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Abstract

Recently, by Z. Shen [34], resolvent estimates for the Stokes operator were established in Lp(Ω)

when Ω is a Lipschitz domain in Rd, with d ≥ 3 and
∣∣∣ 1p − 1

2

∣∣∣ < 1
2d + ε. This result implies that

the Stokes operator generates a bounded analytic semigroup in Lp(Ω) in the case that Ω is a
three-dimensional Lipschitz domain and 3

2 − ε < p < 3 + ε.
To fully understand the work of Z. Shen [34] a lot of background information is needed. In

this thesis the resolvent estimates are studied in detail in the case d = 3. In the end the results
of Shen are extended to resolvent estimates in Lp(w,Ω) where Ω is a three-dimensional Lipschitz

domain,
∣∣∣ 1p − 1

2

∣∣∣ < 1
6 , and w ∈ A 2p

3
∩RH 3

3−p
is a weight function that belongs to an intersection

of a Muckenhoupt weight class and satisfies a reverse Hölder inequality.
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Notation

Number sets

N− The natural numbers.

R− The field of real numbers.

C− The field of complex numbers.

Function spaces

C(Ω)− The space of continuous functions on Ω.

Ck(Ω)− The space of k-times continuously differentiable functions on Ω.

Ck(Ω)− f ∈ Ck(Ω) for which ∂αf is bounded and uniformly continuous on Ω for 0 ≤ |α| ≤ k
Ckc (Ω)− The space of k-times continuously differentiable functions on Ω with compact support.

L1
loc(Ω)− The space of locally integrable functions.

Lp(Ω)− The space of measurable functions f with

(∫
Ω

|f(x)|pdx
)1/p

<∞.

W k,p(Ω)− The space of locally integrable functions f such that ∂αf ∈ Lp(Ω), 0 ≤ |α| ≤ k.

Hk(Ω)− The Hilbert space W k,2(Ω).

Hk
0 (Ω)− The space of functions, such that f ∈ Hk(Ω) and f has zero trace.

Weight classes

Ap − The class of the Muckenhoupt weights

RHs − The class of weights that satisfies a reverse Hölder condition

Functions

M(f)− The Hardy-Littlewood maximal function of f

M∂Ω(f)− The Hardy-Littlewood maximal function, localized at ∂Ω

(f)∗ − The nontangential maximal function of f

δij − The Kronecker delta

χA − The indicator function of the set A

General

Bd(p, r)− The d-dimensional open ball with center p and radius r

ωd − The volume of the d-dimensional unit ball

∂Ω− The boundary of the set Ω

vii



1 Introduction

This thesis is concerned with the analysis of the Stokes operator. The Stokes operator arises
in the analysis of the Navier-Stokes equations. The domain in which the Stokes operator is
analysed greatly influences its outcomes. For smooth domains the analysis is well-known [20].
In this thesis we consider the case of Lipschitz domains. Recently Z. Shen proved in [34] that,
if Ω is a Lipschitz domain, the resolvent of the Stokes operator is bounded in Lp(Ω) in the
range 2d

d+1 − ε < p < 2d
d−1 + ε, where d indicates the dimension of Ω and ε is a (small) constant

depending on d and the Lipschitz character of Ω. This opens the door to study mild solutions of
the Navier-Stokes equations. In this thesis the result of Z. Shen is studied in three dimensions.
Finally we extend the resolvent bounds to the weighted space Lp(w,Ω), where 3

2 − ε < p < 3 + ε
and w is a weight in the intersection of a Muckenhoupt class and a reverse Hölder class.

Motivation and History

The initial value problem for the Navier-Stokes equations with Dirichlet (no-slip) boundary
conditions is given by

(NSE)



∂u

∂t
+ (u · ∇)u− ν∆u−∇φ = f in (0, T )× Ω

divu = 0 in (0, T )× Ω

u = 0 on (0, T )× ∂Ω

u = u0 in Ω.

(1.1)

Here u(x, t) represents the velocity vector of the fluid at position x and time t. ν represents the
viscosity of the fluid, ∇φ represents the pressure in the fluid and f is the force applied to the
fluid. For simplicity ν = 1 is assumed. The initial mathematical study of this problem can be
attributed to the seminal paper of J. Leray in 1934 [30]. Later in 1964 H. Fujita and T. Kato
wrote the paper [17] in which they use a functional analytic method to study mild solutions
of the Navier-Stokes equations. This method roughly consists of the following three steps, as
descibed in [32].

(i) Use the Helmholtz projection (P) on the Navier-Stokes equations to recast it in the form
of an abstract initial value problem

(PNSE)


du

dt
+Au(t) = −P [(u · ∇)u] + Pf in (0, T )

u = u0.
(1.2)

(ii) Convert (PNSE) to an integral equation

u(t) = e−Atu0 −
∫ t

0

e−(t−s)AP [(u · ∇)u] ds+

∫ t

0

e−(t−s)APfds 0 < t < T. (1.3)

(iii) Solve the integral equation (1.3) using a fixed point argument.

Within this functional analytic approach there are critical steps that will be discussed in this
thesis. First of all, for step (i) it is important that the Helmholtz projection is well defined
on the function space in which the problem is posed. We know that if Ω is bounded and has

1



smooth boundary or even C1 boundary, the Helmholtz decomposition of Lp(Ω) and the Helmholtz
projection exist for all 1 < p <∞ [13]. Let Ω be a general domain and 1 < p <∞. Now define

Lpσ(Ω) = closure of {u ∈ C∞0 (Ω) : div u = 0 in Ω} in Lp(Ω) (1.4)

Gp(Ω) =
{
∇u : u ∈W 1,p(Ω)

}
. (1.5)

The natural question is, what are the conditions of Ω and p such that we have

Lp(Ω) = Lpσ(Ω)⊕Gp(Ω). (1.6)

A decomposition as in (1.6) is known as the Helmholtz (or Hodge) decomposition of Lp(Ω). In
[13], E. Fabes, O. Mendes and M. Mitrea showed that when Ω has a C1 boundary the Helmholtz
decomposition exists for all 1 < p <∞. In the same paper, the authors showed that when Ω is a
Lipschitz domain the Helmholtz decomposition exists only in the range 3

2 − ε < p < 3 + ε, where
ε is a (small) constant depending on Ω. This range is sharp in the sense that the weak Neumann
problem is no longer uniquely solvable outside this range, which is equivalent to the existance
of the Helmholtz decomposition and Helmholtz projection. When the Helmholtz decomposition
exists, there also exists a bounded operator Pp (a projection) that maps Lp(Ω) onto Lpσ(Ω). This
makes it possible to define the Stokes operator as

Ap(u) = Pp(−∆)(u). (1.7)

As mentioned before, the Helmholtz decomposition of Lp(Ω) fails to exist when Ω is a Lipschitz
domain and p is not in the range ( 3

2 − ε, 3 + ε). In that case we cannot define the Stokes
operator using the Helmholtz projection. To circumvent this problem Shen ([34]) defines the
Stokes operator Ap in Lpσ(Ω) by

Ap(u) = −∆u+∇φ,

with the domain

D(Ap) = {u ∈W 1,p
0 (Ω;Cd) : div(u) = 0 in Ω and

−∆u+∇φ ∈ Lpσ(Ω) from some φ ∈ Lp(Ω)}.

To proceed to step (ii) of the Fujita-Kato approach it needs to be shown that −Ap generates
a bounded analytic semigroup. For this to be the case we have to show that Ap is closed and
densely defined in Lpσ(Ω). Furthermore Ap has to satisfy the resolvent estimate∥∥(Ap + λ)−1f

∥∥
Lp(Ω)

≤ C|λ|−1‖f‖Lp(Ω), (1.8)

where λ ∈ Σθ = {λ ∈ C : λ 6= 0 and |arg(λ)| < π − θ} and θ ∈ (0, π2 ). M. Taylor conjectured in
[35] that in the case where Ω is a bounded Lipschitz domain in R3, −Ap generates a bounded
analytic semigroup in Lpσ(Ω) when 3

2 − ε < p < 3 + ε. This was later proved in 2012 by Z. Shen
in [34] by considering the Dirichlet problem for the Stokes System.

(DSS)


−∆u+∇φ+ λu = f in Ω

div(u) = 0 in Ω

u = 0 on ∂Ω,

(1.9)

where λ ∈ Σθ. Shen showed that when f ∈ L2(Ω;Cd) ∩ Lp(Ω;Cd) the unique solution u ∈
H1

0 (Ω;Cd) that solves (DSS), satisfies an estimate in the form of

‖u‖Lp(Ω) ≤ Cp|λ|
−1‖f‖Lp(Ω), (1.10)

2



when 2d
d+1 − ε < p < 2d

d−1 + ε. This result was already found in the case Ω = Rd+ by M.

McCracken [31], and in the case that Ω has C2 boundary by W. Varnhorn [37]. The result on
Lipschitz domains (1.10) implies the resolvent estimate (1.8). To come to this conclusion, Shen
used so-called layer potentials to solve the (homogeneous) Stokes System

(SS)

{
−∆u+∇φ+ λu = 0 in Ω

div(u) = 0 in Ω.
(1.11)

The result of Shen as well as the techniques used in his paper has lead to several follow-up results.
For example P. Kunstmann and L. Weis used similar techniques to show that the Stokes operator
has a bounded H∞-calculus [28]. Later on P. Tolksdorf used the results of Shen together with
the results of Kunstmann and Weis to show existence of solutions to the Navier–Stokes equations
in the critical space L∞(0,∞;L3

σ(Ω)) whenever the initial velocity is small in the L3-norm [36].
Instead of studying the Navier-Stokes equations on Lp(Ω), one would also like to obtain

similar results in a weighted space Lp(w,Ω). One would like to follow the same functional
analytic approach. In this thesis the resolvent estimates for the weighted Stokes operator are
established in Lp(w,Ω) in the same range for w ∈ A 3p

2
∩ RH 3

3−p
. This extension is similar

to [4, Theorem 8.8]. In order to use the functional analytic method, one would also need the
Helmholtz decomposition of Lp(w,Ω) for this class of weights. In the case that Ω is a domain
with C1 boundary the weighted Helmholtz decomposition exists when 1 < p <∞ [16]. However
in the case that Ω is a Lipschitz domain there is no positive result on the existence of the weighted
Helmholtz decomposition to the best of the author’s knowledge.

Goal of the thesis

The main goal of this thesis is to follow up on the result of Z. Shen [34].

Theorem 1.1. Let Ω be a bounded Lipschitz domain in Rd, d ≥ 3, and λ ∈ Σθ. There exists ε >
0 depending only on d, θ and the Lipschitz character of Ω, such that if f ∈ L2(Ω;Cd)∩Lp(Ω;Cd)
and ∣∣∣∣1p − 1

2

∣∣∣∣ < 1

2d
+ ε,

then the unique solution u of (1.9) in H1
0 (Ω;Cd) satisfies the estimate

‖u‖Lp(Ω) ≤
Cp

|λ|+ r−2
0

‖f‖Lp(Ω),

where r0 = diam(Ω) and Cp depends at most on d, p, θ, and the Lipschitz character of Ω.

This is done by studying the paper of Shen and working out the details that are considered
standard in this field. At the end of the thesis we introduce a class of weights and show that
similar resolvent estimates hold in certain weighted spaces. This leads to the following extension
of Theorem 1.1 in the case d = 3.

Theorem 1.2. Let Ω be a bounded Lipschitz domain in R3 and λ ∈ Σθ. There exists ε > 0
depending only on θ and the Lipschitz character of Ω, such that if f ∈ L2(w,Ω;C3)∩Lp(w,Ω;C3)
and ∣∣∣∣1p − 1

2

∣∣∣∣ < 1

6
,

3



and w ∈ A 2p
3
∩RH 3

3−p
, then the unique solution u of (1.9) in H1

0 (Ω;C3) satisfies the estimate

‖u‖Lp(w,Ω) ≤
Cp

|λ|+ r−2
0

‖f‖Lp(w,Ω),

where r0 = diam(Ω) and Cp depends at most on p, θ, [w]A 2p
3

, [w]RH 3
3−p

and the Lipschitz

character of Ω.

Structure of the thesis

In order to complete the goal of this thesis, it is structured in the following manner. In Chapter
2 the Lipschitz domain is defined and the most important properties of Lipschitz domains are
stated and proved. Further in this chapter the nontangential maximal function and nontangen-
tial convergence are introduced. Using these notions, an approximation scheme is presented to
approach the boundary of a Lipschitz domain with domains with a smooth boundary. With
this approximation scheme, and some extra conditions on the functions, integration by parts
can be justified on Lipschitz domains. In Chapter 3 a fundamental solution for the Stokes
System is constructed. This is done by solving the scalar Helmholtz equation and then using
this result to get a fundamental solution for the Stokes System. The rest of the chapter is con-
cerned with establishing inequalities for this fundamental solution of the Stokes System, to be
used throughout the rest of the thesis. In Chapter 4 the single and double layer potential are
introduced. The single and double layer potential solve the Stokes System in its domain, Ω,
but fail to suffice to the boundary condition on ∂Ω. In order to use the single and double layer
potential, its nontangential maximal function should be bounded on Lp(∂Ω). This is done in
the middle part of this chapter. In the final part of the chapter the nontangential limit of the
double layer potential is calculated. It turns out that the conormal derivative of the single layer
potential is the adjoint of the double layer potential, hence we also find the nontangential limit
of the conormal derivative. In Chapter 5 the invertibility of the layer potentials is studied. The
layer potentials can be inverted by a compactness argument, but this loses the control of the
parameter λ. Since explicit dependence on λ is required in the resolvent estimate, an alternative
for the compactness arguments needs to be found. Rellich estimates are the right way to do
this. Using these Rellich estimates we find that the layer potentials are isomorphisms/Fredholm
operators on L2(∂Ω). This leads to the existence of a boundary function such that the layer
potential is a unique solution to the Stokes System. Since the unique solutions can be repre-
sented by layer potentials, we also obtain a weak reverse Hölder estimate on the solution. In
Chapter 6 extrapolation techniques are developed to extend the (well-known) L2(Ω) resolvent
estimate to Lp(Ω). To do so, we use the weak reverse Hölder inequalities of the previous chapter
and a good-λ type inequality. This shows the result that Shen had already obtained in [34].
The second part of this chapter introduces an intersection of a Muckenhoupt weight class with
a reverse Hölder class. Then we show a resolvent estimate on L2(w,Ω). Using the famous ex-
trapolation theory of Rubio de Francia we obtain the resolvent estimates for a similar range
as the unweighted case. In Chapter 7 we draw conclusions and discuss the results. We also
look at interesting related questions. Finally the Appendix contains basic results in Harmonic
Analysis, Calderón-Zygmund theory, theorems from real analysis, inequalities and calculations
that would distract too much from the main text.
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2 Lipschitz domains

In this section Lipschitz continuous functions and Lipschitz domains are introduced. Then we
make sense of integration over a Lipschitz domain and its boundary. This is then used to prove
certain scaling properties and the doubling property of the measure on the boundary of the
Lipschitz domain. In the next section we discuss nontangential limits in Lipschitz domains and
the approximation of a Lipschitz domain with a sequence of smooth domains. The chapter is
concluded with a version of the divergence theorem that makes sense on Lipschitz domains.

2.1 Definition of a Lipschitz domain

Before the definition of a Lipschitz domain is given, we define Lipschitz continuous functions.

Definition 2.1 (Lipschitz continuous function). Let (X, d) and (Y, ρ) be metric spaces. A func-
tion ϕ : X → Y is called a Lipschitz continuous function if there exists an L ≥ 0 such that

ρ(ϕ(x), ϕ(y)) ≤ Ld(x, y), (2.1)

for all x, y ∈ X. The smallest value of L for which (2.1) holds is referred to as the Lipschitz
constant.

Now that we know the definition of a Lipschitz continuous function we can introduce the
definition of the special Lipschitz domain.

Definition 2.2 (Special Lipschitz domain). Let Ω be an open subset of Rd and denote its bound-
ary by ∂Ω. Then Ω is a special Lipschitz domain if there exists a rectangular coordinate system
(obtained by rotation and translation) and a Lipschitz continuous function ϕ : Rd−1 → R such
that

Ω =
{

(x̃, ỹ) ∈ Rd−1 × R : ỹ < ϕ(x̃)
}

∂Ω =
{

(x̃, ỹ) ∈ Rd−1 × R : ỹ = ϕ(x̃)
}
,

where x̃ ∈ Rd−1 and ỹ ∈ R represent the coordinates in the rectangular coordinate system.

Figure 2.1 provides intuition to the somewhat cumbersome definition of a special Lipschitz
domain. In this figure, the function π : Rd−1 → Rd is also introduced. This is a convenient
function mapping p̃ 7→ (p̃, ϕ(p̃)) = p. Next we introduce the notion of a Lipschitz domain. This

R

Rd−1

p, π(p̃)

Ω

ϕ(p̃)

p̃, π−1(p)

Figure 2.1: A point p of the boundary of a special Lipschitz domain represented in a rectangular
coordinate system.

is a domain that is locally represented by a special Lipschitz domain.

5



Definition 2.3 (Lipschitz domain). Let Ω be an open subset of Rd and denote its boundary by
∂Ω. Then Ω is a Lipschitz domain if for all p ∈ ∂Ω there exists r > 0, a rectangular coordinate
system (obtained by rotating and translating) and a Lipschitz continuous function ϕ : Rd−1 → R
such that

Ω ∩Bd(p, r) =
{

(x̃, ỹ) ∈ Rd−1 × R : x̃ ∈ Bd(p̃, r), ỹ < ϕ(x̃)
}

(∂Ω) ∩Bd(p, r) =
{

(x̃, ỹ) ∈ Rd−1 × R : x̃ ∈ Bd(p̃, r), ỹ = ϕ(x̃)
}
,

where x̃ ∈ Rd−1 and ỹ ∈ R denote the coordinates in the rectangular coordinate system and
p̃ ∈ Rd−1, ϕ(p̃) ∈ R denote p in the rectangular coordinate system.

From the definitions, it is clear that the boundary of a Lipschitz domain is locally represented
by a Lipschitz continuous function. The example of how the coordinate system should be rotated
and translated can be found in Figure 2.2 and Figure 2.3. There is an important connection be-
tween the space of Lipschitz continuous functions and the Sobolev space W 1,∞. This connection
is described by Rademacher’s Theorem.

y

x

p

x̃

ỹ

Ω

B(p, r)

Figure 2.2: Finding a new rectangu-
lar coordinate system by rotating and
translating.

ỹ

x̃

p

Ω ∩B(p, r)

Figure 2.3: The neighborhood of p ex-
pressed in the translated and rotated
coorinate system.

Theorem 2.4 (Rademacher’s Theorem). Let Ω be an open subset of Rd and let f be locally
Lipschitz continuous in Ω. Then f is differentiable almost everywhere in Ω.

A proof for this theorem can be found in [11, Section 5.8.3]. From Rademacher’s Theorem it
is clear that the boundary of a Lipschitz domain is differentiable almost everywhere.

2.2 Integration on the boundary of Lipschitz domains

Rademacher’s Theorem ensures that integrals over the boundary of (special) Lipschitz domains
are well-defined. To see this we take a look at integrals over the boundary of a special Lipschitz
domain. Suppose that Ω is a special Lipschitz domain in Rd and f ∈ Lp(∂Ω). Then the integral
of f over the boundary of Ω is given by ∫

∂Ω

f(y)dσ(y).

6



Here σ represents the usual surface measure. To evaluate this integral, the surface should be
parametrized. This can be done with the help of the definition of a special Lipschitz domain.
Let ϕ be the Lipschitz function from the definition of the special Lipschitz domain. Then we can
parametrize the points p ∈ ∂Ω as (p̃, ϕ(p̃)). Therefore we can write the integral over ∂Ω as∫

Rd−1

f(π(ỹ))

√
1 + |∇ϕ(ỹ)|2dỹ.

Now the importance of Rademacher’s Theorem is clear. It ensures that ∇ϕ is well-defined almost
everywhere on ∂Ω and ‖∇ϕ‖∞ < L for some L > 0. For integrals over general Lipschitz domains
a little more work is needed. For this purpose we introduce the definition of a partition of unity.

Definition 2.5 (Partition of unity). Let K be a compact subset of Rd and (Ui)
n
i=1 a finite open

cover of K. A C∞c partition of unity subordinate to the cover (Ui)
n
i=1 is a collection of functions

(ζi)
n
i=1 such that

(i) 0 ≤ ζi ≤ 1

(ii) ζi ∈ C∞c (Ui)

(iii)
∑n
i=1 ζi(x) = 1 for all x ∈ K.

Such a partition of unity exists for all compact K for every open cover. For details on the
construction and existence of a partition of unity one can refer to [10, Theorem 2.15]. The idea
now is to evaluate the surface integral on a Lipschitz domain by choosing a cover of the boundary
such that in each set the domain behaves like a special Lipschitz domain. We already know how
to evaluate the surface integral on these domains. Finally a partition of unity is used to ”glue”
these results back together.

Now we make this procedure formal. Suppose that Ω is a bounded Lipschitz domain. Then by
the definition of a Lipschitz domain we can for each p ∈ ∂Ω find a rp > 0 such that Ω∩Bd(p, rp)
is a special Lipschitz domain with Lipschitz function ϕp. We can thus calculate∫

∂Ω∩B(p,rp)

f(y)dσ(y) =

∫
∂Ω∩B(π(p̃),rp)

f(πp(ỹ))

√
1 + |∇ϕp(ỹ)|2dỹ.

Now realize that ∪p∈∂ΩBd(p, rp) is an open cover of ∂Ω. Also note that ∂Ω is closed and bounded,
hence compact by the Heine-Borel Theorem. We can thus extract a finite subcover. Denote by
C the set of centers that are in the finite subcover. We can now find a partition of unity (ζi)
subordinate to the cover ∪p∈CBd(p, rp). Now we can write the surface integral as∑

p∈C

∫
Rd−1

ζp(πp(ỹ))f(πp(ỹ))

√
1 + |∇ϕp(ỹ)|2dỹ.

This yields to a well-defined expression for the surface integral over the boundary of a general
Lipschitz domain.

2.3 Properties of the surface measure on Lipschitz domains

Now that the surface integral over the boundary of a Lipschitz domain is defined, we will state
and prove two lemmas regarding the surface measure. Using these lemmas we show that the
surface measure has the doubling property.
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Lemma 2.6. Let Ω be a special Lipschitz domain in Rd. Then there exist constants C1, C2 > 0,
such that for p ∈ ∂Ω

C1r
d−1 ≤ σ(∂Ω ∩Bd(p, r)) ≤ C2r

d−1, (2.2)

where Bd(p, r) denotes the d-dimensional ball with center p and radius r.

Proof. We start the proof by showing the following set of inclusions

π

(
Bd−1

(
π−1(p),

r√
1 + L2

))
⊂ Bd(p, r) ⊂ π

(
Bd−1(π−1(p), r)

)
, (2.3)

where L is the essential bound of the gradient of the Lipschitz function describing the ∂Ω in the
ball Bd(p, r). By Theorem 2.4 it must be that 0 ≤ |∇ϕ(p̃)| ≤ L almost everywhere. The right
inclusion of (2.3) is trivial. For the left inclusion of (2.3) take ỹ ∈ Bd−1(π−1(p), r√

1+L2
). Then∣∣ϕ(π−1(p))− ϕ(ỹ)

∣∣2 +
∣∣π−1(p)− ỹ

∣∣2 ≤ (L2 + 1)
∣∣π−1(p)− ỹ

∣∣2 < r2

and thus π(ỹ) ∈ ∂Ω ∩Bd(p, r). This shows (2.3). Now notice that

ωd−1

(√
1 + L2

)1−d
rd−1 ≤

∫
Rd−1

χBd−1(π−1(p), r√
1+L2

)(ỹ)

√
1 + |∇ϕ(ỹ)|2dỹ

≤
∫
Rd−1

χBd(p,r)(π(ỹ))

√
1 + |∇ϕ(ỹ)|2dỹ

= σ(∂Ω ∩Bd(p, r))

and

σ(∂Ω ∩Bd(p, r)) =

∫
Rd−1

χBd(p,r)(π(ỹ))

√
1 + |∇ϕ(ỹ)|2dỹ

≤
∫
Rd−1

χBd−1(π−1(p),r)(ỹ)

√
1 + |∇ϕ(ỹ)|2dỹ

≤
√

1 + L2ωd−1r
d−1,

where ωd−1 is the volume of the (d− 1)-dimensional unit ball. This completes the proof.

Lemma 2.7. Let Ω be a special Lipschitz domain in Rd. Then there exist constants C1, C2 > 0,
such that for all p ∈ ∂Ω

C1r
d−1 ≤ σ(∂Bd(p, r) ∩ Ω) ≤ C2r

d−1, (2.4)

where Bd(p, r) denotes the d-dimensional ball with center p and radius r.

Proof. It is obvious that

σ(∂B(x, r) ∩ Ω) ≤ σ(∂B(x, r)) = dωdr
d−1.

This shows the right-hand side of (2.4) with C2 = dωd. For the left-hand side we define the
function ϕ∗ : Bd−1(π−1(p), r√

1+L2
)→ ∂Bd(p, r) by

ϕ∗(ỹ) = ϕ(p̃)−
√
r2 − |p̃− ỹ|2.
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We know want to show that ϕ∗ maps Bd−1(π−1(p), r√
1+L2

) into ∂Bd(p, r) ∩ Ω. Indeed

ϕ∗(ỹ) = ϕ(p̃)−
√
r2 − |p̃− ỹ|2

= ϕ(ỹ) + ϕ(p̃)− ϕ(ỹ)−
√
r2 − |p̃− ỹ|2

≤ ϕ(ỹ) + L|p̃− ỹ| −
√
r2 − |p̃− ỹ|2

< ϕ(ỹ) +
Lr√

1 + L2
−
√

r2L2

1 + L2

≤ ϕ(ỹ).

It is clear from the definition that ϕ∗ is Lipschitz continuous and hence we see that

ωd−1

(√
1 + L2

)1−d
rd−1 =

∫
Rd−1

χBd−1(π−1(p), r√
1+L2

)(ỹ)dỹ

≤
∫
Rd−1

χBd(p,r)(π(ỹ))

√
1 + |∇ϕ∗(ỹ)|2dỹ.

And by Rademacher’s Theorem, we find that the left-hand side (2.4) holds with C1 = ωd−1

(√
1 + L2

)1−d
.

This completes the proof.

Finally we show that the surface measure on a general Lipschitz domain has the doubling
property. That way we can use important theorems from harmonic analysis. How exactly this
comes into play is explained in Appendix A.

Lemma 2.8 (Doubling Property). Let Ω be a bounded Lipschitz domain in Rd. Then for all
p ∈ ∂Ω and all r > 0 there exists a constant C > 0 such that

σ(Bd(p, 2r) ∩ ∂Ω) ≤ Cσ(Bd(p, r) ∩ ∂Ω). (2.5)

Proof. Let Ω′ be a special Lipschitz domain. Then by Lemma 2.6 there exist constants C1,
C2 > 0 such that

σ(B(p, 2r) ∩ ∂Ω′) ≤ C1(2r)d−1 and σ(B(p, r) ∩ ∂Ω′) ≥ C2r
d−1.

Combining the above inequalities yields

σ(B(p, 2r) ∩ ∂Ω′) ≤ 2d−1C1

C2
σ(B(p, r) ∩ ∂Ω′).

Now the proof is completed by generalising to a Lipschitz domain using a compactness argument.
Hereto pick for every q ∈ ∂Ω an rq such that B(q, rq) ∩ ∂Ω is a special Lipschitz domain. Since
Ω is bounded and closed, the boundary ∂Ω is compact by the Heine-Borel Theorem. Hence we
can find a finite set of centers C such that

∂Ω ⊂
⋃
q∈C

(B(q, rq) ∩ ∂Ω) .
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The reverse inclusion trivially holds. Now we calculate

σ (B(p, 2r) ∩ ∂Ω) = σ

B(p, 2r) ∩
⋃
q∈C

(B(q, rq) ∩ ∂Ω)


= σ

⋃
q∈C

(B(p, 2r) ∩B(q, rq) ∩ ∂Ω)


≤
∑
q∈C

σ (B(p, 2r) ∩ (B(q, rq) ∩ ∂Ω))

≤
∑
q∈C

Cqσ(B(p, r) ∩B(q, rq) ∩ ∂Ω)

≤ |C|max
q∈C
{Cq}σ (B(p, r) ∩ ∂Ω) ,

where |C| denotes the amount of elements in C and Cq the doubling constant. We used the
subadditivity of the measure and the finiteness of the cover. This completes the proof.

In the last part of this section we want to show that a Lipschitz domain and its boundary
equipped with the Euclidean metric and Lebesgue measure is a space of homogeneous type in
the sense of Coifman and Weiss [6]. We first give the definition and then show this.

Definition 2.9 (Space of homogeneous type). (X, d, µ) is called a space of homogeneous type if
the quasi-metric d and the measure µ satisfy

(i) for all x, y ∈ X, d(x, y) ≥ 0,

(ii) for all x, y ∈ X, d(x, y) = d(y, x),

(iii) d(x, y) = 0 if and only if x = y,

(iv) there exists a κ > 0 such that, for all x, y, z ∈ X

d(x, y) = κ (d(x, z) + d(z, y)) ,

(v) there exists C1, C2, q > 0 such that for all x ∈ X and r > 0

C1r
q ≤

∫
d(x,y)<r

dµ(y) ≤ C2r
q.

q is called the homogeneous dimension of (X, d, µ).

Lemma 2.10. Let Ω be a Lipschitz domain in Rd. Then (∂Ω, |·|, σ), the boundary of a Lipschitz
domain with the Euclidean metric and the surface measure, is a space of homogeneous type, with
homogeneous dimension r − 1.

Proof. Property (i)− (iv) are trivial. Property (v) is a direct consequence of Lemma 2.6.
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2.4 Approximation of Lipschitz domains by smooth domains

The following lemma allows us to approximate Lipschitz domains by a sequence of smooth
domains. This is used to justify certain partial integrations. A proof of this lemma can be found
in [38, Appendix A].

Lemma 2.11. Let Ω be a Lipschitz domain in Rd. Then there exists a sequence of C∞ domains
Dj, a sequence of homeomorphisms Λj : ∂Ω→ ∂Dj, a sequence of functions ηj : ∂Ω→ R+ and
a smooth compactly supported vectorfield h : Rd → Rd such that,

(i) For each p ∈ ∂Ω, there exists a r > 0 such that B(p, r) ∩ Ω and B(p, r) ∩ Dj are special
Lipschitz domains with Lipschitz functions ϕ and ϕk respectively and ‖∇ϕk‖∞ ≤ ‖∇ϕ‖∞
and ∇ϕk → ∇ϕ pointwise almost everywhere.

(ii) The homeomorphisms Λj : ∂Ω→ ∂Dj satisfy

lim
j→∞

sup
p∈∂Ω

|p− Λj(p)| = 0,

and Λj(q) approaches q nontangentially, thus there exists a sufficiently large C > 0, inde-
pendent of q, such that

|q − Λj(q)| < (1 + C) dist(Λj(q), ∂Ω).

(iii) The normals nj of ∂Dj satisfy

lim
j→∞

nj(Λj(p)) = n(p)

pointwise almost everywhere.

(iv) The functions ηj satisfy δ ≤ ηj ≤ δ−1 for some δ > 0, ηj → 1 pointwise almost everywhere
and ∫

A

ηj(y)dσ(y) =

∫
Λj(A)

dσ(y),

where A is any measurable subset of ∂Ω.

(v) The vectorfield h satisfies 〈h,nj〉 ≥ c > 0 almost everywhere on each ∂Dj.

(vi) The sequence of domains may be chosen such that Dj ⊂ Dj+1 ⊂ · · · ⊂ Ω. If this is
done it is denoted by Dj ↑ Ω. The sequence of domains may also be chosen such that
Dj ⊃ Dj+1 ⊃ · · · ⊃ Ω. If this is done it is denoted by Dj ↓ Ω.

In order to use this approximation effectively, also convergence needs to be guaranteed. To
do so we introduce the nontangential maximal function and the nontangential limit. We define
them for Lipschitz domains, which is not the limiting case for which this definition is sensible.

Definition 2.12 (nontangential cone). Let Ω be a Lipschitz domain in Rd and p ∈ ∂Ω. Then
the interior nontangential cone of p is given by

E+(p) = {x ∈ Ω : |x− p| < C dist(x, ∂Ω)} , (2.6)

and the exterior nontangential cone of p is given by

E−(p) =
{
x ∈ Rd \ Ω : |x− p| < C dist(x, ∂Ω)

}
, (2.7)

where C > 2, is fixed and sufficiently large depending on the Lipschitz character of Ω.
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Before we continue we present a small geometrical lemma regarding this nontangential cone.

Lemma 2.13. Let p ∈ ∂Ω and C > 2. Define E(p) = {x ∈ Ω : |x− p| ≤ C dist(x, ∂Ω)}. There
exist constants C1, C2 > 0, such that for all x ∈ E(p) and y ∈ ∂Ω we have

(i) |x− y| ≥ C2|p− x|

(ii) |x− y| ≥ C1|p− y|.

Proof. Let p ∈ ∂Ω and x ∈ E(p). For (i) we see that by the definition of E(p) we see that for all
y ∈ ∂Ω we have

|p− x| ≤ C dist(x, ∂Ω) ≤ C|x− y|.
For (ii) we use the triangle inequality in combination with (i) and find for all y ∈ ∂Ω that

|p− y| ≤ |p− x|+ |x− y| ≤ (C + 1)|x− y|.

This completes the proof. Some visual aid can be found in Figure 2.4.

p

x

E(p)

dist(x, ∂Ω)

y
Ω

Rd \ Ω
∂Ω

Figure 2.4: Interior nontangential cone of p
Using the definition of the nontangential cone we can define the nontangential maximal function
and the nontangential limit.

Definition 2.14 (nontangential maximal function). Let Ω be a Lipschitz domain in Rd and
p ∈ ∂Ω. Let f : Ω → C be a continuous function. Then the interior and exterior nontangential
maximal function are given by

(f)∗+(p) = sup
x∈E+(p)

|f(x)|, (2.8)

and
(f)∗−(p) = sup

x∈E−(p)

|f(x)| (2.9)

respectively.

Definition 2.15 (nontangential limit). Let Ω be a Lipschitz domain in Rd and p ∈ ∂Ω. Let
f : Ω → C be a continuous function and (xn) any sequence such that xn ∈ E+(p) for all n and
xn → p. Then the interior nontangential limit of f is given by

f+(p) = lim
xn∈E+(p)
xn→p

f(xn). (2.10)

Analogously the exterior nontangential limit of f is given by

f−(p) = lim
xn∈E−(p)
xn→p

f(xn). (2.11)
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Remark 2.16. The existence of the nontangential limit f(p) = limx∈E(p)
x→p

|f(x)| is equivalent to

the statement that for all sequences (xn) such that xn ∈ E(p) and xn → p the nontangential limit
exists.

In this thesis we mainly use the interior cones, interior nontangential maximal functions
and interior nontangential limits. Therefore we drop the subscript + if it is clear that the
interior version is meant and only use the subscripts if both the interior and exterior versions are
used at the same time. Now that it is clear what the nontangential maximal function and the
nontangential limit are we can prove a version of the divergence theorem tailored to Lipschitz
domains. In order to do so, we first state a lemma that will be used in the proof of the theorem.

Lemma 2.17. Let Ω be a Lipschitz domain in Rd. Then Cm(Ω) is dense in W k,p(Ω) for all k
and all 1 ≤ p <∞.

The proof of this lemma can be found in [1, Theorem 3.18]. Recall that Cm(Ω) is given by the
functions f ∈ Cm(Ω) for which ∂αf is bounded and uniformly continuous on Ω for 0 ≤ |α| ≤ m.

Theorem 2.18. Let Ω be a bounded Lipschitz domain in Rd. Let f, g ∈W 1,2(Ω) and (f)∗, (g)∗ ∈
L2(∂Ω). Assume that f and g have nontangential limits almost everywhere on ∂Ω. Then∫

Ω

(f∇g − g∇f) dx =

∫
∂Ω

(fg) · ndσ. (2.12)

Proof. Assume f, g ∈ C1(Ω). It suffices to study this case, because of the density of C1(Ω) in
W 1,2(Ω) (see Lemma 2.17). We now use Lemma 2.11 to obtain a collection of smooth domains,
such that Dj ↑ Ω. Because each of the Dj is smooth, we can apply the ”regular” divergence
theorem (Theorem B.6) to find∫

Dj

(f∇g − g∇f) dx =

∫
∂Dj

(fg) · ndσ.

The integrals on the left side of the equation converge because of the dominated convergence
theorem (Theorem B.5). For the right side of the equation we further use Lemma 2.11 to find∫

∂Dj

(f(y)g(y)) · n(y)dσ =

∫
∂Ω

ηj(y)f(Λj(y))g(Λj(y)) · n(Λj(y))dσ(y).

The pointwise boundedness of ηj(y) and n(Λj(y)) is obvious. Furthermore, because Λj(y) ⊂ E(y)
for all y ∈ ∂Ω, we find

f(Λj(y)) ≤ sup
x∈E(y)

|f(x)| = (f)∗(y).

Hence we find
|ηj(y)f(Λj(y))g(Λj(y)) · n(Λj(y))| ≤ δ−1|(f)∗(y)(g)∗(y)|, (2.13)

where δ is the same as in Lemma 2.11. By assumption (f)∗ and (g)∗ are bounded in L2(∂Ω).
Hence the right-hand side of (2.13) is integrable by the Hölder inequality. We can now invoke
the dominated convergence theorem and the result follows.
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3 Fundamental solution

In this section we look at a fundamental solution for the Stokes System as given in (1.11)
and study its properties. Here again λ ∈ Σθ = {λ ∈ C : λ 6= 0 and |arg(λ)| < π − θ} and
θ ∈ (0, π/2). We can thus write λ = reiτ , with 0 < r < ∞ and −π + θ < τ < π − θ.

Now define k =
√
rei

(π+τ)
2 and notice that k2 = −λ. A visual representation of the sectors in

which λ and k take values can be found below.

Re{z}

Im{z}

θ

Figure 3.1: The sector (grey) where λ
takes possible values.

Re{z}

Im{z}

θ
2

Figure 3.2: The sector (grey) where k
takes values, such that k2 = −λ.

From now on we will only consider the case d = 3, but the results could be extended to Rd for
all d ≥ 3. Before looking at a fundamental solution of the Stokes System, we derive a candidate
fundamental solution to the scalar Helmholtz equation. Next we prove that this is indeed a
fundamental solution. Later on this can be used to construct a fundamental solution for the
Stokes System. Finally some estimates on the fundamental solutions are proven.

3.1 Fundamental solutions of the Helmholtz equation

First we look at the Helmholtz equation. In this section we are going to construct a family of
functions that satisfy the Helmholtz equation. After that we pick such a function and prove
that it solves the equation in the distributional sense. Finally we do some estimates on this
fundamental solution.

3.1.1 Construction of the fundamental solution

For λ ∈ Σθ, the scalar Helmholtz equation is given by

−∆u+ λu = −∆u− k2u = 0. (3.1)

The Helmholtz equation is invariant under rotations. Therefore we will look for a solution with
radial symmetry. This can be done by looking for solutions in the form of

u(x) = v(r),

where r = |x|. We notice that

∂r

∂xi
=

1

2

(
3∑
i=1

x2
i

)− 1
2

2xi =
xi
r
,
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and thus we find for the derivatives

∂u

∂xi
=
dv

dr

xi
r

∂2u

∂x2
i

=
d2v

dr2

x2
i

r2
+
dv

dr

(
1

r
− x2

i

r3

)
.

Using this we find a solution for (3.1) if we find a function v(r) such that

∆u+ k2u =
d2v

dr2
(r) +

3− 1

r

dv

dr
(r) + k2v(r) = 0. (3.2)

The solution v(r) of (3.2) involves Bessel functions when d > 3, however if d = 3 we can simplify
the expression above. To do so, note that

d2

dr2
(rv(r)) = 2

dv

dr
(r) + r

d2v

dr2
(r).

Hence (3.2) simplifies to
d2

dr2
(rv(r)) + k2rv(r) = 0.

Therefore, if r > 0, we find that

v(r) = C1
eikr

r
+ C2

e−ikr

r
.

This motivates the following choice for a candidate fundamental solution of the Helmholtz equa-
tion,

G(x;λ) =
eik|x|

4π|x|
, (3.3)

for x 6= 0.

3.1.2 Properties of the fundamental solution

First we note a few properties of this candidate fundamental solution. Then we show that
this fundamental solution solves the Helmholtz equation in the distributional sense. Before we
continue we make a basic remark.

Remark 3.1. Let λ ∈ Σθ and k be such that k2 = −λ. Then

Im(k) > sin(θ/2)
√
|λ|. (3.4)

Now we can examine the limiting behaviour of (3.3). This is needed to show that (3.3) is a
fundamental solution in the distributional sense.

Lemma 3.2. Let λ ∈ Σθ and G(x;λ) = eik|x|

4π|x| , with x ∈ R3 \ {0}. Let ε > 0. Then∫
B(0,ε)

|G(x;λ)|dx→ 0 (3.5)∫
∂B(0,ε)

|G(y;λ)|dσ(y)→ 0, (3.6)

when ε→ 0.
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Proof. For the first integral we use spherical coordinates and the fact that Im(k) > 0 (Remark
3.1). This yields ∫

B(0,ε)

|G(x;λ)|dx =

∫
B(0,ε)

∣∣∣∣ eik|x|4π|x|

∣∣∣∣dx
=

∫
B(0,ε)

e− Im(k)|x|

4π|x|
dx

=

∫ ε

0

∫
∂B(0,1)

e− Im(k)r

4πr
r2dσ(y)dr

=

∫
∂B(0,1)

dσ(y)

∫ ε

0

e− Im(k)r

4π
rdr

≤
∫ ε

0

rdr → 0 (ε→ 0).

For the second integral we again use the fact that Im(k) > 0 (Remark 3.1). Thus∫
∂B(0,ε)

|G(y;λ)|dσ(y) =

∫
∂B(0,ε)

∣∣∣∣ eik|y|4π|y|

∣∣∣∣dσ(y)

=

∫
∂B(0,ε)

e− Im(k)|y|

4π|y|
dσ(y)

≤ 1

4πε

∫
∂B(0,ε)

dσ(y)

= ε→ 0 (ε→ 0).

This completes the proof.

Now it is checked whether G(x;λ) really is a fundamental solution in the distributional sense.

Theorem 3.3. Let λ ∈ Σθ and G(x;λ) = eik|x|

4π|x| with x ∈ R3\{0}. Then G(x;λ) is a fundamental

solution of the Helmholtz equation (3.1) in the distributional sense.

Proof. Since G(x, λ) is locally integrable on R3 we can view G(x;λ) as a distribution. Then
G(x;λ) is a fundamental solution of the scalar Helmholtz equation in the distributional sense if

〈[−∆ + λ]G(· ;λ), ψ〉 = 〈δ, ψ〉, (3.7)

holds for all functions ψ ∈ D(R3) = C∞0 (R3), where δ(x) denotes the delta distribution. We can
use the definition of the distributional derivative together with the linearity of distributions to
write (3.7) as

〈[−∆ + λ]G(· ;λ), ψ〉 = −〈G(· ;λ),∆ψ〉+ λ〈G(· ;λ), ψ〉.

We will now evaluate these terms individually. Since G(x;λ) blows up at 0, we cut this region
out and evaluate it separately. This leads to the following expression.

〈G(· ;λ),∆ψ〉 =

∫
B(0,ε)

G(x;λ)∆ψ(x)dx+

∫
Rn\B(0,ε)

G(x;λ)∆ψ(x)dx

= Aε +Bε,
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and the expression

λ〈G(· ;λ), ψ〉 = λ

∫
B(0,ε)

G(x;λ)ψ(x)dx+ λ

∫
Rn\B(0,ε)

G(x;λ)ψ(x)dx

= Cε +Dε.

Next we can partially integrate the integral Bε two times. This is possible since the functions
are twice continuously differentiable in the domain of integration. This leads to

Bε =

∫
∂B(0,ε)

∂ψ

∂n
(y)G(y;λ)dσ(y)−

∫
∂B(0,ε)

∂G

∂n
(y;λ)ψ(y)dσ(y)

+

∫
Rn\B(0,ε)

∆G(x;λ)ψ(x)dx

= Iε + Jε +Kε,

where σ(y) denotes the surface measure and n denotes the inward normal vector (pointing
towards the origin). First we will look at the integrals Aε, Cε and Iε. ψ and ∆ψ are bounded
on B(0, ε) and ∂ψ

∂n is bounded on ∂B(0, ε) since they are elements of D(R3). Hence we can pull
them out of the integral with the supremum norm. This yields

|Aε| ≤ ‖∆ψ‖∞
∫
B(0,ε)

|G(x;λ)|dx ≤ C
∫
B(0,ε)

|G(x;λ)|dx

|Cε| ≤ ‖ψ‖∞
∫
B(0,ε)

|G(x;λ)|dx ≤ C
∫
B(0,ε)

|G(x;λ)|dx

|Iε| ≤
∥∥∥∥∂ψ∂n

∥∥∥∥
∞

∫
∂B(0,ε)

|G(y;λ)|dσ(y) ≤ C
∫
∂B(0,ε)

|G(y;λ)|dσ(y).

Furthermore, we know that Kε = Dε, because ∆G(x;λ) = λG(x;λ) on R3 \ {0}. Finally we
calculate Jε. Hereto we notice that

∂G

∂n
(y;λ) = ∇G(y;λ) · n =

3∑
i=1

(
ikyie

ik|y|

4π|y|2
− yie

ik|y|

4π|y|3

)
yi
|y|

=
ikeik|y|

4π|y|
− eik|y|

4π|y|2
.

Using that σ (∂B(0, ε)) = 4πε2 we find that

Jε =

∫
∂B(0,ε)

∂G

∂n
(y, λ)ψ(y)dσ(y)

=

∫
|y|=ε

(
ikeik|y|

4π|y|
− eik|y|

4π|y|2

)
ψ(y)dσ(y)

=
(
ikεeikε − eikε

) 1

4πε2

∫
∂B(0,ε)

ψ(y)dσ(y).

Notice that 1
4πε2

∫
∂B(0,ε)

ψ(y)dσ(y) goes to ψ(0) as ε → 0. Now we put this all together. Since

ε was arbitrary we can now let ε go to zero to find

〈[−∆ + λ]G(· ;λ), ψ〉 = −(Aε − Cε + Iε)− (Kε −Dε)− Jε
→ 0 + 0 + ψ(0) = 〈δ, ψ〉.

This shows (3.7) and completes the proof.
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3.1.3 Estimates on the fundamental solutions

Now that it is proven that G(x;λ) is a fundamental solution, we can make some estimates on
this fundamental solution.

Lemma 3.4. Let λ ∈ Σθ. Then for all x ∈ R3 \ {0} there exist c, C > 0 such that

∣∣∇`xG(x;λ)
∣∣ ≤ C e−c√|λ||x|

|x|`+1
, (3.8)

for any integer ` ≥ 0, where c depends only on θ, and C depends only on ` and θ.

Proof. This will be proved using an induction argument. First of all notice that

|G(x;λ)| =
∣∣∣∣ eik|x|4π|x|

∣∣∣∣ ≤ e− Im(k)|x|

4π|x|
≤ e− sin(θ/2)

√
|λ||x|

4π|x|
,

where in the last inequality Remark 3.1 was used. This shows that the result holds for ` = 0.
Notice that on R3 \ {0} the fundamental solution obeys the relation ∆G(x;λ) = λG(x;λ).
Therefore interior estimates of the Poisson equation can be used to estimate the derivatives of
G(x;λ) in this domain. Let B(x, r) be an open ball and w(x) such that ∆w = f on B(x, r).
Then we know that∣∣∇`w(x)

∣∣ ≤ Cr−` sup
B(x,r)

|w(x)|+ C max
0≤j≤`−1

sup
B(x,r)

rj−`+2
∣∣∇jf ∣∣. (3.9)

A proof of this Caccioppoli-type inequality can be found in the Appendix (Lemma C.4). Now
suppose that (3.8) is true if ` = k. If ` = k+ 1 we can now use the inequality (3.9) together with
the induction hypothesis to find∣∣∇k+1G(x;λ)

∣∣ ≤ Cr−(k+1) sup
B(x,r)

|G(x;λ)|

+ C max
0≤j≤k

sup
B(x,r)

rj−(k+1)+2
∣∣∇jλG(x;λ)

∣∣
(IH)

≤ Cr−(k+1) sup
B(x,r)

e−c
√
|λ||x|

|x|

+ max
0≤j≤l

Cj sup
B(x,r)

rj−(k+1)+2|λ|e
−c
√
|λ||x|

|x|j+1
.

Now choose r = 1
2 |x|. By setting y =

√
|λ||x| and using the observation that y2e−ay is a bounded

function when c > 0 and y > 0, we find

C max
0≤j≤k

sup
B(x, 12 |x|)

|x|j−(k+1)+2|λ|e
−c
√
|λ||x|

|x|j+1
≤ C sup

B(x, 12 |x|)
|x|−(k+1)

y2e−
c
2y
e−

c
2y

|x|

≤ C sup
B(x, 12 |x|)

|x|−(k+1) e
− c2
√
|λ||x|

|x|
.
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We now use this to find

∣∣∇k+1G(x;λ)
∣∣ ≤ C|x|−(k+1)

sup
B(x, 12 |x|)

e−c
√
|λ||x|

|x|

+ C max
0≤j≤k

sup
B(x, 12 |x|)

|x|j−(k+1)+2|λ|e
−c
√
|λ||x|

|x|j+1

≤ C|x|−(k+1)
sup

B(x, 12 |x|)

e−c
√
|λ||x|

|x|
+ C sup

B(x, 12 |x|)
|x|−(k+1) e

− c2
√
|λ||x|

|x|
.

We now notice that the functions within the suprema are monotonically decreasing as a function

of |x|. Therefore their supremum will be their function value at |x|2
x
|x| . Therefore we can drop

the suprema by changing the constants. We now find

∣∣∇k+1G(x;λ)
∣∣ ≤ C` e−c√λ|x|

|x|(k+1)+1
.

The proof is now completed by induction.

We have now considered the case when λ ∈ Σθ. The case λ = 0 is just the Laplacian. Let
G(x; 0) = 1

4π|x| denote a fundamental solution of the Laplace equation in R3, with pole at the

origin (see e.g. [11]). Then we find the following lemma.

Lemma 3.5. Let λ ∈ Σθ. Then for all ` ≥ 1 and for all x ∈ R3 \ {0}∣∣∣∇`x[G(x;λ)−G(x; 0)
]∣∣∣ ≤ C|λ||x|1−`, (3.10)

where C depends only on ` and θ.

Proof. First of all consider the case |λ||x|2 ≥ 1
2 . In that case we find using Lemma 3.4∣∣∣∇`x[G(x;λ)−G(x; 0)

]∣∣∣ ≤ ∣∣∇`xG(x;λ)
∣∣+
∣∣∇`xG(x; 0)

∣∣
≤ C`

e−c
√
|λ||x|

|x|`+1
+

1

|x|`+1
.

Because e−c
√
|λ||x| ≤ 1 we can drop this factor and because 2|λ||x|2 ≥ 1 we can multiply by

2|λ||x|2 to find the result. Now consider the case |λ||x|2 < 1
2 . First of all note that

eik|x| =

∞∑
n=0

(ik|x|)n

n!
.

This series is uniformly convergent when |λ||x|2 < 1
2 and thus

∂

∂|x|

(
eik|x| − 1− ik|x|

|x|

)
=

∞∑
n=2

(n− 1) (ik)n|x|n−2

n!
.

Hence we find by using this expansion that∣∣∣∇x[G(x;λ)−G(x; 0)
]∣∣∣ =

∣∣∣∣∇x(eik|x| − 1− ik|x|
|x|

)∣∣∣∣ ≤ C∣∣−k2
∣∣ = C|λ|,
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which shows the result in the case ` = 1. We can now again use an interior estimate of the Poisson
equation (3.9) for ` ≥ 2. Hereto let w(x) = G(x;λ)−G(x; 0) and notice that ∆w(x) = λG(x;λ)
in R3 \ {0}. This completes the proof.

Remark 3.6. By the same argument as in the ` = 1 case of the previous lemma we find that if
|λ||x|2 ≤ 1

2 ,

|G(x;λ)−G(x; 0)| ≤ C
√
|λ|. (3.11)

3.2 Fundamental solutions of the Stokes System

Now after finding a fundamental solution of the Helmholtz equation and proving some of its
properties we are ready to introduce a fundamental solution for the Stokes System.

3.2.1 Definition of the fundamental matrix

In this section we give the definition of the fundamental matrix when λ ∈ Σθ and x ∈ R3 \ {0}.
Since the Stokes System is 3-dimensional we need a fundamental solution in each coordinate.
This gives rise to a fundamental matrix, where each row is a fundamental solution with respect
to a coordinate. Now define the fundamental matrix as

Γij(x;λ) = G(x;λ)δij −
1

λ

∂2

∂xi∂xj

[
G(x;λ)−G(x; 0)

]
. (3.12)

The corresponding fundamental solution for the pressure term is given by

Φj(x) = − ∂

∂xj

[
G(x; 0)

]
. (3.13)

When λ = 0, the fundamental matrix is defined by

Γij(x; 0) =
1

2ω3

[
δij
|x|

+
xixj

|x|3

]
. (3.14)

In this definition, δij denotes the Kronecker delta.

3.2.2 Properties of the fundamental matrix

Now that the fundamental matrix is introduced, we check some properties. First of all we check
if the fundamental matrix solves the Stokes System away from zero.

Lemma 3.7. Let λ ∈ Σθ. Then for all x ∈ R3 \ {0}


(−∆x + λ)Γij(x;λ) +

∂

∂xi

[
Φj(x)

]
= 0 i, j = 1, 2, 3

3∑
i=1

∂

∂xi

[
Γij(x;λ)

]
= 0 j = 1, 2, 3.

(3.15)

Proof. Let λ ∈ Σθ and x ∈ R3 \ {0}. Then we know that ∆xG(x;λ) = λG(x;λ). Hence
(−∆x + λ)G(x;λ) = 0 and ∆xG(x; 0) = 0. Now using the definition of the fundamental matrix
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we find that

(−∆x + λ)Γij(x;λ) = − 1

λ

∂2

∂xi∂xj

[
− λG(x; 0)

]
= − ∂

∂xi

[
− ∂

∂xj
G(x; 0)

]
= − ∂

∂xi

[
Φj(x)

]
.

This shows the first equality. Now for the second equality we find

3∑
i=1

∂

∂xi

[
Γij(x;λ)

]
=

3∑
i=1

∂

∂xi
G(x;λ)δij −

1

λ

∂3

∂xj∂x2
i

[
G(x;λ)−G(x; 0)

]
=

∂

∂xj
G(x;λ)− 1

λ

∂

∂xj

[
∆xG(x;λ)−∆xG(x; 0)

]
=

∂

∂xj
G(x;λ)− ∂

∂xj
G(x;λ) = 0.

This completes the proof.

We want to check if (Γj ,Φj) is a fundamental solution in the distributional sense. In order
to do so, we first make some preliminary estimates.

Lemma 3.8. Let λ ∈ Σθ and Γij(x;λ) with x ∈ R3 \ {0} be given by (3.12). Let ε > 0. Then∫
B(0,ε)

|Γij(x;λ)|dx→ 0 (3.16)∫
∂B(0,ε)

|Γij(y;λ)|dσ(y)→ 0, (3.17)

when ε→ 0.

Proof. We use Lemma 3.4 and Lemma 3.5 to find∫
B(0,ε)

|Γij(x;λ)|dx ≤
∫
B(0,ε)

C

(
1

|x|
+

1

|λ|
|λ|
|x|

)
dx

≤ C
∫ ε

0

∫
∂B(0,1)

rdσ(y)dr

≤ Cε2 → 0 (ε→ 0).

For the second integral we find∫
∂B(0,ε)

|Γij(y;λ)|dσ(y) ≤
∫
∂B(0,ε)

C

(
1

|y|
+

1

|λ|
|λ|
|y|

)
dσ(y)

≤ C 1

ε
4πε2 → 0 (ε→ 0).

Theorem 3.9. (Γj ,Φj) is a fundamental solution of the Stokes System (1.11) in the distribu-
tional sense.
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Proof. We use a similar proving strategy as in the proof of Lemma 3.3. Let ψ ∈ C∞c (R3;R3).
Now we want to show that〈

(−∆x + λ)Γij +
∂Φj
∂xi

, ψi

〉
= δijψi(0) = 〈δijδ(x), ψi〉 . (3.18)

Now using the definition of the distributional derivative together with the linearity of distribu-
tions we find 〈

(−∆x + λ)Γij +
∂Φj
∂xi

, ψ

〉
= −〈Γij ,∆xψ〉+

〈
λΓij +

∂Φj
∂xi

, ψ

〉
= −

∫
R3

Γij(x;λ)∆xψ(x)dx

+

∫
R3

(
λΓij(x;λ) +

∂Φj(x)

∂xi

)
ψ(x)dx.

Because of the singularity at the origin, we will consider these integrals in two regions. The
region B(0, ε) and the region R3 \B(0, ε). Using partial integration we find∫

R3\B(0,ε)

Γij(x;λ)∆xψ(x)dx =

∫
∂B(0,ε)

∂ψi(p)

∂ν
Γij(p;λ)dσ(p)

+

∫
∂B(0,ε)

∂Γij(p;λ)

∂ν
ψi(p)dσ(p)

+

∫
Rd\B(0,ε)

∆xΓij(x;λ)ψi(x)dx.

By Lemma 3.7 we know that∫
Rd\B(0,ε)

(
−∆xΓij(x;λ) + λΓij(x;λ) +

∂Φj(x)

∂xi

)
ψ(x)dx = 0.

Hence we find that 〈
(−∆x + λ)Γij +

∂Φj
∂xi

, ψ

〉
= δijψ(0) = 〈δijδ(x), ψ〉 .

This completes the proof.

We also want to check if the pressure part of the fundamental solution is a harmonic function.

Lemma 3.10. Let x ∈ R3 \ {0} and Φi(x) be given by (3.13). Then

∆xΦi(x) = 0.

Proof. We start by calculating the second derivative of Φi(x),

∂2

∂x2
j

Φi(x) =
∂

∂xj

(
1

ωd|x|3
δij − 3

xixj

ωd|x|3+2

)

= −3
xi

ω3|x|3+2 δij − 3
xi

ω3|x|3+2 δij + 3(3 + 2)
xix

2
j

ω3|x|3+4 − 3
xi

ω3|x|3+2 .
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Now we sum all the derivatives to find the Laplacian

∆xΦi(x) =

3∑
j=1

∂2

∂x2
j

Φi(x)

= −3
xi

ω3|x|3+2 − 3
xi

ω3|x|3+2 + (32 + 6)
xi|x|2

ω3|x|3+4 − 32 xi

ω3|x|3+2

= 0.

3.2.3 Estimates on the fundamental matrix

In the previous section we have established the important properties of the fundamental matrix.
Now we do estimates on the fundamental matrix that will be used throughout the thesis.

Theorem 3.11. Let λ ∈ Σθ. Then for any ` ≥ 0 and for all x ∈ R3 \ {0}∣∣∇`xΓ(x;λ)
∣∣ ≤ C

(1 + |λ||x|2)|x|1+`
, (3.19)

where C depends only on ` and θ.

Proof. We consider the cases |λ||x|2 > 1 and |λ||x|2 ≤ 1. First let |λ||x|2 > 1. By Lemma 3.4 we
find that ∣∣∇`xΓ(x;λ)

∣∣ ≤ ∣∣∇`xG(x;λ)
∣∣+

1

|λ|
∣∣∇`+2G(x;λ)

∣∣+
1

|λ|
∣∣∇`+2G(x; 0)

∣∣
≤ C e

−c
√
|λ||x|

|x|1+`
+ C

e−c
√
|λ||x| + 1

|λ||x|3+`

= C
e−c
√
|λ||x| + 1

|λ||x|2 e
−c
√
|λ||x| + 1

|λ||x|2

|x|3+`

≤ C
e−c
√
|λ||x| + e−c

√
|λ||x| + 1

|λ||x|2

|x|1+`

≤ C
1 + 1

|λ||x|2

|x|1+`

≤ C

(1 + |λ||x|2)|x|1+`
.
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Now let |λ||x|2 ≤ 1. Using Lemma 3.4 and Lemma 3.5 we find∣∣∇`xΓ(x;λ)
∣∣ ≤ ∣∣∇`xG(x;λ)

∣∣+
1

|λ|
∣∣∇`+2 (G(x;λ)−G(x; 0))

∣∣
≤ C e

−c
√
|λ||x|

|x|1+`
+ C

1

|λ|
|λ||x|1−`−2

= C
e−c
√
|λ||x| + 1

|x|1+`

≤ C

(1 + |λ||x|2)|x|1+`
.

Where in the last step we used that 1 ≤ (1 + |λ||x|2) ≤ 2. This completes the proof.

Theorem 3.12. Let λ ∈ Σθ. Suppose that |λ||x|2 ≤ 1
2 . Then for all x ∈ R3 \ {0}∣∣∣∇x[Γ(x;λ)− Γ(x; 0)

]∣∣∣ ≤ C√|λ||x|−1
, (3.20)

where C > 0 depends only on θ.

Proof. We know that

Γαβ(x;λ)− Γαβ(x; 0) =
[
G(x;λ)−G(x; 0)

]
δαβ

− 1

λ

∂2

∂xα∂xβ

(
G(x;λ)−G(x; 0)− λ|x|

2ω3

)
.

By Lemma 3.5 we know that

|∇x {G(x;λ)−G(x; 0)}| ≤ C|λ| ≤ C
√
|λ||x|−1

. (3.21)

Where in the last inequality we used that |λ||x|2 ≤ 1
2 . For the second part we notice that

eik|x| =

∞∑
n=0

(ik|x|)n

n!
.

Now we use the observation that

1

4π

∂3

∂|x|3

(
eik|x| − 1− ik|x|+ k2|x|2

2 − ik3|x|3
6

4π|x|

)

=
1

4π

∞∑
n=3

(n− 1)(n− 2)(n− 3)

n!
(ik)

n |x|n−4
.

Hence we can use the series expansion to find that∣∣∣∣∇3
x

(
G(x;λ)−G(x; 0)− λ|x|

2ω3

)∣∣∣∣
=

∣∣∣∣∣∇3
x

(
eik|x| − 1− ik|x|+ k2|x|2

2
− ik3|x|3

6

)∣∣∣∣∣ ≤ C|λ|2.
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And thus we find∣∣∣∣∇x( 1

λ

∂2

∂xα∂xβ

(
G(x;λ)−G(x; 0)− λ|x|

2ω3

))∣∣∣∣ ≤ C|λ| ≤ C√|λ||x|−1
.

Combining this with (3.21) completes the proof.
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4 Layer potentials for the Stokes System

In this section we study the properties of the single and double layer potential for the Stokes
System. In this section we will assume that Ω is a bounded Lipschitz domain in R3 and 1 <
p < ∞. The proofs in this section rely on techniques from harmonic analysis ([22], [23] for an
introduction). Important results from harmonic analysis are also contained in the appendix A.
A good introduction to the layer potentials for the Stokes operator can be found in the book of
Ladyzhenskaya [29]. The Stokes System was also studied with layer potentials in [31], where the
boundary of the domain is the halfspace and in [37], where the boundary of the domain is of
class C2. For convenience we also introduce the Einstein summation convention. This convention
means that if an index is on the right-hand side but not on the left-hand side of the equation, it
ought to be summed over the dimension.

4.1 The single layer potential

First we study the single layer potential. We start off by giving the definition. Then we show
that the single layer potential solves the Stokes System in the domain Ω.

4.1.1 Definition of the single layer potential

Definition 4.1 (Single layer potential). Let Ω be a bounded and connected Lipschitz domain in
R3. If f ∈ Lp(∂Ω;C3) and λ ∈ Σθ, then the single layer potential with density f is defined by

Sλ(f)(x) = (u, φ) =


ui(x) =

∫
∂Ω

Γik(x− y;λ)fk(y)dσ(y)

φ(x) =

∫
∂Ω

Φk(x− y)fk(y)dσ(y).

(4.1)

We now proceed to show that this definition of the single layer potential yields a class of
functions that solves the Stokes System (1.11) in Ω. However, one should keep in mind that the
single layer potential does not always satisfy the boundary conditions on ∂Ω.

Lemma 4.2. Let Ω be a bounded and connected Lipschitz domain in R3. Let λ ∈ Σθ and
f ∈ Lp(∂Ω;C3). Then the single layer potential is a solution of the Stokes System (1.11) in Ω.

Proof. The idea of the proof is to use Lemma 3.7 in combination with the dominated convergence
theorem (Theorem B.5). Now let x ∈ Ω and let f ∈ Lp(∂Ω;C3). Now let q such that 1

p + 1
q = 1.

By Theorem 3.11 we see that the function y 7→ ∇`xΓik(x − y;λ) ∈ Lq(∂Ω;C) for all ` ≥ 0. It is
also not hard to see that the function y 7→ ∇Φk(x− y) ∈ Lq(∂Ω;C). Now we let (u, φ) = Sλ(f).
Since Ω is open we can find a radius r such that B(x, r) ⊂ Ω. Now take a sequence hn → 0 with
|hn| < r. Now consider

ui(x+ hnej)− ui(x)

hn
=

∫
∂Ω

Γik(x+ hnej − y;λ)− Γik(x− y;λ)

hn
fk(y)dσ(y).

By the mean value theorem there exists a ξn ∈ B(x, r) such that∣∣∣∣Γik(x+ hnej − y;λ)− Γik(x− y;λ)

hn

∣∣∣∣ ≤ ∣∣∣∣∂Γik(ξn − y;λ)

∂xj

∣∣∣∣.
Now by the Hölder inequality (Theorem B.2) we find that∫

∂Ω

∣∣∣∣∂Γik(ξn − y;λ)

∂xj

∣∣∣∣|fk(y)|dσ(y) ≤ ‖∇xΓik(x− · ;λ)‖Lq(∂Ω;C)‖fk‖Lp(∂Ω;C) <∞.
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Now we can invoke the dominated convergence theorem to find that

∂ui
∂xj

(x) = lim
n→∞

ui(x+ hnej)− ui(x)

hn

= lim
n→∞

∫
∂Ω

Γik(x+ hnej − y;λ)− Γik(x− y;λ)

hn
fk(y)dσ(y)

=

∫
∂Ω

lim
n→∞

Γik(x+ hnej − y;λ)− Γik(x− y;λ)

hn
fk(y)dσ(y)

=

∫
∂Ω

∂Γik
∂xj

(x− y;λ)fk(y)dσ(y).

Similar calculations can be done for ∇φ(x) and ∆xui(x). Using this we find

−∆xui(x) +
∂

∂xi
φ(x) + λui = −∆x

∫
∂Ω

Γik(x− y;λ)fk(y)dσ(y) +
∂

∂xi

∫
∂Ω

Φk(x− y)fk(y)dσ(y)

+ λ

∫
∂Ω

Γik(x− y;λ)fk(y)dσ(y)

=

∫
∂Ω

[
−∆xΓik(x− y;λ) +

∂

∂xi
Φk(x− y) + λΓik(x− y;λ)

]
fk(y)dσ(y)

= 0.

And similarly we find

div(u) =
∂ui
∂xi

=
∂

∂xi

∫
∂Ω

Γik(x− y;λ)fk(y)dσ(y)

=

∫
∂Ω

∂

∂xi
Γik(x− y;λ)fk(y)dσ(y)

= 0.

This completes the proof.

Also note that the pressure part of the single layer potential is still a harmonic function.

Lemma 4.3. Let Ω be a bounded and connected Lipschitz domain in R3. Let λ ∈ Σθ and
f ∈ Lp(∂Ω;C3). Let (u, φ) = Sλ(f). Then ∆xφ(x) = 0 in Ω.

Proof. By Lemma 3.10 and the same argument as in the proof of Lemma 4.2 we find that
∆xφ(x) = 0 in Ω.

4.2 The double layer potential

4.2.1 Definition of the stress tensor

The internal mechanical stresses in a continuous medium can be modelled using a total stress
tensor. This is a combination of forces in the medium and surface forces. In [33], S. Monniaux
considers the following class of stress tensors

Tij(u, φ)(x) = −δijφ(x) + ξ
∂ui
∂xj

(x) +
∂uj
∂xi

(x), (4.2)
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where ξ ∈ (−1, 1]. In this section we only consider the case ξ = 0, similar to Shen [34] and
Fabes, Kenig and Verchota [12]. We do this because this yields good Rellich estimates in the
next chapter. In order to avoid confusion we introduce a new symbol to denote the stress tensor
with ξ = 0.

Sij(u, φ)(x) = −δijφ(x) +
∂ui
∂xj

(x). (4.3)

What we are interested in is the divergence of this tensor when acting on a vector. Hence we
calculate and find that

∂

∂xj

[
Sij(u, φ)(x)wi(x)

]
= − ∂φ

∂xi
wi − φ

∂wi
∂xi

+wi∆ui +
∂ui
∂xj

∂wi
∂xj

.

Now if we take a divergence free vector for w we find

∂

∂xj

[
Sij(u, φ)(x)wi(x)

]
=

(
∆ui −

∂φ

∂xi

)
wi +

∂ui
∂xj

∂wi
∂xj

.

This observation leads to an important theorem. First define

S
′

ij(u, φ) = δijφ+
∂ui
∂xj

. (4.4)

We conclude this section with the definition of the conormal derivative.

Definition 4.4 (conormal derivative). Let Ω be a Lipschitz domain in R3 and u and φ be
sufficiently nice functions on Ω. Then the conormal derivative is defined as

∂u

∂ν
= Sj(u, φ)nj =

∂u

∂n
− φn. (4.5)

4.2.2 Greens type identity for the stress tensor

In this section we prove a Greens type identity for the stress tensor. This helps rewriting the
Stokes System inside Ω to an integral involving the conormal derivative on ∂Ω.

Theorem 4.5. Let Ω be a Lipschitz domain in R3. Let u and w be sufficiently differentiable
and divergence free and let φ and ρ be sufficiently differentiable. Then,∫

Ω

[(
∆ui −

∂φ

∂xi
− λui

)
wi − ui

(
∆wi +

∂ρ

∂xi
− λwi

)]
dx

=

∫
∂Ω

[
Sij(w, ρ)uinj − S

′

ij(u, φ)winj

]
dσ. (4.6)

Proof. First of all note that∫
Ω

[(
∆ui −

∂ui
∂xi
− λui

)
wi − ui

(
∆wi +

∂wi
∂xi
− λwi

)]
dx

=

∫
Ω

[(
∆ui −

∂ui
∂xi

)
wi − ui

(
∆wi +

∂wi
∂xi

)]
dx

=

∫
Ω

div[Si(u, φ)]ui − div[S
′

i(u, φ)]widx.

Now the result follows directly from the divergence theorem and Lemma 2.11.
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It is natural to call this theorem the Green’s identity of the Stokes System. Using the Green’s
identity it is possible to express the solution to the Stokes System in terms of surface integrals.

Theorem 4.6. Let Ω be a Lipschitz domain in R3 and λ ∈ Σθ. Let (Γk,Φk) denote a funda-
mental solution of the Stokes System (1.11) and suppose that (u, φ) satisfies the Stokes System.
Then,∫
∂Ω

S
′

ij(Γk,Φk)(x− y;λ)ui(y)nj − Sij(u, φ)(y)Γik(x− y;λ)njdσ(y) =

{
ui(x) x ∈ Ω

0 x ∈ R3 \ Ω.

(4.7)

Proof. Let (Γk,Φk) be a fundamental solution and (u, φ) be a solution of the homogeneous
Stokes System. Now substitute this on the left-hand side of the Green’s identity from Theorem
4.5. This yields

LHS =

∫
Ω

[(
∆ui −

∂φ

∂xi
− λui

)
(y)Γik(x− y;λ)− ui(y)

(
∆Γik +

∂Φi
∂xi
− λΓik

)
(x− y;λ)

]
dy

=

∫
Ω

ui(y)δikδ(x− y)dy

= ui(x),

where δik denotes the Kronecker delta, and δ(x− y) denotes the delta function. This completes
the proof.

We want to obtain a similar expression for the pressure term φ. Therefore we first establish
the following lemma.

Lemma 4.7. Let λ ∈ Σθ and (Γk,Φk) denote a fundamental solution of the Stokes System.
Then if x 6= y,

−λS
′

ij(Γk,Φk)(x− y) + ∆xS
′

ij(Γk,Φk)(x− y) = − ∂Φk
∂xi∂xj

(x− y)− λδijΦk(x− y). (4.8)

Proof. First of all notice that the differentiation in S is done with respect to y. We can how-
ever change to differentiation with respect to x at the cost of a minus sign. We now start by
manipulating the Laplacian term.

∆xS
′

ij(Γk,Φk)(x− y) = δij∆xΦk(x− y) +
∂

∂yi
∆xΓjk(x− y)

= δij∆xΦk(x− y)− ∂

∂xi
∆xΓjk(x− y)

= δij∆xΦk(x− y)− ∂

∂xi

(
λΓjk(x− y) +

∂

∂xj
Φk(x− y)

)
= −λ ∂

∂xi
Γjk(x− y)− ∂2

∂xi∂xj
Φk(x− y).

Since Φk(x− y) is a harmonic function. It’s Laplacian vanishes. Furthermore we can calculate,

λS
′

ij(Γk,Φk)(x− y) = λδijΦk(x− y) + λ
∂

∂xi
Γjk(x− y). (4.9)

Now combining the two results completes the proof.
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We are now ready to represent the pressure term of the solution in terms of surface integrals.

Theorem 4.8. Let Ω be a Lipschitz domain in R3 and λ ∈ Σθ. Let (u, φ) be such that it solves
the homogeneous Stokes System. Then for all x ∈ Ω,

φ(x) =

∫
∂Ω

∂

∂xj
Φk(x− y)ui(y)nj(y)dσ(y) +

∫
∂Ω

Sij(u, φ)(y)Φk(x− y)nj(y)dσ(y)

− λ

4π

∫
∂Ω

1

|x− y|
ui(y)nj(y)dσ(y) + C, (4.10)

where (Γk,Φk) denotes a fundamental solution of the Stokes System and C is a constant.

Proof. Let (u, φ) be a solution of the Stokes System. By Theorem 4.6 we can write for all x ∈ Ω

∂φ

∂xi
= ∆ui(x)− λui(x)

=

∫
∂Ω

∆xS
′

ij(Γk,Φk)(x− y)ui(y)nj − Sij(u, φ)(y)∆xΓik(x− y;λ)njdσ(y)

− λ
[∫

∂Ω

S
′

ij(Γk,Φk)(x− y)ui(y)nj − Sij(u, φ)(y)Γik(x− y;λ)njdσ(y)

]
.

We can now use Lemma 4.7 and Lemma 3.7 to find

∂φ

∂xi
= −

∫
∂Ω

Sij(u, φ)(y)
∂Φk
∂xi

(x− y)dσ(y)

−
∫
∂Ω

[
∂Φk
∂xi∂xj

(x− y) + λδijΦk(x− y)

]
ui(y)dσ(y). (4.11)

Now let r > 0 be such that B(x, r) ⊂ Ω. pick x0 ∈ B(x, r) and let γ be a path from x0 to x in
B(x, r). By the gradient theorem we find

φ(x)− φ(x0) =

∫
γ

∇φ(t) · dt.

After integrating the right-hand side of (4.11) and grouping all constant terms in one constant
C, the proof is completed.

4.2.3 Definition of the double layer potential

Theorem 4.6 and Theorem 4.8 suggest that it is convenient to introduce the double layer potential.

Definition 4.9 (Double layer potential). Let Ω be a bounded and connected Lipschitz domain in
R3. If g ∈ Lp(∂Ω;C3) and λ ∈ Σθ. Then the double layer potential with density g is defined by

Dλ(g)(x) = (w, ρ) =



wi(x) = −
∫
∂Ω

S
′

ij(Γk,Φk)(x− y;λ)gk(y)nj(y)dσ(y)

ρ(x) =
∂

∂xj

∫
∂Ω

Φk(x− y)nj(y)gk(y)dσ(y)

+
λ

4π

∫
∂Ω

1

|x− y|
gk(y)nk(y)dσ(y)

(4.12)

We shall again show that that the double layer potential is a class of functions that solves
the Stokes System in Ω.
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Lemma 4.10. Let Ω be a bounded and connected Lipschitz domain in R3. Let λ ∈ Σθ and
g ∈ Lp(∂Ω;C3). Then the double layer potential is a solution of the Stokes System (1.11) in Ω.

Proof. Let (w, ρ) = Dλ(g). For the same reason as in the proof of Lemma 4.2 we can interchange
differentiation and integration. Now use Lemma 4.7 to conclude that −∆w +∇ρ + λw = 0 in
Ω. To see that div(u) = 0, notice that

3∑
i=1

∂

∂xi

(
δikΦk(x− y) +

∂Γik(x− y;λ)

∂xj

)
= ∆

(
1

4π|x− y|

)
+

∂

∂xj
div(Γk) = 0.

And again the pressure part of the double layer potential is a harmonic function.

Lemma 4.11. Let Ω be a bounded and connected Lipschitz domain in R3. Let λ ∈ Σθ and
g ∈ Lp(∂Ω;C3). Let (w, ρ) = Dλ(g). Then ∆ρ = 0 in Ω.

Proof. Notice that ∆Φk = 0 by Lemma 3.10 and a short calculation shows that ∆
(

1
|x−y|

)
= 0,

when x 6= y.

It is not yet clear why we need both the single and double layer potential. We have seen
that the single layer potential as well as the double layer potential solve the Stokes System in Ω.
However they fulfil different roles in the solution to the boundary value problem for the Stokes
System. We shall show in the next sections that the single layer potential is used to solve the
Stokes System with Neumann type boundary conditions and the double layer potential is used
for Dirichlet type boundary conditions.

4.3 Nontangential maximal functions of layer potentials

In this section we show that the layer potentials defined in the previous section have bounded
nontangential maximal functions. This is important, because we want to use smooth approxi-
mations of Lipschitz domains. As we know from the section about Lipschitz domains, we need
boundedness of the nontangential maximal function in order to use something like the dominated
convergence theorem.

4.3.1 Convolutions on Lipschitz domains

We start by stating a well known result that bounds the convolution with a decreasing and
radially symmetric kernel.

Lemma 4.12. Let η : Rd → R be a function such that η(x) = η(|x|) and η(x) ≥ η(y) when
|x| ≤ |y|. Then ηt(x) = 1

td
η
(
x
t

)
and,

sup
t>0
|(f ∗ ηt)(x)| ≤ ‖η‖L1(Rd)M(f)(x) (4.13)

for all f ∈ L1
loc(Rd).

Proof. See for example [22, Theorem 2.1.10] or [24, Proposition 2.3.9].
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We would like to use a similar lemma to show boundedness of nontangential maximal functions
arising from the layer potentials on Lipschitz domains. We cannot directly use this lemma, since
f is only defined on ∂Ω. To fix this problem we have to use a parametrization of the boundary.
Define η : R2 → R by

η(y) = χ|y|>1|y|
−3
. (4.14)

Then the dilation is given by

ηt(y) = χ|y|>t
t

|y|3
. (4.15)

A rather straightforward calculation shows that the L1 norm of this function equals 2π. However,
η is not radially decreasing. Therefore we want to define η̃ in such a way that it is a radially
decreasing function and that it is a majorant of η. This can be done by defining

η̃(y) = χ|y|≤1 + χ|y|>1|y|
−3
. (4.16)

One can show that the L1 norm again is finite (in fact it equals 3π). Now we are ready to prove
the following lemma.

Lemma 4.13. Let Ω be a bounded Lipschitz domain in R3 and let p ∈ ∂Ω. Then there exists
C > 0 such that ∫

y∈∂Ω
|p−y|>t

t

|p− y|3
f(y)dσ(y) ≤ CM∂Ω(f)(p), (4.17)

for all f ∈ L1
loc(∂Ω).

Proof. Assume that D is a special Lipschitz domain. Now parametrize the boundary to find∫
∂D

tχ|p−y|>t(y)

|p− y|3
f(y)dσ(y) =

∫
R2

tχ|π(p̃)−π(ỹ)|)>t

|π(p̃)− π(ỹ)|3
f(π(ỹ))

√
1 + |∇ϕ(ỹ)|2dỹ.

We now manipulate the integrand in order to use Lemma 4.12. Notice that

|π(p̃)− π(ỹ)|2 = |p̃− ỹ|2 + |ϕ(p̃)− ϕ(ỹ)|2 ≤ (1 + L)|p̃− ỹ|2

|π(p̃)− π(ỹ)|2 = |p̃− ỹ|2 + |ϕ(p̃)− ϕ(ỹ)|2 ≥ |p̃− ỹ|2.

If we now define

f̃(ỹ) := f(π(ỹ))

√
1 + |∇ϕ(ỹ)|2.

We can easily see that f̃ is locally integrable on R2 if f is in Lp(∂Ω). Also define

η(x) = χ|x|>1|x|
−3
.

Then we find that∫
R2

tχ|π(p̃)−π(ỹ)|)>t

|π(p̃)− π(ỹ)|3
f(π(ỹ))

√
1 + |∇ϕ(ỹ)|2dỹ ≤ C

∫
R2

tχ|p̃−ỹ|)>t

|p̃− ỹ|3
f̃(ỹ)dỹ

≤ C
∫
R2

η̃t(p̃− ỹ)f̃(ỹ)dỹ

≤ C sup
t>0

∣∣∣(η̃t ∗ f̃)(p̃)
∣∣∣

≤ C‖η̃‖L1(R2)M(f̃)(p̃).
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On the last line we used Lemma 4.12. We now want to show that there exists a constant such
that

M(f̃)(p̃) ≤ CM∂D(f)(p).

Notice that π(B2(p̃, r)) ⊂ B3(π(p̃),
√

1 + Lr) ∩ ∂D where L is the Lipschitz constant of ϕ. To
see this we represent points in ∂D by π(ỹ) and calculate

|π(p̃)− π(ỹ)| = |p̃− ỹ|2 + |ϕ(p̃)− ϕ(ỹ)|2 ≤ (1 + L)|p̃− ỹ|2.

and the conclusion follows. Also notice that by Lemma 2.6, the sizes of π(B2(p̃, r)) andB3(π(p̃),
√

1 + Lr)∩
∂D are comparable. Now

M(f̃)(p̃) = sup
r>0

1

|B2(p̃, r)|

∫
B2(p̃,r)

∣∣∣f̃(ỹ)
∣∣∣dỹ

≤ sup
r>0

1

|B2(p̃, r)|

∫
π(B2(p̃,r))

|f(y)|dσ(y)

≤ C 1∣∣B3(p,
√

1 + Lr) ∩ ∂D
∣∣
∫
B3(p,

√
1+Lr)∩∂Ω

|f(y)|dσ(y)

≤ CM∂D(f)(p).

To summarize, we now showed that for a special Lipschitz domain we have∫
∂D

tχ|p−y|>t(y)

|p− y|3
|f(y)|dσ(y) ≤ ‖η̃‖L1(R2)M∂Ω(f)(p).

Now consider a bounded Lipschitz domain Ω in R3. By compactness there exists a finite collection
(∂Dj)

n
j=1 of special Lipschitz domains covering ∂Ω and a partition of unity (ζj)

n
j=1 subordinate

to this covering. Thus we find∫
∂Ω

tχ|p−y|>t

|p− y|3
f(y)dσ(y) =

n∑
j=1

∫
∂Dj

tχ|p−y|>t

|p− y|3
f(y)ζj(y)dσ(y)

≤
n∑
j=1

‖η̃‖L1(R2)M∂Dj (ζjf)(p)

≤ C
n∑
j=1

‖η̃‖L1(R2)M∂Ω(f)(p)

≤ CM∂Ω(f)(p).

This completes the proof.

4.3.2 Boundedness of (φ)∗ in Lp(∂Ω)

We are now able to prove the boundedness of the nontangential maximal functions that arise
from the layer potentials. We start by showing this in the case of φ, the pressure term. Before
we do this, there is also another convolution-type operator that plays an important role. For f
locally integrable on ∂Ω and p ∈ ∂Ω, define the operators

St(f)(p) :=

∫
y∈∂Ω
|p−y|>t

pk − yk
|p− y|3

f(y)dσ(y), (4.18)
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and
S∗(f)(p) := sup

t>0

∣∣St(f)(p)
∣∣. (4.19)

We want to use techniques from harmonic analysis, but then we need to integrate over R2 instead
of ∂Ω. This can be overcome by parametrizing the boundary. Assume that Ω is a special Lipschitz
domain. Then (4.18) becomes

St(f)(p) =

∫
R2

χ|π(p̃)−π(ỹ)|>t(π(ỹ))
π(p̃)k − π(ỹ)k

|π(p̃)− π(ỹ)|3
fk(π(ỹ))

√
1 + |∇ϕ(ỹ)|2dỹ. (4.20)

By Rademachers Theorem (Theorem 2.4) we see that

√
1 + |∇ϕ(ỹ)|2 is essentially bounded.

Hence it is natural to consider the kernel

K(x, y) =
(x, ϕ(x))− (y, ϕ(y))

|(x, ϕ(x))− (y, ϕ(y))|3
. (4.21)

It is shown that this is a special kernel, in the sense of Calderón-Zygmund theory.

Lemma 4.14. There exists a C > 0, such that K(x, y) defined by (4.21), is an element of
SK(1, C).

Proof. Notice that by Rademacher’s Theorem (Theorem 2.4)

|K(x, y)| ≤ C

|(x, φ(x))− (y, φ(y))|2
=

1

|x− y|2
C√

1 +
(
φ(x)−φ(y)

x−y

)2
≤ C

|x− y|2
.

For the gradients of K(x, y) a similar calculation yields that

|∇xK0(x, y)| ≤ C

|x− y|3
and |∇yK0(x, y)| ≤ C

|x− y|3
.

Now observe that |x− x′| ≤ 1
2 max (|x− y|, |x′ − y|) implies that

max (|x− y|, |x′ − y|) ≤ 2 min (|x− y|, |x′ − y|). This follows from the triangle inequality. Now
let θ be a point on the line segment between x and x′. Then we find that

|θ − y|+ |θ − x| ≥ |x− y|
|θ − y|+ |θ − x′| ≥ |x′ − y|.

Adding these inequalities yields together with the previous observations

2|θ − y| ≥ −|θ − x| − |θ − x′|+ |x− y|+ |x′ − y|
2|θ − y| ≥ −|x− x′|+ 2 min (|x− y|, |x′ − y|)

2|θ − y| ≥ −1

2
max (|x− y|, |x′ − y|) + max (|x− y|, |x′ − y|) .

And hence we find that

|θ − y| ≥ 1

4
(|x− y|+ |x′ − y|) . (4.22)
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Now suppose that |x− x′| ≤ 1
2 max (|x− y|, |x′ − y|). We can now use the mean value theorem

in combination with inequality 4.22,

|K(x, y)−K(x′, y)| ≤ |∇xK(θ, y)||x− x′| ≤ C |x− x
′|

|θ − y|3
≤ C |x− x′|

(|x− y|+ |x′ − y|)3 .

And a similar calculation yields

|K(x, y)−K(x, y′)| ≤ C |y − y′|
(|x− y|+ |x− y′|)3 ,

when |y − y′| ≤ 1
2 max (|x− y|, |x− y′|). This completes the proof.

Now, the following Lemma is a consequence of the celebrated Theorem by Coifman, McIntosh
and Meyer [5]. They have shown that operators like S are bounded in L2(∂Ω) and hence are
Calderón-Zygmund operators. Now, the following Lemma is just a standard result for Calderón-
Zygmund operators.

Lemma 4.15. Let Ω be a bounded Lipschitz domain in R3 and let S∗(f) be defined by (4.19).
Then there exists C > 0 such that

‖S∗(f)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω) (4.23)

for all f ∈ Lp(∂Ω;C3) with 1 < p <∞.

Using this important result, we can now show the boundedness of the nontangential maximal
function of φ by making a decomposition into the case above and a convolution-type integral.

Lemma 4.16. Let Ω be a bounded Lipschitz domain in R3. Let (u, φ) = Sλ(f) with f ∈
Lp(∂Ω;C3) with 1 < p <∞. Then

‖(φ)∗‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω), (4.24)

where C depends only on θ, p and the Lipschitz character of Ω.

Proof. Let φ be given by the single layer potential. Pick p ∈ ∂Ω and define the set

E(p) = {x ∈ Ω : |x− p| ≤ C dist(x, ∂Ω)} .

Set t = |x− p|. By the definition of the non-tangential maximal function

(φ)∗(p) = sup
x∈E(p)

∣∣∣∣∣
∫
∂Ω

xk − yk
|x− y|3

fk(y)dσ(y)

∣∣∣∣∣
≤ sup
x∈E(p)

∣∣∣∣∣∣
∫
y∈∂Ω
|p−y|≤t

xk − yk
|x− y|3

fk(y)dσ(y)

∣∣∣∣∣∣+ sup
x∈E(p)

∣∣∣∣∣∣
∫
y∈∂Ω
|p−y|>t

xk − yk
|x− y|3

fk(y)dσ(y)

∣∣∣∣∣∣
= A+B.
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We are going to estimate integrals A and B using the estimates from Lemma 2.13

A = sup
x∈E(p)

∣∣∣∣∣∣
∫
y∈∂Ω
|p−y|≤t

xk − yk
|x− y|3

fk(y)dσ(y)

∣∣∣∣∣∣
≤ sup
x∈E(p)

∫
y∈∂Ω
|p−y|≤t

1

|p− y|2
|fk(y)|dσ(y)

≤ sup
x∈E(p)

C

|B3(p, t) ∩ ∂Ω|

∫
y∈∂Ω
|p−y|≤t

|fk(y)|dσ(y)

≤ CM∂Ω(f)(p),

where C only depends on the Lipschitz character of Ω. For part B notice that∣∣∣∣∣xk − yk|x− y|3
− pk − yk
|p− y|3

∣∣∣∣∣ ≤ C |x− y||p− y|3
+
|p− y|
|p− y|3

≤ C |x− p|
|p− y|3

.

We now use this to find

B ≤ sup
x∈E(p)

|p− x|

∣∣∣∣∣∣
∫
y∈∂Ω
|p−y|>t

1

|p− y|3
fk(y)dσ(y)

∣∣∣∣∣∣+ sup
x∈E(p)

∣∣∣∣∣∣
∫
y∈∂Ω
|p−y|>t

pk − yk
|p− y|3

fk(y)dσ(y)

∣∣∣∣∣∣
= sup

t>0

∣∣∣∣∣∣
∫
y∈∂Ω
|p−y|>t

t

|p− y|3
fk(y)dσ(y)

∣∣∣∣∣∣+ sup
t>0

∣∣∣∣∣∣
∫
y∈∂Ω
|p−y|>t

pk − yk
|p− y|3

fk(y)dσ(y)

∣∣∣∣∣∣
≤ CM(f)(p) + S∗(f)(p),

where we used Lemma 4.13 in the last inequality. If we now put it together with the boundedness
of the maximal function in Lp (Theorem A.4) and Lemma 4.15 we find

‖(φ)∗‖Lp(∂Ω) ≤ C‖M∂Ω(f)‖Lp(∂Ω) + ‖S∗(f)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω).

This completes the proof.

4.3.3 Boundedness of (∇u)∗ in Lp(∂Ω)

Before we can establish the boundedness of the nontangential maximal function of ∇u we need
to do some work. In a similar fashion as the previous section we define

T tλ(f)(p) =

∫
y∈∂Ω
|p−y|>t

∇Γk(p− y;λ)fk(y)dσ(y) (4.25)

and
T ∗λ (f)(p) = sup

t>0

∣∣T tλ(f)(p)
∣∣. (4.26)

Again we would like to show that T ∗λ (f) is bounded in Lp(∂Ω). To use techniques from harmonic
analysis, we need to integrate over R2 ans thus parametrize ∂Ω. Now in the case that Ω is a
special Lipschitz domain, we could write (4.25) as

T tλ(f)(p) =

∫
Rd−1

χ|π(p̃)−π(ỹ)|>t(π(ỹ))∇xΓk((p̃, ϕ(p̃))− (ỹ, ϕ(ỹ));λ)

√
1 + |∇ϕ(ỹ)|2fk(π(ỹ))dỹ.

(4.27)
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Since

√
1 + |∇ϕ(·)|2 is essentially bounded, this is the motivation to define a kernel given by

Kλ(x, y) = ∇xΓk((x, ϕ(x))− (y, ϕ(y));λ). (4.28)

In the following we will show that K0(x, y) is a standard kernel which is associated with a
Calderón-Zygmund operator. This will allow for the use of standard results in Calderón-Zygmund
theory. First of all, it is showed that K0(x, y) satisfies the special kernel estimates.

Lemma 4.17. There exists a C > 0, such that K0(x, y) defined by (4.28) is an element of
SK(1, C).

Proof. First of all notice that by Lemma 3.11 we find

|K0(x, y)| = |K(x, y)|

and

|∇xK0(x, y)| = |∇xK(x, y)|
|∇yK0(x, y)| = |∇yK(x, y)|,

with K(x, y) as defined in (4.21). Now the result follows by the proof of Lemma 4.14.

In order to conclude that T0 is a Calderón-Zygmund operator, L2 boundedness of the operator
is needed. This is again a consequence of the result of Coifman, McIntosh and Meyer [5], who
showed that the Cauchy transform is bounded in L2. Hence we have the following lemma.

Lemma 4.18. Let Ω be a bounded Lipschitz domain in R3 and let T ∗0 (f) be defined by (4.26).
Then

‖T ∗0 (f)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω), (4.29)

for all f ∈ Lp(∂Ω) with 1 < p <∞.

Now the following Theorem extends the result to λ ∈ Σθ. Hereto it uses the estimates on the
fundamental solution derived in Section 3.

Lemma 4.19. Let Ω be a bounded Lipschitz domain in R3 and λ ∈ Σθ. Then for all f ∈
Lp(∂Ω;C3) with 1 < p <∞ we have

‖T ∗λ (f)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω), (4.30)

where C depends only on θ, p and the Lipschitz character of Ω.

Proof. The case λ = 0 holds by Lemma 4.18. We want to extend the result to the case λ ∈ Σθ.
Hereto we make estimates on T ∗λ (f) in order to reduce this problem to the λ = 0 case. We start
by distinguishing two cases. The case t2|λ| ≥ 1

2 and the case t2|λ| < 1
2 . We start with the case
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t2|λ| ≥ 1
2 . Then by Theorem 3.11∣∣∣∣∣∣

∫
y∈∂Ω
|p−y|>t

∇Γk(p− y;λ)fk(y)dσ(y)

∣∣∣∣∣∣ ≤
∫
y∈∂Ω
|p−y|>t

|∇Γk(p− y;λ)||fk(y)|dσ(y)

≤ C
∫
y∈∂Ω
|p−y|>t

|fk(y)|
|λ||p− y|4

dσ(y)

≤ C
∫
y∈∂Ω
|p−y|>t

t2|fk(y)|
|p− y|4

dσ(y)

≤ C
∫
y∈∂Ω
|p−y|>t

t

|p− y|3
|fk(y)|dσ(y)

≤ CM∂Ω(f)(P ),

where we used Lemma 4.13 on the last line. Now we consider the case t2|λ| < 1
2 . We now split

up the domain of integration in two parts. The first part t < |p− y| < (2|λ|)− 1
2 which we will

denote by γ1 and the second part |p− y| ≥ (2|λ|)− 1
2 which we will denote by γ2. We start by

estimating on γ1. We find∣∣∣∣∫
γ1

∇Γk(p− y;λ)fk(y)dσ(y)

∣∣∣∣ ≤ ∣∣∣∣∫
γ1

∇Γk(p− y; 0)fk(y)dσ(y)

∣∣∣∣
+

∣∣∣∣∫
γ1

∇
[
Γk(p− y;λ)− Γk(p− y; 0)

]
fk(y)dσ(y)

∣∣∣∣
= A+B.

We now estimate these integrals separately. We notice that A ≤ T ∗0 (f)(p). The second integral
is estimated using Theorem 3.12.

B ≤
∫
γ1

∣∣∣∇[Γk(p− y;λ)− Γk(p− y; 0)
]∣∣∣|fk(y)|dσ(y)

≤ C
∫
γ1

√
|λ|

|p− y|
|fk(y)|dσ(y)

≤ C
∫
γ1

|fk(y)|
|p− y|2

dσ(y)

≤ CM∂Ω(f)(p).

We now estimate the integral on γ2.∣∣∣∣∫
γ2

∇Γk(p− y;λ)fk(y)dσ(y)

∣∣∣∣ ≤ ∫
γ2

|∇Γk(p− y;λ)||fk(y)|dσ(y)

≤
∫
γ2

|fk(y)|
(1 + |λ||p− y|2)|p− y|2

dσ(y)

≤
∫
γ2

|fk(y)|
(1 + |λ||λ|−1

)|p− y|2
dσ(y)

≤ CM∂Ω(f)(p).
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Putting these estimates together leads to

T ∗λ (f)(p) ≤ T ∗0 (f)(p) + CM∂Ω(f)(p). (4.31)

Now from the boundedness of the Hardy-Littlewood maximal function (Theorem A.4) and
Lemma 4.18 the result follows.

We can now employ a similar strategy to prove the boundedness of the nontangential maximal
function of ∇u.

Lemma 4.20. Let Ω be a bounded Lipschitz domain in R3 and λ ∈ Σθ. Let (u, φ) = Sλ(f) with
density f ∈ Lp(∂Ω) with 1 < p <∞. Then

‖(∇u)∗‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω), (4.32)

where C > 0 depends only on θ, p and the Lipschitz character of Ω.

Proof. Let u be given by the single layer potential. Pick p ∈ ∂Ω and define the set

E(p) = {x ∈ Ω : |x− p| ≤ C dist(x, ∂Ω)} .

Set t = |x− p|. By the definition of the nontangential maximal function and the fact that we
can take the differential inside the integral (cf. proof of Lemma 4.2)

(∇u)∗(p) = sup
x∈E(p)

∣∣∣∣∫
∂Ω

∇Γk(x− y;λ)fk(y)dσ(y)

∣∣∣∣
= sup
x∈E(p)

∣∣∣∣∣
∫
|p−y|≤t

∇Γk(x− y;λ)fk(y)dσ(y)

∣∣∣∣∣+ sup
x∈E(p)

∣∣∣∣∣
∫
|p−y|>t

∇Γk(x− y;λ)fk(y)dσ(y)

∣∣∣∣∣
= A+B.

We will look at the two parts separately. Using Theorem 3.11 and Lemma 2.13 we find

A ≤ sup
x∈E(p)

∫
|p−y|≤t

|∇Γk(x− y;λ)||fk(y)|dσ(y)

≤ C
∫
|p−y|≤t

|fk(y)|
|x− y|2

dσ(y)

≤ C
∫
|p−y|≤t

|fk(y)|
t2

dσ(y)

≤ C

|B3(p, t) ∩ ∂Ω|

∫
|p−y|≤t

|fk(y)|dσ(y)

≤ CM∂Ω(f)(p).

For the second part we use the mean value theorem to find

∇Γk(x− y;λ) ≤ (x− p)∇2Γk(ξ;λ) +∇Γk(p− y;λ),

where ξ = c(x− y) + (1− c)(x− p) with c ∈ [0, 1]. If we now use Theorem 3.11 we find

B ≤ sup
x∈E(p)

∫
|p−y|>t

|x− p|
|c(x− y) + (1− c)(p− y)|3

|fk(y)|dσ(y) + T ∗λ (f)(p)

≤ C sup
t>0

∫
|p−y|>t

t

|p− y|3
|fk(y)|dσ(y) + T ∗λ (f)(p)

≤ CM∂Ω(f)(p) + T ∗λ (f)(p),
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where we used Lemma 4.13 in the last line. Putting it all together leads to

‖(∇u)∗‖Lp(∂Ω) ≤ C‖M∂Ω(f)‖Lp(∂Ω) + ‖T ∗λ (f)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω).

This completes the proof.

4.3.4 Boundedness of (u)∗ in Lp(∂Ω)

Lemma 4.21. Let Ω be a bounded Lipschitz domain in R3. Let (u, φ) = Sλ(f) with density
f ∈ Lp(∂Ω) with 1 < p <∞. Then

|λ|
1
2 ‖(u)∗‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω),

where C only depends on θ, p and the Lipschitz character of Ω.

The proof of this lemma is similar to Lemma 4.16 and Lemma 4.20. This section is finished
by stating the results in an overarching theorem.

Theorem 4.22. Let Ω be a bounded Lipschitz domain in R3 and let 1 < p < ∞. Let f ∈
Lp(∂Ω;C3) and (u, φ) = Sλ(f). Then

‖(∇u)∗‖Lp(∂Ω) + ‖(φ)∗‖Lp(∂Ω) + |λ|
1
2 ‖(u)∗‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω), (4.33)

where C depends only on θ, p and the Lipschitz character of Ω.

Proof. This is a combination of the previous Lemma 4.16, Lemma 4.20 and Lemma 4.21.

4.4 Nontangential limits of layer potentials

In this section we derive the limits of the layer potentials when x ∈ Ω tends to a point on the
boundary. We are especially interested in the nontangential limit of w if (w, ρ) = Dλ(g) and
the conormal derivative of u if (u, φ) = Sλ(f). Recall that the the double layer potential with
density g is given by

wi(x) =

∫
∂Ω

[
∂Γik(x− y;λ)

∂yj
nj(y)− Φi(x− y)nk(y)

]
fk(y)dσ(y).

Further recall that the conormal derivative of the single layer potential is given by(
∂u

∂ν

)
i

(x) =
∂ui
∂xj

nj − φni =

∫
∂Ω

[
∂Γik(x− y;λ)

∂xj
nj(y)− Φi(x− y)nk(y)

]
fk(y)dσ(y).

Notice that the kernels of wi and the conormal derivatie of ui are very similar. In fact they are
adjoint to each other in a certain sense. This motivates the introduction of some extra notation.
Define the following kernels

Kik(x, y;λ) :=
∂Γik(x− y;λ)

∂xj
nj(y)− Φi(x− y)nk(y) (4.34)

K?
ik(x, y;λ) := Kad

ik (x, y;λ) =
∂Γik(x− y;λ)

∂yj
nj(y)− Φi(x− y)nk(y), (4.35)
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where the superscript ad is used to denote the adjoint of the kernel. These kernels make sense
in the integral for almost every y ∈ ∂Ω and x ∈ Ω or x ∈ R3 \Ω. One can see that this kernel is
bounded and continuous when x 6= y. We can now write the integrals as

wi(x) =

∫
∂Ω

Kik(x, y;λ)fk(y)dσ(y) (4.36)

and (
∂u

∂ν

)
i

(x) =

∫
∂Ω

K?
ik(x, y;λ)fk(y)dσ(y). (4.37)

It suffices to investigate the limits of (4.36), since (4.37) can then be obtained by using the
adjoint kernel. A natural starting point is to investigate if (4.36) exists if x ∈ ∂Ω. This is done
by looking at the gradient of Γj , and Φj separately. From the previous section we already know
that

T ∗λ (f)(p) = sup
t>0

∣∣∣∣∣∣
∫
y∈∂Ω
|p−y|>t

∇Γk(p− y;λ)fk(y)dσ(y)

∣∣∣∣∣∣ (4.38)

and

S∗(f)(p) := sup
t>0

∣∣∣∣∣∣
∫
y∈∂Ω
|p−y|>t

pk − yk
|p− y|3

fk(y)dσ(y)

∣∣∣∣∣∣ = sup
t>0

∣∣∣∣∣∣
∫
y∈∂Ω
|p−y|>t

Φk(p− y)fk(y)dσ(y)

∣∣∣∣∣∣ (4.39)

are bounded in Lp(∂Ω) when 1 < p < ∞. We can use this in combination with the existence
of limt↓0 T

t
λ(f)(p) and limt↓0 S

t(f)(p) for sufficiently smooth f when p ∈ ∂Ω. How to combine
these things is made clear in the following standard lemma. This lemma can also be found in
[22, Theorem 2.1.14]

Lemma 4.23. Let Ω be a Lipschitz domain and 1 < p <∞. Suppose that Rt is a linear operator
on Lp(∂Ω) and that R∗(f)(p) = supt>0 |Rt(f)(p)|. Further suppose that for all f ∈ Lp(∂Ω) we
have that

‖R∗f‖p ≤ Cp‖f‖p
and for all g ∈ C1

c (∂Ω) we have that R(g) = limt↓0R
t(g) exists pointwise almost everywhere.

Then R(f) = limt↓0R
t(f) exists pointwise almost everywhere and

‖R(f)‖Lp(∂Ω) ≤ ‖R
∗(f)‖Lp(∂Ω) ≤ Cp‖f‖Lp(∂Ω). (4.40)

Proof. Fix f ∈ Lp(∂Ω) and define the oscillation of f as

Of (y) = lim sup
ε→0

lim sup
θ→0

∣∣Rε(f)(y)−Rθ(f)(y)
∣∣.

We would like to show that ‖Of‖Lp(∂Ω) = 0, as this would imply that Of (y) = 0 almost ev-

erywhere. That would imply that Rε(f)(y) is a Cauchy sequence for almost all y ∈ ∂Ω and
therefore would converge to some R(f)(y) as ε → 0 for almost all y ∈ ∂Ω. To show this, we
use the density of C1

c (∂Ω) in Lp(∂Ω). For any η > 0 we can find a function g ∈ C1
c (∂Ω) such

that ‖f − g‖Lp(∂Ω) < η. Since by assumption Rε(g) → R(g) almost everywhere, we know that
Og = 0 almost everywhere. This, in combination with the linearity of Rε, implies that for almost
all y ∈ ∂Ω

Of (y) ≤ Og(y) +Of−g(y) = Of−g(y).
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Now we use this to calculate

‖Of (y)‖Lp(∂Ω) ≤ ‖Of−g(y)‖Lp(∂Ω)

≤ ‖2R∗(f − g)‖Lp(∂Ω)

≤ 2Cp‖f − g‖Lp(∂Ω) < 2Cpη.

We now let η → 0 to show that Of = 0 almost everywhere. Hence Rε(f) is a Cauchy sequence and
converges almost everywhere to some R(f). Since |R(f)| ≤ |R∗(f)| inequality (4.40) follows.

With this lemma in the back of the head, we investigate limt↓0 T
t(f) and limt↓0 S

t(f), when
f ∈ C1

c (∂Ω;C3). Since C1
c (∂Ω;C3) is dense in Lp(∂Ω;C3) when 1 < p <∞, the existence of the

limit in Lp is provided by the previous lemma.

Lemma 4.24. Let Ω be a bounded and connected Lipschitz domain in R3. Let λ ∈ Σθ and
suppose that f ∈ C1

c (∂Ω;C3). Then

Tλ(f) = lim
t↓0

T tλ(f) (4.41)

exists pointwise almost everywhere.

Proof. Start by taking f ∈ C1
c (∂Ω;C3) and let p ∈ ∂Ω be a Lebesgue point of f . Let η > 0 and

(tn) a decreasing sequence such that tn ↓ 0. We now consider the following difference∣∣T tnλ (f)(p)− T tmλ (f)(p)
∣∣.

Without loss of generality we assume that n > m. If we now substitute the definition and add
and subtract T0(f) we find∣∣T tnλ (f)(p)− T tmλ (f)(p)

∣∣ =

∫
y∈∂Ω

tn<|y−p|<tm

[
∇xΓk(p− y;λ)−∇xΓk(p− y; 0)

]
fk(y)dσ(y)

+

∫
y∈∂Ω

tn<|y−p|<tm

∇xΓk(p− y; 0)fk(y)dσ(y)

= I + J.

Now notice that by Theorem 3.12 and the compactness of the support of f and Lemma 2.6 we
find that

|I| ≤ C
∫

y∈∂Ω
tn<|y−p|<tm

√
|λ|

|p− y|
|fk(y)|dσ(y)

≤ C max
s∈supp(f)

{
|f(s)|

}√
|λ|
∫

y∈∂Ω
tn<|y−p|<tm

1

|p− y|
dσ(y)

≤ C
√
|λ|
∫ tm

tn

1

r
|B(p, r) ∩ ∂Ω|dr

≤ C
√
|λ|
∫ tm

tn

rdr

≤ C1

(
t2m − t2n

)
.
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Hence we define N1 =
√

η
3C1

. Now we manipulate J to find

J =

∫
y∈∂Ω

tn<|y−p|<tm

∇xΓk(p− y; 0)
[
fk(y)− fk(p)

]
dσ(y)

+

∫
y∈∂Ω

tn<|y−p|<tm

∇xΓk(p− y; 0)fk(p)dσ(y)

= K + fk(p)L.

Since f ∈ C1
c (∂Ω) we now use Lemma 3.11 to find that

|K| ≤ C
∫

y∈∂Ω
tn<|y−p|<tm

|p− y|
|p− y|2

∣∣∣∣fk(p)− fk(y)

p− y

∣∣∣∣dσ(y)

≤ C max
s∈supp(f)

{
|∇xf(s)|

}∫
y∈∂Ω

tn<|y−p|<tm

1

|p− y|
dσ(y).

By a similar calculation as before we find that

|K| ≤ C2

(
t2m − t2n

)
,

and we define N2 =
√

η
3C2

. For the last bit we again use Lemma 3.11 and Lemma 2.6

|L| ≤ C
∫

y∈∂Ω
tn<|p−y|<tm

1

|p− y|2
dσ(y)

≤ C
∫ tn

tm

1

r2
|B(p, r) ∩ ∂Ω|dr

≤ C3 (tm − tn) ,

and hence we define N3 = η
fk(p)C3

. Now we define N = max{N1, N2, N3}. Now if n,m > N we

find that ∣∣T tnλ (f)(p)− T tmλ (f)(p)
∣∣ < C1N

2
1 + C2N

2
2 + C3fk(p)N3 = η

This shows that T tnλ (f)(p) is a Cauchy sequence in C3 for every sequence tn. Since this is a
complete space the limit exists. Thus the limit of T tλ(f) exists (cf. Remark 2.16) and

lim
t↓0

T tλ(f)(p) = Tλ(f)(p)

This completes the proof.

Now that we have shown existence of Tλ(f), we now show the same for S(f).

Lemma 4.25. Let Ω be a bounded Lipschitz domain in R3. Let λ ∈ Σθ and suppose that
f ∈ C1

c (∂Ω;C3). Then
S(f) = lim

t↓0
St(f) (4.42)

exists pointwise almost everywhere.

43



Proof. Start by taking f ∈ C1
c (∂Ω;C3) and let p ∈ ∂Ω be a Lebesgue point of f . Now let η > 0

and (tn) a decreasing sequence such that tn ↓ 0. We now consider the following difference∣∣Stn(f)(p)− Stm(f)(p)
∣∣.

Without loss of generality we assume that n > m. If we now substitute the definition we find∣∣Stn(f)(p)− Stm(f)(p)
∣∣ ≤ ∫

y∈∂Ω
tn<|y−p|<tm

1

|p− y|2
fk(y)dσ(y).

Now, using the exact same calculations as in the proof of the previous lemma, the result follows.

We have shown that limt↓0 T
t(f)(p) and limt↓0 S

t(f)(p) exist when f ∈ C1
c (∂Ω). This moti-

vates the following definition

Kλ(f)(p) = lim
t↓0

∫
y∈∂Ω
|p−y|>t

Kk(p, y;λ)fk(y)dσ(y) (4.43)

K∗
λ
(f)(p) = lim

t↓0

∫
y∈∂Ω
|p−y|>t

K?
k(p, y;λ)fk(y)dσ(y). (4.44)

Using Lemma 4.23, Lemma 4.24 and Lemma 4.25, we find that (4.43) and (4.44) exist almost
everywhere on ∂Ω if f ∈ Lp(∂Ω;C3), 1 < p <∞. Notice in the rest of the text that when both
arguments in the kernel lie on the boundary of Ω the integral will be taken in this principal value
sense. In the following theorem we look at the double layer potential with a constant function as
density. This will help in finding the values of Kλ(f) and K∗

λ
(f) when f is a constant function.

Theorem 4.26. Let Ω be a bounded Lipschitz domain in R3 and let λ ∈ Σθ. Let c ∈ C3 be a
constant vector and (w, ρ) = Dλ(c). Then,

w(x) =


c, x ∈ Ω

1

2
c, x ∈ ∂Ω (a.e.)

0, x ∈ R3 \ Ω.

(4.45)

Proof. For x 6∈ ∂Ω the Green’s identity from Theorem 4.5 can be used with (u, φ) = (Γk,Φk)
and (w, ρ) = (c, 0) where c is constant. This yields

λ

∫
Ω

Γik(x− y;λ)cidy +wk(x) =

{
ck, x ∈ Ω

0, x ∈ R3 \ Ω.

Now notice that for r > 0, we have by the divergence theorem that∫
Ω∩∂B(x,r)

Γik(x− y;λ)dσ(y) =

∫
Ω∩∂B(0,r)

Γik(y;λ)nk(y)dσ(y)

=

∫
Ω∩B(0,r)

div(Γi)dy = 0.

Hence we have that

λci

∫
Ω

Γik(x− y;λ)dy = λci

∫ ∞
0

∫
∂B(x,r)

Γik(x− y;λ)r2dσ(y)dr = 0.
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This shows the theorem in the case x 6∈ ∂Ω. The final part of the theorem is proved by first
cutting out a ball with radius ε around x ∈ ∂Ω. We define Ωε = Ω \ B(x, ε). Because x 6∈ Ωε
we find w(x) = 0, by the same arguments as above. If we now define ∂B̃(x, ε) = (∂B(x, ε))∩Ω.
Now notice that ∂Ωε = (∂Ω ∩ ∂Ωε) ∪ ∂B̃(x, ε) Now we can again apply Green’s identity.

w(x) =

∫
∂Ω

Sij(Γk,Φk)(x− y)cidσ = lim
ε→0

∫
∂B̃(x,ε)

Sij(Γk,Φk)(x− y)cinj(y)dy =
ck
2

This completes the proof.

From this theorem we can easily see that

Kλ(1)(x) =


1, x ∈ Ω

1

2
, x ∈ ∂Ω (a.e)

0, x ∈ R3 \ Ω,

(4.46)

and a similar formula holds for K∗
λ
.

Lemma 4.27. Suppose f ∈ C(∂Ω) and f(p) = 0 for some p ∈ ∂Ω. Then (4.36) and (4.37) are
continuous at p.

Proof. Let ε > 0. We now show that there exists a δ > 0 such that |w(x)−w(p)| < ε. Define
the constant C1 and C2 as

C1 = sup
x∈R3\∂Ω

∫
∂Ω

|Kk(x, y;λ)|dσ(y)

C2 = sup
p∈∂Ω

lim
t↓0

∫
y∈∂Ω
|p−y|>t

|Kk(p, y;λ)|dσ(y),

which are both finite. Since f is continuous we can find a η > 0 such that |f(y)| ≤ ε
3(C1+C2)

when y ∈ B(p, η) ∩ ∂Ω. Now we find

|w(x)−w(p)| ≤
∫
B(p,η)

(|Kk(x, y;λ)|+ |Kk(p, y;λ)|) |fk(y)|dσ(y)

+

∫
R3\B(p,η)

|Kk(x, y;λ)−Kk(p, y;λ)||fk(y)|dσ(y).

It is clear that the first integral is smaller than 2ε
3 . If we choose |x− p| < 1

2η the integrand of
the second integral is continuous and bounded since y 6= x and y 6= p in the region of integration.
By the continuity of the kernel we can choose δ < 1

2η small enough so that second integral is
smaller than 1

3ε when |x− p| < δ. This shows the continuity at p.

Now that we have a continuity property we can find the nontangential limit of the double
layer potential.

Theorem 4.28. Let Ω be a bounded Lipschitz domain in R3 and let λ ∈ Σθ. Let f ∈ Lp(∂Ω;C3)
with 1 < p <∞ and (u, φ) = Dλ(f) Then,

u± =

(
∓1

2
I +K∗

λ

)
f . (4.47)
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Proof. By the definition of the nontangential limit we find

u+(p) = lim
xn∈E(p)
xn→p

∫
∂Ω

Kk(xn, y;λ) (fk(p) + fk(y)− fk(p)) dσ(y)

= fk(p) lim
xn∈E(p)
xn→p

∫
∂Ω

Kk(xn, y;λ)dσ(y) + lim
xn∈E(p)
xn→p

∫
∂Ω

Kk(xn, y;λ) (fk(y)− fk(p)) dσ(y).

Using Theorem 4.26 we find that the first integral is 1. By Lemma 4.27 we find that the second
integral is continuous is at p. Thus we find

u+(p) = fk(p)− fk(p)

∫
∂Ω

Kk(p, y;λ))dσ(y) +

∫
∂Ω

Kk(p, y;λ)fk(y)dσ(y)

= −1

2
fk(p) +K∗

λ
(f)(p).

The exterior limit can be calculated in a similar fashion.

Almost the same procedure can be employed to show the limit of the conormal derivative.

Theorem 4.29. Let Ω be a bounded Lipschitz domain in R3 and let λ ∈ Σθ. Let f ∈ Lp(∂Ω;C3)
with 1 < p <∞ and (u, φ) = Sλ(f) Then ∇tanu+ = ∇tanu−,(

∂u

∂ν

)
±

=

(
∓1

2
I +Kλ

)
f , (4.48)

where Kλ is a bounded operator on Lp(∂Ω).

Proof. By the definition of the nontangential limit we find(
∂u

∂ν

)
+

= lim
xn∈E(p)
xn→p

∫
∂Ω

Kk(xn, y;λ) (fk(p) + fk(y)− fk(p)) dσ(y)

= fk(p) lim
xn∈E(p)
xn→p

∫
∂Ω

Kk(xn, y;λ)dσ(y) + lim
xn∈E(p)
xn→p

∫
∂Ω

Kk(xn, y;λ) (fk(y)− fk(p)) dσ(y).

Using Theorem 4.26 we find that the first integral is 1. By Lemma 4.27 we find that the second
integral is continuous is at p. Thus we find(

∂u

∂ν

)
+

= fk(p)− fk(p)

∫
∂Ω

Kk(p, y))dσ(y) +

∫
∂Ω

Kk(p, y)fk(y)dσ(y)

= −1

2
fk(p) +Kλ(f)(p).

The exterior limit can be calculated similarily

4.5 Layer potentials and boundary conditions

In this section we show how we can use the layer potentials to solve the Dirichlet and the
Neumann problem for the homogeneous Stokes System. We show here how one can use the
double layer potential to solve the Dirichlet problem for the Stokes System. In exactly the same
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fashion the Neumann problem can be solved using the single layer potential. Now let us state
the Dirichlet problem for the homogeneous Stokes system.

−∆u+∇φ+ λu = 0 in Ω

div(u) = 0 in Ω

u = f on ∂Ω (nontangential a.e.).

(4.49)

First of all note that this problem is not always solvable if f is just in L2(∂Ω). To see this notice
that if u solves (4.49) it must be that

0 =

∫
Ω

div(u)dx =

∫
∂Ω

u · ndσ(y).

We thus define the following space

L2
n(∂Ω) =

{
f ∈ L2(∂Ω) :

∫
∂Ω

f · ndσ = 0

}
. (4.50)

Now if f ∈ L2
n(∂Ω), we can make sense of (4.49). We have already seen in this section that if

(u, φ) = Dλ(g), then (u, φ) solves the equation in Ω and u is divergence free. We also know from

the previous section that u =
(
− 1

2I +K∗
λ

)
g. Now notice that if

(
− 1

2I +K∗
λ

)
is an invertible

operator we could just choose g =
(
− 1

2I +K∗
λ

)−1

f to solve the boundary value problem. In

the case that Kλ is a compact operator, Fredholm theory could be used directly to solve this
problem. However the operator Kλ is not a compact operator when Ω is a Lipschitz domain.
Therefore Fredholm theory is not directly applicable. However in [12] Fabes, Kenig and Verchota
showed that in the case that λ = 0, K0 is an invertible operator on L2(∂Ω). It can be shown
that (Kλ − K0) is a compact operator, and hence Kλ is an invertible operator on L2(∂Ω). The
drawback of this method using a compactness argument, is that we lose control of the parameter
λ. Therefore we establish so-called Rellich-type estimates in the next section.
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5 Invertibility of layer potentials

In this section we study the invertibility of the layer potentials. We have already noticed in the
previous section that the invertibility in L2 is guaranteed by a compactness argument. However,
this loses control of the parameter λ. Therefore we establish so-called Rellich estimates for the
layer potentials. After this is done, we show invertibility of the layer potentials in L2 while
keeping control of λ. It turns out that the layer potentials solve the Stokes System uniquely.
Finally we obtain a weak reverse Hölder inequality.

5.1 Rellich estimates

We start by establishing the Rellich estimates for the layer potentials. For convenience we state
a condition that sets the stage for the upcoming lemmas and theorems.

Condition 5.1. Let Ω be a bounded Lipschitz domain in R3 with connected boundary and
σ(∂Ω) = 1. Let λ ∈ Σθ and |λ| ≥ τ , where τ ∈ (0, 1). Let (u, φ) be a solution of the ho-
mogeneous Stokes System (1.11). Suppose (∇u)∗ ∈ L2(∂Ω;C3) and (φ)∗ ∈ L2(∂Ω;C). Further
suppose that ∇u and φ have nontangential limits a.e. on ∂Ω.

Notice that the layer potentials satisfy this conditions. These conditions ensure that we can
use Theorem 2.18 to justify integration by parts. The first Rellich type identity involves the
conormal derivative (recall (4.5)).

Lemma 5.2. Assume Condition 5.1 holds and let h ∈ C1
0 (R3,R3) as in Lemma 2.11. Then,∫

∂Ω

hknk|∇u|dσ = 2 Re

∫
∂Ω

hk
∂ui
∂xk

(
∂u

∂ν

)
i

dσ +

∫
Ω

div(h)|∇u|2dx

− 2 Re

∫
Ω

∂hk
∂xj

∂ui
∂xk

∂ui
∂xj

dx+ 2 Re

∫
Ω

∂hk
∂xi

∂ui
∂xk

φdx

− 2 Re

∫
Ω

hk
∂ui
∂xk

λuidx.

Proof. Let h ∈ C1
0 (R3,R3). Now the divergence theorem on h|∇u|2 yields∫
∂Ω

hknk|∇u|2dσ =

∫
Ω

div (h) |∇u|2dx+

∫
Ω

h · ∇
(
|∇u|2

)
dx,

where we used that div(h|∇u|2) = |∇u|2 div(h) + h · ∇
(
|∇u|2

)
. Notice that this operation is

justified by Theorem 2.18 and Condition 5.1. It is not guaranteed that u ∈ C2(Ω). However, this
can be overcome by an approximation argument. We omit the this approximation, because it
would make a mess out of this already tedious calculation. Now we find the following equalities

∂

∂xj

(
∂ui
∂xk

∂ui
∂xj

)
=

∂2ui
∂xj∂xk

∂ui
∂xj

+
∂ui
∂xk

∂2ui
∂x2

j

∂

∂xj

(
∂ui
∂xk

∂ui
∂xj

)
=

∂2ui
∂xj∂xk

∂ui
∂xj

+
∂ui
∂xk

∂2ui
∂x2

j

.
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Using these equalities and ∂2ui
∂xj∂xk

= ∂2ui
∂xk∂xj

, one finds

∂

∂xk

(
|∇u|2

)
=

∂

∂xk

(
∂ui
∂xj

∂ui
∂xj

)
=

∂2ui
∂xj∂xk

∂ui
∂xj

+
∂2ui
∂xj∂xk

∂ui
∂xj

=
∂

∂xj

(
∂ui
∂xk

ui
∂xj

)
+

∂

∂xj

(
∂ui
∂xk

ui
∂xj

)
− ∂ui
∂xk

∆ui −
∂ui
∂xk

∆ui.

We now proceed by calculating the integral involving this term∫
Ω

hk
∂

∂xk
|∇u|2dx =

∫
Ω

hk

(
∂

∂xj

(
∂ui
∂xk

ui
∂xj

)
+

∂

∂xj

(
∂ui
∂xk

ui
∂xj

)
− ∂ui
∂xk

∆ui −
∂ui
∂xk

∆ui

)
dx.

We only calculate the integral over the first and third term on the right-hand side and obtain
the other terms by complex conjugation. First of all∫

Ω

hk
∂

∂xj

(
∂ui
∂xk

∂ui
∂xj

)
dx =

∫
∂Ω

hk
∂ui
∂xk

∂ui
∂xj

njdσ −
∫

Ω

∂hk
∂xj

∂ui
∂xk

∂ui
∂xj

dx,

and secondly, using that ∆u = ∇φ+ λu and the the fact that u is divergence free,∫
Ω

∂ui
∂xk

hk∆uidx =

∫
Ω

hk
∂ui
∂xk

∂φ

∂xi
dx+

∫
Ω

hkφ
∂

∂xk

∂ui
∂xi

dx+

∫
Ω

hk
∂ui
∂xk

λuidx

=

∫
Ω

hk
∂

∂xi

(
φ
∂ui
∂xk

)
dx+

∫
Ω

hk
∂ui
∂xk

λuidx

=

∫
∂Ω

hk
∂ui
∂xk

φnidσ −
∫

Ω

∂hk
∂xi

∂ui
∂xk

φdx+

∫
Ω

hk
∂ui
∂xk

λuidx.

By the definition of the conormal derivative∫
∂Ω

hk
∂ui
∂xk

(
∂ui
∂xj

nj

)
dσ +

∫
∂Ω

hk
∂ui
∂xk

(φni) dσ =

∫
∂Ω

hk
∂ui
∂xk

(
∂u

∂ν

)
i

dσ.

Now use the fact that ui + ui = 2 Reui to complete the proof.

The second Rellich-type identity resembles the first one, except that here the tangential
derivative is used, instead of the conormal derivative.

Lemma 5.3. Assume Condition 5.1 holds and let h ∈ C1
0 (R3,R3) as in Lemma 2.11. Then,∫

∂Ω

hknk|∇u|dσ = 2 Re

∫
∂Ω

hk
∂ui
∂xk

(
nk

∂ui
∂xj
− nj

∂ui
∂xk

)
dσ

+ 2 Re

∫
∂Ω

hkφ

(
ni
∂ui
∂xk
− nk

∂ui
∂xi

)
dσ −

∫
Ω

div(h)|∇u|2dx

+ 2 Re

∫
Ω

∂hk
∂xj

∂ui
∂xk

∂ui
∂xj

dx− 2 Re

∫
Ω

∂hk
∂xi

∂ui
∂xk

φdx

+ 2 Re

∫
Ω

hk
∂ui
∂xk

λuidx.
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Proof. Let h ∈ C1
0 (R3,R3). Now the divergence theorem on h|∇u|2 yields∫
∂Ω

hknk|∇u|2dσ =

∫
Ω

div (h) |∇u|2dx+

∫
Ω

h · ∇
(
|∇u|2

)
dx,

where we used that div(h|∇u|2) = |∇u|2 div(h) + h · ∇
(
|∇u|2

)
. Notice that this operation is

justified by Theorem 2.18 and Condition 5.1. It is not guaranteed that u ∈ C2(Ω). However, this
can be overcome by an approximation argument. We omit the this approximation, because it
would make a mess out of this already tedious calculation. Now again by the divergence theorem∫

Ω

h · ∇
(
|∇u|2

)
dx =

∫
Ω

hk
∂

∂xk

(
∂ui
∂xj

∂ui
∂xj

)
dx

=

∫
∂Ω

hk
∂ui
∂xj

nk
∂ui
∂xj

dσ −
∫

Ω

div(h)|∇u|2dx.

Now notice the following equalities

∂

∂xj

(
∂ui
∂xk

∂ui
∂xj

)
=

∂2ui
∂xj∂xk

∂ui
∂xj

+
∂ui
∂xk

∂2ui
∂x2

j

∂

∂xj

(
∂ui
∂xk

∂ui
∂xj

)
=

∂2ui
∂xj∂xk

∂ui
∂xj

+
∂ui
∂xk

∂2ui
∂x2

j

.

Using these equalities and ∂2ui
∂xj∂xk

= ∂2ui
∂xk∂xj

, one finds∫
Ω

div(h)|∇u|2dx =

∫
Ω

∂hk
∂xk

∂ui
∂xj

∂ui
∂xj

dx

=

∫
∂Ω

hk
∂ui
∂xj

∂ui
∂xj

nkdσ −
∫

Ω

hk
∂2ui
∂xj∂xk

∂ui
∂xj

dx−
∫

Ω

hk
∂ui
∂xj

∂2ui
∂xj∂xk

dx

=

∫
∂Ω

hk
∂ui
∂xj

∂ui
∂xj

nkdσ −
∫

Ω

hk
∂

∂xj

(
∂ui
∂xk

∂ui
∂xj

)
dx−

∫
Ω

hk
∂

∂xj

(
∂ui
∂xk

∂ui
∂xj

)
dx

+

∫
Ω

hk
∂ui
∂xk

∆uidx+

∫
Ω

hk
∂ui
∂xk

∆uidx.

Considering that∫
Ω

hk
∂

∂xj

(
∂ui
∂xk

∂ui
∂xj

)
dx =

∫
∂Ω

hk
∂ui
∂xk

∂ui
∂xj

njdσ −
∫

Ω

∂hk
∂xj

∂ui
∂xk

∂ui
∂xj

dx,

and using that ∆u = ∇φ+ λu and the the fact that u is divergence free,∫
Ω

hk
∂ui
∂xk

∆uidx =

∫
Ω

hk
∂ui
∂xk

∂φ

∂xi
dx+

∫
Ω

hkφ
∂

∂xk

∂ui
∂xi

dx+

∫
Ω

hk
∂ui
∂xk

λuidx

=

∫
Ω

hk
∂

∂xi

(
φ
∂ui
∂xk

)
dx+

∫
Ω

hk
∂ui
∂xk

λuidx

=

∫
∂Ω

hk
∂ui
∂xk

φnidσ −
∫

Ω

∂hk
∂xi

∂ui
∂xk

φdx+

∫
Ω

hk
∂ui
∂xk

λuidx.

Now use the fact that ui + ui = 2 Reui to complete the proof.

50



Lemma 5.4. Assume Condition 5.1 holds. Then there exists a C > 0 such that,∫
Ω

|∇u|2dx+ |λ|
∫

Ω

|u|2dx ≤ C
∥∥∥∥∂u∂ν

∥∥∥∥
L2(∂Ω)

‖u‖L2(∂Ω), (5.1)

where C depends only on θ.

Proof. (u, φ) is a solution of the homogeneous Stokes System (1.11). Now the homogeneous
Stokes System is multiplied by uT (where u denotes the complex conjugate of u). Using inte-
gration by parts one finds for the first term∫

Ω

u ·∆udx =

∫
∂Ω

uk (∇uk · n) dσ −
∫

Ω

∇u · ∇udx

=

∫
∂Ω

u · ∂u
∂n
−
∫

Ω

|∇u|2dx.

For the second term the divergence theorem is used to find∫
Ω

u · ∇φdx =

∫
Ω

∇ · (uφ)dx−
∫

Ω

φ(∇ · u)dx

=

∫
∂Ω

u · (φn)dσ −
∫

Ω

φ(∇ · u)dx.

Notice that this operation is justified by Theorem 2.18 and Condition 5.1. The last term is rather
trivial and yields ∫

Ω

λu · udx = λ

∫
Ω

|u|2dx.

Since u is divergence free, u is also divergence free. Combining the Stokes equation together
with the definition of the conormal derivative (∂u∂ν = ∂u

∂n − φn) yields∫
Ω

|∇u|2dx+ λ

∫
Ω

|u|2dx =

∫
∂Ω

∂u

∂ν
· udσ.

Now take the real and imaginary part from this equality to find
∫

Ω

|∇u|2dx+ Re(λ)

∫
Ω

|u|2dx ≤
∣∣∣∣∫
∂Ω

∂u

∂ν
· udσ

∣∣∣∣
|Im(λ)|

∫
Ω

|u|2dx ≤
∣∣∣∣∫
∂Ω

∂u

∂ν
· udσ

∣∣∣∣,
and hence we find for all α > 0∫

Ω

|∇u|2dx+ (Re(λ) + α|Im(λ)|)
∫

Ω

|u|2dx ≤ (1 + α)

∣∣∣∣∫
∂Ω

∂u

∂ν
· udσ

∣∣∣∣.
Now choose α > 0 and c > 0, both depending only on θ, such that Re(λ) + α|Im(λ)| ≥ c|λ|.
Observe that this is possible for all λ ∈ Σθ. Using this we find that∫

Ω

|∇u|2dx+ |λ|
∫

Ω

|u|2dx ≤ C
∣∣∣∣∫
∂Ω

∂u

∂ν
· udσ

∣∣∣∣. (5.2)

Now by the Hölder inequality (B.2) we find that∫
∂Ω

∣∣∣∣∂u∂ν · u
∣∣∣∣dσ ≤ ∥∥∥∥∂u∂ν

∥∥∥∥
L2(∂Ω)

‖u‖L2(∂Ω). (5.3)

combining (5.2) and (5.3) completes the proof.
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We state the following lemma about the pressure part of the solution to the Stokes System.
This lemma holds for harmonic functions, and hence is useful in analysing the pressure term of
the Stokes System. For the proof we refer to [9].

Lemma 5.5. Let Condition 5.1 hold. Then there exists C > 0 such that∫
Ω

|φ|2dx ≤ C‖(φ)∗‖2L2(∂Ω) ≤ C‖φ‖
2
L2(∂Ω). (5.4)

This lemma helps in the proof of the following lemma, which bounds the gradient of u.

Lemma 5.6. Assume Condition 5.1 holds. Then,

‖∇u‖L2(∂Ω) ≤ Cε
∥∥∥∥∂u∂ν

∥∥∥∥
L2(∂Ω)

+ ε

(
‖∇u‖L2(∂Ω) + ‖φ‖L2(∂Ω) +

∥∥∥|λ| 12u∥∥∥
L2(∂Ω)

)
and

‖∇u‖L2(∂Ω) ≤ Cε
(
‖∇tanu‖L2(∂Ω) +

∥∥∥|λ|1/2u∥∥∥
L2(∂Ω)

)
+ ε

(
‖∇u‖L2(∂Ω) + ‖φ‖L2(∂Ω)

)
,

for all ε ∈ (0, 1), where Cε > 0 depends on θ, τ, ε and the Lipschitz character of Ω.

Proof. Start by choosing a vector field h ∈ C1
0 (R3,R3) such that hknk ≥ c > 0 on ∂Ω. Since

h ∈ C1
0 (R3,R3) there exists a constant M > 0 such that |h| ≤ M and |∇h| ≤ M . We can now

use Lemma 5.2 to find

‖∇u‖2L2(∂Ω) ≤ C
(∫

∂Ω

|∇u|
∣∣∣∣∂u∂ν

∣∣∣∣dσ +

∫
Ω

|∇u|2dx+

∫
Ω

|∇u||φ|dx+ |λ|
∫

Ω

|∇u||u|dx
)
.

We will estimate the integrals on the right-hand side against boundary integrals. Since ∇u ∈
L2(∂Ω) and ∂u

∂ν ∈ L
2(∂Ω) we can use the Hölder inequality (B.2) to find∫

∂Ω

|∇u|
∣∣∣∣∂u∂ν

∣∣∣∣dσ ≤ ‖∇u‖L2(∂Ω)

∥∥∥∥∂u∂ν
∥∥∥∥
L2(∂Ω)

.

The next term can be easily estimated using Lemma 5.4 and we find∫
Ω

|∇u|2dx ≤ C
∥∥∥∥∂u∂ν

∥∥∥∥
L2(∂Ω)

‖u‖L2(∂Ω).

For the next term we find using Hölder∫
Ω

|∇u||φ|dx ≤
(∫

Ω

|∇u|2dx
) 1

2
(∫

Ω

|φ|2dx
) 1

2

.

The first factor can again be estimated using Lemma 5.4 and the second factor we use Lemma
5.5. This leads to ∫

Ω

|∇u||φ|dx ≤ C‖∇u‖
1
2

L2(∂Ω)

∥∥∥∥∂u∂ν
∥∥∥∥ 1

2

L2(∂Ω)

‖φ‖L2(∂Ω).
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Now we use the Cauchy inequality (B.1) and Lemma 5.4 to find

|λ|
∫

Ω

|∇u||u|dx ≤ C|λ|
1
2

(∫
Ω

|∇u|2 + |λ||u|2dx
)

≤ C|λ|
1
2 ‖u‖L2(∂Ω)

∥∥∥∥∂u∂ν
∥∥∥∥
L2(∂Ω)

= C
∥∥∥|λ| 12u∥∥∥

L2(∂Ω)

∥∥∥∥∂u∂ν
∥∥∥∥
L2(∂Ω)

.

Now we put it all together

‖∇u‖2L2(∂Ω) ≤ C
(∫

∂Ω

|∇u|
∣∣∣∣∂u∂ν

∣∣∣∣dσ +

∫
Ω

|∇u|2dx+

∫
Ω

|∇u||φ|dx+ |λ|
∫

Ω

|∇u||u|dx
)

≤ C
∥∥∥∥∂u∂ν

∥∥∥∥
L2(∂Ω)

[
‖∇u‖L2(∂Ω) + ‖φ‖L2(∂Ω) +

∥∥∥|λ| 12u∥∥∥
L2(∂Ω)

]
.

The result follows from applying the Cauchy inequality with epsilon (Lemma B.1). For the
second part of the statement we use Lemma 5.3 to find

‖∇u‖2L2(∂Ω) ≤ C‖∇tanu‖L2(∂Ω)

[
‖∇u‖L2(∂Ω) + ‖φ‖L2(∂Ω)

]
+ C

∫
Ω

|∇u|2dx

+ C

∫
Ω

|∇u||φ|dx+ C|λ|
∫

Ω

|∇u||u|dx.

The result now follows using the same procedure as the first part of the proof.

Lemma 5.7. Assume Condition 5.1 holds. Then there exists C > 0 such that,

‖∆u · n‖H−1(∂Ω) ≤ C‖∇u‖L2(∂Ω).

Proof. First of all we realise that

∆u · n = ni
∂2ui
∂x2

j

=

(
ni

∂

∂xj
− nj

∂

∂xi

)
∂ui
∂xj

.

Where we use that the divergence of u is zero in Ω. Notice that
(
ni

∂
∂xj
− nj ∂

∂xi

)
is a tangential

derivative and hence well defined on ∂Ω. By the definition of the dual norm we find

‖∆u · n‖H−1(∂Ω) = sup
v∈H1(∂Ω)
‖v‖=1

〈∆u · n,v〉

= sup
v∈H1(∂Ω)
‖v‖=1

〈
∇u,−

(
ni

∂

∂xj
− nj

∂

∂xi

)
vi

〉

≤ sup
v∈H1(∂Ω)
‖v‖=1

‖∇u‖L2(∂Ω)‖v‖H1(∂Ω)

≤ C‖∇u‖L2(∂Ω).

This completes the proof.
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Lemma 5.8. Assume Condition 5.1 holds. Then there exist C1, C2 > 0 such that,

C1

∥∥∥∥φ−−∫
∂Ω

φ

∥∥∥∥
L2(∂Ω)

≤ ‖∇φ · n‖H−1(∂Ω) ≤ C2‖φ‖L2(∂Ω).

Proof. This proof relies on L2 estimates for the Laplace equation in Lipschitz domains. Pick
g ∈ L2(∂Ω) such that −

∫
∂Ω
gdσ = 0. Now let ψ be such that

∆ψ = 0 in Ω

∂ψ

∂n
= g on ∂Ω

(∇ψ)∗ ∈ L2(∂Ω).

(5.5)

Since ∆φ = 0 we can use the Green’s identity (Theorem B.7) to find∫
∂Ω

φ
∂ψ

∂n
− ψ∂φ

∂n
=

∫
Ω

ψ∆φ− φ∆ψdx = 0. (5.6)

Together with the duality of H1(∂Ω) and H−1(∂Ω) this yields∣∣∣∣∫
∂Ω

φgdσ

∣∣∣∣ =

∣∣∣∣∫
∂Ω

∂φ

∂n
ψdσ

∣∣∣∣ ≤ ∥∥∥∥∂φ∂n
∥∥∥∥
H−1(∂Ω)

‖ψ‖H1(∂Ω).

For the Neumann problem (5.5) we know the estimate ‖ψ‖H1(∂Ω) ≤ C‖g‖L2(∂Ω) [26]. Now we
can use the Hahn-Banach Theorem to find that

‖φ‖L2(∂Ω) = sup
‖g‖L2(∂Ω)=1

∣∣∣∣∫
∂Ω

φgdσ

∣∣∣∣
≤ sup
‖g‖L2(∂Ω)=1

C

∥∥∥∥∂φ∂n
∥∥∥∥
H−1(∂Ω)

‖ψ‖H1(∂Ω)

≤ sup
‖g‖L2(∂Ω)=1

C

∥∥∥∥∂φ∂n
∥∥∥∥
H−1(∂Ω)

‖g‖L2(∂Ω) = C

∥∥∥∥∂φ∂n
∥∥∥∥
H−1(∂Ω)

.

This proves the first part of inequality (5.8). For the second part we let f ∈ L2(∂Ω) and consider
the system 

∆ψ = 0 in Ω

ψ = f on ∂Ω

(∇ψ)∗ ∈ L2(∂Ω).

(5.7)

Now we can again use (5.6) to find∣∣∣∣∫
∂Ω

∂φ

∂n
fdσ

∣∣∣∣ =

∣∣∣∣∫
∂Ω

φ
∂ψ

∂n
dσ

∣∣∣∣ ≤ ‖φ‖L2(∂Ω)‖∇ψ‖L2(∂Ω).

For the system (5.7) we know the estimate ‖∇ψ‖L2(∂Ω) ≤ C‖f‖H1(∂Ω) [25]. Once again by
Hahn-Banach we find∥∥∥∥∂φ∂n

∥∥∥∥
H−1(∂Ω)

= sup
‖f‖H1(∂Ω)=1

∣∣∣∣∫
∂Ω

∂φ

∂n
fdσ

∣∣∣∣
≤ sup
‖f‖H1(∂Ω)=1

‖φ‖L2(∂Ω)‖∇ψ‖L2(∂Ω)

≤ sup
‖f‖H1(∂Ω)=1

C‖φ‖L2(∂Ω)‖f‖H1(∂Ω) = C‖φ‖L2(∂Ω).

This completes the proof.
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Lemma 5.9. Assume Condition 5.1 holds. Then,∥∥∥∥φ−−∫
∂Ω

φdσ

∥∥∥∥
L2(∂Ω)

≤ C
(
‖∇u‖L2(∂Ω) + |λ|‖u · n‖H−1(∂Ω)

)
and

|λ|‖u · n‖H1(∂Ω) ≤ C
(
‖φ‖L2(∂Ω) + ‖∇u‖L2(∂Ω)

)
,

where C > 0 only depends the Lipschitz character of Ω.

Proof. We start by approximating Ω by a sequence of smooth domains. Therefore we may assume
that (u, φ) satisfies the Stokes System (1.11) on some Dk with Ω ⊂ Dk. Hence we can assume
∆u = ∇φ+λu on ∂Ω. Taking the dot product with the normal and using the triangle inequality
we find

‖∇φ · n‖H−1(∂Ω) ≤ ‖∆u · n‖H−1(∂Ω) + |λ|‖u · n‖H−1(∂Ω) (5.8)

|λ|‖u · n‖H−1(∂Ω) ≤ ‖∆u · n‖H−1(∂Ω) + ‖∇φ · n‖H−1(∂Ω). (5.9)

Using this together with Lemma 5.8 and Lemma 5.7 we find∥∥∥∥φ−−∫
∂Ω

φdσ

∥∥∥∥
L2(∂Ω)

≤ C
∥∥∥∥∂φ∂n

∥∥∥∥
H−1(∂Ω)

≤ C
(
‖∆u · n‖H−1(∂Ω) + |λ|‖u · n‖H−1(∂Ω)

)
≤ C

(
‖∇u‖L2(∂Ω) + |λ|‖u · n‖H−1(∂Ω)

)
.

Also using (5.8), Lemma 5.8 and Lemma 5.7 we find

|λ|‖u · n‖H1(∂Ω) ≤ C‖φ‖L2(∂Ω) + C‖∇u‖L2(∂Ω).

This completes the proof.

Lemma 5.10. Assume Condition 5.1 holds. Then there exists C > 0 such that,∥∥∥|λ| 12u∥∥∥
L2(∂Ω)

≤ C
∥∥∥∥∂u∂ν

∥∥∥∥
L2(∂Ω)

.

Proof. First let h ∈ C1
c (R3,R3) a vector field such that hknk ≥ c > 0 on ∂Ω. Using the

divergence theorem we find∫
∂Ω

hknk|u|2dσ =

∫
Ω

div(h)|u|2dx+

∫
Ω

hk
∂ui
∂xk

uidx+

∫
Ω

hk
∂ui
∂xk

uidx

=

∫
Ω

div(h)|u|2dx+ 2 Re

∫
Ω

hk
∂ui
∂xk

uidx.

Therefore

‖u‖2L2(∂Ω) ≤ C
∫

Ω

|u|2dx+ C

∫
Ω

|u||∇u|dx.
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We now use the Cauchy inequality (Lemma B.1) and the fact that |λ| ≥ τ to find

|λ|‖u‖2L2(∂Ω) ≤ C|λ|
∫

Ω

|u|2dx+ C|λ|
∫

Ω

|u||∇u|dx

≤ C|λ|
1
2

∫
Ω

|λ||u|2 + C|λ|
1
2

(∫
Ω

|∇u|2 + |λ||u|2dx
)

≤ C|λ|
1
2 ‖u‖L2(∂Ω)

∥∥∥∥∂u∂ν
∥∥∥∥
L2(∂Ω)

= C
∥∥∥|λ| 12u∥∥∥

L2(∂Ω)

∥∥∥∥∂u∂ν
∥∥∥∥
L2(∂Ω)

.

Where in the third inequality we used Lemma 5.4. We can now divide by
∥∥∥|λ| 12u∥∥∥

L2(∂Ω)
to

complete the proof.

We are now able to proof the main theorem of this section. This theorem will be important
to show the invertibility of the layer potentials.

Theorem 5.11. Assume Condition 5.1 holds. Then,

‖∇u‖L2(∂Ω) +

∥∥∥∥φ−−∫
∂Ω

φdσ

∥∥∥∥
L2(∂Ω)

≤ C
(
‖∇tanu‖L2(∂Ω) + |λ|

1
2 ‖u‖L2(∂Ω) + |λ|‖u · n‖H−1(∂Ω)

)
and

‖∇u‖L2(∂Ω) + |λ|
1
2 ‖u‖L2(∂Ω) + |λ|‖u · n‖H−1(∂Ω) + ‖φ‖L2(∂Ω) ≤ C

∥∥∥∥∂u∂ν
∥∥∥∥
L2(∂Ω)

,

where C > 0 depends only on τ, θ and the Lipschitz character of Ω.

Proof. To prove the first inequality we assume without loss of generality that −
∫
∂Ω
φdσ = 0. This

can be done by subtracting a constant from φ. We now consecutively apply Lemma 5.6 and
Lemma 5.9 and find

‖∇u‖L2(∂Ω) + ‖φ‖L2(∂Ω) ≤ C
(
‖∇u‖L2(∂Ω) + |λ|‖u · n‖H1(∂Ω)

)
≤ Cε

(
‖∇tanu‖L2(∂Ω) + |λ|

1
2 ‖u‖L2(∂Ω) + |λ|‖u · n‖H1(∂Ω)

)
+ Cε

(
‖∇u‖L2(∂Ω) + ‖φ‖L2(∂Ω)

)
.

We can now pick ε sufficiently small (e.g. Cε = 1
2 ) and rewrite the inequality to find

‖∇u‖L2(∂Ω) +

∥∥∥∥φ−−∫
∂Ω

φdσ

∥∥∥∥
L2(∂Ω)

≤ C
(
‖∇tanu‖L2(∂Ω) + |λ|

1
2 ‖u‖L2(∂Ω) + |λ|‖u · n‖H1(∂Ω)

)
.

For the second inequality we note that by Lemma 5.9

‖∇u‖L2(∂Ω) + ‖φ‖L2(∂Ω) + |λ|‖u · n‖H−1(∂Ω) ≤ C
(
‖∇u‖L2(∂Ω) + ‖φ‖L2(∂Ω)

)
≤ C

(∥∥∥∥∂u∂ν
∥∥∥∥+ ‖∇u‖L2(∂Ω)

)
.
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Now we use Lemma 5.6

‖∇u‖L2(∂Ω) + ‖φ‖L2(∂Ω) + |λ|‖u · n‖H−1(∂Ω) ≤ CCε
∥∥∥∥∂u∂ν

∥∥∥∥
L2(∂Ω)

+ Cε

(
‖∇u‖L2(∂Ω) + ‖φ‖L2(∂Ω) +

∥∥∥|λ| 12u∥∥∥
L2(∂Ω)

)
.

For a suitable choice of epsilon (e.g. Cε = 1
2 ) the inequality can be rewritten to

‖∇u‖L2(∂Ω) + ‖φ‖L2(∂Ω) + |λ|‖u · n‖H−1(∂Ω) ≤ C
∥∥∥∥∂u∂ν

∥∥∥∥
L2(∂Ω)

+ C|λ|
1
2 ‖u‖L2(∂Ω).

Now using Lemma 5.10 we find

‖∇u‖L2(∂Ω) + ‖φ‖L2(∂Ω) + |λ|‖u · n‖H−1(∂Ω) + |λ|
1
2 ‖u‖L2(∂Ω) ≤ C

∥∥∥∥∂u∂ν
∥∥∥∥
L2(∂Ω)

+ C|λ|
1
2 ‖u‖L2(∂Ω)

≤ C
∥∥∥∥∂u∂ν

∥∥∥∥
L2(∂Ω)

.

This completes the proof.

Notice that this kind of estimate also holds for the exterior domain if we assume some decay
at infinity. Notice that the layer potentials defined in the previous section indeed satisfy the
decay condition.

Theorem 5.12. Assume Condition 5.1 holds. Further assume that as |x| → ∞, |φ(x)| +

|∇u(x)| = O(|x|−1
). Then,

‖∇u‖L2(∂Ω) + ‖φ‖L2(∂Ω) ≤ C
(
‖∇tanu‖L2(∂Ω) + |λ|

1
2 ‖u‖L2(∂Ω) + |λ|‖u · n‖H−1(∂Ω)

)
and

‖∇u‖L2(∂Ω) + |λ|
1
2 ‖u‖L2(∂Ω) + |λ|‖u · n‖H−1(∂Ω) + ‖φ‖L2(∂Ω) ≤ C

∥∥∥∥∂u∂ν
∥∥∥∥
L2(∂Ω)

,

where C > 0 depends only on τ, θ and the Lipschitz character of Ω.

Proof. Similar to Theorem 5.11

5.2 Solvability of Neumann and Dirichlet problem

In this section we are going to invert the layer potentials and estimate the norm of the solution
in the domain against the norm of the solution on the boundary. It turns out to be the case
that the layer potentials are Fredholm operators, for which there exists some nice theory. The
following results can be found for example in section 11 of [7].

Definition 5.13 (Fredholm operator). Let X,Y be Banach spaces and T : X → Y a bounded
linear operator. Then T is a Fredholm operator if

(i) dim kerT <∞

(ii) dim CokerT <∞.
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The index of a Fredholm operator is given by

IndT = dim kerT − dim CokerT.

Theorem 5.14. Let X,Y be Banach spaces, T : X → Y a Fredholm operator and K : X → Y
a compact operator. Then T +K is a Fredholm operator and Ind(T +K) = Ind(T ).

First of all we make the observation that the following operator is compact.

Lemma 5.15. Let Ω ⊂ R3 be a Lipschitz domain and λ ∈ Σθ. The operator Kλ−K0 is compact
on L2(∂Ω;C3).

Now we can show that the layer potentials associated to the Neumann and Dirichlet problem
are invertible on L2, independent of λ.

Lemma 5.16. Let λ ∈ Σθ and |λ| ≥ τ , where τ ∈ (0, 1). Suppose that |∂Ω| = 1. Then 1
2I +Kλ

is an isomorphism on L2(∂Ω;C3) and

‖f‖L2(∂Ω) ≤ C
∥∥∥∥(1

2
I +Kλ

)
f

∥∥∥∥
L2(∂Ω)

(5.10)

for all f ∈ L2(∂Ω;C3), where C > 0 depends only on θ, τ and the Lipschitz character of Ω.

Proof. Let f ∈ L2(∂Ω;C3) and let (u, φ) = Sλ(f) denote the single layer potential. We know by
Lemma 4.2 that the single layer potential satisfies the Stokes System in R3\∂Ω, (∇u)∗ ∈ L2(∂Ω)
and (φ)∗ ∈ ∂Ω. Furthermore ∇u and φ have nontangential limits almost everywhere on ∂Ω, and
by Theorem 4.29 ∇tanu+ = ∇tanu− and

(
∂u
∂ν

)
± = (± 1

2I +Kλ)f . First of all we prove that∥∥∥∥∥
(
∂u

∂ν

)
−

∥∥∥∥∥
L2(∂Ω)

≤ C‖∇u−‖L2(∂Ω) + ‖φ−‖L2(∂Ω) ≤ C

∥∥∥∥∥
(
∂u

∂ν

)
+

∥∥∥∥∥
L2(∂Ω)

. (5.11)

The first inequality is obvious by the definition of the conormal derivative. The second inequality
is a consequence of Theorem 5.11 and Theorem 5.12. We may apply the last Theorem because
the decay of the solution is good enough at infinity. We now show (5.11).

‖∇u−‖L2(∂Ω) + ‖φ−‖L2(∂Ω) ≤ C
(
‖∇tanu−‖+ |λ|

1
2 ‖u−‖L2(∂Ω) + |λ|‖n · u−‖H−1(∂Ω)

)
= C

(
‖∇tanu+‖+ |λ|

1
2 ‖u+‖L2(∂Ω) + |λ|‖n · u+‖H−1(∂Ω)

)
≤ C

∥∥∥∥∥
(
∂u

∂ν

)
+

∥∥∥∥∥
L2(∂Ω)

.

We can now use the jump relation to find

‖f‖L2(∂Ω) =

∥∥∥∥∥
(
∂u

∂ν

)
+

∥∥∥∥∥
L2(∂Ω)

+

∥∥∥∥∥
(
∂u

∂ν

)
−

∥∥∥∥∥
L2(∂Ω)

≤ C

∥∥∥∥∥
(
∂u

∂ν

)
+

∥∥∥∥∥
L2(∂Ω)

= C

∥∥∥∥(1

2
I +Kλ

)
f

∥∥∥∥
L2(∂Ω)

.

This proves the inequality (5.10). It was proven in [12] that in the case λ = 0, 1
2I + K0 is a

Fredholm operator on L2(∂Ω;C3) with index zero. Using the fact that Kλ − K0 is compact on
L2(∂Ω;C3) we now find in combination with Theorem 5.14 that 1

2I +Kλ is a Fredholm operator
with index zero. Inequality (5.10) implies that ‖f‖L2(∂Ω) = 0 when f ∈ ker

(
1
2I +Kλ

)
. Hence

the operator is injective and the dimension of the kernel is zero. Therefore the dimension of the
cokernel is zero which implies that the operator is surjective. Thus 1

2I + Kλ is an isomorphism
on L2(∂Ω;C3).

58



We want to prove a similar Lemma for the operator (− 1
2I+Kλ). It turns out that something

weaker is true. Recall the definition of L2
n(∂Ω) =

{
f ∈ L2(∂Ω) :

∫
∂Ω
f · ndσ(y) = 0

}
as in

Section 4.5.

Lemma 5.17. Let λ ∈ Σθ. Then − 1
2I + Kλ is a Fredholm operator on L2(∂Ω;C3) with index

zero, and

‖f‖L2(∂Ω) ≤ C
∥∥∥∥(−1

2
I +Kλ

)
f

∥∥∥∥
L2(∂Ω)

(5.12)

for all f ∈ L2
n(∂Ω), where C depends only on θ and the Lipschitz character of Ω.

Proof. By rescaling we may assume that |∂Ω| = 1. In the case λ = 0, it was proved in [12] that
− 1

2I +K0 is a Fredholm operator on L2(∂Ω;C3) with index zero. It was also proven there that
the inequality (5.12) holds for λ = 0. Since by Lemma 5.15, Kλ −K0 is compact on L2(∂Ω;C3)
we know by Theorem 5.14 that − 1

2I +Kλ is a Fredholm operator with index zero on L2(∂Ω;C3)
for all λ ∈ Σθ. We now want to establish the estimate (5.12). Therefore notice that by Theorem
3.12,

|(Kλ −K0)fk(x)| ≤ C
∫
∂Ω

∣∣∣∇x[Γk(x− y;λ)− Γk(x− y; 0)
]∣∣∣|fk(y)|dσ(y)

≤ C|λ|
1
2

∫
∂Ω

|fk(y)|
|x− y|

dσ(y).

We conclude that ‖(Kλ −K0)f‖L2(∂Ω) ≤ C|λ|
1
2 ‖f‖L2(∂Ω). Now it follows that for f ∈ L2

n(∂Ω)

‖f‖L2(∂Ω) ≤ C
∥∥∥∥(−1

2
I +K0

)
f

∥∥∥∥
L2(∂Ω)

≤ C
∥∥∥∥(−1

2
I +Kλ

)
f

∥∥∥∥
L2(∂Ω)

+ C|λ|
1
2 ‖f‖L2(∂Ω).

Now we can pick τ ∈ (0, 1) such that Cτ
1
2 ≤ 1

2 . Thus implies that inequality (5.12) holds for
λ ∈ Σθ with |λ| < τ and τ only depends on θ and the Lipschitz character of Ω. For the case
where |λ| ≥ τ we use Rellich estimates. To do this let f ∈ L2

n(∂Ω) and (u, φ) = Sλ(f) the single
layer potential. By Theorem 5.11

‖∇u+‖L2(∂Ω) +

∥∥∥∥φ+ −−
∫
∂Ω

φ+dσ

∥∥∥∥
L2(∂Ω)

≤ C
(
‖∇tanu‖L2(∂Ω) + |λ|

1
2 ‖u‖L2(∂Ω) + |λ|‖u · n‖H−1(∂Ω)

)
≤ C

∥∥∥∥∥
(
∂u

∂ν

)
−

∥∥∥∥∥
L2(∂Ω)

.

Now using the jump relations f =
(
∂u
∂ν

)
+
−
(
∂u
∂ν

)
− we find

‖f‖L2(∂Ω) ≤

∥∥∥∥∥
(
∂u

∂ν

)
+

∥∥∥∥∥
L2(∂Ω)

+

∥∥∥∥∥
(
∂u

∂ν

)
−

∥∥∥∥∥
L2(∂Ω)

≤ C

∥∥∥∥∥
(
∂u

∂ν

)
−

∥∥∥∥∥
L2(∂Ω)

+ C

∣∣∣∣∫
∂Ω

φ+dσ

∣∣∣∣
= C

∥∥∥∥(−1

2
I +Kλ

)
f

∥∥∥∥
L2(∂Ω)

+ C

∣∣∣∣∫
∂Ω

φ+dσ

∣∣∣∣.
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Now we only have to deal with the last term. To do this notice that(
∂u

∂ν

)
+

· n =
∂ui
∂xj

ninj − φ+ = nj

(
ni

∂

∂xj
− nj

∂

∂xi

)
ui − φ+,

which leads to ∣∣∣∣∫
∂Ω

φ+dσ

∣∣∣∣ ≤
∣∣∣∣∣
∫
∂Ω

(
∂u

∂ν

)
+

· n

∣∣∣∣∣+ C

∫
∂Ω

|∇tanu|dσ

≤ C

∣∣∣∣∣
∫
∂Ω

(
∂u

∂ν

)
−
· n

∣∣∣∣∣+ C

∫
∂Ω

|∇tanu|dσ

≤ C

∥∥∥∥∥
(
∂u

∂ν

)
−

∥∥∥∥∥
L2(∂Ω)

.

Combining this yields the estimate for τ ≥ |λ| which completes the proof.

5.3 Weak reverse Hölder inequality

In this section we derive a weak reverse Hölder inequality for solutions of the Stokes system. To
do so, we first bound the L2 norm of the solution by the L2 norm of its non-tangential limit.
Then we use the Hardy-Littlewood-Sobolev inequality to obtain an estimate of the Lp norm of
the solution for p = 3 + ε. Finally this estimate is integrated to obtain a so-called weak reverse
Hölder inequality.

Lemma 5.18. Let λ ∈ Σθ and (u, φ) be a solution of the Stokes System in Ω. Suppose that u
has non-tangential limit a.e. on ∂Ω and (u)∗ ∈ L2(∂Ω). Then,∫

Ω

|u|2dx ≤ C
∫
∂Ω

|u|2dσ,

where C depends only on θ and the Lipschitz character of Ω.

Proof. By approximating Ω by a sequence of smooth domains with a uniform Lipschitz constant
from inside, we may assume that Ω is smooth and (u, φ) are smooth in Ω. Now let (w, ψ) solve
the following system {

−∆w + λw +∇ψ = u in Ω

divw = 0 in Ω,

with w ∈ H1
0 (Ω;C3) and ψ ∈ H1(Ω). Now using this system and partial integrations we find

that ∫
Ω

|u|2dx =

∫
Ω

u · (−∆w + λw +∇ψ) dx

= −
∫
∂Ω

ui
∂wi
∂xj

njdσ +

∫
∂Ω

∂ui
∂xj

winjdσ +

∫
Ω

−∆uiwidx+

∫
Ω

λuiwidx

+

∫
∂Ω

uiψnidσ −
∫

Ω

∂ui
∂xi

ψdx.
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Since w has zero trace the second term becomes zero. u is a solution to the Stokes System and
hence divergence free, so the sixth term is also zero. Now notice that∫

Ω

(−∆ui + λui)widx =

∫
Ω

−∇φwidx

= −
∫
∂Ω

φwinidσ +

∫
Ω

φ
∂wi
∂xi

dx = 0.

Also, because w has zero trace and divergence. This means that∫
Ω

|u|2dx = −
∫
∂Ω

u ·
(
∂w

∂n
− ψn

)
dσ ≤ ‖u‖L2(∂Ω)

(
‖∇w‖L2(∂Ω) + ‖ψ‖L2(∂Ω)

)
. (5.13)

By subtracting a constant from ψ we may assume that
∫
∂Ω
ψ = 0. Also, note that ∆ψ = div(u) =

0 in Ω. By Lemma 5.8 we now know that

‖ψ‖L2(∂Ω) ≤ C‖∇ψ · n‖H−1(∂Ω)

≤ C
(
‖∆w · n‖H−1(∂Ω) + ‖u · n‖H−1(∂Ω)

)
≤ C

(
‖∇w‖L2(∂Ω) + ‖u‖L2(∂Ω)

)
. (5.14)

Combining (5.13) and (5.14) yields∫
Ω

|u|2dx ≤ C‖u‖L2(∂Ω)‖∇w‖L2(∂Ω) + C‖u‖2L2(∂Ω). (5.15)

We now look to bound the norm of ∇w. Hereto we use a Rellich identity like Lemma 5.2. Since
w has zero trace we can write∫

∂Ω

|∇w|2dσ ≤ C
∫

Ω

|∇w|2dx+ C

∫
Ω

|∇w||ψ|dx

+ C|λ|
∫

Ω

|∇w||w|dx+ C

∫
Ω

|∇w||u|dx. (5.16)

Using a similar technique as in the proof of Lemma 5.4 we find∫
Ω

|∇w|2dx+ |λ|
∫

Ω

|w|2dx ≤ C
∫

Ω

|w||u|dx.

Using the Poincaré inequality (Theorem B.3) and the Cauchy inequality we find∫
Ω

|∇w|2dx+ (1 + |λ|)
∫

Ω

|w|2dx ≤ C
∫

Ω

|w||u|dx+

∫
Ω

|w|2dx

≤ ε
∫

Ω

|w|2dx+
C

ε

∫
Ω

|u|2dx+
1

4

∫
Ω

|w|2dx+
3

4

∫
Ω

|∇w|2dx.

If we now choose ε = 1+|λ|
2 and change the constant C we find∫

Ω

|∇w|2dx+ (1 + |λ|)
∫

Ω

|w|2dx ≤ C

1 + |λ|

∫
Ω

|u|2dx. (5.17)

Now, using (5.16) and (5.17) we find∫
∂Ω

|∇w|2dσ ≤ Cε
∫

Ω

|u|2dx+ ε

∫
∂Ω

|ψ|2dσ,

where we used Lemma 5.5 to estimate the norm of φ in the domain by the norm of φ on the
boundary.
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We are now able to state an important theorem that guarantees that the solution of the Stokes
System exists, is unique, can be represented by the double layer potential and has a bounded
nontangential maximal function.

Theorem 5.19. Let Ω be a bounded Lipschitz domain in R3 with connected boundary. Let
λ ∈ Σθ. Given g ∈ L2

n(∂Ω), there exists a unique u and a harmonic function φ, unique up to
constants, such that (u, φ) satisfies the Stokes System (1.11) in Ω, (u)∗ ∈ L2(∂Ω) and u = g
on ∂Ω in the sense of nontangential convergence. Moreover the solution satisfies the estimate
‖(u)∗‖L2(∂Ω) ≤ C‖g‖L2(∂Ω), and there exists a function f ∈ L2(∂Ω) such that the solution can

be represented by a double layer potential, (u, φ) = Dλ(f) with ‖f‖L2(∂Ω) ≤ C‖g‖L2(∂Ω), where
C depends on θ and the Lipschitz character of Ω.

Proof. We start by proving uniqueness. Let (u, φ) and (w, ρ) be solutions given with boundary
data g. Then (u − w, φ − ρ) is a solution with boundary data identically zero. We now use
Lemma 5.18 and find ∫

Ω

|u−w|2dx ≤ C
∫
∂Ω

0dσ = 0

and hence u = w. This in turn implies that ∇ (φ− ρ) = 0 and thus φ equals ρ up to a constant.
We now prove the existance of the solution. By Lemma 5.17 we know that − 1

2I + Kλ is a
Fredholm operator on L2(∂Ω,C3) with index zero, thus − 1

2I + K∗
λ

is a Fredholm operator on

L2(∂Ω,C3) with index zero. Now let (u, φ) = Dλ(f) be the double layer potential of f ∈ L2(∂Ω).
Then we know that div(u) = 0 and by the divergence theorem we find that

∫
∂Ω
u · ndσ = 0.

This shows that Ran(− 1
2I + K∗

λ
) ⊂ L2

n(∂Ω). This implies that the normal vector n is in the

kernel of − 1
2I +Kλ. By inequality (5.12) we find that ker(− 1

2I +Kλ) = Span{n}. This implies
that Ran(− 1

2I +K∗
λ
) = L2

n(∂Ω). Hence we find that the operator

−1

2
I +K∗

λ
: Ran

(
−1

2
I +Kλ

)
→ L2

n(∂Ω)

is injective and surjective, hence invertible. Thus given g ∈ L2
n(∂Ω) we choose (by inverting)

f ∈ Ran
(
− 1

2I +Kλ
)

such that
(
− 1

2I +K∗
λ

)
f = g. Thus the double layer potential satisfies

u = g on ∂Ω and ‖(u)∗‖L2(∂Ω) ≤ ‖f‖L2(∂Ω). By duality we also know that

‖f‖L2(∂Ω) ≤ C
∥∥∥∥(−1

2
I +K∗

λ

)
f

∥∥∥∥
L2(∂Ω)

and thus ‖f‖L2(∂Ω) ≤ C‖g‖L2(∂Ω). This completes the proof.

This theorem leads to the establishment of a reverse Hölder inequality. In the following
lemmas we relate the Lp norm of the solution of the Stokes System to the nontangential maximal
function of the same solution in L2.

Lemma 5.20. Let Ω be a Lipschitz domain in R3 and let f ∈ L2(∂Ω;C3) and I1(f) as defined
in (A.6). Then if p = 3, there exists a C > 0 such that

‖I1(f)‖Lp(Ω) ≤ C‖f‖L2(∂Ω).

Proof. Let p = 3 and pick q = 3
2 such that 1

p + 1
q = 1. Because Ω is a Lipschitz domain we can
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take h ∈ C1
0 (R3,R3) such that hknk ≥ c > 0. Now using the divergence theorem we find∫
∂Ω

|I1(f)|2dσ ≤ C
∫
∂Ω

(
|I1(f)|2h

)
· ndσ

= C

∫
Ω

div(h)|I1(f)|2dx+ C

∫
Ω

|I1(f)||∇I1(f)|hkdx

≤ C
∫

Ω

|I1(f)|2dx+ C

∫
Ω

|I1(f)||∇I1(f)|dx

≤ C
∫

Ω

|I1(f)|2dx+ C

(∫
Ω

|I1(f)|p
) 1
p
(∫

Ω

|∇I1(f)|q
) 1
q

.

For the first term we find by Hölder’s inequality and the fact that Ω is bounded that∫
Ω

|I1(f)|2dx ≤ C‖I1(f)‖2Lp(Ω).

For the second term we find using the Cauchy inequality (Lemma B.1) that

C

(∫
Ω

|I1(f)|p
) 1
p
(∫

Ω

|∇I1(f)|q
) 1
q

≤ C‖∇I1(f)‖Lq(Ω) + C‖I1(f)‖Lp(Ω).

We can easily check the conditions of Theorem A.7, since 1
p = 1

q −
1
3 . We thus find

‖I1(f)‖Lp(Ω) ≤ C‖f‖Lq(Ω).

Further, by Theorem A.8 we find that

‖∇I1(f)‖Lq(Ω) = C‖f‖Lq(Ω).

Putting this together yields
‖I1(f)‖L2(∂Ω) ≤ C‖f‖Lq(Ω).

Since I1 is a self-adjoint operator we can use duality to find

‖I1(f)‖Lp(Ω) = ‖(I1)∗(f)‖(Lq(Ω))∗ ≤ C‖f‖(L2(∂Ω))∗ = C‖f‖L2(∂Ω),

where ∗ denotes the dual. This completes the proof.

Lemma 5.21. Let Ω be a bounded Lipschitz domain in R3 with connected boundary. Let u ∈
H1(Ω;C3) and φ ∈ L2(Ω). Suppose that (u, φ) satisfies the Stokes System (1.11) in Ω for some
λ ∈ Σθ. Then, (∫

Ω

|u|pdx
) 1
p

≤ C
(∫

∂Ω

|(u)∗|2dσ
) 1

2

,

where p = 3 and C > 0 depends only on θ and the Lipschitz character of Ω.

Proof. Without loss of generality we can assume that |∂Ω| = 1. Now define the following set for
all x ∈ Ω

Ẽ(x) = {p ∈ ∂Ω : |x− p| < C dist(x, ∂Ω)}

We can now bound u(x) by the Riesz potential of the nontangential maximal function on the
boundary. To do so, observe that when y ∈ Ẽ(x) we have that

|u(x)| ≤ (u)∗(y)

63



and thus

|u(x)| ≤ C

(diam(Ω))
2

∫
Ẽ(x)

(u)∗(y)dσ(y)

≤ C
∫
Ẽ(x)

(u)∗(y)

|x− y|2
dσ(y)

≤ C
∫
∂Ω

(u)∗(y)

|x− y|2
dσ(y) = CI1((u)∗)(x).

Now we use this estimate in combination with Lemma 5.20 to find(∫
Ω

|u|pdx
) 1
p

≤ C
(∫

Ω

|I1((u)∗)|pdx
) 1
p

≤ C
(∫

∂Ω

|(u)∗|2dσ
) 1

2

. (5.18)

This completes the proof.

Theorem 5.22. Let Ω be a bounded Lipschitz domain in R3 with connected boundary. Let
u ∈ H1(Ω;C3) and φ ∈ L2(Ω). Suppose that (u, φ) satisfies the Stokes System (1.11) in Ω for
some λ ∈ Σθ. Then, (∫

Ω

|u|pdx
) 1
p

≤ C
(∫

∂Ω

|u|2dσ
) 1

2

,

where p = 3 and C > 0 depends only on θ and the Lipschitz character of Ω.

Proof. Let f denote the trace of u on ∂Ω and w the solution of the L2 Dirichlet problem as
given by Theorem 5.19. Now let (Ωj) be a sequence of smooth domains that approximates Ω
from the inside. From Lemma 5.18 it follows that∫

Ωj

|u−w|2dx ≤ C
∫
∂Ωj

|u−w|2dσ.

If we let j → ∞ we see that u and w are the same on the boundary hence u = w in Ω. As a
result we obtain

‖(u)∗‖L2(∂Ω) = ‖(w)∗‖L2(∂Ω) ≤ C‖f‖L2(∂Ω) ≤ C‖u‖L2(∂Ω).

The result now follows by applying Lemma 5.21.

Let ϕ be a Lipschitz function such that ϕ(0) = 0 and ‖ϕ‖∞ ≤ L. Define the following sets
for 0 < r <∞

D(r) =
{

(x̃, ỹ) ∈ R3 : |x̃| < r and ϕ(x̃) < ỹ < 30(L+ 1)r
}

I(r) =
{

(x̃, ỹ) ∈ R3 : |x̃| < r and ϕ(x̃) = ỹ
}
.

(5.19)

Lemma 5.23. Let u ∈ H1(D(2r);C3) and φ ∈ L2(D(2r)). Suppose (u, φ) satisfies (1.11) in
D(2r) and u = 0 on I(2r) for some 0 < r <∞ and λ ∈ Σθ. Let p = 3. Then,(

−
∫
D(r)

|u|pdx

) 1
p

≤ C

(
−
∫
D(2r)

|u|2dx

) 1
2

,

where C depends only on θ and L.
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Proof. By a scaling argument it suffices to do the proof for r = 1. We are going to proof this
lemma, by integrating the result of Theorem 5.22. Let t ∈ (1, 2). We apply Theorem 5.22 to the
Lipschitz domain D(t). This yields(∫

D(t)

|u|pdx

) 2
3

≤ C
∫
∂D(t)

|u|2dσ.

Notice that u = 0 on I(2). Hence we find(∫
D(1)

|u|pdx

) 2
3

≤ C
∫
∂D(t)\I(2)

|u|2dσ.

Now integrating this equation over the interval (1, 2) yields the desired result.

Lemma 5.24. Let (u, φ) be a solution of the Stokes System (1.11) in B(x0, r). Then,

∣∣∇`u(x0)
∣∣ ≤ C`

r`

(
−
∫
B(x0,r)

|u|2dx

) 1
2

(5.20)

for any ` ≥ 0, where C` depends only on ` and θ.

Proof. By a scaling argument it suffices to do the proof for r = 2. Now let t ∈ (1, 2) and let
(u, φ) be a solution of 1.11 in B(x0, t). Now denote the trace of u by g. By Theorem 5.19 we
can find a f such that (u, φ) = Dλ(f). Using this we find that

∇lu(x0) =

∫
∂B(x0,t)

∇lxSij(Γk,Φk)fk(y)dσ(y) ≤ C
∫
∂B(x0,t)

|fk(y)|2dσ(y) ≤ C
∫
∂B(x0,t)

|u|2dσ.

We can now integrate the result over the interval (1, 2) to find the result.

The results above allow us to establish a weak reverse Hölder inequality for solutions of the
Stokes System.

Theorem 5.25. Let Ω be a Lipschitz domain in R3 and let x0 ∈ Ω and 0 < r < cdiam(Ω). Let
u ∈ H1(B(x0, 2r) ∩ Ω;C3) and φ ∈ L2(B(x0, 2r) ∩ Ω). Suppose that (u, φ) satisfies the Stokes
System (1.11) in B(x0, 2r) ∩ Ω and u = 0 on B(x0, 2r) ∩ ∂Ω (if B(x0, 2r) ∩ ∂Ω 6= ∅). Then,(

−
∫
B(x0,r)∩Ω

|u|p
) 1
p

≤ C

(
−
∫
B(x0,2r)∩Ω

|u|2
) 1

2

, (5.21)

where p = 3 + ε and C > 0, ε > 0 depend only on θ, and the Lipschitz character of Ω.

Proof. We first prove this result in two cases for p = 3. In the first case x0 ∈ Ω and there exists
an r > 0 such that B(x0, 3r) ⊂ Ω. In the second case x0 ∈ ∂Ω. We start with the first case and
use Lemma 5.24 together with the observation that if x ∈ B(x0, r), then B(x, r) ⊂ B(x0, 2r).

(
−
∫
B(x0,r)

|u(x)|pdx

) 1
p

≤

−∫
B(x0,r)

C

(
−
∫
B(x,r)

|u|2dy

) p
2

dx

 1
p

≤ C

(
−
∫
B(x0,2r)

|u|2dy

) 1
2

.
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For the second case we have to do a boundary estimate. We chose r such that B(x0, r) ∩ Ω is
a special Lipschitz domain. We can now use Lemma 5.23 and a covering argument to conclude.
To complete the proof we notice that estimate (5.21) is a reverse Hölder inequality. This implies
the self-improving behaviour. More details on the self-improvement can be found in old book of
Giaquinta [19, Proposition V.1.1] or a more recent paper by Anderson, Hytönen and Tapiola [2,
Proposition 6.2].

Theorem 5.26. Let Ω be a Lipschitz domain in R3 and let x0 ∈ Ω and 0 < r < cdiam(Ω). Let
u ∈ H1(B(x0, 2r) ∩ Ω;C3) and φ ∈ L2(B(x0, 2r) ∩ Ω). Suppose that (u, φ) satisfies the Stokes
System (1.11) in B(x0, 2r) ∩ Ω and u = 0 on B(x0, 2r) ∩ ∂Ω (if B(x0, 2r) ∩ ∂Ω 6= ∅). Then,(

−
∫
B(x0,r)∩Ω

|u|2dx

) 1
2

≤ C

(
−
∫
B(x0,2r)∩Ω

|u|pdx

) 1
p

, (5.22)

where p = 3
2 − ε and C > 0, ε > 0 depends only on θ and the Lipschitz character of Ω.

Proof. This is the dual result of Theorem 5.25.
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6 Resolvent estimates

In this section the weak reverse Hölder estimates will be used to prove resolvent estimates for
the Stokes operator. First the unweighted case is considered. Using the result of the unweighted
case, the weighted resolvent estimates will be proved for a special class of weights.

6.1 Unweighted resolvent estimates

We start off by setting a specific Assumption. Assuming this Assumption an extrapolation
theorem is proved. Then we show that the solution of the Stokes problem satisfies the Assumption
and as a corollary we obtain resolvent estimates in Lp(Ω).

Assumption 6.1. Let Ω ⊂ R3 be a bounded Lipschitz domain, let Q0 be a cube in R3 such that
Ω ⊂ Q0 and let g ∈ L1(2Q0). Let h ∈ L1(2Q0). Let Q be any cube such that |Q| < |Q0| and
define g1 = gχ3Q\supp(h) and g2 = gχ3Q∩supp(h). Then,

(i) there exists a constant C1 > 0 such that the following local reverse Hölder estimate holds(
−
∫
Q∩Ω

|g1|pdx
) 1
p

≤ C1

(
−
∫

2Q∩Ω

|g|dx+ sup
Q′⊃Q

−
∫
Q′
|h|dx

)
(6.1)

.

(ii) There exists a constant C2 > 0 such that

−
∫

2Q

|g2|dx ≤ C2 sup
Q′⊃Q

−
∫
Q′
|h|dx (6.2)

.

Now that we have set the stage for this section we start of with a covering lemma atributed
to A. Calderón and A. Zygmund [22, Theorem 4.3.1].

Lemma 6.2. Let Q be a bounded cube in R3 and A ⊂ Q be a measurable set. Then for all
δ ∈ (0, 1) there exists a sequence of disjoint dyadic cubes {Qj} obtained from Q such that

(i)
∣∣∣A \⋃j Qj∣∣∣ = 0

(ii) |A ∩Qj | > δ|Qj |

(iii)
∣∣∣A ∩ Q̂j∣∣∣ ≤ δ∣∣∣Q̂j∣∣∣,

where Q̂j denotes the dyadic parent cube of Qj (i.e. Qj is one of the 23 subcubes of Q̂j).

Proof. We construct a collection of disjoint dyadic cubes obtained from Q. We start with {Qj} =
∅. Divide Q into 23 dyadic subcubes and call this collection {Q1

j}. Define

G1 :=
{
Q′ ∈ Q1

j : |Q′ ∩A| > δ|Q′|
}

B1 :=
{
Q′ ∈ Q1

j : |Q′ ∩A| ≤ δ|Q′|
}
.

Now add G1 to {Qj} and divide all cubes in B1 into 23 dyadic subcubes and call this collection
{Q2

j}. The process above is repeated iteratively. We now show that {Qj} has the required
properties. By construction, properties (ii) and (iii) hold. What is left is to show property (i).
For this assume x 6= ∪jQj and define f(x) = χA(x). Because of the construction of A there
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exists a sequence of cubes {Cj} with diameter tending to zero such that |Cj ∩A| ≤ δ|Cj | < |Cj |.
If we now use the Lebesgue differentiation theorem (Theorem A.3), we find for almost every x
that

χA(x) = lim
Cj→x

1

|Cj |

∫
Cj

χA(y)dy = lim
Cj→x

1

|Cj |

∫
Cj∩A

dy = lim
Cj→x

|Cj ∩A|
|Cj |

< 1

Hence we conclude that χA(x) = 0 for almost all x 6= ∪jQj and the proof is completed.

In the following we show an inequality involving level sets. In order to avoid very cumbersome
notation we define for α > 0 the superlevel set of the (localized) Hardy-Littlewood maximal
function as

E(α) := {x ∈ Q0 : M2Q0(gχΩ)(x) > α} , (6.3)

where Ω, Q0 and g are consistent with Assumption 6.1.

Lemma 6.3. Assume Assumption 6.1 holds. Then it is possible to choose 0 < δ < 1, γ > 0 and
C0 > 0 depending only on d, C1, C2, p and q such that

|E(Aα)| ≤ δ|E(α)|+ |{x ∈ Q0 : M2Q0(hχΩ)(x) > γα}| (6.4)

for all α > α0, where A = (2δ)−
1
q and

α0 =
C0

δ|Q0|

∫
Ω

|g|dx. (6.5)

Proof. Fix q ∈ (2, p), let δ ∈ (0, 1) to be determined later and define A = (2δ)−
1
q . By Lemma

6.2 we can find a collection of cubes {Qj} such that

(i)
∣∣∣E(Aα) \

⋃
j Qj

∣∣∣ = 0

(ii) |E(Aα) ∩Qj | > δ|Qj |

(iii)
∣∣∣E(Aα) ∩ Q̂j

∣∣∣ ≤ δ∣∣∣Q̂j∣∣∣.
We start by showing that it is possible to pick δ ∈ (0, 1) and γ > 0 such that{

x ∈ Q̂j : M(hχΩ)(x) ≤ γα
}
6= ∅ =⇒ Q̂j ⊂ E(α). (6.6)

We will show this by contradiction. Suppose that there exists x0 ∈ Q̂j \ E(α) and x1 ∈{
x ∈ Q̂j : M(g)(x) ≤ γα

}
. Notice that when Q̂j ⊂ Q we have

−
∫
Q

|h|dx ≤M(h)(x1) ≤ γα (6.7)

−
∫
Q

|g|dx ≤M2Q0
(g)(x0) ≤ α. (6.8)

Now using the observation that

{
x ∈ R3 : |g + h| > 1

}
⊂
{
x ∈ R3 : |g| > 1

2

}
∪
{
x ∈ R3 : |h| > 1

2

}
,
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we find

|Qk ∩ E(Aλ)| ≤
∣∣∣{x ∈ Qk : M2Qk

(g)(x) > Aλ
}∣∣∣

≤
∣∣∣∣{x ∈ Qk : M2Qk

(g1)(x) >
Aλ

2

}∣∣∣∣
+

∣∣∣∣{x ∈ Qk : M2Qk
(g2)(x) >

Aλ

2

}∣∣∣∣
= F +G.

We now examine these terms one by one. By the maximal theorem (Theorem A.2), part (ii) of
Assumption 6.1 and (6.7) we find

G ≤ C

Aα

∫
2Q̂j

|g2|dx ≤
C

Aα

∫
2Q̂j

|h|dx ≤ |Qj |Cγ
A

.

For the second term we use Chebyshev’s inequality, Assumption (6.1) and

G ≤ C

(Aα)p

∫
2Q̂j

|g1|pdx

≤ 2p−1C|Qj |N
(Aα)p

[(
−
∫

2Qj

|g|dx

)p
+

(
sup
Q′⊃Q̂j

−
∫
Q′
|h|dx

)p]

≤ |Qj |
(
C

Ap
+
Cγp

Ap

)
.

Hence

|E(Aα) ∩Qj | ≤ |Qj |
(
CnC2γ

A
+
Cn,α,pC

p
1

Ap

)
(6.9)

= δ|Qj |
(
CnC2γδ

−1
q−1 + Cn,α,pC

p
1 δ

p
q−1

)
. (6.10)

We now choose δ ∈ (0, 1) such that Cn,α,pC
p
1 δ

p
q−1 ≤ 1

2 , which is possible since q < p. Then we

choose γ > 0 such that CnC2γδ
−1
q−1 ≤ 1

2 . It now follows that |E(Aα) ∩Qj | ≤ δ|Qj |. This is a
contradiction, thus it must be that (6.6) is true. Using this we find that

|E(Aα) ∩ {x ∈ Q0 : M(hχΩ)(x) > γα}| ≤
∑
k′

∣∣E(Aα) ∩Qk′
∣∣

≤ δ
∑
k′

∣∣Qk′ ∣∣
≤ δ|E(α)|,

where
{
Qk′
}

is a disjoint subcover of E(Aα) ∩
{
x ∈ R3 : M(hχΩ)(x) > γα

}
with the property

that Qk′ ∩
{
x ∈ R3 : M(hχΩ)(x) > γα

}
6= ∅. This implies that

|E(Aα)| =
∣∣E(Aα) ∩

{
x ∈ R3 : M(hχΩ)(x) > γα

}∣∣
+
∣∣E(Aα) ∩

{
x ∈ R3 : M(hχΩ)(x) ≤ γα

}∣∣
≤ δ|E(α)|+

∣∣E(Aα) ∩
{
x ∈ R3 : M(hχΩ)(x) > γα

}∣∣
≤ δ|E(α)|+

∣∣{x ∈ R3 : M(hχΩ)(x) > γα
}∣∣.

This completes the proof.
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Now this good-λ type inequality can be integrated to obtain the extrapolation tool that is
used to obtain uniform resolvent estimates. This takes a local reverse Hölder property to a global
reverse Hölder property, see for instance [4].

Theorem 6.4. Assume Assumption 6.1 holds. Then for all 1 < q < p and h ∈ Lq(Ω),(∫
Ω

|g|qdx
) 1
q

≤ C
∫

Ω

|g|dx+ C

(∫
Ω

|h|qdx
) 1
q

, (6.11)

where C > 0 is a constant depending only on p, q, C1, C2, |Q0| and the Lipschitz character of
Ω.

Proof. In view of Lemma 6.3 we recall that

α0 :=
C

δ|Q0|

∫
Ω

|g|dx

E(Aα) :=
{
x ∈ R3 : M2Q0

(gχΩ)(x) > Aα
}

A := (2δ)−
1
q .

Now let n > α0 and define the following integral

In =

∫ n

0

qαq−1|E(α)|dα.

In is bounded. We can now rewrite In

In =

∫ α0

0

qαq−1|E(α)|dα+

∫ n

α0

qαq−1|E(α)|dα

= I + În.

The first part of In can easily be estimated.

I =

∫ α0

0

qαq−1|E(α)|dα ≤ |Q0|
∫ α0

0

qαq−1dα = |Q0|αq0.

For the second part of In we use substitution and Lemma 6.3

În = Aq
∫ n

A

α0
A

qαq−1|E(Aα)|dα

= Aq
∫ n

A

α0
A

qαq−1δ|E(α)|dα+Aq
∫ n

A

α0
A

qαq−1
∣∣{x ∈ R3 : M(hχΩ)(x) > γα

}∣∣dα
≤ 1

2

∫ n
A

α0
A

qαq−1|E(α)|dα+ C(δ, γ)

∫ ∞
0

qαq−1
∣∣{x ∈ R3 : M(hχΩ)(x) > α

}∣∣dα
≤ 1

2

∫ n
A

0

qαq−1|E(α)|dα+ C(δ, γ)

∫
Ω

|h|qdx.

Now if A ≥ 1 we have that

In = I +
1

2
In + C(δ, γ)

∫
Ω

|h|qdx

70



and if 0 < A < 1, then

In/A = I +
1

2
In/A + C(δ, γ)

∫
Ω

|h|qdx,

which is essentially the same result after simple substitution. Since In is finite we can subtract
it from both sides. If we now let n→∞ we find∫

Ω

|g|qdx ≤ Cq

|Q0|q−1

(∫
Ω

|g|dx
)q

+ C

∫
Ω

|h|qdx,

where C only depends on p, q, C1, C2, |Q0| and the Lipschitz character of Ω. The result follows
by taking the qth root. This completes the proof.

We are now able to proof the main result of the paper by Shen [34].

Theorem 6.5. Let Ω be a bounded Lipschitz domain in R3 and λ ∈ Σθ. There exists ε > 0,
depending only on θ and the Lipschitz character of Ω, such that if f ∈ L2(Ω;C3) ∩ Lp(Ω;C3)
and ∣∣∣∣1p − 1

2

∣∣∣∣ < 1

6
+ ε. (6.12)

Then the unique solution u of the Dirichlet problem for the Stokes System (1.9) in H1
0 (Ω;C3)

satisfies the estimate

‖u‖Lp(Ω) ≤
Cp

|λ|+ r−2
0

‖f‖Lp(Ω), (6.13)

where r0 = diam(Ω) and Cp depends at most on p, θ and the Lipschitz character of Ω.

Proof. Let f ∈ L2(Ω;C3) ∩ Lp(Ω;C3). Then there exists a unique u ∈ H1
0 (Ω;C3) such that

‖u‖L2(Ω) ≤
C

|λ|
‖f‖L2(Ω)

(see for instance [12]). We start off by going to show that Assumption 6.1 holds for p = 3
2 − ε,

g = u2 and h = (|λ|+ 1)−2f2. By Theorem 5.25(
−
∫
Q∩Ω

χ3Q\supp(f)

(
|u|2

) 3+ε
2

dx

) 2
3

=

((
−
∫
Q

χ3Q\supp(f)|u|
3+ε

dx

) 1
3+ε

)2

≤

(
C

(
−
∫

2Q∩Ω

|u|2dx
) 1

2

)2

.

Thus (i) is fullfilled. For Assumption (ii) we see

−
∫

2Q∩Ω

χ3Q∩supp(f)|u|
2
dx ≤ C

|λ|+ 1
−
∫

2Q∩Ω

|f |2dx ≤ C sup
Q′⊃Q

−
∫
Q′

(∣∣∣∣ f

|λ|+ 1

∣∣∣∣)2

dx.

Now we can use Theorem 6.4 to find(∫
Ω

|u|2qdx
) 1
q

≤ C
∫

Ω

|u|2dx+
C

|λ|+ 1

(∫
Ω

|f |2qdx
) 1
q

.

Now taking the square root of this inequality we find(∫
Ω

|u|2qdx
) 1

2q

≤ C

|λ|+ 1

(∫
Ω

|f |2dx
) 1

2

+
C

|λ|+ 1

(∫
Ω

|f |2qdx
) 1

2q

,

where 2 < 2q < 3 + ε. Since Ω is bounded the result follows by Hölder’s inequality. This shows
the resolvent bound for 2 ≤ p < 3 + ε. The range 2

3 − ε < p < 2 follows by duality.
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6.2 Weighted resolvent estimates

In this section we generalize the resolvent estimate (Theorem 6.5) to the weighted case. To do
so, we introduce the class of Muckenhoupt weights. We also define the weak reverse Hölder class.
We show that for a special class of weights, a weighted L2 resolvent estimate holds. Using an
extrapolation theorem of Rubio de Francia we obtain the weighted Lp resolvent estimate for a
range of p.

6.2.1 Basic properties of weights

We now start with the definition of a weight function.

Definition 6.6. A weight is a nonnegative locally integrable function on R3 that takes valus in
(0,∞) almost everywhere.

It is clear that if dx is the Lebesgue measure, w(x)dx also defines a measure. Hence for some
measurable set E we can define the weighted volume of E by

w(E) :=

∫
E

w(x)dx. (6.14)

Similarly, it is natural to introduce weighted Lp spaces. The natural norm on this space is given
by

‖f‖Lp(w) :=

(∫
R3

|f(x)|pw(x)dx

) 1
p

. (6.15)

In the theory of weights, there are certain classes of weights that have special properties. One
of them is the class of Ap weights.

Definition 6.7 (Ap weight). Let 1 < p <∞. A weight w is of class Ap if

[w]Ap := sup
Q⊂R3

(
1

|Q|

∫
Q

w(x)dx

)(
1

|Q|

∫
Q

w(x)−
1
p−1

)p−1

<∞. (6.16)

[w]Ap is called the Muckenhoupt characteristic constant of w (or shorter, the Ap constant of w).

Remark 6.8. The weights in the Muckenhoupt class Ap are precisely those weights for which
the Hardy-Littlewood maximal function is bounded.

Remark 6.9. In the definition above we define the Muckenhoupt weights over all cubes in R3.
It is also possible to define the Muckenhoupt weights on cubes that are intersected with a domain
(for example a Lipschitz domain, Ω). To be precise, a weights w is in the class Ap,Ω if

sup
Q⊂R3

(
1

|Q|

∫
Q∩Ω

w(x)dx

)(
1

|Q|

∫
Q∩Ω

w(x)−
1
p−1

)p−1

<∞.

However, it turns out that for all the weights w ∈ Ap,Ω there exists w̃ ∈ Ap (defined in R3) such
that w(x) = w̃(x) for almost all x ∈ Ω. See for instance [18].

Definition 6.10 (RHs class). Let 1 < s <∞ and w be a weight. We say w ∈ RHs if it satisfies
the reverse Hölder inequality (

−
∫
Q

ws(x)dx

) 1
s

≤ C−
∫
Q

w(x)dx, (6.17)

for all cubes Q ⊂ R3. The smallest constant for which this inequality holds is the reverse Hölder
characteristic constant of w (or short, the RHs constant of w) and denoted by [w]RHs

72



Now that we have introduced the Muckenhoupt weight class and the reverse Hölder weight
class, we are going to proof some properties about these weight classes.

Lemma 6.11. Let Ω ⊂ R3 be a Lipschitz domain and w ∈ RHs. Then

w(E)

w(Q)
≤ C

(
|E|
|Q|

)1− 1
s

,

when E ⊂ Q ⊂ Ω.

Proof. We will make use of the reverse Hölder property in the denominator together with the
”normal” Hölder inequality in the enumerator. Now assume that E ⊂ Q ⊂ Ω.

w(E)

w(Q)
=

∫
Q
χEw(x)dx∫
Q
w(x)dx

≤

(∫
Q
ws(x)dx

) 1
s
(∫

Q
χEdx

)1− 1
s

|Q|−
∫
Q
w(x)dx

≤ C
|Q|

1
s

(
−
∫
Q
ws(x)dx

) 1
s |E|1−

1
s

|Q|
(
−
∫
Q
ws(x)dx

) 1
s

= C

(
|E|
|Q|

)1− 1
s

.

This completes the proof.

Lemma 6.12. Let 1 < p < 2. Let w ∈ A 2
p

. Let Q be a cube. Then

‖f‖Lp(Q) ≤ w(Q)−
1
2 [w]

1
2

A 2
p

‖f‖L2(Q,w).

Proof. Let f ∈ Lp(w). Now fix a cube Q.∫
Q

|f(x)|pdx =

∫
Q

|f(x)|pw(x)
p
2w(x)−

p
2 dx

≤
(∫

Q

|f(x)|2w(x)dx

) p
2
(∫

Q

w(x)
− 1

2
p
−1 dx

)1− p2
.

Hence

‖f‖Lp ≤ ‖f‖L2(w)

(∫
Q

w(x)
− 1

2
p
−1 dx

) 1
2 ( 2

p−1)

= ‖f‖L2(w)w(Q)−
1
2

(∫
Q

w(x)dx

) 1
2
(∫

Q

w(x)
− 1

2
p
−1 dx

) 1
2 ( 2

p−1)

≤ w(Q)−
1
2 [w]

1
2

A 2
p

‖f‖L2(w).

This completes the proof.
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6.2.2 Weighted extrapolation

Now that the necessary definitions and basic lemmas are introduced, it is time to set the stage
for this section. Thereafter we again prove an extrapolation theorem and show how this helps in
proving the weighted L2 case.

Assumption 6.13. Let Ω ⊂ R3 be a bounded Lipschitz domain, let Q0 be a cube in R3 such that
Ω ⊂ Q0 and let g ∈ L1(2Q0). Let 1 < q < p and h ∈ Lq(2Q0). Let Q be such that |Q| < |Q0|
and define g1 = gχ3Q\supp(h) and g2 = gχ3Q∩supp(h). Let w ∈ Aq. Assume,

(i) there exists a constant C1 > 0 such that the following local reverse Hölder estimate holds(
−
∫
Q∩Ω

|g1|pdx
) 1
p

≤
(
C1−
∫

2Q∩Ω

|g|dx+ sup
Q′⊃Q

−
∫
Q′
|h|dx

)
(6.18)

.

(ii) There exists a constant C2 > 0 such that

−
∫

2Q

|g2|dx ≤ C2 sup
Q′⊃Q

−
∫
Q′
|h|dx (6.19)

.

(iii) There exists a constant η > q/p and a C3 > 0 such that for all E ⊂ Q ⊂ Q0

w(E)

w(Q)
≤ C3

(
|E|
|Q|

)η
. (6.20)

I.e. the weights belong to a reverse Hölder class.

Remark 6.14. Notice that Assumption 6.13 implies Assumption 6.1.

Recall the definition of E(α) (Equation (6.3)). We now find a weighted version of the good-λ
type inequality of the previous section.

Lemma 6.15. Assume Assumption 6.13 holds. Then,

w(E(Aα)) ≤ Cδηw(E(α)) + w {x ∈ Q0 : M2Q0
(hχΩ)(x) > γα} (6.21)

for all α > α0, where A = (2δ)
−1
q̃ for q̃ ∈ (p, q) such that η > q

q̃ and

α0 =
C0

|Q0|

∫
Ω

|g|dx. (6.22)

Proof. This follows by slightly modifying the proof of Lemma 6.3. Notice that by (iii) of As-
sumption 6.13 |E(Aλ) ∩Qj | ≤ δ|Qj | implies w(E(Aλ) ∩Qj) ≤ Cδηw(Qj).

Theorem 6.16. Assume Assumption 6.13 holds. Then for all 1 < p < q and h ∈ Lq(2Q0),(
1

w(Q0)

∫
Q0

|g|qwdx
) 1
q

≤ C

|2Q0|

∫
2Q0

|g|dx+ C

(
1

w(2Q0)

∫
2Q0

|h|qw(x)dx

) 1
q

. (6.23)
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Proof. In view of Lemma 6.15 we recall that

α0 :=
C0

δ|Q0|

∫
Ω

|g|2dx

E(Aα) := {x ∈ Q0 : M2Q0
(gχΩ)(x) > Aα}

A := (2δ)
−1
q̃ .

Now let n > α0 and define the following integral

In :=

∫ n

0

qαq−1w(E(α))dα. (6.24)

Notice that In is finite. We now rewrite In

In =

∫ α0

0

qαq−1w(E(α))dα+

∫ n

α0

qαq−1w(E(α))dα = I + Ĩn.

We now examine both parts. For the first part of In we find

I =

∫ α0

0

qαq−1w(E(α))dα ≤ w(Q0)

∫ α0

0

qαq−1dα ≤ w(Q0)αq0.

For the second part of In we use Lemma 6.15

Ĩn =

∫ n

α0

qαq−1w(E(α))dα

= Aq
∫ n

A

α0
A

qαq−1w(E(Aα))dα

≤ AqCδη
∫ n

A

0

qαq−1w(E(α)) +Aq
∫ n

A

α0

qαq−1w
({
x ∈ R3 : M2Q0(hχΩ)(x) > γα

})
dα

≤ AqCδηIn + Cδ,γ

∫
Ω

|h|qw(x)dx,

where we did use the boundedness of the maximal function (Theorem A.5). If we now choose δ
small enough, then AqCδη < 1

2 . Since In is finite we can subtract AqCδηIn from both sides to
obtain

In ≤ I + C(δ, γ)

∫
Ω

|h|qw(x)dx.

Now letting n→∞ we find∫
Ω

|g|qw(x)dx ≤ Cw(Q0)

|Q0|q
(∫

Ω

|g|dx
)q

+ C

∫
Ω

|h|qw(x)dx. (6.25)

The result now follows.

Theorem 6.17. Let Ω ∈ R3 be a Lipschitz domain and let w ∈ A 4
3
∩ RH3 be a weight. Let

f ∈ L2(Ω, w) ∩ L 3
2 (Ω). Then the solution of (1.9) satisfies∫

Ω

|u(x)|2w(x)dx ≤ C

|λ|

∫
Ω

|f(x)|2w(x)dx. (6.26)
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Proof. Assume f ∈ L2(Ω, w)∩L 3
2 (Ω). Then there exists a unique u ∈ H1

0 (Ω) such that it solves

(1.9). To start we check if Assumption 6.13 holds with p = 2 + ε, g = u
3
2 , h =

(
f
|λ|

) 3
2

. Let

|Q| < |Q0|. We start with (i). By Theorem 5.25

(
−
∫
Q

(
χ5Q\supp(f)|u|

3
2

)2

dx

) 1
2

=

((
−
∫
Q

χ5Q\supp(f)|u|
3+ε

dx

) 1
3+ε

) 3
2

≤ C

((
−
∫

2Q

χ5Q\supp(f)|u|
2
dx

) 1
2

) 3
2

≤ C

((
−
∫

4Q

|u|
3
2 dx

) 2
3

) 3
2

= C−
∫

4Q

|u|
3
2 dx.

This shows (i). By Theorem 6.5 we have

−
∫

2Q

χ5Q∩supp(f)|u|
3
2 dx ≤ C|λ|−

2
3−
∫

2Q

χ5Q∩supp(f)|f |
3
2 ≤ C|λ|−

2
3 sup
Q′⊃Q

∫
Q′
|f |

3
2 dx,

which shows (ii). Since we have w ∈ A 4
3
∩ RH3, (iii) follows from Lemma 6.11. Now, using

Theorem 6.16, we find(∫
Ω

|u(x)|2w(x)dx

)
≤ Cw(Ω)

1
2

(∫
Ω

|u(x)|
3
2 dx

) 2
3

+ C

∫
Ω

|f(x)|2w(x)dx. (6.27)

Using Lemma 6.12 this leads to(∫
Ω

|u(x)|2w(x)dx

)
≤ C

(∫
Ω

|f(x)|2|λ|−2
w(x)dx

) 1
2

. (6.28)

This completes the proof.

A famous result by Rubio de Francia allows for extrapolation of this inequality.

Theorem 6.18 (Rubio de Francia). Let f and g be non-negative, measurable functions that are
not identically zero. Assume the for all w0 ∈ A 4

3
∩ RH3 and we have that∫

Ω

|g(x)|2w0(x)dx ≤ θ([w]A 4
3

, [w]RH3
)

∫
Ω

|h(x)|2w0(x)dx, (6.29)

where θ is an increasing function of [w]A 4
3

and [w]RH3
. Then, for all 3

2 < p < 3, and for all

w ∈ A 2p
3
∩ RH 3

3−p
we have ∫

Ω

|g(x)|pw(x)dx ≤ C
∫

Ω

|h(x)|pw(x)dx, (6.30)

where C depends on θ, p, [w]A 2p
3

and [w]RH 3
3−p

.

76



The proof of this theorem can be found in [8, Theorem 3.31]. This allows us to state a
weighted version of the inequality found by Shen in [34, Theorem 1.1].

Theorem 6.19. Let Ω ⊂ R3 be a Lipschitz domain. Then for all 3
2 < p < 3, f ∈ L2(Ω, w) ∩

Lp(Ω, w) and all w ∈ A 2p
3
∩ RH 3

3−p
the unique solution of the Dirichlet problem for the Stokes

System (1.9) in H1
0 (Ω) satisfies the estimate

‖u‖Lp(Ω,w) ≤
Cp
|λ|+ c

‖f‖Lp(Ω,w), (6.31)

where the constant does not depend on λ.

Proof. Apply Theorem 6.18 to extrapolate the result of Theorem 6.17.

6.2.3 Examples

In the previous section results were proven for a special class of weights, A 2p
3
∩ RH 3

3−p
. In this

section we look for examples of weights that belong in this weight class. A candidate for such a
weight is the distance to the boundary raised to some power. In this section we show that this
is actually the case. In order to start off we state the following lemma.

Lemma 6.20. Let w be a weight. Then w ∈ Ap ∩ RHs if and only if ws ∈ Aq, where q =
s(p− 1) + 1

For a proof of this lemma we refer to a paper by Johnson and Neugebauer [27]. This already
hints in the direction of a weight raised to some power. We now state the following result from
Farwig and Sohr [14].

Theorem 6.21. Let Ω be a Lipschitz domain in R3 Then,

d(x, ∂Ω)δ ∈ Ap − 1 < δ < p− 1. (6.32)

Using Lemma 6.20 and Theorem 6.21 we can show that indeed the distance to the boundary
of a Lipschitz domain raised to a certain power is a weight that belongs to the class A 2p

3
∩RH 3

3−p
.

Theorem 6.22. Let Ω be a Lipschitz domain in R3 and let 3
2 < p < 3. Then,

dist(x, ∂Ω)γ ∈ A 2p
3
∩ RH 3

3−p
when − 3− p

3
< γ <

2p

3
− 1. (6.33)

Proof. Let w(x) = dist(x, ∂Ω)γ . Now we show for which γ we have that w ∈ A 2p
3
∩RH 3

3−p
. Then

by Lemma 6.20 this is equivalent to finding γ for which w
3γ

3−p ∈ A p
3−p

. By Theorem 6.21 we find

that

w
γ

3−p ∈ A p
3−p

when − 1 <
3γ

3− p
<

p

3− p
− 1.

Now the result follows.
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7 Conclusion and Discussion

Following the recent paper by Z. Shen [34], resolvent estimates in Lp for the Stokes operator in
three-dimensional Lipschitz domains were studied.

In order to find resolvent estimates, the Dirichlet problem for the Stokes System is considered.
The desired inequality between the solution and the inhomogeneous term is known in L2. In
order to extrapolate this inequality to Lp, where 3

2−ε < p < 3+ε and ε depends on the Lipschitz
domain, we needed to establish a local reverse Hölder property of the solution of the Dirichlet
problem of the Stokes System.

Solving the homogeneous Stokes System (1.11) is the stepping stone to the Dirichlet problem.
Layer potentials are a good candidate to solve the homogeneous Stokes System, because they
solve the Stokes System in the domain, they have bounded nontangential maximal functions
and nontangential limits almost everywhere on the boundary of the Lipschitz domain. It can be
shown that the layer potential is invertible in L2 using a compactness argument, hence solving
the boundary value problem. However, in using this argument, control is lost over the parameter
λ, and thus rendering it unsuitable for finding resolvent estimates in Lp.

To overcome this problem an alternative for compactness is found in Rellich type estimates.
These estimates enable us to bound the norm of the operator that maps boundary data to the
corresponding density for the layer potential in L2.

This implies that, given boundary data in L2
n, a solution to the Stokes System exists, is unique

and can be represented by the double layer potential. Because of the nontangential boundedness
of the layer potentials a uniform Lp estimate for these solutions is found.

These uniform Lp estimates can be used to establish the before mentioned local reverse Hölder
properties of the solution of the Dirichlet problem for the Stokes System and the result follows
by extrapolation. This concludes the study of the paper by Z. Shen [34].

The author shows that the local reverse Hölder property of the solution can also be used to
proof a weighted resolvent bound in the range 3

2 − ε < p < 3 + ε. The class of weights for which
these estimates hold, are an intersection of the Muckenhoupt class Aq and the reverse Hölder
class RHs, where q and s depend on p. Examples of weights in this class power weights with
power depending on p and the distance to the boundary to a power depending on p.

7.1 Future research

This thesis contains some open ends and also possible directions for further research.
First of all, to the best of the authors knowledge, the literature does not contain a proof

of the existence of the Helmholtz decomposition of Lp(w), where w ∈ Aq ∩ RHs with q and
s depending on p. It is conjectured that the Helmholtz decomposition holds for Lp(w), where
w ∈ A 2p

3
∩RH 3

3−p
.

Secondly, the result on weighted resolvent estimates can be extended to the higher dimensional
case, d > 3, and the lower dimensional case, d = 2. Then one can show that the weighted Stokes
operator generates an analytic semigroup on Lpσ(w). Especially in the higher dimensional case
no major obstacles are expected.

Finally, it would be interesting to know if there exists a class of weights for which the resolvent
estimates of the weighted Stokes operator go beyond p = 3, i.e. more than one ε. The distance
to the boundary weights and power weights seem to be good candidates.
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A Harmonic analysis

This section contains the results from harmonic analysis that are needed throughout the text of
the thesis. The results and proofs are from Grafakos [22], [23] and lecture notes by Auscher [3].
In this literature the results are written down for the space Rd. Most results can be extended to
spaces of homogeneous type as introduced by Coifman and Weiss [6], but it needs to be checked.
Lipschitz domains with the Euclidean metric and Lebesgue measure are spaces of homogeneous
type in this sense. Notice that the surface measure on the boundary of a Lipschitz domain is
a doubling measure by Lemma 2.8. We start by introducing the Hardy-Littlewood maximal
function.

Definition A.1 (Hardy-Littlewood maximal function). Let Ω be a bounded and connected Lips-
chitz domain in Rd and f ∈ L1

loc(∂Ω). Then the Hardy-Littlewood maximal function of f on the
boundary of Ω is given by

M∂Ω(f)(x) = sup
B3x

1

σ(B ∩ ∂Ω)

∫
B∩∂Ω

|f(y)|dσ(y). (A.1)

One of the key properties of the Hardy-Littlewood maximal function is its weak L1 bound-
edness. This is illustrated in the following theorem.

Theorem A.2 (Maximal Theorem). Let Ω be a bounded and connected Lipschitz domain in Rd
and f ∈ L1

loc(∂Ω). Then there exists a C > 0 such that for all α > 0,

σ({x ∈ ∂Ω : M∂Ω(f)(x) > α}) ≤ C

α

∫
∂Ω

|f(y)|dσ(y). (A.2)

Proof. Define

Oα = {x ∈ ∂Ω : M∂Ω(f)(x) > α} .

Then for all x ∈ Oα, there exists a ball Bx with bounded radius and x ∈ Bx such that

1

σ(Bx ∩ ∂Ω)

∫
Bx∩∂Ω

|f(y)|dσ(y) > α.

The radius is bounded because Ω is bounded. Let B = {Bx}x∈Oα and apply the Vitali covering
lemma. So, there exists a countable subset of mutually disjoint balls, denoted by C, such that

Oα ⊂
⋃
Bj∈C

5Bj .

Therefore we find using Lemma 2.8 that

σ(Oα) ≤
∑
Bj∈C

σ(5Bj) ≤ C3
∑
Bj∈C

σ(Bj) ≤
C3

α

∑
Bj∈C

∫
Bj

|f(y)|dσ(y)

≤ C3

α

∫
⋃
Bj∈C

Bj

|f(y)|dσ(y) ≤ C3

α

∫
Oα

|f(y)|dσ(y).

This completes the proof.

The Maximal Theorem is crucial in the proof of the Lebesgue Differentiation Theorem. This
Theorem has applications in in the rest of this section and also in the text of the thesis.
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Theorem A.3 (Lebesgue Differentiation Theorem). Let f ∈ L1(Rd). Then,

lim
r→0

1

|B(x, r)|

∫
B(x,r)

f(y)dy = f(x)

for almost every x ∈ Rd.

Proof. The proof can be found in [22, Corollary 2.1.16].

Notice that this theorem also holds if the balls are replaced by cubes. Furthermore this is a
local Theorem. We can, in the case that Ω is a bounded Lipschitz domain replace f by fχ∂Ω.
Now we turn to one of the most useful results of this section.

Theorem A.4. Let Ω be a bounded and connected Lipschitz domain in Rd, let 1 < p ≤ ∞ and
let f ∈ Lp(∂Ω). Then M∂Ω(f) ∈ Lp(∂Ω) and there exists a C > 0 such that

‖M∂Ω(f)‖Lp(∂Ω) ≤ C‖f‖Lp(∂Ω). (A.3)

Proof. Assume that f ∈ L1(∂Ω) ∩ Lp(∂Ω). Now let α > 0 and define

fα(x) = χ|f(x)|≥α/2(x)f(x)

and therefore
|f | ≤ |fα|+

α

2

and hence
M∂Ω(f) ≤M∂Ω(fα) +

α

2

and
{x ∈ ∂Ω : M∂Ω(f) > α} ⊂

{
x ∈ ∂Ω : M∂Ω(fα) >

α

2

}
.

Therefore by the Maximal Theorem,

σ({x ∈ ∂Ω : M∂Ω(f) > α}) ≤ σ(
{
x ∈ ∂Ω : M∂Ω(fα) >

α

2

}
) ≤ C

α

∫
∂Ω

|fα|dσ.

Thus, by Fubini,∫
∂Ω

|M∂Ω(f)|pdσ = p

∫ ∞
0

σ({x ∈ ∂Ω : M∂Ω(f) > α})αp−1dα

≤ p
∫ ∞

0

C

α

∫
∂Ω

|fα|dσαp−1dα

≤ Cp
∫
∂Ω

∫ 2f(x)

0

|fα|αp−2dαdσ

≤ C 2p−1p

p− 1

∫
∂Ω

|f |pdσ.

Hence M is bounded in L1(∂Ω) ∩ Lp(∂Ω). We now want to extend the result to boundedness
on Lp(∂Ω). By density we can find a sequence fk ∈ L1(∂Ω) ∩ Lp(∂Ω) such that |fk| ↑ |f |.
ThenM∂Ω(fk) ↑ M∂Ω(f) and now we use the Monotone Convergence Theorem to complete the
proof.
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We have thus showed that the Hardy-Littlewood maximal function is bounded on Lp(∂Ω)
when 1 < p ≤ ∞. This is especially useful if we need to bound something in Lp. With this
Theorem in mind a pointwise estimate against the Hardy-Littlewood maximal function is usually
enough.

Theorem A.5. Let Ω be a Lipschitz domain in R3. Let 1 < p <∞ and w ∈ Ap a weight. Then
there exists C > 0, such that(∫

Ω

|M(f)(x)|pw(x)dx

) 1
p

≤ C
(∫

Ω

|f |pw(x)dx

) 1
p

, (A.4)

where C depends at most on p and the Lipschitz character of Ω.

Proof. The proof in the case Ω = R3 can be found in [23, Theorem 9.1.9]. This theorem can be
extended to spaces of homogenuous type in the natural way.

Definition A.6 (Riesz potential). Let Ω ⊂ Rd be a Lipschitz domain, 0 < α < d and f ∈
L1

loc(Ω). Then the Riesz potential of f is defined by

Iα(f)(x) = Cα,d

∫
Ω

f(y)

|x− y|d−α
dy.

Theorem A.7 (Hardy-Littlewood-Sobolev inequality). Let 0 < α < d, 1 < p < q < ∞ and
1
q ≤

1
p −

α
d . Then,

‖Iα(f)‖Lq(Ω) ≤ C‖f‖Lp(Ω),

where C depends on p, q and d.

Theorem A.8. Let Ω ⊂ Rd be a Lipschitz domain, 1 < p <∞ and f ∈ Lp(Ω). Then,

‖∇I1(f)‖Lp(Ω) ≤ C‖f‖Lp(Ω).

Definition A.9 (Calderón-Zygmund Kernel). A function K on Rd × Rd \
{

(x, x) : x ∈ Rd
}

is
called a special kernel with constants δ and A if

(i)

|K(x, y)| ≤ A

|x− y|d
. (A.5)

(ii)

|K(x, y)−K(x′, y)| ≤ A|x− x′|δ

(|x− y|+ |y − x′|)d+δ
(A.6)

whenerver |x− x′| ≤ 2 max(|x− y|, |y − x′|).

(iii)

|K(x, y)−K(x, y′)| ≤ A|y − y′|δ

(|y − x|+ |x− y′|)d+δ
(A.7)

whenerver |y − y′| ≤ 2 max(|y − x|, |x− y′|).
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The class of special kernels with constants δ and A is denoted by SK(δ, A). If K ∈ SK(δ, A),
then the adjoint kernel K∗(x, y) := K(y, x) is also in SK(δ, A). In the thesis we only use special
kernels with δ = 1. The exact value of the constant A is usually not of our interest. Now that
we have defined the Calderón-Zygmund kernel we can define the operators associated with these
kernels.

Definition A.10 (Associated kernel). Let T : L2(Rd) → L2(Rd) be a bounded operator. A
kernel K is associated to T if for all f smooth enough with compact support

Tf(x) =

∫
Rd
K(x, y)f(y)dy (A.8)

for almost every x ∈ Rd \ supp(f).

If we now take a special kernel in the previous definition, we find the definition of a Calderón-
Zygmund operator.

Definition A.11 (Calderón-Zygmund Operator). A Calderón-Zygmund Operator of order δ is
a bounded operator T : L2(Rd)→ L2(Rd) that is associated to a kernel K ∈ SK(δ, A).

It turns out to be the case that Calderón-Zygmund operators are bounded on Lp, when
1 < p <∞. If K(x, y) is a special kernel, we can also define the truncated kernel as

Kε(x, y) = K(x, y)χ|x−y|>ε.

Using this truncated kernel we define the following operators.

T ε(f)(x) =

∫
Rd
Kε(x, y)f(y)dσ(y)

T ε(f)(x) = sup
ε>0
|T ε(f)(x)|.

We call these operators the truncated operator and the maximal singular operator respectively.
Regarding these operators we state the following two theorems. These theorems are formulated
on ∂Ω which have homogeneous dimension d− 1.

Theorem A.12. Let Ω be a Lipschitz domain. Let K be a standard kernel and let T be a
Calderón-Zygmund operator associated with kernel K. Then T has a bounded extension that
maps L1(∂Ω) into L1,∞(∂Ω) with norm

‖Tf‖L1,∞(∂Ω) ≤ C‖f‖L1(∂Ω) (A.9)

and for 1 < p <∞, T has a bounded extension that maps Lp(∂Ω) to Lp(∂Ω) with norm

‖Tf‖Lp(∂Ω) ≤ Cp‖f‖Lp(∂Ω) (A.10)

for all f ∈ Lp(∂Ω).

Proof. The proof for the case Ω = Rd can be found in [23, Theorem 8.2.1]. It can be extended
to spaces of homogeneous type.

Theorem A.13. Let Ω be a Lipschitz domain. Let K be a standard kernel and let T be a
Calderón-Zygmund operator associated with kernel K. Let 1 < p < ∞. Then there exists a
constant C > 0 such that

‖T ∗(f)‖Lp(∂Ω) ≤ Cp‖f‖Lp(∂Ω) (A.11)

for all f ∈ Lp(∂Ω).

Proof. The proof for the case Ω = Rd can be found in [23, Corollary 8.2.4]. It can be extended
to spaces of homogeneous type.
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B Standard results in real analysis

Lemma B.1 (Cauchy inequality). Let a, b ∈ R and ε > 0,

ab ≤ εa2 +
b2

4ε
. (B.1)

Proof. The result follows from a simple calculation,

0 ≤
(
a
√
ε− b

2
√
ε

)2

0 ≤ εa2 − ab+
b2

4ε

ab ≤ εa2 +
b2

4ε
.

Theorem B.2 (Hölder inequality). Let p, q ∈ [1,∞] such that 1
p+ 1

q = 1. Then for all measurable
functions f and g we have

‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq .

Theorem B.3 (Poincaré inequality). Let 1 ≤ p <∞ and let Ω a bounded set. Then there exists
a constant such that for all functions u ∈W 1,p

0 (Ω) we have the inequality

‖u‖Lp(Ω) ≤ C‖∇u‖Lp(Ω). (B.2)

Theorem B.4 (Monotone Convergence Theorem). Let (fn)n≥1 be a sequence of measurable
functions such that 0 ≤ fn ↑ f . Then f is measurable and

lim
n→∞

∫
Rd
fndµ =

∫
Rd
fdµ.

Theorem B.5 (Dominated Convergence Theorem). Let (fn)n≥1 be a sequence of integrable
functions such that limn→∞ fn = f pointwise. If there exists a integrable function g : Rd → [0,∞]
such that |fn| ≤ g for all n ≥ 1, then f is integrable and

lim
n→∞

∫
Rd
fndµ =

∫
Rd
fdµ.

Theorem B.6 (Divergence Theorem). Let Ω ⊂ Rd be a bounded domain with C1-boundary ∂Ω
and let X : Ω→ Rd be a C1(Ω) vector field. Then,∫

Ω

div(X)dx =

∫
∂Ω

X · ndσ

where n denotes the outward unit normal to ∂Ω

The following theorem is a direct consequence of the divergence theorem.

Theorem B.7 (Green’s second identity). Let Ω ⊂ Rd be a bounded domain with C1-boundary
∂Ω. Let φ, ψ ∈ C2(Ω). Then,∫

Ω

ψ∆φ− φ∆ψdx =

∫
∂Ω

ψ
∂φ

∂n
− φ∂ψ

∂n
dσ.
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C Interior estimate of the Poisson equation

Lemma C.1. Let u be harmonic in Ω. Let Ω
′

be a compact subset of Ω. Then for all multiincides
α the following inequality holds

sup
y∈Ω′

|Dαu(y)| ≤ Cr−α sup
y∈Ω
|u(y)|, (C.1)

where r = dist(Ω′, ∂Ω) and where the constant C only depends on the dimension of Ω and the
multiindex.

Proof of Lemma C.1 can be found in [21, Theorem 2.10]

Lemma C.2. Let f be a bounded and integrable function on Ω. Let w be the Newtonian potential
of f . Then w ∈ C1(Rn) and for all x ∈ Ω,

Diw(x) =

∫
Ω

DiΓ(x− y)f(y)dy i = 1, . . . , n. (C.2)

Proof of Lemma C.2 can be found in [21, Lemma 4.1]

Lemma C.3. Let Ω be a domain in Rn. Let u ∈ C2(Ω) and f ∈ C(Ω) and they satisfy the
relation ∆u = f in Ω. Define the concentric balls B1 = B(x,R) and B2 = B(x, 2R) ⊂⊂ Ω.
Then for all x ∈ Ω one can writes u(x) = v(x) + w(x), where v(x) is harmonic and w(x) is the
Newtonian potential of f .

Lemma C.4 (Poisson derivative in Rd). Fix x ∈ R3 and let ∆u = f in B(x, r) and ` ≥ 1. Then
the derivatives of u in x can be estimated by∣∣∇`u(x)

∣∣ ≤ Cr−` sup
B(x,r)

|u|+ C max
0≤j≤`−1

sup
B(x,r)

rj−`+2
∣∣∇jf ∣∣. (C.3)

Proof. Start by writing u(x) = v(x)+w(x), where v is harmonic and w is the Newtonian potential
of f , by the virtue of Lemma C.3. Now by Lemma C.1 we know that

sup
y∈B(x, r2 )

|Dv(y)| ≤ Cr−1 sup
y∈B(x,r)

|u(y)|.

Furthermore we know by Lemma C.2 that

sup
y∈B(x, r2 )

|Dw(y)| = sup
y∈B(x, r2 )

∫
B(x,r)

|DΓ(y − η)||f(η)|dη

≤ sup
y∈B(x, r2 )

sup
s∈B(x,r)

|f(s)|
∫
B(x,r)

|DΓ(y − η)|dη

≤ sup
s∈B(x,r)

|f(s)| sup
y∈B(x, r2 )

∫ r

0

∫
∂B(x,1)

|DΓ(y + r̃η)|r2dσ(η)dr̃

≤ C sup
s∈B(x,r)

|f(s)|
∫ r

0

∫
∂B(0,1)

dσ(η)dr̃

≤ Cr sup
s∈B(x,r)

|f(s)|.
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Putting this estimates together yields

|Du(x)| ≤ sup
y∈B(x, r2 )

|Du(y)|

≤ sup
y∈B(x, r2 )

|Dv(y)|+ sup
y∈B(x, r2 )

|Dw(y)|

≤ Cr−1 sup
y∈B(x,r)

|u(y)|+ Cr sup
y∈B(x,r)

|f(y)|.

We now finish the proof using an induction argument. The claim is already shown to hold for
` = 1. Now assume the induction hypothesis and work out the case ` = k + 1. To do this first
notice that u and f statisfy ∆Dku = Dkf on Ω. Now we calculate∣∣Dk+1u(x)

∣∣ =
∣∣D(Dku)(x)

∣∣
≤ Cr−1 sup

y∈B(x,r)

∣∣Dku(y)
∣∣+ Cr sup

y∈B(x,r)

∣∣Dkf(y)
∣∣

≤ Cr−1

(
Cr−k sup

y∈B(x,r)

|u(y)|+ C max
0≤j≤k−1

sup
y∈B(x,r)

rj−k+2
∣∣Djf

∣∣)+ Cr sup
y∈B(x,r)

∣∣Dkf(y)
∣∣

≤ Cr−(k+1) sup
y∈B(x,r)

|u(y)|+ C max
0≤j≤k

rj−(k+1)+2
∣∣Djf

∣∣,
where in the second inequality the induction hypthesis was used. This completes the proof.
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