32,000 tokens. This comprehensive pre-training allows Mixtral to excel
in understanding and generating text across multiple languages. The model is available in an 8x7B
configuration, meaning it comprises 8 feedforward blocks (experts) per layer.

In particular, a key novelty in Mixtral is its Sparse Mixture of Experts architecture[32]. Unlike traditional
multi-head attention mechanisms, Mixtral employs a router network at each layer to assign expert sub-
networks to process each token. Every two out of eight experts are designed to handle a certain aspect
of the input sequence data and then the router acts like a supervisor to determine how each pair of
experts can contribute to the inference process [19]. This dynamic selection allows the model to utilize
13 billion active parameters during inference while having access to 47 billion parameters in total. This
design significantly reduces computational load and memory usage, leading to faster inference times
and improved model efficiency. Moreover, since each pair of experts is arranged to learn different parts
of the input, this leads to the model having better generalization ability while remembering the important
details of the input.

In addition to its architectural advancements, Mixtral demonstrates superior performance across a wide
range of benchmarks, including mathematics, code generation, and multilingual tasks. It consistently
outperforms Llama 2 70B and matches or exceeds the performance of GPT-3.5 on most metrics. Par-
ticularly in code generation and mathematical reasoning, Mixtral shows remarkable improvement while
using five times fewer active parameters during inference.
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Figure 2.3: Illustration of the Spare Mixture Mechanism [21]

2.2. Rise of Instruction Tuning
2.2.1. Zero-shot Learning
Currently, it cannot be denied that the hallucination of LLMs is a tough problem, often leading to the
generation of inaccurate or misleading information [53]. The primary cause of hallucinations is due to
the inherent characteristics of LLMs [17]. When these models are inputed with queries or information
outside their prior training data or domain knowledge, they can occasionally generate responses that
are purely random and not grounded in factual knowledge. Addressing this challenge is crucial for
improving the reliability and domain adaptation of LLMs in practical applications. The work presented
by Google Research [47] presents a study on improving the domain-adaptation and zero-shot learning
abilities of language models through a method called instruction tuning. Zero-shot learning abilities for
Large Language Models (LLMs) refer to the capacity to understand and perform tasks they have never
encountered during training, based solely on their pre-existing knowledge and logical understanding.
This involves fine-tuning a large pre-trained language model (137B parameters) on a diverse collection
of over 60 NLP tasks, each described via natural language instructions.

The research team’s instruction tuning dataset involves converting existing text datasets into a format
where tasks are described through natural language instructions given a specific context. This format
includes creating multiple unique templates for each task, which guide the language model in under-
standing and performing the task as described in human language. These templates is not only based
on the original task but also introduce variations. Furthermore, the instruction-tuned model, named
Finetuned Language Net (FLAN), is evaluated on various unseen task types. The results show that
FLAN significantly outperforms its unmodified models and even outperforms the zero-shot capabilities
of the 175B parameter GPT-3 model on 20 out of 25 NLP tasks.

2.2.2. Pre-trained Finetuning
Pretrained fine-tuning has become an essential strategy for improving the performance of LLMs. In the
early stage, the effective pre-training method on language models originated from BERT (Bidirectional
Encoder Representations from Transformers) [13]. The pre-training technique of BERT takes advan-
tage of masked language models as some tokens from the training data are masked and it allows
the model to predict the content solely based on the context of that input data. More importantly, the
prediction-masked language ability is independent of the order of the corpus. This method does not
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follow the classic unidirectional language model training as each token in the model is only computed
with its previous token: the unidirectional model might be good for finding a sub-optimal solution within
several sentences but it may not be guaranteed to reach the global optimal when the input data is rela-
tive long and complex. Thus BERT achieves state-of-the-art results on benchmarks such as the GLUE
and SQuAD datasets compared to other contemporary ”left to right” language models like GPT-2. It
shows the power of combining broad language understanding with focused task-specific training.

Building on this foundation, Liu et al. [24] developed RoBERTa, an optimized version of BERT. They
enhanced the pretraining phase by using more data, longer training periods, and larger batch sizes.
This improved pretraining, followed by fine-tuning, resulted in even better performance across multiple
NLP expert asks. It helps to validate the effectiveness of the pre-trained fine-tuning method.

Another significant contribution is the T5model by Raffel et al. [30], which proposed a unified framework
for NLP by converting all tasks into a text-to-text format that includes many domain-specific knowledge
tasks. This approach extends large language model T5 to a wide range of tasks without modify the
inner structure of the model itself. It also simplifes the developing process of domain-specific language
models and helps to achieve impressive results across various benchmarks. The extensive pretraining
on a massive dataset, followed by task-specific fine-tuning, highlights the flexibility and strength of this
method.

In all, pre-training is a non-trivial step of tuning a large language model as it can better understand the
context and wording of domain-specific input as proved among several research works. It does not
require the model to be modified a lot as long as it is built on masked language model structures.

2.2.3. Prompt Engineering
Prompt engineering has emerged as a critical technique for optimizing the performance of LLMs [7].
Prompt engineering usually happens during the conversation with the LLMs and the models are pre-
trained and probably find-tuning for specific tasks at that stage. This approach involves designing and
refining the prompts given to these models to produce more accurate and relevant responses. Prompt
engineering is particularly important because the effectiveness of LLMs can vary significantly based on
how the input queries are typed. Prompt engineering allows users to guide LLMs to perform better on
specific tasks without modifying the inner model architecture or changing the parameters of the training
model. In particular, those users are not required to have extensive knowledge of deep learning and
model implementations. The introduction of this idea helps users yield a more effective large language
model that aligns with human needs with low costs of developing and computing.

The process of prompting first requires the user to form clear prompts as input to the model. The
prompts could be rules or hints that are highly aligned with specific human task requirements. For
instance, given a piece of news article, if a user wants to generate a summary using an LLM, instead
of a vague question like ”What is this article talking about?”, they might use a more directive prompt
such as ”Summarize the key points of the following news text in three sentences.” This refined prompt
provides clear instructions and a specific format and guides the model to produce results based on
users’ demands. The idea of prompting stimulates the popularity of large language models such as
ChatGPT as it could provide personalized results or even correct its mistakes if users provide hints or
instructions during several conversations.

By experimenting with different formulations and structures, users can discover the most effective ways
to produce accurate and contextually appropriate responses from the model. A notable example of
prompt engineering’s impact is demonstrated in the GPT-3 model by Brown et al. [5]. The authors
showed that by carefully designing prompts, GPT-3 could perform various tasks such as translation,
question answering, and summarization with better accuracy. This approach leverages the model’s
pre-trained knowledge and aligns it with the specific requirements of the task, thereby enhancing its
zero-shot and few-shot learning capabilities.

Prompt engineering also plays a crucial role in reducing the occurrence of hallucinations in LLMs, which
are instances where the model generates inaccurate or misleading information. According to a study
by Yu et al. [50], the use of well-structured prompts significantly reduces the likelihood of hallucinations
by providing clearer context and more precise instructions to the model. This method ensures that the
model’s outputs are more grounded in factual knowledge, improving their reliability and trustworthiness.
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2.2.4. Instruction Tuning on Foundation Models
While prompt engineering is effective for guiding LLMs to perform better on specific tasks, it has limita-
tions when dealing with domain adaptation in larger data sizes or more complex tasks. In such cases,
instruction tuning offers a more systematic and scalable approach. Instruction tuning stands as one of
the most effective fine-tuning methods for reaching domain adaptation and enhancing the performance
of pre-trained foundation models on specialized downstream tasks.

This section delves into the concept and methodology of instruction tuning for LLMs. Instruction tuning
stands as one of the most effective fine-tuning methods for enhancing the performance of pre-trained
foundation models to align human tasks. Foundation models in the context of this research, are a
category of LLMs that are initially trained on extensive and diverse datasets to develop a comprehensive
understanding of language patterns, contexts, and knowledge. These models, which serve as a solid
base, can be further tailored through additional training or fine-tuning focused on task-specific datasets.
Within the scope of this research, the term ’foundation models’ specifically refers to LLMs such as
Gemma, Mixtral, and Llama2/3.

The utility of instruction tuning is trying to tackle the limitations of pre-trained LLMs: they are not in-
herently optimized for tasks such as engaging in conversations or following specific instructions [51].
For instance, the foundation model Llama2 is primarily designed to excel in sentence completion tasks.
Typically, LLMs do not directly respond to prompts but rather extend them by doing sentence com-
pletion [40, 42]. This characteristic can lead to outputs that, while linguistically correct, may not be
contextually or functionally appropriate for specific interactions or user needs. Instruction tuning specif-
ically addresses this challenge by refining the model’s ability to generate text that is not only relevant
but also directly useful in response to the instructions provided. By incorporating targeted instruction-
based examples during the fine-tuning phase, instruction tuning effectively molds the model’s outputs
to be more aligned with the desired outcomes of specific tasks. This process significantly enhances
the practicality of LLMs, transforming them from solely text completers into intelligent agents capable
of executing tasks that require a higher level of understanding and responsiveness to user commands.
This makes instruction tuning an invaluable strategy in leveraging the robust capabilities of foundation
models to meet specific functional requirements across various applications.

At present most researchers store the instruction tuning dataset in the format of JSON file [40]. This is
because JSON files offer a lightweight, easily readable, and widely supported format for structured data.
JSON files are particularly well-suited for representing hierarchical data structures, which are common
in instruction-tuning datasets. They make the training procedure easier to organize and access the
multiple components of each training sample. In the instruction tuning dataset, each entry of the JSON
file consists of three critical components:

1. Instruction: This is a natural language text input that clearly specifies a task to be performed.
For instance, an instruction might say, “Summarize the following article,” directing the model to
condense a longer text into a brief summary.

2. Additional Information: This optional component provides context relevant to the task at hand, en-
hancing the model’s understanding and performance. For example, in a task involving sentiment
analysis, the input might include a customer review, with the instruction to identify and categorize
the expressed sentiment.

3. Desired Output: This is the target output or response for the given prompt, defined according to
the instructions and contextual information provided. It serves as the ground truth against which
the model’s predictions are evaluated and optimized. For instance, if the task is to generate a
list of synonyms, the desired output would include a precise list of synonyms corresponding to a
given word, serving as a benchmark for the model’s accuracy.

By integrating these elements into the instruction tuning process, the training dataset not only guides
the model in what to produce but also how to approach and understand the task contextually. This
structure enhances the model’s ability to generate relevant, accurate responses across a variety of
possible tasks, significantly improving its utility for specific applications.
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Figure 2.4: Illustration of the Instruction Tuning Technique [35]

2.3. TU Delft Online Education Resource
2.3.1. Study Guide
The course selection website Study Guide from TU Delft is an essential educational resource for stu-
dents enrolled particularly within the Bachelor andMaster’s programs. This platform provides a compre-
hensive overview of the course offerings available, with detailed information included for each course.

The interface is organized in a user-friendly manner with a clear hierarchy that categorizes courses
under different specialization tracks and relevant periods. Each course listing includes key details such
as the course code, the responsible instructor(s), contact details, and the number of contact hours per
week. This structure is beneficial for students planning their academic year, as it allows them to align
their educational goals with the courses that best fit their career aspirations.

Moreover, the webpage includes essential details about each course, such as the expected prior knowl-
edge, course contents, study goals, and education methods. This level of detail give the student a
chance to understand the learning outcomes and teaching approaches before enrolling, which is cru-
cial for managing expectations and achieving academic success.

2.3.2. Thesis Repository
Here illustrates the digital interface of TU Delft’s education repository, a critical resource for students,
researchers, and educators. This platform facilitates access to a wide array of academic materials,
particularly focusing on student theses from various disciplines within the university.

TU Delft educational repository is an integral digital resource for managing and accessing a broad spec-
trum of student theses across various disciplines. This platform provides detailed views of individual
projects. Moreover, each entry typically includes critical information such as the thesis title, author,
contributors, degree-granting institution, and program of study, enriching the repository’s utility for aca-
demic and research purposes. This interface allows users to filter results by collection, document type,
subject, author, and date, enhancing the ease of locating relevant documents.

The repository is structured to facilitate efficient data retrieval and management, supporting a range of
document types, including master theses, bachelor theses, and student reports. It categorizes these
documents under multiple subjects, allowing for refined searches based on specific academic interests
or fields of study. This structure supports the ongoing learning and research processes by providing
a centralized platform for the accumulation and reuse of scholarly work. Furthermore, the inclusion of
abstracts and keywords helps in quickly understanding the scope and focus of each thesis, enhancing
the research experience within the academic community.
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Figure 2.5: Illustration of the Study Guide Website

Figure 2.6: Illustration of the Study Guide Website



3
Related Work

3.1. LLMs Studies in Educational Domain
In the reviewed papers, several authors focus on the survey Large Language Models (LLMs) to relate
to online educational systems such as virtual teachers, homework helpers, and QA chatbot [45, 28]. In
general, they explore the potential of LLMs in creating a next-generation intelligent education system by
investigating their capabilities in various educational skills such as mathematics, writing, programming,
reasoning, and knowledge-based question answering. For the scope of this master thesis, the scope
is about reasoning and knowledge-based question answering.

A study by Cha et al. highlights the significant role AI-based systems, including LLMs, can play in course
recommendations for students [6]. It emphasizes the potential for LLMs to help students discover
relationships among course concepts and information across different departments and calls for future
researchers to further explore this application. However, such study’s data source is a structured form.
While LLMs have advanced in understanding human language and reasoning, they often fall short
in analyzing dynamic web data and making personalized responses, which are critical in educational
settings. For instance, LLMs can process and generate language-based responses but struggle with
understanding and adapting to the individual learning needs of students from the web information, which
can vary widely.

Nonetheless, in some studies, the researchers present a way to introduce updated information by sam-
pling multiple-choice questions [20]: during the beginning of each prompt with a LLM, it demonstrates
the model selecting the most consistent answer in order to increase its reasoning and decision-making
ability. However, this method results in a static and fully human-annotated process to prompt the model
since the researchers need to prepare multiple unique questions for each different purpose of the con-
versation.

One significant advantage of LLMs is their ability to integrate extensive knowledge bases into their
responses, thereby enhancing the quality and relevance of the information they provide. However, a
study conducted by Xu et al. points out that LLMs still face challenges in terms of accuracy and the
tendency to generate plausible but incorrect answers, known as ”hallucinations,” which can mislead
learners [49]. The authors suggest that future research should focus on enhancing the reasoning ca-
pabilities of LLMs through methods such as supervised fine-tuning, prompt engineering, and hybrid
methods that combine different tuning strategies to refine LLMs’ educational applications. Moreover,
they emphasize the importance of developing LLMs that can operate across various domains of knowl-
edge effectively, using advanced algorithms that help mitigate the issues of hallucination and improve
the precision of LLM outputs in educational settings.

3.2. Factors of Fine-tuning Performance
The relationship between the size of pre-training data and the performance of supervised fine-tuned
(SFT) models has been a significant area of study. Several authors have explored how the pre-training
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data influences the effectiveness of fine-tuned models, particularly in LLMs [15, 25, 14].

In recent studies, researchers have demonstrated that the quantity of pre-training data directly impacts
the performance of SFT models. For example, McKinzie et al. highlight the effect of increasing the size
of pre-training datasets on model performance [25]. The results indicate that models pre-trained with
larger datasets exhibit superior performance during fine-tuning stages compared to those pre-trained
with smaller datasets. This improvement is evident in various tasks, including few-shot and zero-shot
learning scenarios.

However, McKinzie’s team primarily trained on general tasks like LLaVA-Complex and ChatQA. The
effect of pre-training on education-specific data has not been thoroughly explored. This gap leaves
questions about the models’ performance and adaptability in educational domains where specific ter-
minologies and contextual knowledge are crucial. Moreover, there is a lack of studies exploring the
trade-offs between computational efficiency and performance, particularly in resource-constrained en-
vironments common in educational institutions.

Zhang et al. also investigate the practical application of fine-tuning LLMs for specific tasks rather than
general ones [52]. They focus on the writing-assistant scenario with distinct writing tasks. By reformu-
lating the training data into an instruction-following format, they fine-tune the LLaMA model to improve
its performance on these writing tasks. Compared to larger models that are not fine-tuned for these
tasks, their findings suggest that fine-tuning LLaMA on specific writing instruction data significantly en-
hances its performance. This paper also explores whether it is necessary to employ LLMs for a single
targeted task, highlighting the potential efficiency and resource considerations.

However, Zhang’s study does not explore how the number of similar tasks included in the fine-tuning
process affects the overall performance of the model. Secondly, the study does not investigate the
impact of introducing different types of datasets during the fine-tuning process. The influence of the
multi-task training and dataset types on the model’s performance remains unexplored. Future research
should consider these factors to gain a more comprehensive understanding of how multi-task training
can be optimized for different applications.

3.3. Instruction Tuning Dataset Creation
Recently Wang et al. [46] introduced a novel method called Self-Instruct for generating the instruction
tuning dataset by pre-trained large language models like GPT-3. Currently, many instruction-tuning
datasets are mostly written by human experts and they cost a lot since the data are based on facts
[47, 3, 29]. However, the Self-Instruct method uses the large language model’s generative abilities to
create new instructional data. It starts with a small set of manually expert-written tasks and prompts the
model to generate new instructions and corresponding input-output instances. These are then filtered
for quality and uniqueness, and the valid tasks are used for further instruction tuning. The process is
iterative, leading to a diverse and extensive set of instructional data.

When the instruction dataset is applied to GPT-3, the Self-Instruct method significantly improved its per-
formance, achieving results nearly the same as InstructGPT-001’s performance [29], a model trained
with extensive human-written data. This approach demonstrates an efficient way to enhance language
models’ ability to follow instructions, with less reliance on human-labeled data. The paper also con-
tributes a large synthetic dataset for future research in this area.

3.4. State-of-art Instruction Tuning Studies
3.4.1. Domain Specific LLMs
Many researchers have taken advantage of instruction tuning and transformed the general LLMs into
an expert-level model that focuses on specific tasks. In the research of the K2, a geological large
language model, led by Deng et al. [12] shows a significant focus on the creation of the instruction
tuning dataset, GeoSignal. This dataset is crucial for aligning the pre-trained language model with user
intentions in the geoscience domain.

The GeoSignal dataset is constructed through a semi-manual pipeline, combining general instruction
tuning data from sources like Natural Instruction [27] and AI2 Reasoning Challenge [8] with geoscience
expert-generated data. Additionally, the paper demonstrates the creation of GeoTool, a tool training
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dataset to enable K2 to use geoscience-specific tools. This dataset is crucial for training K2 to interact
with geoscience academic search engines and other domain-specific tools.

However, the paper also has several challenges and has areas for future improvement. One significant
issue is the resource-intensive nature of constructing the GeoSignal dataset, which requires substantial
human expertise. In particular, the reliance on human experts for dataset construction and validation,
while ensuring quality, adds to the cost and complexity of the process. Moreover, the size and diversity
of the training dataset remain unexplored to the model’s performance, indicating a need to study on
the continuous expansion and diversification of the dataset.

3.4.2. Aplaca: Stanford's Fine-tuned LLaMA 7B Model
Due to OpenAI’s decision not to disclose the specifics of models beyond GPT-3, it is hard for re-
searchers to understand how instruction tuning contributes to enhancing the performance of such LLMs
on unfamiliar tasks. However, the Stanford Center for Research on Foundation Models (CRFM) re-
leased Alpaca [40], a model fine-tuned from Meta’s open-sourced LLaMA 7B model on 52K instruction
tuning datasets. In particular, the Alpaca is trained on instruction-following demonstrations generated
in the style of self-instruct [46] using text-davinci-003 [4]. Moreover, the lightweight training approach
makes it cost-effective, and the full model’s code and training dataset are published on GitHub, allowing
accessible options for academic research.

Alpaca’s project is trying to tackle two main challenges: obtaining a strong pre-trained language model
and high-quality instruction-following data. The LLaMA models from Meta address the first challenge
[42], while the self-instruct paper’s method of using an existing strong language model to generate in-
struction data tackles the second [46]. The training process is efficient and only consumes RTX3090,
making it suitable for academic budgets. In the end, Alpaca has been evaluated through human eval-
uation with text-davinci-003, the new model showing similar performance compared to GPT3.5 and
GPT4 in some tasks[40]. However, the research on Alpacas requires more study on how instruction
tuning helps to train a domain-specific model but not just general purpose one. And the scalability of
the training dataset can be another focus to work on for future researchers.

3.4.3. Instruction Tuning on LLMs in Limited Resources
Fine-tuning large language models can be resource-intensive and it often requires researchers to have
substantial computational power and memory. LoRA (Low-Rank Adaptation) offers a solution by intro-
ducing low-rank decomposition matrices into each layer of the Transformer architecture [16]. It signif-
icantly reduces the number of trainable parameters and the computational load during the fine-tuning
process.

LoRA freezes the pre-trained model weights and only trains the low-rank matrices, which results in up to
10,000 times fewer trainable parameters compared to full fine-tuning. Specifically, LoRA decomposes
the weight update matrix ∆W into two smaller matrices A and B, such that ∆W = A×B. Here, A is a
low-rank matrix with dimensions (d× r) and B is a matrix with dimensions (r× k), where d is the input
dimension, k is the output dimension, and r is the rank (with r ≪ d, k). This decomposition ensures
that the number of trainable parameters is significantly reduced to (d× r) + (r × k).

This approach not only reduces the GPU memory requirement by three times but also maintains model
performance across various tasks compared to the full parameter fine-tuning model. In practice, the
low-rank matrices A and B are initialized to zero, and only these matrices are updated during fine-
tuning, leaving the original model weights W unchanged. This makes the fine-tuning process much
more efficient.

The key benefits of LoRA include:

• Efficiency: Reduces memory and storage usage, enabling fine-tuning on limited resources.
• Scalability: Allows efficient task-switching by only swapping low-rank matrices.
• Performance: Maintains high model quality without additional inference latency.

LoRA provides a cost-effective and efficient method for fine-tuning LLMs. It is an essential tool for de-
ploying largemodels in resource-constrained environments without compromisingmodel performance.



4
Stage 1: Instruction Tuning Dataset

Generation

4.1. Overview
To continue answering the question RQ1 (How can we transform semi-structured educational web-
site data into an instruction-tuning task dataset that the model can learn from?), the first part of
this methodology section converts the educational data into a structured format. Specifically, we focus
on two main educational resources: the webpages of the TU Delft Study Guide and the TU Delft Thesis
Repository. The Study Guide is relatively static, as course plan data are typically updated on an annual
basis. Conversely, the Thesis Repository is updated frequently with new thesis submissions. There-
fore, a dynamic and adaptable approach is required to efficiently handle new uploads and ensure the
extracted data remains current and comprehensive. To achieve this, we implement Python Beautiful
Soup and Selenium to extract data from these webpages based on their specific characteristics.

The second part of this section takes the approach to transforming CSV file data into instruction-tuning
formats that LLMs can understand during the later fine-tuning stage. This process involves several key
steps, including literature review and demand analysis through surveys for task formulation, template
creation, and dataset generation using Mixtral 8x7b. Each of these steps is designed to ensure that
the transformed data meets the specific needs of domain-specific educational LLMs.

To begin, a survey were conducted to identify the specific demands and expectations of students when
interacting with educational websites in universities. This initial step is crucial in guiding the subsequent
stages of task creation and data transformation.

Following this, various tasks were formulated to address the identified needs. Each task is carefully
designedwith specific content and goals inmind, ensuring that they align with the student’s expectations
and requirements. The tasks are then illustrated through different templates, which serve as fill-in-the-
blank frameworks. These templates allow the LLMs to perform summarization and other relevant tasks
by filling in the blanks, thereby generating new instruction instance datasets.

Finally, Mixtral 8x7b is employed to automate the dataset generation process. This involves using
the templates to create instruction-tuning datasets, which are then integrated into the pipeline for later
training LLMs. The resulting datasets are structured to enhance the chatbot’s ability to provide aca-
demic guidance, research hints, and course selection advice, thereby improving the overall e-learning
experience for students. Evaluations are conducted to ensure the quality of the generated datasets,
especially verifying their similarity to the original ground truth data.

4.2. Data Sources Analysis
1. TU Delft Study Guide:

• Description: The webpage is structured using HTML tables to organize and display educa-

16
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tional information. Key elements include a header and navigation section that features form
elements for filtering options such as academic year, organization, education type, and spe-
cific education programs. The main content area houses tables detailing courses, including
columns for course codes, titles, and ECTS points. These tables use <tr>, <td>, and <div>
elements to structure the data. Dropdown menus are provided for users to select filters,
each containing <select> and <option> tags. Additionally, the webpage employs multiple
JavaScript files to enable functionality like filtering and form submissions, while CSS files
ensure the visual presentation is organized and user-friendly.

• Update Frequency: Most of the course information are uploaded annually, with occasional
updates throughout the academic year.

• Data Structure: Primarily static HTML content, which simplifies the extraction process. How-
ever, periodic monitoring is necessary to capture any updates made throughout the aca-
demic year (see Table 4.1 for more details on the key elements of the study guide webpage)

Key Value Meaning
Course Name The name of the course
Course Code The unique code assigned to the course
Responsible Instructor The main instructor responsible for the course
Instructor Other instructors involved in teaching the course
Contact Hours / Week The number of contact hours per week, typically divided into

lecture, lab, and self-study hours
Education Period The period during which the course is taught
Start Education The start period for the course
Exam Period The periods during which exams are scheduled
Course Contents A description of the topics and materials covered in the course
Study Goals The objectives and learning outcomes that students are

expected to achieve by the end of the course
Education Method The teaching methods used in the course, such as lectures, lab

assignments, and self-study
Literature and Study
Materials

The books, articles, and other materials required or
recommended for the course

Prerequisites The prior knowledge or courses required before taking this
course

Assessment The methods used to evaluate student performance, such as
exams, assignments, and their respective weightings

Table 4.1: Descriptions of Key Elements in the Study Guide Webpage for Course Information

2. TU Delft Thesis Repository:

• Description: The webpage is designed to display a repository of theses using a combina-
tion of HTML elements. The header includes navigation links and search functionality. The
main content area displays a list of theses, each with details such as title, author, abstract
snippet, and publication year. The thesis details are presented using structured elements
like <div>, <ul>, <li>, and <table> tags. Additionally, specific thesis pages provide compre-
hensive metadata using <fieldset> and <span> elements, along with links for downloading
and viewing the theses. The webpage also utilizes JavaScript for dynamic features and CSS
for styling.

• Update Frequency: The repository is updated continuously with new theses being added
regularly.

• Data Structure: Dynamic HTML content that requires a robust extraction process capable
of handling frequent updates and ensuring data accuracy.
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Key Value Meaning
Title The title of the thesis
Author The name(s) of the author(s) of the thesis
Contributor Individuals or entities who contributed to the thesis, such as

mentors or committee members
Programme The academic programme under which the thesis was submitted
Abstract A brief summary of the thesis content
Subject Keywords or subjects associated with the thesis

Table 4.2: Descriptions of Key Elements in the TU Delft Thesis Repository Webpage

4.3. Data Extraction
4.3.1. Extract Data from TU Delft Thesis Repository

Figure 4.1: Design of the Data Collection

The methodology for extracting data from the TU Delft master’s and PhD thesis repository involves an
implementation of web scraping techniques using Selenium, which a powerful tool for automating web
browsers. Selenium is widely used in the field of web scraping due to its ability to interact with web
pages like a human user. It can handle HTML/JavaScript-heavy websites, navigate through multiple
pages, refresh the page, and interact with webpages such as mouse clicking. By simulating those user
actions, Selenium can effectively extract data from dynamic webpages that traditional scraping tools
might struggle with. This makes it particularly suitable for extracting data from complex and frequently
updated repositories like the TU Delft thesis repository.

Using Selenium offers an initial approach to addressing the research question of how to create instruction-
tuning datasets from semi-structured educational websites. Selenium’s automation capabilities signif-
icantly reduce the manual effort required to collect data, as it can be programmed to automatically
traverse the repository, locate relevant information, and extract it systematically. This automated ap-
proach not only enhances efficiency but also ensures that the data is consistently captured in a struc-
tured format. By leveraging Selenium, the research can maintain up-to-date and accurate datasets
from the thesis repository, supporting the goal of extracting comprehensive educational data with min-
imal manual intervention. Here is the pipeline from the initialization of Selenium to output a structured
CSV file.

1. Initialization of Selenium WebDriver: The process begins with the initialization of the Selenium
WebDriver [33], which is responsible for automating the interaction with the web browser. In this
case, Chrome WebDriver is used, but it can be substituted with any compatible driver.

2. Navigating Through Pages: The script navigates through the repository pages, starting from a de-
fined start page to an end page. This range is adjustable based on the specific data requirements.
Each page is accessed via a constructed URL that includes the page number as a parameter.
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3. Data Extraction: For each thesis listed on the index page, the script collects the URL and navi-
gates to the detailed page. Here, it extracts the required information such as title, author, degree
information, etc., using XPath selectors to locate the text based on the surrounding labels.

4. Writing to CSV: Extracted data for each thesis is written to a CSV file. This structured format is
suitable for further processing and analysis. The CSV header includes columns for each piece of
information being collected.

5. Handling Delays and Exceptions: To ensure the reliability of the extraction process and to mitigate
the risk of being blocked by the website, the script includes deliberate delays between requests.
Additionally, a helper function is used to handle exceptions gracefully, returning ’None’ for any
missing information.

6. Data Checking: The script includes a data checking step, where it randomly goes back to previ-
ously processed pages and compares the webpage data with the CSV data to ensure consistency
and accuracy. This step helps in verifying that the data extraction process is functioning correctly
and that the stored data matches the source.

7. Finalization: Once all pages within the specified range have been processed, the WebDriver is
terminated, concluding the data extraction process.

The output of this process is a CSV file containing a comprehensive dataset of thesis information from
the TU Delft repository. This file serves as a foundational component of the instruction tuning dataset,
ready to be integrated into the pipeline for training LLMs.

4.3.2. Extract Data from TU Delft Study Guide
For extracting course description data from the TU Delft Study Guide, a methodology is utilized to lever-
age the Python library requests for HTTP requests and BeautifulSoup from bs4 [31] for HTML parsing.
BeautifulSoup is an effective tool for parsing HTML and XML documents earlier than the Selenium web
driver. BeautifulSoup extracts various forms of information from web pages straightforwardly. This
approach enables the efficient gathering of detailed course information directly from the university’s
course description website.

This techinque offers an initial approach to addressing the research question of how to create instruction-
tuning datasets from semi-structured educational websites, especially static ones. BeautifulSoup sim-
plifies the process of parsing HTML content, allowing for the precise extraction of specific elements
from web pages. It is particularly effective for navigating and extracting data from static HTML content,
which is prevalent in many educational websites. This ensures that the data is accurately and consis-
tently captured in a structured format, reducing the likelihood of errors and inconsistencies. Here is a
pipeline to use BeautifulSoup to extract information from the course selection website.

1. HTTP Requests: The process initiates with sending HTTP requests to specific course detail URLs
constructed by appending course IDs to the base URL. Eachmajor’s course IDs are obtained from
the HTMLmain web pages of the department. This step is facilitated by the requests library, which
fetches the HTML content of the page.

2. HTML Parsing: Upon receiving the HTML content, ‘BeautifulSoup‘ is employed to parse and
navigate the DOM tree. It extracts the required information by identifying HTML elements and
their classes that correspond to the course details.

3. Data Extraction: Specific details such as the course code, course name, educational period,
course contents, study goals, education method, literature and studymaterials, prerequisites, and
assessment methods are meticulously extracted. This is achieved by defining precise selectors
and parsing structures that match the layout of the Study Guide’s course pages.

4. CSV Writing: The extracted information for each course is then written to a CSV file, providing a
structured and easily accessible format for the collected data. This file includes headers for each
of the details extracted, ensuring organized storage.

5. Iterative Processing: The script iterates over a list of course IDs, which are either predefined or
dynamically extracted from a separate file. This iterative approach allows for the batch processing
of multiple course pages in a sequence, maximizing efficiency.
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6. Error Handling: Throughout the extraction process, error handling mechanisms are implemented
to manage potential issues such as connection errors or missing data. This ensures the robust-
ness of the data collection process and the integrity of the resulting dataset.

The outcome of this methodology is a detailed CSV file that captures a wide range of course information
from the TU Delft Study Guide. By organizing this information systematically, the dataset becomes an
essential resource for later instruction tuning dataset generation.

4.4. Task Preparation
4.4.1. Survey
To gain a comprehensive understanding of student needs on educational websites, we conducted a
survey targeting TU Delft students. It invites 30 participants to provide insights into their perceptions
of the educational websites at TU Delft. The respondents, primarily bachelor’s and master’s students,
were familiar with the main educational resources at TU Delft, such as the study guide and paper
repository.

The survey began by asking respondents how frequently they used these educational websites and
what types of information they sought when browsing the webpages or using the website’s search bar
function. It then inquired about their experiences with the search functionality of these websites. Finally,
the survey asked respondents about their expectations for integrating a large language model (LLM)
into these websites and how it could help them find the information they need.

The survey results highlighted several key points. Some respondents noted that the search bar in the
study guide relies on exact word matching, which they found inflexible. The top five desired features
for an educational LLM, as showed by the survey result in figure 4.2, were:

Figure 4.2: Survey of Student’s Desired Features for Edu Websites

1. Comparing Different Courses: Students expressed a need for a tool that could provide a com-
prehensive comparison of different courses, helping them make informed decisions about their
course selections.

2. Introducing Course Content: There was a significant demand for detailed course introductions,
including information on teaching content, study goals, assessment methods, and more. This
feature would help students better understand what each course offers and its requirements.

3. Providing Key Information from Online Literature: Students wanted an LLM to extract and
summarize key points from academic literature, making it easier for them to grasp essential infor-
mation quickly.



4.4. Task Preparation 21

4. Ranking the Workload of the Course: Students wanted a feature that could rank the workload
of different courses to help them plan their studies effectively. However, this study will not work
on this feature since the data on the workload of each course is not public.

5. Giving Past Student’s Comments on the Course: Students expressed interest in a feature
that could provide insights from past students’ comments to get a better understanding of what
to expect from a course. However, this study will not work on this features since the student’s
comments on courses are not disclosed on the websites.

These insights from the survey were used to define the specific instructional tasks for the LLM. More-
over, some other literature, as mentioned in previous section, also points out the need for AI-based
applications or LLMs can play a row in the educational field. By aligning the instruction tuning tasks
with the actual needs and preferences of the students, the research aims to create a model that is both
relevant and highly beneficial for the educational community at TU Delft.

4.4.2. Task Categories
Based on the results of the student survey and the study from current AI-education research, we then
analyzed our data sources and identified relationships among the information. From this analysis,
we developed 9 tasks that could lead to the creation of domain-specific instruction instances. These
tasks are designed to cover a comprehensive range of educational needs and ensure the model can
effectively assist students in various aspects of their academic journey. The tasks are detailed as
follows:

1. Course Content Introduction:

• Task: Introduce the course content to students based on the course name.
• Goal: Provide a brief and concise summary of what the course covers, helping students
understand the main topics and concepts of the course.

2. Study Goal Answering:

• Task: Answer the study goal of a course based on the provided course name.
• Goal: Explain the primary objectives and intended learning outcomes of the course to help
students understand what they are expected to achieve upon completion.

3. Assessment Method Answering:

• Task: Provide the assessment method of a course based on the provided course name.
• Goal: Describe the evaluation and grading criteria used in the course, including exams,
assignments, projects, and participation, to inform students how their performance will be
measured.

4. Prerequisites Introduction:

• Task: Provide the expected prior knowledge of a course based on the provided course
name.

• Goal: Inform students of the prerequisite knowledge or skills they should have before taking
the course, ensuring they are adequately prepared.

5. Teaching Materials Answering:

• Task: Provide the teaching materials of a course based on the provided course name.
• Goal: List the textbooks, articles, and other educational materials that will be used in the
course, giving students a clear idea of the resources required.

6. Course Name Prediction:

• Task: Predict the name of a course based on a given description.
• Goal: Help students identify courses that match their interests based on the description of
the course content and objectives.

7. Pairwise Courses Comparison:
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• Task: Compare two courses and provide reasons for the comparison.
• Goal: Highlight the similarities and differences between two courses, including their content,
objectives, assessment methods, and relevance to the student’s interests, to help students
make informed decisions about which course to choose.

8. Manual scripts Summarization:

• Task: Summarize a research work based on its title.
• Goal: Provide a concise summary of the research work, including its objectives, methodol-
ogy, findings, and significance, to help students quickly grasp the essence of the research.

9. Research Work Keywords Prediction:

• Task: Predict the keywords of a research work based on the abstract.
• Goal: Identify the main topics and concepts of the research work to facilitate better indexing
and searchability.

4.4.3. Task Templates
Tasks are illustrated through different templates, which serve as fill-in-the-blank frameworks. These
templates allow the LLMs to perform summarization and other relevant tasks by filling in the blanks,
thereby generating new datasets.

Instruction

You are an educational resource chatbot and you are introducing course content to students.

Input Prompt

Prompt: Would you please introduce the course [Course Topic] to me?.

Generated Response

Response: You might be interested in ’[Course Name]’ ([Course Code]), [Course Summary],
making it ideal for your interest in this area.

4.4.4. Example
Instruction

You are an educational resource chatbot and you are introducing course content to students.

Input Prompt

Prompt: Would you please introduce the course Machine Learning to me?

Generated Response

Response: You might be interested in ’Machine Learning 1’ (ML101), This course covers
the fundamental concepts and techniques used in machine learning, including supervised and
unsupervised learning, neural networks, and deep learning. Students will learn how to apply
these techniques to real-world problems through practical examples and hands-on projects.,
making it ideal for your interest in this area.
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4.5. Dataset Generation By Mixtral
In this section, we outline the workflow of utilizing the Mixtral 8x7b model to produce an instruction
tuning dataset for various educational tasks. This process involves initializing the model, loading and
processing course data, creating prompts, and generating responses for different tasks. Each task is
designed to address specific student needs in the educational field.

This research aims to utilize the capabilities of LLMs to generate an instruction tuning dataset with
minimal human effort. Finding an effective solution to automate this process is a key focus. Mixtral
8x7b is particularly suited for this task due to its advanced natural language processing capabilities,
which allow it to understand, generate, and summarize text from the collected CSV files with high
accuracy and relevance. By leveraging Mixtral 8x7b, the research aims to streamline the process of
transforming educational data into structured formats suitable for instruction tuning.

Figure 4.3: Design of Instruction Tuning Dataset Generation and Model fine-tuning

4.5.1. Why Mixtral 8x7b is Suitable: Tradeoffs between Privacy and Performance
Using a LLM like Mixtral 8x7b to generate instruction tuning tasks significantly reduces human effort,
particularly in areas such as annotation. Previous instruction tuning projects, like Stanford’s Alpaca,
have utilized LLMs such as GPT-3.5 to create instruction-tuning datasets. However, this research
involves educational data, which must adhere to strict security and privacy protocols. There are con-
siderable privacy concerns associated with uploading educational data to GPT-APIs, as they can pose
risks related to data breaches and unauthorized access [48].

To mitigate these privacy issues, we need to utilize open-source LLMs that can be processed on local
machines. This approach allows developers to maintain complete control over the data flow, ensuring
that educational data remains secure and protected from leaks. In particular, local processing also
means that sensitive data never leaves the institution’s secure environment, aligning with best practices
for data privacy and security.

Choosing a suitable open-source LLM is critical to generating an instruction tuning dataset that is both
high-quality and efficient. During the selection process, the pool of open-source LLMs considered in-
cluded Gemma, Mixtral, and Llama2/3. Mixtral was ultimately selected due to its superior performance
on summarization benchmarks, which is crucial as our generation tasks involve summarizing content
from the original CSV files [1]. Summarization is a key task during this research’s dataset genera-
tion because it enables the conversion of extensive educational content into concise and fact-based
instruction-tuning examples.

Moreover, Mixtral 8x7b offers faster inference times compared to other models, which further supports
its suitability for this research. This faster processing speed allows for more efficient data handling and
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task generation: the model could be an ideal choice for creating a large instruction tuning dataset within
a reasonable timeframe. Faster inference times also mean that the model can be iteratively improved
and tested more quickly, accelerating the overall research process.

4.5.2. Workflow of Workflow of Using Mixtral 8x7b for Dataset Generation
1. Dataset Preparation and Model Initialization: The process begins with preparing the dataset

by loading the relevant educational information from a CSV file. This step involves using the
pandas library to read the CSV file and select a manageable subset of data for initial processing
and testing. Next, the Mixtral 8x7b model is initialized using the Ollama library. This step sets
up the necessary environment for the language model to operate effectively. The initialization
involves specifying the model to be used and ensuring that it is ready to process the prompts and
generate responses.

2. Template Creation: For each task in the dataset, pre-created templates with blanks are used to
let the model summarize the required information from the CSV file and fill in the blanks of the
template. These templates are developed by the researchers to standardize the process. This
involves defining user input, model output, and model instructions based on the tasks, ensur-
ing relevance and consistency. The prompts generated from these templates are then used to
produce responses from the Mixtral 8x7b model.

3. Summarizing and Generating Content: The Mixtral 8x7b model is utilized to fill in the blanks of
the human-created templates for various tasks. This involves using the pre-defined prompts to
instruct the model such as summarizing content, providing course comparisons, and answering
other specific educational queries. By filling in the blanks of these templates, the Mixtral 8x7b
model generates concise and relevant summaries and responses, making it easier for users to
understand the main points and concepts covered.

4. Filtering and Matching Data: The educational data is filtered to find relevant matches based on
the task requirements. This step involves using string-matching techniques to identify relevant
information in the dataset. Oncematching data is found, the response is generated and structured
to include all relevant details, ensuring comprehensiveness.

5. Instruction Tuning Dataset Generation: The unique tasks are iterated over, creating prompts
and generating responses using the Mixtral 8x7b model. Each entry in the dataset contains the
instruction, input prompt, and the generated response. This structured approach ensures that the
dataset is ready for instruction tuning, providing a robust foundation for fine-tuning LLMs.

6. Saving the Dataset: The final step involves saving the generated instruction tuning dataset to
a JSON file. This step ensures that the dataset is stored in a simple and easy-to-use format,
suitable for subsequent instruction fine-tuning.

The output of this process is JSON files containing instruction-tuning datasets with different tasks. This
dataset is ready to be integrated into the next pipeline for LLMs fine-tuning.

4.6. Data Quality Assessment
4.6.1. Human Assessment
In this research, the ground truth is defined by the information in the study guide and papers repository,
which appears on the education websites and is then stored in the CSV file from data extraction in Stage
1. For instance, the attributes ”course content” and ”abstract” are written by humans and verified by
students, professors, or instructors. Therefore, we can treat the information from educational websites
as ground truth. The instruction dataset created by Mixtral should have extracted key information from
these attributes. In particular, Mixtral is primarily used to summarize attributes like course content and
form new output instruction instances given the template.

The task of summarization in NLP has utilized the Rouge Score for a long period, and its effectiveness is
well-proven. In contrast, machine metrics like the Rouge Score are effective for measuring the overlap
of n-grams words, but they fall short of capturing the semantic similarity between the generated content
and the ground truth. The Rouge Scoremay not adequately reflect the nuances of meaning and context,
which are essential for evaluating educational content.
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To address these limitations, human assessment is better than machine metrics and thus necessary
to ensure a comprehensive examination of the instruction tuning dataset. this method involves inviting
testers to assess how closely the instruction-tuning dataset aligns with the ground truth data in terms
of semantic meaning. This process involved 5 testers, who are all students of TU Delft. Testers are
randomly assigned samples from the instruction tuning dataset.

In particular, five testers are randomly given 50 samples from the instruction tuning dataset. Based
on the task type of instruction, they will manually search for and compare the generated instruction
instance with the corresponding ground truth from the study guide or paper repository. This manual
comparison ensures a thorough evaluation of semantic similarity, which machine metrics alone cannot
provide.

The human evaluation is based on five key metrics, each rated on a 5-point Likert scale, ranging from
0 to 5. These metrics are derived from a survey of human evaluation of automatically generated text to
ensure a thorough assessment of the generated content [43]. The evaluation focuses on the following
criteria:

1. Relevance: Measures how well the instruction instance aligns with the specific educational task
or query. This ensures that the content is pertinent and useful for the intended purpose.

2. Correctness: Assesses the correctness and factuality of the information provided. This metric
ensures that the generated content is reliable and factually accurate compared to the ground truth
data on educational websites.

3. Grammar: Evaluates the syntax, punctuation, and overall fluency of the instruction dataset.
Proper grammar is essential for maintaining the professionalism and readability of the content.

4. Clarity: Examines how easily the instruction dataset can be understood, focusing on the logical
flow and simplicity of the language used. Clear content enhances the user’s comprehension and
learning experience.

5. Usefulness: Assesses the practical value and applicability of the instruction dataset to the user’s
needs. This metric ensures that the content is not only accurate and relevant but also beneficial
and actionable for the user.

4.6.2. Assessment Result
Table 4.3: Human Assessment Scores for Tasks Design

Task (Model) Relevance Accuracy Grammar Clarity Usefulness
Task Generation(Mixtral) 4.8 4.9 4.7 4.7 4.5

We collected the assessment scores from the fivemetrics and took an average. The assessment scores
for the task generation using the Mixtral model demonstrate high performance across all five metrics.
Both relevance and accuracy show strong results, which suggest that the generated content aligns
well with specific educational tasks or queries. Moreover, the instruction instance is factually correct
and reliable. This high degree of relevance and accuracy ensures that the users find the generated
information trustworthy, which is crucial for educational purposes.

In addition to relevance and accuracy, the model also performs well in terms of grammar and clarity.
The high scores in grammar suggest that the content produced by the model is grammatically correct,
maintaining proper syntax, punctuation, and overall fluency. Similarly, the clarity score indicates that the
content is easy to understand, with logical flow and simple language, which helps users comprehend
the main points and concepts without confusion.

Lastly, the usefulness of the generated content is also rated highly. This means that the information
provided by the model is practical and beneficial for students, meeting their needs in the educational
sector. The combined high performance across relevance, accuracy, grammar, clarity, and usefulness
metrics suggests that the Mixtral model could be a reliable tool for generating a high-quality educational
instruction tuning dataset that is informative.
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4.6.3. Krippendorff's Alpha Analysis

Figure 4.4: Krippendorff’s Alpha Values

The Krippendorff’s alpha values presented in Figure 4.4 provide insight into the agreement levels among
different evaluators on various metrics used to assess the quality of the instruction-tuning datasets.
Krippendorff’s alpha is a statistical measure used to assess the reliability of agreement among raters,
with values ranging from -1 to 1 [22]. Higher values of this coefficient indicate stronger agreement.

The relevance metric has an alpha value of 0.726, indicating moderate agreement among the evalua-
tors. While the agreement is relatively strong, it is lower compared to some other metrics. This may
be because different evaluators have slightly varied perspectives on what constitutes relevance in the
context of educational content, leading to some discrepancies in their ratings.

The accuracy metric has the lowest alpha value at 0.714. This suggests that there is less agreement
among evaluators regarding the factual correctness of the content. This could be due to differences in
individual evaluators’ knowledge levels. Thus they have various abilities to verify the factual accuracy
of the provided information, so it results in varied assessments.

The grammar metric shows a higher alpha value of 0.790 thus it shows substantial agreement among
evaluators. This suggests that grammatical correctness is relatively straightforward for evaluators to
assess consistently, likely because grammar rules are more objective and standardized.

Clarity has the highest alpha value at 0.811, which means there is a strong agreement among evalua-
tors. This suggests that evaluators find it relatively easy to assess how clearly the content is presented.
Clear and logical flow of information is likely more universally understood and agreed upon.

The usefulness metric has an alpha value of 0.752, indicating moderate to strong agreement. Eval-
uators seem to have a fairly consistent understanding of how useful the content is for the intended
educational purposes, though there may still be some subjective differences in how usefulness is per-
ceived in the field of education.

Explanation for Differences
The variations in Krippendorff’s alpha values can be attributed to several factors:
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• Subjectivity: Metrics like relevance and usefulness are inherently more subjective than grammar
and clarity. Evaluators may have different interpretations based on their individual experiences
and expectations, leading to greater variability in ratings.

• Knowledge and Expertise: The accuracy metric likely shows the lowest agreement because it
requires evaluators to have a certain level of expertise or knowledge to verify factual correctness.
Differences in evaluators’ knowledge levels can result in inconsistent assessments.

• Standardization: Grammar and clarity are more standardized metrics, with clear rules and guide-
lines that evaluators can follow. This reduces the room for subjective interpretation and results
in higher agreement.

• Complexity of Content: The complexity and nature of the content being evaluated can also influ-
ence agreement levels. More complex or ambiguous content might lead to greater discrepancies
in evaluations for relevance and accuracy.

In all, the Krippendorff’s alpha values suggest that while there is a reasonable level of agreement among
evaluators for all metrics, the highest agreement is found in more objective areas such as grammar and
clarity. In contrast, metrics that require subjective judgment or specialized knowledge, like relevance
and accuracy, show more variability in evaluations. This highlights the importance of clearly defining
evaluation criteria and ensuring evaluators have adequate knowledge and training to assess content
consistently.

4.7. Discussion
Table 4.4: Comparison of Domain Adaptation in Educational Field and Self-Instruct Approach

Dimension Self-Instruct Approach Our Work (Educational Domain)
Data Source and Type - Small set of human-written seed tasks

- General-purpose tasks (summariza-
tion, classification, QA)

- Semi-structured educational websites
data
- Domain-specific tasks in education

Task Generation
Methodology

- Bootstrapping from human-written
tasks using LLMs
- Iterative process with steps like gener-
ating task instructions and filtering

- Automated data extraction from edu-
cational websites
- Data cleaning and LLMs generating
instruction-tuning datasets without hu-
man intervention during generation

Human Involvement - Initial seed tasks written by humans
- Human evaluation for filtering and data
quality
- High initial human effort

- Human involvement mainly in final
evaluation for quality
- Minimal human effort during data gen-
eration, relying on automation

Scalability and Cost - Scales through iterative LLM genera-
tion
- Costs associated with human-written
tasks and GPT-API

- High scalability due to automation
- Lower costs, avoiding extensive hu-
man annotation and using free LLM re-
sources

Domain Adaptation Fo-
cus

- General-purpose domain adaptation
- Broad, unspecific task generation

- Specific to educational domain
- Tailored to educational content, im-
proving LLMs’ performance in educa-
tional tasks

Evaluation Metrics - Human judgments and standard NLP
metrics
- Measures general instruction-
following ability

- Domain-specific human assessment
metrics (relevance, accuracy, gram-
mar, clarity, usefulness)
- Assesses model performance in gen-
erating educational content and practi-
cal applicability

To answerRQ1 (Howcanwe transform semi-structured educational website data into an instruction-
tuning task dataset that the model can learn from?), the first part of this research demonstrates a
comprehensive pipeline to extract and transform semi-structured web educational data into instruction-
tuning dataset instances. This process involves several critical steps, including task formulation, tem-
plate creation, data generation by LLMs, and human evaluation of dataset quality. By leveraging these
instruction-tuning datasets to train domain-specific models in education, our study shows promising im-
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provements compared to baseline general-purpose LLMs. Our findings align with previous works like
Alpaca and Self-Instruct, indicating the suitability of using LLMs to generate instruction-tuning datasets,
provided these datasets are verified to be factual and meet students’ needs.

However, unlike approaches in earlier studies that often constructed instances from structured data
sources, our source datasets are semi-structured in HTML form. This research first transforms the
data to a structured form and introduces a novel approach by leveraging LLMs to fill the blanks in task
templates, primarily utilizing the summarization capabilities of LLMs. In comparison to the self-instruct
method, our approach specifically caters to the educational domain, focusing on creating training data
for domain-specific LLMs. By surveying to understand and meet students’ needs, we ensure that the
generated content is relevant and practical.

Additionally, another insight for this method is the potential for reducing human effort in dataset genera-
tion. Like Self-Instruct and Alpaca, the traditional methods of creating datasets often require extensive
human annotation, which is time-consuming and costly. We leverage the advantage of current educa-
tional web data, which has already been verified by humans and contains a wealth of valuable infor-
mation. Moreover, our method produced high-quality instruction instances while minimizing the costs
associated with LLMs inference. If this entire generation process were conducted using commercial
LLMs API, similar to the approach taken by Alpaca, it could cost approximately 400$. Additionally, this
cost would scale significantly as the size of the educational data increases.This automated approach
ensures scalability and cost-efficiency, making it feasible for broader applications across various educa-
tional domains. Moreover, the comprehensive human evaluation process, supported by Krippendorff’s
alpha analysis, highlights the reliability and consistency of the generated datasets that form a solid
foundation for the subsequent stage of fine-tuning expert models.

This study has several implications and recommendations for future research and practice.

First, the pipeline we developed enhances automation in the dataset generation process and it is scal-
able and cost-effective. Developing more sophisticated algorithms for identifying relevant educational
content and prompting LLMs could streamline the pipeline.

Second, we focus on the technique of LLMs summarization and fact-based data generation. Our ap-
proach keeps the accuracy and relevance of the generated datasets from human assessments, which
is crucial for educational applications. To improve the reliability of human assessments, researchers
should explore more robust training programs for evaluators and incorporate additional metrics that
capture the nuanced aspects of educational content. This could include domain-specific criteria that
better reflect the quality and applicability of the generated datasets.

Third, the methodology introduced in this research can be applied to other semi-structured data sources
beyond educational content. The approach leverages automated data extraction and task generation,
which can be easily adapted to handle the unique structures and requirements of different domains.
This opens up possibilities for creating domain-specific LLMs in various fields such as healthcare,
finance, and legal sectors, where web information needs to be effectively transformed into training
datasets.

In all, our study opens possibilities for further research into improving automated data extraction, val-
idation processes, and even higher-quality datasets for instruction tuning in various domain-specific
domain.
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Stage 2: Model Instruction Tuning

5.1. Overview
In this chapter, we delve into the process of further pretraining and instruction fine-tuning of several
foundation models using the datasets we have prepared. This section sets the stage for detailed anal-
ysis from different perspective in the next chapter, which aims to answer RQ2: how can the different
training techniques impact on the performance of domain-specific educational LLMs?. Our cho-
sen platform for the first half of this task is Llama Factory[55], a comprehensive framework designed
to streamline and optimize the fine-tuning of large language models (LLMs). We will first explore the
capabilities and features of Llama Factory, discuss our methodology for further pretraining, and detail
the steps taken for instruction fine-tuning.

5.2. Platform: Llama Factory
Llama Factory is a unified framework that integrates a suite of cutting-edge efficient training methods
and it allows for the flexible and customizable fine-tuning of over 30 LLMs [55]. The platform is de-
signed to minimize the need for environment installation of different models through its built-in web
UI, LLAMABOARD, which provides an intuitive interface for configuring and monitoring the training
processes.

5.2.1. Features of Llama Factory
• Model Compatibility: Supports a wide range ofmodels including LLaMA2/3, Mixtral, andGemma.
• Resource Efficiency: Utilizes 32-bit full-tuning, 16-bit freeze-tuning, and various low-bit tuning
methods like LoRA to optimize GPU memory usage.

• ExperimentMonitoring: Supports experiment tracking andmonitoring with tools like LlamaBoard,
TensorBoard, Wandb, and MLflow.

• Faster Inference: Provides OpenAI-style API, Gradio UI, and CLI with vLLM worker for faster
and more efficient inference.

5.3. Further Pretraining
Further pre-training involves continuing the training of a pre-existing model on additional data to en-
hance its generalization performance on specific tasks. This step leverages the extensive dataset we
have created in stage 2, allowing the model to learn additional patterns and information before fine-
tuning.

5.3.1. Main Workflow
1. Model Initialization: Models are loaded and initialized using the AutoModel API of Transformers.

This ensures compatibility with various model architectures by establishing a model registry. For
instance, the Gemma model is instantiated with preloaded configurations and weights. The model
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configuration is loaded from cached files, and the model’s architecture details, such as hidden
size, number of layers, and attention heads, are pre-defined and set up.

2. Adapter Attachment: The adapter LoRA is attached to appropriate layers to facilitate efficient
pretraining. The floating-point precision is managed based on the capabilities of the training
devices. Typically, half-precision (float16) is used to optimize performance and memory usage
without compromising model accuracy. The model’s weights are initialized and configured to use
float16 precision, and auto half-precision backend is utilized during training.

3. Data Preparation: The datasets are loaded, aligned, merged, and pre-processed to standardize
them for training. Tokenization is performed using preloaded tokenizer configurations to convert
textual data into model-readable tokens. For example, the tokenizer configuration, model, and
special tokens are loaded from cache. The datasets are processed using multiple processing
units to speed up the tokenization process. This step converts raw text into input IDs that the
model can understand, ensuring that all tokens are correctly mapped.

4. Training Execution: The training process involves setting up batch sizes, gradient accumulation
steps, and the total number of optimization steps. Real-time monitoring and adjustments are
facilitated through LLAMABOARD, which provides detailed logs and loss value per step. The
training is managed by transformers.trainer, which handles the optimization steps, logging of
training loss, and learning rate adjustments.

5. Model Saving: Periodically, the model’s state, including weights and configurations, is saved to
checkpoints. This ensures that progress is not lost and allows for resuming training or performing
evaluations at different stages. The model configuration and tokenizer files are saved in the
checkpoint directory. It ensures that the model can be reloaded with the same settings for future
use. Checkpoints are created at regular intervals and they capture the model’s state at different
stages of training.

5.4. Instruction Tuning
Instruction fine-tuning further tailors the model to follow specific instructions or perform particular tasks
more effectively. This process enhances the model’s ability to generate accurate and relevant re-
sponses based on the given instruction dataset.

5.4.1. Methodology
• Data Worker: A data processing pipeline is employed to load, align, merge, and preprocess the
datasets, standardizing them into a unified format.

– Dataset Loading: The datasets are loaded using the llamafactory data loader, ensuring
compatibility and efficient handling of large datasets.

– Dataset Tokenization: The loaded datasets are tokenized using a pre-trained tokenizer
from the previous pre-trained model or hugging face. This includes loading necessary tok-
enizer files such as tokenizer.model, tokenizer.json, and special-tokens-map.json.

• Training Execution: The fine-tuning is carried out using state-of-the-art methods like LoRA, in-
tegrated into the Llama Factory framework.

– Model Download and Initialization: The model weights and configuration are downloaded
and initialized from its previous pre-trained version or directly from Hugging Face Hub. Gra-
dient checkpointing and torch SDPA are used to optimize memory usage and training speed.

– Fine-Tuning with LoRA: Technique of LoRA is employed, where trainable adapters are
added to the model’s layers. This allows for efficient fine-tuning by updating only a small
subset of model parameters.

– Precision Management: The model and trainable parameters are managed in mixed pre-
cision (float16 and float32) to leverage GPU capabilities and optimize performance.

– Training Configuration: The training process is configured with specific settings, such as
the number of epochs, batch size, gradient accumulation steps, and learning rate. Models
are fine-tuned on task-specific datasets to improve their performance on structured tasks like
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question answering, text summarization, and more. During each training step, the loss is
calculated and backpropagated to update the model parameters. Metrics such as gradient
norm and learning rate are monitored to ensure stable training. Real-time monitoring of
training loss and other metrics like Bleu is performed.

– Real-time Monitoring: The system provides tools for monitoring training logs and loss
curves in real time, offering insights into the training progress and allowing for timely ad-
justments.

– Checkpointing and Model Saving: Periodic checkpoints are saved during the training pro-
cess to ensure that progress is not lost and to facilitate resumption in case of interruptions.
Upon completion of training, the final model, along with its tokenizer and configuration files,
is saved for future evaluation and deployment.

5.4.2. Human Evaluation
In this section, we outline the process for conducting human evaluation to assess the quality and ef-
fectiveness of the fine-tuned models. Human evaluation is critical to ensure that the model-generated
content meets the standards of relevance, accuracy, and utility required for educational purposes.

Testers will interact directly with the fine-tuned models. For each output generated by the model, testers
will search for the corresponding information on educational websites and compare the results. This
interaction will provide a practical evaluation of how well the model performs in real-world scenarios.

The human evaluation is based on five metrics, derived from a survey of NLP tasks mentioned in
previous chapter, to ensure a comprehensive assessment:

1. Relevance: Measures how well the generated content aligns with the specific educational task
or query. This ensures that the content is pertinent and useful for the intended purpose.

2. Accuracy: Assesses the correctness and factuality of the information provided. This metric
ensures that the generated content is reliable and factually accurate.

3. Grammar: Evaluates the syntax, punctuation, and overall fluency of the generated content.
Proper grammar is essential for maintaining the professionalism and readability of the content.

4. Clarity: Examines how easily the generated content can be understood, focusing on the logical
flow and simplicity of the language used. Clear content enhances the user’s comprehension and
learning experience.

5. Usefulness: Assesses the practical value and applicability of the generated content to the user’s
needs. This metric ensures that the content is not only accurate and relevant but also beneficial
and actionable for the user.

The evaluation process will involve the following steps:

• Introduction and Purpose: The testers are introduced to the content of this research, the pur-
pose of the evaluation, and how to interact with the model on LlamaBoard.

• Output Generation: The model generates responses based on the user query.
• Information Retrieval: Testers search for the corresponding information on educational web-
sites.

• Scoring Rubrics: Scoring rubrics are presented to testers to guide them in scoring the tasks
effectively.

• Comparison and Rating: Testers compare the model-generated content with the information
retrieved from the websites and rate the outputs based on the five metrics.

By following this evaluation framework, we aim to obtain a detailed understanding of the model’s per-
formance and identify areas for further improvement.

5.5. Experiments Overview
In this section, we will provide an overview of the experiments designed to analyze and evaluate the per-
formance of various domain-specific educational LLMs. These experiments are crucial for answering
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RQ2: how can the different training techniques impact on the performance of domain-specific
educational LLMs?

5.5.1. Experiment 1: Effect of Further Pre-training
This experiment focuses on evaluating the impact of further pre-training on the performance of the
Llama2 model within the educational domain. The goal is to determine how additional pre-training
on domain-specific educational data enhances the model’s ability to generate accurate and relevant
responses. By comparing models with and without further pre-training, we aim to quantify the improve-
ments using ROUGE scores.

Understanding the effect of further pre-training is vital for assessing whether extending the training of
a pre-existing model on domain-specific data can lead to significant performance improvements. This
experiment will help in determining the necessity and effectiveness of this additional training phase.

5.5.2. Experiment 2: Effect of Multitask Training
This experiment examines how training a model on multiple tasks influences its performance on a
specific task. We compare the performance of the Llama3model trained exclusively on one task versus
the model trained on three and five tasks. The objective is to evaluate whether multitasking training
enhances the model’s ability to handle individual tasks effectively and how the introduction of different
types of data sources impacts performance.

In the educational domain, it is still unclear how multitask training can potentially affect a model’s gen-
eralization capabilities and robustness. This experiment aims to explore the benefits and challenges
of multitask training, particularly in handling correlated and diverse datasets within the educational do-
main.

5.5.3. Experiment 3: Performance Comparison of Different Models
This experiment compares the performance of several popular open-source models, including Llama2,
Llama3, Gemma, and Mixtral, by performing instruction tuning on educational data. The goal is to iden-
tify which model performs best in generating relevant and accurate educational content. The evaluation
involves both machine metrics and human assessments to provide qualitative insights into the models’
performance.

Selecting the right model under limited physical resources is crucial for achieving optimal performance
in domain-specific tasks. This experiment provides a comprehensive comparison of different models,
highlighting their strengths and weaknesses, and guiding the selection of the most suitable model for
educational applications.
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Experiment and Results

This chapter provides a comprehensive analysis of the experiments conducted to evaluate the perfor-
mance of various domain-specific LLMs in the educational domain. The primary focus is to answer
RQ2: how can the different training techniques impact on the performance of domain-specific
educational LLMs?. The experiments are designed to assess how further pre-training, multitask train-
ing, and model selection affect the models’ ability to generate accurate, relevant, and clear educational
content. The findings are based on both quantitative metrics and human evaluations, offering a detailed
understanding of the effect of each training factor.

6.1. Experiments Setup
6.1.1. Datasets
In this section, we provide a detailed description of the datasets used for pretraining and fine-tuning
the models. This includes their sources, key statistics, and preprocessing steps undertaken to prepare
the data for training.

Dataset Sources
The datasets employed for this study were sourced from various educational resources, including
course descriptions, study goals summaries, and other academic-related documents. The detailed
statics information of these datasets is in . These sources provided a rich and diverse set of data
suitable for training models aimed at educational purposes.

Key Statistics
The key statistics for the datasets used in pretraining and fine-tuning are as follows:

• Number of Inputs: The total number of Inputs included in the datasets.
• Total Tokens: The combined number of tokens across all documents.
• Average Input Length: The average number of tokens per entry.

Preprocessing Steps
The preprocessing of the datasets involved several key steps to ensure that the data was in a suitable
format for training the models. These steps included:

• Cleaning: Both the pre-training raw text file and instruction tuning dataset were filtered to remove
non-English content. Additionally, any data entries that were empty were removed to ensure the
integrity and quality of the dataset.

• Tokenization: The text data was tokenized using a tokenizer compatible with the model archi-
tecture, ensuring that the data could be efficiently processed and the model could learn from the
input.
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Table 6.1: Key Statistics for the Datasets

Dataset Number of Inputs Total Tokens Average Input Length Unique Tokens
Course Content Introduction 1700+ 500,000+ 500+ 10,000+
Course Study Goals Summarization 1400+ 250,000+ 500+ 12,000+
Course Assessment Summarization 1200+ 170,000+ 500+ 8,900+
Prerequisites Summarization 800+ 110,000+ 200+ 3,200+
Teaching Material Answering 600+ 90,000+ 100+ 5,700+
Course Name Prediction 1700+ 500,000+ 500+ 10,000+
Courses Comparison 3000+ 1,200,000+ 500+ 18,000+
Manual Scripts Summarizations 5000+ 1,200,000+ 500+ 73,000+
Research Keywords Predictions 5000+ 1,100,000+ 500+ 69,000+
Course Data Raw Text 5000+ / / /

• Shuffling: The datasets were shuffled to prevent any order bias during training, ensuring that
the model could generalize well across different topics and formats.

6.1.2. Models
In this study, we utilized several state-of-the-art language models to evaluate their performance in
various experiments by using the instruction tuning dataset in the educational domain. Themodels used
include Llama2, Llama3, Gemma, and Mixtral. All models were obtained from Huggingface, a widely
used repository for machine learning models. Some models, such as Llama3 and Mixtral, required
access permissions that needed to be requested from the respective model maintainers.

6.1.3. Training Environment
The training environment for this study was designed to leverage high-performance computing re-
sources to efficiently further pretrain and fine-tune the models. Below are the detailed hardware speci-
fications, software frameworks, and configurations used during the experiments.

Hardware Specifications
The experiments were conducted on a system with the following hardware specifications:

• GPU: 1x NVIDIA A100 (40 GB SXM4), except for Mixtral which used 2x NVIDIA A100.
• CPU: 30 CPU cores
• Memory: 205.4 GB RAM
• Storage: 525.8 GB SSD

Software Enviroment
• Operating System: Ubuntu 20.04 LTS
• Deep Learning Framework: PyTorch 1.9.0
• Transformers Library: Hugging Face Transformers 4.9.2
• Experiment Tracking: LlamaBoard, TensorBoard

6.1.4. Training Procedure
The training procedure encompasses both the pretraining and fine-tuning processes, utilizing advanced
methods such as LoRA to enhance model performance. Key hyperparameters are similar to the setting
from the Alpaca project, and the steps are detailed below.

Pretraining and Fine-Tuning Process:

• Data Loading: The datasets are loaded from the specified directory, and preprocessing is per-
formed using 16 parallel workers to ensure efficiency. The data is filtered to exclude non-English
content and remove any empty entries, maintaining high data quality.

• Model Initialization: The base model is loaded and initialized with its pre-trained weights. Spe-
cific settings, such as enabling half-precision floating point (fp16) and automatic flash attention,
are configured to optimize performance in limited computational resources.
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• LoRA Configuration: LoRA (Low-Rank Adaptation) is employed for fine-tuning. The configura-
tion includes parameters such as lora_alpha set to 16, lora_dropout set to 0, and lora_rank set
to 8.

• Training Configuration: The training procedure uses a batch size of 8 per device, with gradient
accumulation steps set to 8. The learning rate is configured at 0.0003, and the AdamW opti-
mizer is used with a cosine learning rate scheduler. Gradient clipping is applied with a maximum
gradient norm of 1.0 to prevent gradient explosion.

• Training Execution: The training process is executed for 3 epochs, with logging steps set to
every 5 steps to monitor progress. The model undergoes both pretraining and fine-tuning stages,
leveraging efficient techniques like LoRA to enhance adaptability and performance.

• Model Saving: The trained model and its configurations are saved at specified intervals (every
100 steps) to ensure checkpoints are available. The final model is stored in the designated output
directory for future inference and evaluation.

6.2. Experiment 1: Effect of Further Pre-training
The purpose of this experiment is to evaluate the impact of further pre-training on the performance
of the Llama2 model, specifically in the educational domain. This involves comparing the model’s
performance with and without additional pre-training steps under the same hyperparameter settings.
The goal is to understand how further pre-training on educational data affects the model’s ability to
generate accurate and relevant responses. The evaluation focuses on machine metrics, namely BLEU
and ROUGE scores, to quantify the improvements. For this part of the experiment, we only tested the
task research key words prediction.

To conduct this experiment, the following steps were undertaken:

6.2.1. Dataset Preparation
• The dataset of both the instruction tuning dataset and raw data file was split into training and
testing sets in a ratio of 70: 30.

• The test set was used to evaluate the model’s performance. Specifically, 300 entries were ran-
domly selected from the test set for the task research key words prediction.

6.2.2. Model Training
• Baseline Model: The Llama2 model without any additional pre-training or instruction tuning.
• Pre-trained Model: The Llama2 model subjected to further pre-training on a raw educational text
file.

• Instruction Tuned Model (IT): The Llama2 model fine-tuned with instruction tuning on the edu-
cational dataset.

• Combined Model (IT+Pretrained): The Llama2 model that underwent both further pre-training
and instruction tuning.

6.2.3. Evaluation Metrics
The performance of the models was evaluated using BLEU and ROUGE scores, which are standard
metrics for assessing the quality of generated text against reference texts. For this experiment, BLEU
scores indicate that how the generated keywords match the reference keywords in terms of precision.
Moreover, ROUGE scores indicate that how the generated keywords recall the reference keywords.

6.3. Experiment 2: Effect of Multitasks
This experiment aims to evaluate how training a model on multiple tasks affects its performance on a
specific task. Specifically, we compare the task performance of the Llama3 model trained exclusively
on one task against the Llama3 model trained on three and five tasks. The purpose is to determine
if multitasking training enhances the model’s capability to handle individual tasks effectively and how
introducing different types of data sources impacts performance.
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The purpose of this experiment is to understand how instruction tuning with multiple tasks affects the
model’s performance on the specific task of introducing course content. The models evaluated include:

• Llama3 (One Task): Trained only on the task of introducing course content.
• Llama3 (Three Tasks): Trained on three tasks - introducing course content, answering the as-
sessment method, and answering the study goals of a course.

• Llama3 (Five Tasks): Trained on five tasks - introducing course content, answering the assess-
ment method, answering the study goals of a course, summarizing a thesis abstract, and predict-
ing the keywords of a paper.

In particular, the first and second models’ instruction tuning datasets are highly correlated as they
are sourced from the course selection website and the tasks all introduce the content from different
perspectives. However, the third involves an additional dataset from the paper repository. This setup
helps us analyze: 1) How the number of similar tasks affects performance. 2) How the introduction of
a different dataset type impacts performance.

6.3.1. Human Evaluation
The three models were evaluated by five students from TU Delft based on the following metrics:

1. Relevance: How well the generated content aligns with the specific educational task or query.
2. Accuracy: The correctness and factuality of the information provided.
3. Grammar: The syntax, punctuation, and overall fluency of the generated content.
4. Clarity: How easily the generated content can be understood, including logical flow and simplicity

of the language used.
5. Usefulness: The practical value and applicability of the generated content to the user’s needs.

To reduce bias, the testers were invited to interact with the models randomly, querying for course con-
tent. Each tester evaluated 25 outputs from each model, totaling 75 evaluations per tester and 300
evaluations overall across all testers. Each model’s evaluation metrics were summed up and averaged
to provide a comprehensive assessment of its performance.

6.4. Experiment 3: Performance of Different Models
This experiment compares the performance of various popular open-sourcedmodels, including Llama2,
Llama3, Gemma, and Mixtral by performing instruction tuning on educational data. The goal is to
evaluate which model performs best in generating relevant and accurate educational content. The
results are presented in section 7.7.

All models are trained with the same comprehensive instruction-tuning dataset comprising 9 tasks.
They share similar training environments and hyperparameter settings as mentioned in section 7.2,
except for Mixtral 8x7b, which uses 2xA100 GPUs due to its larger parameter size and higher virtual
memory requirements during supervised fine-tuning.

Similarly, like the previous exp2, the experiment also involves human evaluators to assess the quality
of the generated content from different models. Testers interact with the models, retrieve information
from educational websites, and compare the results based on relevance, accuracy, grammar, clarity,
and usefulness. The purpose is to obtain qualitative insights into the models’ performance.

The evaluators randomly chatted with each model 18 times. This results in a total of 72 evaluations for
each model and the scores are averaged to provide a comprehensive performance assessment.

6.5. Main Results
6.5.1. Effect of Further Pertaining
The results presented in Table 6.2 highlight the significant improvements in performance metrics for the
Llama2 model when subjected to further pre-training and instruction tuning. The metrics include BLEU
(1-4) and ROUGE (1, 2, L), which collectively offer a comprehensive view of the model’s performance
for keyword predictions.



6.5. Main Results 37

Table 6.2: Performance Metrics for Llama2 with and without Further Pre-training

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-1 ROUGE-2 ROUGE-L
Llama2 17.06 13.77 10.00 7.55 9.51 1.92 4.84
Llama2 (Only Pretrained) 19.66 13.64 11.63 9.31 10.73 2.99 5.22
Llama2 (IT) 74.64 67.48 59.37 51.69 52.00 31.88 41.02
Llama2 (IT+Pretrained) 76.37 69.12 62.48 52.22 51.13 33.01 42.57

The baseline Llama2 model demonstrates low performance in both BLEU and ROUGE scores, indi-
cating its inability to analyze the paper’s abstract and predict related keywords directly. With further
pre-training alone, slight improvements are observed. For example, BLEU-1 increases to 19.66 and
ROUGE-1 rises to 10.73. This suggests that further pre-training on educational data enhances the
model’s content understanding and keywords prediction, though the improvements are not dramatic.

The introduction of instruction tuning (IT) yields substantial improvements across all metrics. The
Llama2 (IT) model achieves a BLEU-1 score of 74.64 and a ROUGE-1 score of 52.00. These scores re-
flect a significant leap in performance, suggesting that instruction tuning greatly enhances the model’s
ability to follow specific tasks, learn from the pattern of the training dataset, and predict related keywords.
The Llama2 model that undergoes both instruction tuning and further pre-training (IT+Pretrained) ex-
hibits the highest performance among most metrics except slightly lower in the ROUGE-1 score. This
indicates that further pre-training, followed by instruction tuning makes it more effective in predicting
the accurate keywords of a literature abstract that it never learned before.

6.5.2. Effect of Multi-tasks
Table 6.3: Human Evaluation Scores for Different Models

Model Relevance Accuracy Grammar Clarity Usefulness
Llama3 (One Task) 4.2 4.1 4.8 3.8 4.3
Llama3 (Three Similar Tasks) 4.5 4.3 4.7 4.1 4.4
Llama3 (Five Different Tasks) 4.3 3.9 4.7 4.0 4.4

The results in Table 6.3 provide insights into how training with multiple tasks affects the performance
of the Llama3 model on the task of introducing course content.

Impact of Single Task Training: Llama3 trained on only one task (introducing course content) demon-
strates good performance with high scores in grammar and usefulness, indicating that focused training
on a single task allows the model to generate precise and coherent responses.

Impact of Three Tasks Training: Training on three tasks enhances the model’s performance across
all metrics. The Llama3 (Three Tasks) model shows improvements in relevance, accuracy, and clarity,
suggesting that multitasking within a highly correlated dataset (course selection website) benefits the
model’s ability to handle individual tasks effectively.

Impact of Five Tasks Training: When training on five tasks, including datasets from the paper repos-
itory, the model’s performance shows mixed results. While the scores in grammar remain high, slight
decreases in relevance and accuracy are observed compared to the model trained on three tasks. This
indicates that introducing less correlated datasets may introduce complexity, slightly affecting perfor-
mance on specific tasks.

In summary, multitasking training with highly correlated datasets enhances overall performance. How-
ever, introducing datasets from different sources may require additional adjustments to maintain per-
formance levels across all metrics.
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6.6. Further Analysis
6.6.1. Pre-training time
To understand the relationship between pre-training size and the resulting performance metrics, we
calculated the percentage increase in performance metrics and recorded the training time for different
pre-training sizes.

Figure 6.1: Line Chart of Percentage Increase and Training Size

The graph 6.1 shows the percentage increase in performance metrics and the associated training times
for different pre-training sizes. The percentage increase is calculated by the average difference of all
machine metrics of the two models. The data reveals that as the pre-training size increases from 25%
to 100%, the percentage increase in performance metrics also rises, although at diminishing rates. For
instance, the percentage increase is 0.49 at 25% pre-training size and 2.13 at 100% pre-training size.
Correspondingly, the training time increases from 1.47 hours to 6.12 hours.

Moreover, the line chart shows that while performance continues to improve with larger pre-training
sizes, the rate of improvement decreases. This suggests that as more training data is added, the
additional performance gains become progressively smaller compared to the time and effort invested.

6.6.2. Performance on Different Models
Table 6.4: Human Evaluation Scores for Different Models

Model Relevance Accuracy Grammar Clarity Usefulness
Llama2 3.4 3.8 4.6 4.0 4.5
Llama3 4.3 4.0 4.6 4.2 4.6
Gemma 4.2 4.3 4.5 3.9 4.5
Mixtral 4.3 4.1 4.7 4.4 4.3

The results from the human evaluation highlight several key differences in model performance. Llama3
and Mixtral demonstrated strong capabilities in relevance and clarity, with both models achieving high
scores, suggesting their effectiveness in generating content that aligns well with the given tasks and
is easy to understand. Gemma excelled in accuracy, indicating its strength in providing correct and
factual information. However, Gemma did not perform as well in clarity, suggesting that its content
might be harder to understand. In terms of grammar, Mixtral led the way, followed closely by Llama3
and Llama2, all of which produced grammatically sound content.
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However, Llama2 lagged behind the other models in most metrics, showing a noticeable gap in perfor-
mance, particularly in relevance and accuracy. Despite this, all models performed well overall which
demonstrate their capabilities in handling expected educational tasks effectively.

6.6.3. Performance of Different Tasks
In this part, we examine the performance of each task using Llama3. Since most tasks achieve similar
evaluation scores in grammar, clarity, and usefulness, we primarily present the average scores for
relevance and accuracy for each task to provide more focused insights.

As from the line chart 6.2, the evaluation result shows that the tasks ”Prerequisites Introduction” and
”Research Work Keywords Prediction” scored highest, indicating strong performance in relevance and
accuracy for these tasks. Conversely, ”Assessment Method Answering” and ”Manual Scripts Summa-
rization” scored lowest, suggesting themodel struggles to produce accurate and fact-based educational
results. This finding leaves room for improvement in handling these specific tasks.

In all, this analysis highlights the varying performance levels across different educational tasks and it
provides a clear understanding of where the model excels and where further refinement is needed.

Figure 6.2: Line Chart of Percentage Increase and Training Size

6.7. Discussions
To addressRQ2 (Howcan different training techniques impact the performance of domain-specific
educational LLMs), we analyze serveral factors and compare them with previous findings. We also
discuss the implications of these findings and how they could influence the study of fine-tuning domain-
specific LLMs.

6.7.1. Further Pre-training
The further pre-training experiments highlight improvements in model performance and emphasize
the importance and effectiveness of this additional training phase. The finding matches the results
observed in earlier studies of McKinzie work’s on the relationship between pre-training and SFT model
performance [25].

In particular, further pre-training enables the model to acquire specialized knowledge not typically
present in general datasets, crucial for tasks requiring a deep understanding of specific domains like
educational content. Moreover, further pre-training enhances the model’s ability to understand and pro-
cess the structure of educational webpage data. By learning from a domain-specific corpus, the model
becomes adept at identifying correlations within the data, such as the relationship between an abstract
and its corresponding keywords. Moreover, the results show that combining pre-training with instruc-
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tion tuning yields the best performance across most metrics. This suggests that a two-step training
process—starting with domain-specific pre-training followed by task-specific instruction tuning—can
effectively maximize a model’s performance.

However, compared to previous studies, this study observes that while performance continues to im-
prove with larger pre-training sizes, the rate of improvement decreases. We speculate that this might
be the reason that as the model is exposed to an increasingly larger dataset, the incremental gains
in learning become smaller. Initially, additional data introduces new patterns and knowledge, leading
to significant improvements. However, as the dataset grows, much of the new data may be redun-
dant, repeating patterns the model has already learned, thus contributing less to overall performance
enhancement. Moreover, a second speculation is that increased demand can lead to resource con-
straints and it potentially limits the efficiency of the training process. Additionally, the model might
struggle to efficiently allocate its attention across a vast and diverse dataset, causing it to miss out on
learning finer details and key information for specific educational data. In addition, it is important to
acknowledge the resource-intensive nature of further pre-training. The computational demands and
time required can be substantial. In this study, only three years thesis data was used, yet the train-
ing process was still resource-heavy even we deployed LoRA mechanism. Extrapolating this to larger
datasets suggests that the time and computational resources required would scale accordingly.

In all, the findings from the further pre-training experiments underscore improvements in model perfor-
mance, emphasizing the importance and effectiveness of this additional training phase. The observa-
tion of diminishing returns with larger pre-training datasets suggests that researchers should initially
experiment with different sizes of small subsets to seek performance improvements. If resources such
as time and computational power are limited, and a positive trend is observed with smaller datasets, it
can justify expanding the dataset incrementally. This approach could ensure efficient use of resources
while maximizing the benefits of pre-training and it makes a strategic recommendation for researchers
aiming to fine-tune domain-specific language models on specific tasks.

6.7.2. Mutli-Tasks
The multitask training experiments reveal significant insights into how training models on multiple tasks
affect their performance. These findings align with those of Zhang et al, and in our study, multitask
training demonstrated similar benefits by exposing the models to a variety of tasks, allowing them to
better capture the nuances and specific requirements of educational tasks [52]. Instruction tuning with
multiple tasks enabled the models to learn a broader range of patterns and contexts, improving their
ability to handle individual tasks effectively. This was particularly evident with the Llama3 model trained
on three tasks, which outperformed themodel trained on a single task in relevance, accuracy, and clarity.
The diversity of tasks provided a richer training experience, leading to better generalization.

However, unlike Zhang’s study, which did not explore the impact of task similarity and dataset diversity,
our study found that introducing datasets from different sources, such as combining course selection
data with paper repository data, presents a decrease in model performance. While the model trained
on five tasks maintained high grammar scores, there were decreases in relevance and accuracy com-
pared to the model trained on three tasks. This suggests that less correlated datasets and tasks may
introduce complexity and require the model to learn different patterns simultaneously, which can affect
performance. One reason for this issue could be that during learning, the model has to switch between
different contexts and task requirements more frequently. This can lead to a dilution of the model’s
learning focus, making it harder for the model to achieve high performance in any single task. Another
potential reason is that the model might develop overfitting tendencies on more prominent or easier
patterns within the diverse datasets. It could neglect the harder, more complex relationships that are
crucial for specific educational tasks.

The findings indicate that while multitasking training on similar data sources can enhance overall perfor-
mance, it is crucial to optimize the selection and combination of tasks. Researchers should experiment
with different task combinations to find the optimal balance that maximizes performance. Additionally,
introducing new datasets gradually and monitoring the model’s performance can help identify the point
at which additional tasks no longer contribute to performance improvements or even cause degradation.
This approach ensures that the model remains effective and efficient in handling educational tasks.
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6.7.3. Performace of Different Models
The comparative performance evaluation of Llama2, Llama3, Gemma, and Mixtral models yields sev-
eral important implications, highlighting the strengths and limitations of each model in handling edu-
cational content. The findings partly align with those of previous studies on the general performance
comparison among those open-source models. In particular, Llama3 and Mixtral outperform the old
Llama2 as they demonstrate strong capabilities in relevance and clarity, suggesting that training these
models on multiple tasks can significantly enhance their ability to generate contextually appropriate
and easy-to-understand content. This aligns with the architectural design of Llama3, which uses an
extended vocabulary and GQA to balance computational efficiency and performance, enabling it to
handle diverse and complex educational queries effectively. Similarly, SMoE architecture allows it
to dynamically allocate computational processes, enhancing its ability to generate clear and relevant
educational content.

However, although Gemma excelled in accuracy, its lower score in clarity suggests that there might
be a trade-off between accuracy and clarity in some models. This implies that while some models can
generate highly accurate content, it might be more challenging to ensure that this content is also clear
and easily comprehensible. The MQA mechanism used in Gemma, although efficient, might contribute
to this trade-off as it simplifies the attention process. It potentially misses out on necessary details for
clarity. Future work should focus on balancing these two aspects to enhance overall performance.

Moreover, the need for advanced training techniques is evident from the performance of Llama2, which
lagged behind the other models in most metrics, particularly in relevance and accuracy. This highlights
the need for more advanced training techniques or further pre-training to improve its performance.
While Llama2 is capable, it requires additional optimization and training to reach the performance levels
of more advancedmodels like Llama3 andMixtral. Llama2’s performance could be significantly boosted
by leveraging the innovations implemented in its successors, such as the larger tokenizer vocabulary
and more efficient attention mechanisms. However, an advantage of Llama2 is its ability to be trained
using A10 GPUs, which are more cost-effective compared to the higher-end GPUs required by more
advanced models.

Additionally, the Mixtral model, which requires 2xA100 GPUs, demonstrates the trade-off between com-
putational resources and model performance. While Mixtral shows high performance across multiple
metrics, it also demands significant computational power. This implies that achieving top-tier perfor-
mance may come at the cost of increased computational requirements.

In all, the findings from the comparative performance evaluation underscore the need for a strategic
approach in selecting and optimizing models for educational content. Balancing accuracy, clarity, and
computational efficiency is crucial to developing effective and practical educational LLMs. Future re-
search should continue to explore these trade-offs and investigate innovative training techniques to
enhance model performance across various domain-specific tasks.

6.7.4. Limitations
This study, while comprehensive, encountered several limitations that highlight areas for future improve-
ment and exploration.

1. Numerical Data Handling: During our observations of interacting with the instruction-tuned mod-
els, we noted that the models performed poorly when dealing with numerical data. This problem is also
shown in figure 6.2 and this issue particularly affected queries related to assessment methods, which
were consistently the weakest among the nine instruction-tuning tasks. Assessment methods often
include percentages of assignments and exams for final grades, which the models struggled to handle
accurately. Additionally, the models demonstrated difficulty in memorizing course codes, sometimes
hallucinating and providing incorrect codes. One potential solution to this problem is to combine the
domain-specific model with a Retrieval-Augmented Generation (RAG) approach [23]. This could en-
hance the model’s ability to retrieve accurate numerical data and course codes from a reliable database,
thus improving its overall performance in these areas.

2. Hallucinations: Despite training on domain-specific instruction instances, the model still exhibits
problems with hallucinations. During the human evaluation process, we observed that the model oc-
casionally provides noticeably incorrect information, even when it was trained on specific instruction
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instances. The problem could help to explain the low evaluation score of the task ”Manual scripts Sum-
marization” as shown in figure 6.2. For example, when asked about a paper analyzing architectural
design in San Francisco, the model might incorrectly state that the paper analyzes an architectural
project in the Netherlands. Possible reasons for this issue include the model’s inability to accurately
recall specific details or the presence of data. Since the paper repository data is mostly collected from
the Libraries of TU Delft, it might be that the model is overfitting to certain aspects specific to that
dataset. To address this, incorporating a more robust validation step in the training process could help.
Additionally, integrating a feedback mechanism where users can flag incorrect responses may enable
continuous improvement of the model’s accuracy and reliability.

3. Scope and Scalability: The scope of this research was limited to educational data from TU Delft’s
course selection and paper repository websites. To gain a broader understanding of data preparation
and training for domain-specific models in education, future research should consider involving a wider
variety of educational websites. These could include online course platforms, educational forums, and
other university repositories. By expanding the types of educational websites included, researchers
can explore more diverse data structures and develop more robust models capable of handling a wider
range of educational content. Additionally, developers could extend this approach to train domain-
specific LLMs in other fields. Conducting experiments with larger datasets would further validate the
models’ scalability and performance.

4. Diversity of Evaluators: Our evaluators were relatively limited in number, which may affect the
robustness and reliability of our evaluation results. In future studies, expanding the pool of evaluators
to include a more diverse range of perspectives and expertise could help achieve more comprehensive
and reliable assessments of the models’ performance. This would ensure that the evaluations better
capture the varied ways in which different users might interact with and perceive the models’ outputs,
leading to more generalizable and actionable insights.



7
Conclusion

In this research, we develop a framework to train domain-specific LLMs in the educational field from
semi-structured web data. We leverage LLMs to generate an instruction-tuning dataset based on data
extracted from educational websites. Finally, we conduct a comprehensive performance analysis to
determine how various training factors affect model performance. The study addresses two primary
research questions: transforming semi-structured educational website data into instruction tuning task
datasets (RQ1) and understanding the impacts of different training techniques on the performance of
domain-specific educational LLMs (RQ2).

7.1. Transformation of Semi-structured Data (RQ1)
For the first research question, we investigated methodologies for converting semi-structured
educational data into structured datasets suitable for instruction tuning.

We developed a systematic and cost-effective approach to handle semi-structured web data sources
effectively. This involved cleaning and validating the data to ensure high quality, removing irrelevant
content, and verifying accuracy. Task design and template creation were guided by student surveys,
ensuring that the tasks aligned with their needs. By automating the dataset generation process with
LLMs, we cost-effectively produced instruction-tuning instance datasets. Furthermore, comprehensive
human assessments confirmed that the generated datasets met students’ needs, maintained accuracy,
and were relevant to the educational domain. Our approach demonstrates the suitability for transform-
ing semi-structured web data into valuable training datasets for domain-specific LLMs.

7.2. Impact of Training Techniques (RQ2)
For the second research question, we focused on understanding the effects of various training
techniques on the performance of domain-specific educational LLMs.

7.2.1. Further Pre-training
Further pre-training enabled themodel to learn the structure of educational webpage data, improving ac-
curacy and contextual relevance. This step is recommended, especially when the data source contains
domain-specific terminology. However, the research showed that while performance gains from further
pre-training are notable, the rate of improvement decreases as the size of the pre-training dataset in-
creases. Researchers should start with smaller pre-training datasets and expand incrementally based
on observed performance improvements.

7.2.2. Multitask Training
Instruction tuning a model on multiple tasks can significantly enhance its performance. The Llama3
model trained on three tasks outperformed the single-task model in relevance, accuracy, and clarity.
However, introducing datasets from different sources, such as combining course selection data with
paper repository data, presented challenges, indicating that less correlated datasets may affect perfor-
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mance. Researchers should carefully select tasks and datasets to ensure they complement each other
and introduce new datasets gradually to monitor the model’s performance.

7.2.3. Different Model Performance
The comparative performance evaluation of Llama2, Llama3, Gemma, and Mixtral models reveals key
insights. Llama3 and Mixtral demonstrated strong capabilities in generating contextually appropriate
and clear content. Gemma excelled in providing accurate information but at the expense of clarity.
The study emphasizes the need for advanced training techniques and further pre-training to improve
older models like Llama2. Additionally, Mixtral’s high computational demands highlight the trade-off
between computational resources and performance. Researchers must carefully evaluate the feasi-
bility of resource-intensive models and balance the benefits of enhanced performance with available
computational resources.

7.3. Future Work
Building on the findings and limitations of this study, several avenues for future research are identified
to enhance the development and performance of domain-specific educational LLMs:

1. Numerical Data Handling: Future work should focus on improving the model’s capability to handle
numerical data accurately. Implementing a Retrieval-Augmented Generation (RAG) approach could
enhance the model’s ability to retrieve and accurately utilize numerical data and course codes from
reliable databases, addressing the observed weaknesses in handling assessment methods and course
codes.

2. Reducing Hallucinations: Addressing the issue of hallucinations is critical. Future research could
incorporate more robust validation steps and user feedback mechanisms to flag incorrect responses,
thereby continuously improving the model’s accuracy and reliability. Additionally, ensuring a diverse
training dataset to prevent overfitting to specific datasets, like the TU Delft repository, is essential.

3. Expanding the Scope and Scalability: To developmore versatile and robust models, future studies
should include a broader variety of educational data sources with larger sizes. This could involve
online course platforms, educational forums, and other university repositories, allowing the exploration
of diverse data structures and improving the model’s ability to handle a wider range of educational
content. Additionally, developers could extend this approach to train domain-specific LLMs in other
fields. Conducting experiments with larger datasets would further validate the models’ scalability and
performance.

4. Increasing Evaluator Diversity: Expanding the pool of evaluators in future research is crucial
for achieving more robust and reliable assessments. Including a diverse range of perspectives and
expertise will provide a comprehensive evaluation of the models’ performance, capturing the varied
ways different users interact with and perceive the models’ outputs, leading to more generalizable and
actionable insights.
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