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Abstract
Although the field of structural optimization has undergone substantial growth the last decades, the efficiency of the
programs used to generate structurally optimal designs for industrial applications remains questionable. To make
matters worse, as structural problems become more complex, e.g. by adding multi-disciplinary optimization targets
to the problem formulation, the slow convergence speed associated with the inefficiency of these programs turns into
a significant issue. Thus, one can argue that there is a need for improvements in the optimization methods used to
address such problems.

One of the most prominent methods to tackle structural optimization problems is Sequential Approximate Optimization
(SAO). This method is comprised of 2 steps: approximating locally the non-analytical functions that describe the
studied phenomenon and solving the resultant nonlinear optimization problem. This report is a thorough investigation
of the function approximation part on a fundamental level, and an attempt to improve the quality of the generated
approximation.

We start by conducting a literature survey of the state-of-the-art function approximation methods and evaluating their
performance – in terms of convergence speed – under various scenarios. Then, we focus our attention to the most widely
applied family of approximations (i.e. the Method of Moving Asymptotes (MMA)) by locating and understanding
their inadequacies. These inadequacies are then addressed by proposing a solution that includes the generation of
novel mixed approximation schemes that can outperform their constituent members for a set of small-scale, albeit
challenging, test problems.

Apart from implementing, validating and evaluating fairly different approximation schemes, we also generate approx-
imation selection criteria, whose output is the ‘optimal’ approximation method for any given function at an arbitrary
point. The outcome of this process is an ‘Optimization Laboratory’ that offers an in-depth understanding of the
behaviour of any function approximation method under examination on a fundamental level. It is effectively an
object-oriented software library that can be used to compare different approximation schemes on a set of problems,
while offering a detailed insight on the quality of any approximation at any given point. Numerical examples that
support our assertions are presented, building a strong case in favor of the possible superiority of a mixed scheme com-
pared to its component members, as far as adaptiveness, robustness and total computational cost of SAO algorithms
are concerned.

More specifically, all approximations used herein are analyzed with a benchmark profiling method. Different sets of
initial points, multiple convergence criteria and several tolerances are used in order to obtain an objective comparison
between the considered methods. The results of this thorough comparison are summarized in performance profile plots
and discussed thereafter.

The results of the present research suggest that the generated mixed schemes are superior to their constituent members
for the considered problem set. A significant reduction in the number of iterations required to converge to a local
optimum was achieved and overall convergence was improved. Even in the most conservative scenario, the best mixed
scheme outperformed all others for 46% of the implemented problems (compared to MMA that did so for just above
15% of them). What is more, improved robustness was also achieved by successfully solving 95% of the considered
problems (compared to 72% for MMA).

However, this improved performance is accompanied by an increase in the computational cost of the approximation
process. To this end, an analysis of the relative computational cost of mixed schemes compared to the state-of-the-art
approximation methods – in terms of time spent per iteration on the approximation – follows the performance results
and a method to estimate the viability of approximation enhancement is proposed. Finally, conclusions on the relative
performance of all methods are drawn from the aforementioned comparison and recommendations for further research
on improving the performance and lowering the computational cost of mixed schemes are given.
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1 | Introduction
1.1 Structural optimization
SO is often defined as the subject of making an assemblage of materials sustain certain loads in the ‘best possible
way’ [22]. After years of pursuing optimized structures, a class of computational methods aimed at finding the optimal
design – within a design domain – with respect to certain criteria and under given load cases was formed. The
definition of the word ‘best’ determines both the objective and the constraints of the optimization process. To give
an example, for some applications the ‘best’ design might translate to the lightest one, while for others, the stiffest
design might be desirable. There are 3 main types of SO:

• Sizing optimization

• Shape optimization

• Topology optimization

The last category – being the most general, versatile and recent – will be the ultimate goal of the present survey,
though all methods and findings can be extrapolated to the other two categories as well. TO effectively means
distributing material in a specific domain in the ‘best possible way’, while sustaining the desired loads and obeying
given constraints. The interested reader is referred to [22] for some detailed definitions on structural and topology
optimization. Although TO was initially developed for load carrying structures, the rapid increase in computational
power has enabled scientists to use this method even for complicated multidisciplinary problems, which may involve
structural, thermal, fluid mechanics and chemical finite element simulations, e.g. [23], [24]. An example of TO can be
seen in Fig. 1.1, where the frame of a motorbike has been optimized with respect to its weight and compliance.

Figure 1.1: Optimized bike frame by [1]

Although computer power is increasing exponentially, so is the complexity of the problems solved by most industries.
This means there is a growing need for computational methods that can tackle the aforementioned problems with
a minimal use of resources or, from an optimization point of view, minimum computational cost. To put things in
perspective, such a structural optimization process might take days before converging to a solution, even in power-
ful supercomputers. Therefore fast, robust, flexible and overall convergent optimization methods are of increasing
interest.

Amongst numerous optimization algorithms that have been developed over the past century, see Fig. 1.2 for the most
commonly used ones, some of them appear to be more advantageous for large-scale TO problems.

1
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Figure 1.2: Typical constrained optimization algorithms, classified by the order of the gradient information used

Without loss of generality, since we ultimately aim to include all types of SO problems in the present research, we can
use TO as an example. These problems exhibit a specific set of attributes that typically involve:

• A very large number of design variables

• Multiple constraints

• Inherently nonlinear responses (i.e. objective function and/or constraints)

• Availability of response sensitivities, stemming from the Sensitivity Analysis (SA)

• Computationally expensive function evaluations (e.g. it has been reported that for large-scale minimum compli-
ance problems function evaluations take up to 97% of the total computational time [17])

• The number of design variables far exceeds the number of constraints for nested formulation settings, i.e. Nested
Analysis and Design (NAND). See [25] for more details on the TO formulation settings

Evidently, in order to improve the efficiency of a constrained optimization algorithm used in a TO framework, one
must exploit these attributes by tailoring the algorithm to the specific set of problems it addresses. For example, it is
self-evident that – if handled appropriately – response sensitivity information can be used to accelerate convergence.
The literature on structural optimization algorithms agrees that the ‘best-fit’ to the large-scale TO problems described
above is the SAO algorithm introduced in Section 1.3. Consequently, the present research will revolve around this
approach.

1.2 Mathematical definitions
Before discussing the most prominent SO methods found in literature, some mathematical definitions must be intro-
duced. In this section, we will define the primal optimization problem PNLP, its local approximation P̃NLP and its
augmented primal-dual version P̃NLP,P−D, which is a transformation of P̃NLP used by several optimization algorithms.
The significance of those definitions will become apparent to the reader in the coming sections.

Primal problem
We start by introducing the primal nonlinear optimization problem PNLP. In the general case, it consists of an n–
dimensional design variable vector X = [x1 x2 . . . xn]

T , a scalar-valued nonlinear objective function g0(X), m–nonlinear
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constraints gj(X), and 2n–bound constraints on the design variables xi, see Eq. (1.1) below:

PNLP =


minimize

X
g0(X)

s.t. gj(X) ≤ 0, j = 1, . . . ,m

xi ≤ xi ≤ xi, i = 1, . . . , n

(1.1)

This is the most general mathematical description of the non-linear, continuous and constrained problem that is subject
to optimization. All the essential modelling aspects are included herein and the value of the optimization’s outcome
largely depends on the accuracy of this formulation with respect to the physical phenomenon under investigation.
Therefore, one must aim to include the minimum number of parameters (e.g. variables, functions) of the studied
phenomenon needed to capture the desired degree of representation.

Primal approximate sub-problem
We are interested in problems for which the evaluation of (some of) the responses in Eq. (1.1) are computationally
demanding, due to for example one or multiple FEAs. “For problems of high dimensionality, efficient second order
methods such as SQP may become impractical; not only due to the storage requirements of order n2 associated
with the Hessian matrix, but also the computational effort associated with calculating the Hessian matrix in the first
place, the more so if the problem of Eq. (1.1) is indeed simulation-based. A viable alternative to the second order
methods is SAO, in which the objective and constraints are separately approximated using simple analytical functions
of (hopefully) reasonable quality” [26]. Under these conditions, the initial problem PNLP is replaced by its local
approximation P̃NLP, which is computationally inexpensive to solve under certain assumptions (see Section 1.3). The
main reasons for approximating Eq. (1.1) are:

• There is no analytical form for responses gj(X), as evaluating them at any point (i.e. gj(X
(k))) is typically the

outcome of an FEA, rendering PNLP too computationally expensive to address directly. Therefore, a minimum
number of FEA is desired.

• SA can be included in the FEA and yield inexpensive computation of local response gradients, i.e. ∂gj/∂xi(X
(k)),

whose use in an approximate function can be beneficial.

P̃NLP =


minimize

X
g̃0(X)

s.t. g̃j(X) ≤ 0, j = 1, . . . ,m

xi ≤ xi ≤ xi, i = 1, . . . , n

(1.2)

There are many ways to approximate Eq. (1.1), but the main idea is that the objective and constraint functions
are approximated at design – or expansion – points X(k) using appropriate schemes (e.g. Taylor-like expansions) to
construct a local, approximate sub-problem [12], as in Eq. (1.2). This sub-problem is then solved using the methods
of Fig. 1.3. The process is then iterated until certain convergence criteria (e.g. Eq. (1.4)) are met.

Primal-dual approximate sub-problem

There are numerous ways to solve P̃NLP. One of the most widely applied approaches in the field of SO is to transform
P̃NLP to P̃NLP,P−D. To do so, the Lagrangian of Eq. (1.3) needs to be introduced. Although this augments the working
variable space dimension (i.e. the number of unknowns in the equations to be solved) from X ∈ Rn to {X,λ} ∈ Rn+m,
under certain assumptions (e.g. convexity and separability of functions g̃j(X), see [12]) it is beneficial to do so in order
to solve Eq. (1.2) efficiently. The aforementioned Lagrangian reads as:

L(X,λ) = g̃0(X) +

m∑
j=1

λj g̃j(X) (1.3)

where, λ = [λ1 λ2 . . . λm]T is the Lagrange multiplier vector or, in a Primal-Dual Sequential Approximation (PDSA)
framework, a vector containing the dual variables. The efficiency of this method largely depends on the convexity
and separability assumptions made when defining P̃NLP, which guarantees that the Lagrangian is also separable and
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convex. Consequently, the Lagrangian can be minimized by many algorithms that are driven by the 1st-order KKT
optimality conditions below:

∂g̃0
∂xi

∣∣∣∣
X(k)

+

m∑
j=1

λj
∂g̃j
∂xi

∣∣∣∣
X(k)

= 0 , ∀i (1.4a)

g̃j(X) ≤ 0 , ∀j (1.4b)
λj ≥ 0 , ∀j (1.4c)

λj g̃j(X) = 0 , ∀j (1.4d)

The quasi-unconstrained (only low-level non-negativity constraints are present, i.e. λj ≥ 0, ∀j) primal-dual approxi-
mate sub-problem can be formulated as:

P̃NLP,P−D =

{min
X

max
λ

L(X,λ)

s.t. λj ≥ 0, j = 1, . . . ,m
(1.5)

which can be solved efficiently by any gradient-based optimization method that can handle unilateral constraints, see
Fig. 1.2. Then, the optimal set of primal (X∗(k)) and dual (λ∗(k)) variables is substituted in Eq. (1.4) to obtain the
residuals and assess the procedure’s convergence. Finally, move limits (∆ = [δ1 δ2 . . . δn]

T ) and bound constraints
(X ≤ X ≤ X) must be applied to ensure stable convergence and feasibility of the optimal design point:

X(k+1) = X∗(k) (1.6a)
X(k+1) ≥ max(X(k) −∆, X) (1.6b)
X(k+1) ≤ min(X(k) +∆, X) (1.6c)

The assumption made here is that the feasible domain defined by Eq. (1.6) has a hyper-rectangular shape. Since the
move limit strategy is a research topic by itself, in this study we consider only this simple – albeit widely applied –
approach.

1.3 Sequential approximate optimization
Probably the most successful optimization algorithms for solving large-scale TO problems, see Fig. 1.3, include the
transformation from discrete to a continuous design variable space in order to make use of the local gradient informa-
tion, i.e. SA. In practice, TO algorithms that include the procedures of FEA and SA are often implemented in the

Primal Methods
(n−m)

Constrained Optimization Algorithms

for NLP of Large Scale Systems

Reduced
Gradient

Gradient
Projection

Feasible
Directions

Penalty/Barrier
Methods

(n)

Penalty Functions
(Exterior Point)

Barrier Functions
(Interior Point)

Dual Methods
(m)

Primal-Dual Methods
(n+m)

Augmented
Lagrangian

Lagrangian

Augmented
Lagrangian

Lagrangian

SLP
Methods

Linearization
at X(k)

Figure 1.3: Prominent constrained optimization algorithms that applicable to large-scale TO problems [2], [3]
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context of SAO. This algorithm, see Fig. 1.4, approximates the primary optimization problem PNLP with a sequence
of simpler explicit sub-problems P̃NLP at a given design point X(k), such that the initial PNLP is solved by solving
a sequence of approximate sub-problems P̃NLP. This solution strategy for PNLP can be seen in Fig. 1.4a, and its
graphical representation for the case of 2 design variables in Fig. 1.4b.

The procedure should lead to a stationary solution within a minimum number of iterations and without constraint
violations. Important to note is that evaluating the functions gj(X

(k)) and their derivatives ∂gj/∂xi(X
(k)) costs the

vast majority of the overall computational time. Although such algorithms can tackle robustly problems with a large
number of design variables, there has not been any significant change in the methods commonly used during the last
decades (i.e. the MMA [27]), despite the fact that several ideas for improvements have arisen [4], [28]. In an attempt
to identify the reasons why this occurs, further understanding of the SAO algorithm is necessary. To this end, in the
present thesis SAO methods will be studied extensively and on a fundamental level.

As mentioned above, SAO algorithms comprise of 2 subsequent parts:

(a) Approximation of responses gj(X) at a design point X(k), leading to P̃NLP formulation

(b) Solution of P̃NLP, using an algorithm from Fig. 1.3

(a) Iterative solution scheme
(b) Original optimization problem (1) and its approxi-
mated form (2) around the current design point X(k)

Figure 1.4: SAO procedure [4]: Algorithm flowchart (a) and a graphical representation of the solution space at the current
iteration (b)

As far as the second part is concerned, in Fig. 1.3 the solution algorithms have been classified with respect to the
variable space they operate in (i.e. the number of unknowns involved in the equations whose solution we seek).
Primal methods use the constraints to reduce the solution space (i.e. n −→ n − m) and essentially look for feasible
directions in the primal space (X ∈ Rn) that can keep constraints satisfied while minimizing the objective function.
Penalty/Barrier methods transform the constrained problem PNLP to an unconstrained one (e.g. P̃NLP,P−D) and
solutions are found in the primal space (X ∈ Rn) too. Primal-Dual methods construct a Lagrangian (or an augmented
version of it) and perform an unconstrained minimization with various methods (see [2]) in the augmented variable
space ({X,λ} ∈ Rn+m). Although dual methods work similarly, they require one more assumption (i.e. closed form
of primal-dual relationships, see below) which leads to a simplified problem formulation that allows one to work in the
reduced dual space (i.e. λ ∈ Rm). The major advantage of these methods, and the reason of their success, is that the
number of inner iterations to solve P̃NLP depends only on the number of constraints (m) and is decoupled from the
number of design variables (n) that is typically large. In combination with techniques for reducing (m), dual methods
can become very cost-effective. Of course, the simplest SAO scheme would be to (a) linearize the problem (e.g. with
a 1st-order Taylor expansion) and (b) use Linear Programming methods to solve it. However, the convergence of this
method would depend on the degree of non-linearity of PNLP, which is undesirable.
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The vast majority of the SAO community seems to implicitly agree on the fact that dual solvers are the favorable
option amongst other methods for large scale SO problems in a NAND framework (see Fig. 1.3) by directing most
of the ongoing research on them. In order for dual methods to be efficient, the approximate primal approximate
sub-problem P̃NLP must abide by the following requirements:

1. Separability
The primal approximate sub-problem P̃NLP is separable if its constituent functions (i.e. g̃j(X), ∀j) are separable,
see Eq. (1.2). The consequences of such a requirement are listed below:

• A separable function has one fundamental property that can be exploited to improve the efficiency of itera-
tive solution schemes: it has a diagonal Hessian. This makes its computational cost viable, in contrast with
the prohibitive cost of the non-diagonal case. Thus, P̃NLP can be solved very efficiently using approximate
2nd-order information (e.g. Quasi-Newton schemes).

• A separable Lagrangian means one can solve separately n one dimensional minimization problems [13],
instead of solving one n−dimensional problem. This can be exploited using parallel computing and thus
decrease the duration of the solution process.

• Bound constraints (i.e. xi ≤ xi ≤ xi, i = 1, . . . , n) can be handled very efficiently, as one can rewrite
X = X(λ) as xi = xi(λ), ∀i. This enables the explicit application of each bound constraint on the respective
design variable [13]. Otherwise, one would have to consider 2n extra constraints, which would render the
method inefficient, as the working variable space would become {X,λ} ∈ R2n+m.

2. Convexity
P̃NLP is convex if its constituent functions (i.e. g̃j(X), ∀j) are convex. Although convexity is a sufficient – but
not a necessary – condition in order to invoke Falk’s dual formulation [29], most research papers avoid its strict
mathematical requirements and simply assume convexity of all functions g̃j(X). However, the actual prerequisite
is uniqueness of minimizer X∗ for the Lagrangian L(X,λ) within its bound constraints (i.e. xi ∈ [xi, xi], i =
1, . . . , n) for any arbitrary λ [30]. The benefits of such assumptions are:

• Guarantees the sufficiency – apart from necessity – of KKT conditions to attain convergence, see Eq. (1.4)

• The unique solution of convex problems allows the use of efficient gradient-based algorithms that converge
fast

• The solution of the primal problem coincides with the solution of its dual (i.e. no duality gap [13])

3. Closed form of primal-dual relationships X = X(λ)

For the effectiveness of dual solvers, it is crucial for P̃NLP to be formulated in a way that the KKT conditions
of Eq. (1.4) can be solved efficiently and yield xi = xi(λ), ∀i within each iteration. The repercussions of this
requirement are:

• This (n× n) system can be solved analytically during every iteration (k), without the need of an iterative
process (e.g. a Newton-Raphson scheme) which would result in an increased computational cost. This is
the reason why some more advanced approximation schemes that do not allow an analytical solution (e.g.
GCMMA [27], TANA [31]) have not been used extensively in SAO [12]. Typically, explicit relationships of
xi = xi(λ), ∀i that can be solved analytically are possible if the approximation functions g̃j(X) are simple
enough. Unfortunately, no strict definition for which approximations yield explicit primal-dual relationships
that can be solved analytically has been found in the literature. However, researchers (see [32], [33]) have
reported methods that are guaranteed to yield such explicit relationships.

Furthermore, keeping in mind that the influence of the solver is not the focus of the present research and that it has
been reported that the non-explicit character of primal-dual relationships is manageable [13], we attempt to keep the
generated method (see Chapter 4) as general as possible by implementing a primal-dual interior point solver instead
of a purely dual one.

Primal-dual Sequential Approximate Optimization
Being a sub-field of SAO, the Dual Sequential Approximation (DSA) algorithm [12] is perhaps the most widely
applied algorithm for TO problems, considering the popularity of the NAND formulation and the poor performance
of Optimality Criteria (OC) methods when multiple constraints are present [34]. One can implement several different
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solvers in a DSA framework, depending on the problem type at hand. In the present report, we will be using a variation
of DSA with a primal-dual interior point solver [35]. To depict this difference, we will refer to the DSA variation used
herein as PDSA. In this section, we will briefly describe the general steps one needs to take in order to apply PDSA
to any problem:

• Formulate PNLP: Modelling of physical phenomena in the form of Eq. (1.1)

• Calculate function values gj(X(k)) and their sensitivities ∂gj/∂xi(X
(k)) by performing FEA and SA respectively

at a design point X(k)

• Formulate P̃NLP: Approximate PNLP locally with Taylor-like expansions around the current point X(k), see
Eq. (1.2)

• Formulate P̃NLP,P−D: Convert the constrained P̃NLP to an unconstrained problem that can be solved more
efficiently under certain assumptions, see Eq. (1.5)

• Solve P̃NLP,P−D: Find the design variable vector (i.e. minimizer X∗(k)) that minimizes P̃NLP,P−D and therefore
P̃NLP

• Update the current design point (X(k+1) = X∗(k)) and repeat the process from the 2nd step until convergence

An overview of the the PDSA algorithm can be seen in Fig. 1.5, from which one can clearly see the similarities with
Fig. 1.4a of the SAO scheme.

Primal problem PNLP with initial

design point X(k)

Construct approximate primal

sub-problem ˜PNLP at current

design point X(k)

Update current design point

X
(k+1)

← X
∗(k)

Satisfies termination criteria?

Finish

Yes
No

k
=

k
+
1

Solve the Primal-Dual approximate
sub-problem P̃NLP,P−D (find X

∗(k))

Augment ˜PNLP to ˜PNLP,P−D by

introducing Lagrangian

Figure 1.5: PDSA algorithm flowchart

1.4 Examples of inadequate performance of existing methods
There are several problems in the SAO literature that are known to cause approximations of low quality. For example,
researchers have reported poor convergence properties of optimization problems concerning certain truss configurations
[5], composite material layering [4] and self-weight problems [8]. In this section we will briefly describe some of those
issues, as well as the reasons for the inadequate performance of approximations. A list of some of the SO problems
that are known to cause these issues can be found below:

• Dissimilar behaviour of design variables

• Aggregated response functions
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• Design-dependent loads

• Design-dependent constraints

• Dissimilar behaviour of response functions

Dissimilar behaviour of design variables
Already from 1998, researchers [5] had observed that the diversity in design variable types of SO problems could have
serious implications on the performance of an optimization algorithm. To the author’s knowledge, the first paper that
addressed this issue referenced truss configuration problems with both cross-sectional areas and nodal coordinates as
design variables, see Fig. 1.6. Along the same lines, composite material layering typically includes finding the optimal
fiber orientation (θ∗) as well as the optimal ply thickness (t∗). In optimization terms, this effectively means there
are at least two inherently different design variable types that exhibit monotonous and non-monotonous behaviour
respectively, see Fig. 1.7. Under these conditions, and taking into account that the ‘structure’ of an approximating
function of Section 2.1 must be similar to the ‘nature’ of the function it approximates (e.g. Fig. 1.7b) for an efficient
SAO algorithm, one can clearly conclude that a single type of approximation will be sub-optimal for this type of
problems. In both cases, the proposed solution was to introduce a mixed approximation scheme (i.e. a combination of
different local analytical approximation functions) able to address inherently dissimilar design variable types.

(a) Initial truss configuration (b) Optimal truss configuration

Figure 1.6: Truss configuration problem [5]: Nodal coordinates and cross-sectional areas are used as design variables

(a) In plane loading of ply laminates (b) Strain energy density of ply laminate

Figure 1.7: Composite layering optimization problem [6]: Shear and torsional stress of a planar laminate

Aggregated response functions
A fabrication method that is attracting increasing interest in topologically optimized designs is additive manufactur-
ing. The design of a structure was initially decoupled from its manufacturing process, resulting in large discrepancies
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between the expected (from FEA simulations) and the observed (from experiments on the fabricated product) perfor-
mance. However, researchers [7] were able to include manufacturability issues in the problem formulation of PNLP.
Minimum and maximum feature sizes were imposed on the design as constraints to increase the robustness of the
fabricated product’s performance against manufacturing defects. These local geometric constraints are implemented
in an aggregated formulation in order to preserve the efficiency of dual solvers in a NAND setting of TO problems when
m << n. Nonetheless, including these aggregated response functions in a TO problem formulation has significant
consequences on its convergence curve, see Fig. 1.8b.

(a) 2D-MBB beam of size 3L × L: The blue lines represent the DoFs that are fixed and the black
areas are the non-optimizable zones defined as solid material. SP-X represents a symmetry plane with
respect to the X-axis

(b) Convergence curve and design evolution throughout the optimization

Figure 1.8: Density-based TO of a 2D-MBB beam with aggregated geometric constraints on minimum and maximum feature
size for robust performance against manufacturing defects [7]

Design-dependent loads
This class of problems is a generalized formulation of the most popular forms of TO problems (e.g. compliance
minimization with constant loads, i.e. F = const). As their name suggests, they involve problem formulations for
which the applied loads on the structure under design depend on the design itself, i.e. F = F(X). The interested
reader is referred to [36] for a detailed review on the topic. As an example, we can think of a bridge design (see
Fig. 1.9b) whose applied load is its own weight. Clearly, the applied load depends on the design itself, adding a degree
of complexity to the problem as the response functions involved change – along with the design – from one iteration
to another. For example, the self-weight problems have proven to be particularly hard to solve. Researchers [8]
have reported that a direct extension from minimum compliance problems leads to poor algorithm convergence, due
to:

• A non-monotonous compliance behaviour, see Fig. 1.9c

• A possibly unbounded solution

• Parasitic effects for densities close to zero when the Solid Isotropic Material with Penalization (SIMP) law is
used, see Fig. 1.9b

Various workarounds have been suggested for self-weight problems, see [8]. Those may include a combination of mod-
ifying the SIMP law for close to zero densities in order to clear out artifacts, as well as the use of mixed approximation
schemes to tackle the aforementioned complicated response function behaviour.
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(a) Self-weight arch problem (b) Artifacts of SIMP model for low densities

(c) Non-monononous behaviour of compliance (d) Convergence oscillations

Figure 1.9: Intricacies of self-weight TO problems [8] illustrated by a 2D arch problem

Design-dependent constraints
Another category of problems that are prone to undesired convergence behaviour are design-dependent constraint
problems, see [10]. The main reason for this undesired behaviour is the fact that when material is absent from a
certain region, so is the respective constraint. Just like stress constraints in truss configurations are present only for
members that have a cross-sectional area larger than zero (see Fig. 1.11), heat constraints are only present when the
density of a region is positive (see Fig. 1.10). Therefore, as the design changes form between iterations, apart from
the applied loads, the applied constraints must also change accordingly.

(a) A 2-D heat transfer TO problem (b) Material distribution (left) and Temperature field (right)

Figure 1.10: A heat distribution TO problem [9]

The implications of design-dependent constraints are well known and have been described in detail. To give an
example, [10] investigated the 3-bar truss configuration of Fig. 1.11a and concluded that without the modifications
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proposed therein, only the 3-bar solution of Fig. 1.11d can be obtained. The 2-bar solution of Fig. 1.11c is unreachable
from any starting point of the solution space shown in Fig. 1.11b.

(a) 3-bar truss problem (b) Solution space for cross-sectional areas

(c) 2-bar solution (d) 3-bar solution

Figure 1.11: Intricacies of design-dependent constraint problems [10]: The 3-bar truss problem

Dissimilar behaviour of response functions
From the previous examples one can conclude that the increasing complexity of optimization problems will likely
render most current approximation methods of SAO insufficient in the near future. In addition, the need for intricate
optimization problems is expected to keep rising as the available computational power grows and multi-disciplinary
problem formulations become common practice, see [23], [24] and [9] for some examples. Inevitably, an increase in the
number and diversity of the design variables used to model these problems will follow.

Reasonably, one can estimate that only an equally diverse and adaptable approximation scheme will be able to
address the aforementioned complex problems robustly and efficiently. As an example, one can clearly see in the novel
analysis of Fig. 1.12 that, even for the simple problem of Fig. 1.12a, different functions gj(X) have different optimal
approximations g̃j(X) at different approximation points X(k) (the colors in the plots indicate the best-fitting local
approximation). Taking the above into consideration, advances in the SAO community must follow the requirements of
the state-of-the-art problems by upgrading the algorithms used in order to address the most intricate problems.
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(a) 2-bar truss problem [12]
(b) Best approximation for g0(X)

(c) Best approximation for g1(X) (d) Best approximation for g2(X)

Figure 1.12: A novel representation of the optimal approximation functions g̃j(X) for all possible approximation points of the
feasible domain of (a), i.e. ∀X(k) ∈ [X,X]

1.5 Thesis aim and approach
The aim of the present research is to improve the performance of SAO algorithms. To do so, the number of iterations
(k) and/or the cost per iteration must be minimized. Since the computational cost largely depends on the number
of FEA – and therefore the number of iterations – in the present work we focus on reducing the number iterations
by improving the approximation g̃j(X) of response gj(X) at each design point X(k), using information that is readily
available (e.g. from previous iteration points). This is possible because of the high computational cost of redundant
function evaluations that are associated with the oscillatory behaviour and/or the insufficient change in the design
variables when approximations of low quality are generated. Moreover, since we ultimately aim to address the most
intricate SO problems (e.g. multi-FEA TO formulations) and preserve the general character of our method, our
approach will include the implementation of a primal-dual solver. By using the same solver for all the implemented
approximations, we can test the effects of a new method. Consequently, caution is needed to preserve the prerequisites
of such a solver (i.e. convexity and separability, see Section 1.3).

It should be clear by now that constructing an accurate approximation for any arbitrary response gj(X) at any design
point X(k) is not trivial. Moreover, another important consideration is to what extent enriching the approximation
process with more information is cost effective, due to additional computational cost of the accompanying parameter
estimation (e.g. applying Eq. (2.17)). Consequently, approximation enrichment must be realized with caution.

In order to improve the performance of SAO algorithms, one must first understand their behaviour on a fundamental
level. To this end, applying these algorithms to a set of complicated and large-scale problems is neither insightful
nor efficient. At this stage, a set of small-scale – albeit challenging – problems that can simulate the characteristics
of the large-scale problems we ultimately aim to address can offer significantly more insights. This can be explained
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by the fact that one can perform a detailed, graphical and computationally expensive analysis (e.g. plotting pairs
of {xi, gj} and {xi, g̃j} at every iteration) on a problem with a small number of variables and functions, whereas
for large-scale problems this is no longer possible. Only after an in-depth understanding of the algorithms under
investigation is achieved and strong indications for improved performance on smaller problems are present, can one
proceed to including complicated, large-scale problems. Consequently, the focus of the present thesis is to understand
the behaviour and improve the performance of SAO methods on small-scale problems. This effectively means that the
product of the number of design variables and response functions n · (m+ 1) is relatively small for all the considered
cases. This product is referred to as the ‘characteristic size’ of a problem in the present thesis.

Our approach to this topic will include the following aspects:

• An extensive literature review of the state-of-the-art SAO methods used in SO.

• Implementing the most popular methods (i.e. MMA family of approximations, see [4] for a detailed review
thereof) and verifying results with literature by applying them to benchmark problems. It is important however
for this implementation have a modular structure, capable of being enriched with additional features (e.g.
approximation methods, problems, performance metrics, etc.) as the research progresses. Therefore, our goal is
to create a modular software library that will facilitate the generation of new approximation schemes. We will
herein refer to this library as ‘Optimization Lab’.

• Locating and understanding the inadequacies of the state-of-the-art optimization methods (e.g. oscillating or
slow convergence when dissimilar design variable types are present [6]). Our endeavour addresses challenging
problems, wherein the aforementioned methods perform poorly, see [12], [37], [14] and [38]. This step is quite
involved, since patterns of detrimental situations for the implemented algorithms need to be detected in order
to avoid them later on.

• Subsequently, a class of optimization problems wherein the state-of-the-art methods perform poorly will be
defined and a method will be generated, specifically tailored for this class of problems.

• The method generated will be:

– Using the appropriate approximation method for each response gj(X), instead of using the same one for
responses that may be inherently dissimilar. To the author’s knowledge, the most prominent method to
achieve this systematically is the GMMA family of approximations, see [39]. Therefore, our approach will
investigate the performance of this method and use it as a reference for benchmarking.

– Choosing consistently the most suitable approximation method g̃j(X) at each design point X(k) and avoiding
error propagation, in the sense of convergence complications that arise when approximations do not ‘fit’ the
respective responses gj(X) accurately enough. This effectively means that based on inexpensive information
stored from previous iteration points a criterion is formed, the output of which is the selection of an
appropriate approximation method for the current iteration (k). Therefore, this step addresses method
selection depending on the situation encountered. This will lead to an adaptive scheme that has the
ability to deal with challenging problems robustly and efficiently. Researchers have already addressed this
possibility, see [40], [13] and [12], but there is still plenty of room for further research.

• Last but not least, the performance evaluation of the generated method needs to be taken into account. Apart
from choosing a diverse set of benchmark problems that would simulate the variety of complications an SAO
algorithm may encounter, the influence of a response’s ‘structure’ around an arbitrary expansion point X(k)

needs to be addressed as well, as the local behaviour of a function would affect the results and might compromise
the objectivity of the derived conclusions.
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2 | Review of existing methods
2.1 Approximation methods
The use of approximation functions in SO problems is not a new approach. The first implemented approximations
already appeared in the mid-70s [41]. The most accepted classification of approximation methods for SO [11] distin-
guishes between local, medium-range and global approximations (with respect to their range of application) and covers
function (i.e. gj(X)), as well as problem (i.e. PNLP) simplifications (with respect to the approximated quantity), see
Fig. 2.1 and Fig. 2.2. An important note here is that function and problem approximations are independent of one
another. In the present report we focus our attention on function approximations, assuming that PNLP has already
been simplified as much as possible in the modelling phase.

Approximations

wrt Range wrt Approx. Quantity

Mid-range GlobalLocal Function
Approximation

Problem
Simplification

gj(X) → g̃j(X)
• ↓ # of constraints gj(X)

• ↓ # of design vars Xi

Figure 2.1: Classification of approximation methods depending on their range and the approximated quantity [11]

Moreover, a summary of the optimization process for an SO problem can be seen in Fig. 2.3, wherein one can better
understand the role of a function approximation in such a framework. Since we aim to minimize the number of function
evaluations, which is the dominant computational cost, it makes sense to focus our research on local and mid-range
function approximations rather than global ones, as they require a minimum amount of FEA (i.e. 1 per iteration, see
Fig. 2.3). In the coming sections, these methods will be described in detail.

Approximation Concepts

Local Mid-range

Problem

Approximation

Multi-point

Approximation
OtherScaling

Local-Global

Response

Surface

Neural

Networks

Function

Bounds

Global

Function

Approximation

Problem

Approximation
Function

Approximation

2nd-order

Taylor

Expansion

Differential

Equation

1st-order

Taylor

Expansion

Reduce

Constraint #

Reduce

Design Var. #

Envelope

Function

Intermediate Vars

&

Response quantities

Design Var. linking

&

Reduced Basis Method

Figure 2.2: Detailed classification of approximation methods with respect to their range [11]
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Global Function Approximation
(GFA)

IN

Global Problem
Approximation

Analysis
(FEA)

Local/Mid-range Function
Approximation (LFA/MFA)

Local Problem
Approximation

Sensitivity
Analysis

OUT

Optimization LFA/MFA

− Many Analyses to construct GFA

+ Once constructed, no more should be required

Construct LFA/MFA
(e.g. Taylor Expansion)

+ 1 Analysis per cycle

− Next cycle requires reanalysis

IN

Global Problem
Approximation

Analysis
(FEA)

OUT

Optimization GFA

Construct GFA
(e.g. Response surface)

Figure 2.3: Flowcharts of the optimization process of global vs. local/mid-range function approximations in SO [11]

Another way to classify approximations is with respect to their monotonicity. In calculus, a function fj is defined as
monotonous within a specified domain if – and only if – it is either entirely non-increasing, or entirely non-decreasing.
On the contrary, a non-monotonous function fj must change its monotonicity (and therefore the sign of at least one of
its gradient components) within the specified domain. This is an important classification factor, as it plays an crucial
role in the quality of the generated approximation. On the one hand, if the gradient components of the actual function
at hand fj change sign in the vicinity of the expansion point X(k), one would prefer a non-monotonous approximation
for convergence stability, see Fig. 2.4b. On the other hand, if fj shows monotonous behaviour around X(k), faster
convergence is achieved with an approximation that shares a similar – monotonous – behaviour, see Fig. 2.4a.

(a) Monotonous function (b) Nonmonotonous function

Figure 2.4: Monotonous, nonmonotonous functions and their local approximations [12]

While studying the influence of approximation methods on the performance of an optimization algorithm, one can
clearly conclude that there is no ‘free lunch’. This means that there is no function f̃A that can outperform all others
(e.g. f̃B) for a large set of {X(k), f}. This can be explained by considering that the best approximation f̃ for a function
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f at a given point X(k) is the one that has the most similar ‘structure’ or ‘nature’ to f [42]. Consequently, one should
not look for a single approximation function that is superior to all others, but for a flexible family of approximations
and a selection criterion for them, depending on the characteristics of the case at hand. In the following sections, the
most notable local and mid-range function approximations are described.

2.2 Local function approximations
Local approximations are valid in the vicinity of their expansion point X(k). Typically, these approximations are
variations of the truncated Taylor series expansion with respect to direct, see Eq. (2.1), or intermediate (i.e. yi = yi(xi))
variables, see Eq. (2.2).

Linear Approximation
This is the simplest form of local approximation and the basis of the forthcoming approaches. It is based on the
1st-order Taylor expansion around the current design point X(k):

g̃j(X) = gj(X
(k)) +

n∑
i=1

[
∂gj
∂xi

∣∣∣∣
X(k)

(
xi − x

(k)
i

)]
(2.1)

Reciprocal Approximation
Attempts to improve the accuracy of approximations without increasing their computational cost (e.g. by adding
2nd-order terms) were first introduced in the 80s. Inarguably, the most popular choice of intermediate variables is the
use of reciprocal ones (i.e. yi = yi(xi) = 1/xi), see Eq. (2.2). Although there is no rigorous mathematical proof of
their superiority over other options, their success in SO can be justified by the following facts:

• Stresses and displacements are exact linear functions of yi = 1/xi for sizing problems. Therefore, since the
responses gj(X) ≤ 0, j = 1, . . . ,m typically include stress and displacement constraints in SO problems, their
approximation in the reciprocal variable space (i.e. Taylor expansion with respect to yi = 1/xi) improves the
approximation accuracy without any additional computational cost (e.g. 2nd-order information).

• Reciprocal expansion convexifies the approximation when ∂gj(X)
∂Xi

< 0.

g̃j(X) = gj(X
(k)) +

n∑
i=1

[
∂gj
∂xi

∣∣∣∣
X(k)

∂xi

∂yi

∣∣∣∣
Y(k)

(
yi − y

(k)
i

)] 1
= gj(X

(k)) +

n∑
i=1

[
−
(
x
(k)
i

)2 ∂gj
∂xi

∣∣∣∣
X(k)

(
1

xi
− 1

x
(k)
i

)]

= gj(X
(k)) +

n∑
i=1

[
∂gj
∂xi

∣∣∣∣
X(k)

x
(k)
i

xi

(
xi − x

(k)
i

)] (2.2)

However, when ∂gj
∂xi

∣∣
X(k) > 0 the reciprocal approximation g̃j becomes nonconvex, which is undesirable if one wishes

to use a primal-dual (or a purely dual) solver. This complication is circumvented by the next approximation scheme.

CONLIN Approximation
Introduced by [43], CONvex LINearization combines the benefits of both Linear and Reciprocal approximation schemes.
It works by opting for one of them, depending on the following conditions:

1. If ∂gj
∂xi

∣∣
X(k) ≥ 0 , then

∑
+ in Eq. (2.3) is used for variable xi

2. If ∂gj
∂xi

∣∣
X(k) < 0 , then

∑
− in Eq. (2.3) is used for variable xi

That way, the approximation is unconditionally convex and separable. Moreover, it is worth noting that being the most
conservative 1st-order approach, the probability of oscillating convergence behaviour is quite low. This means that
CONLIN is locally conservative, as it has an inherent tendency to generate a sequence of steadily improving feasible

1By substituting yi = 1/xi
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designs X(k) by overestimating the values of actual functions [43], i.e. g̃j(X
(k)) ≥ gj(X

(k)) . The approximation
scheme is given by:

g̃j(X) = gj(X
(k)) +

∑
+

[
∂gj
∂xi

∣∣∣∣
X(k)

(
xi − x

(k)
i

)]
+
∑
−

[
−
(
x
(k)
i

)2 ∂gj
∂xi

∣∣∣∣
X(k)

(
1

xi
− 1

x
(k)
i

)]
(2.3)

The most significant drawback of this method is its fixed curvature, i.e. there is no parameter in Eq. (2.3) to adjust
the convexity of g̃j(X) based on the available information. This can lead to bad fitting of the approximation on the
actual function, rendering convergence either too conservative (i.e. slow) or unstable [13].

MMA
Curvature adjustment became possible with the Method of Moving Asymptotes [27]. This monotonous scheme is
a generalization of CONLIN, as it is essentially still a 1st-order Taylor expansion with respect to the intermediate
variables yi =

1
Ui−xi

or yi =
1

xi−Li
depending on the sign of the function’s partial derivatives ∂gj

∂xi

∣∣
X(k) . The resulting

formula is given by:

g̃j(X) = r
(k)
j +

n∑
i=1

p
(k)
ij

U
(k)
i − xi

+

n∑
i=1

q
(k)
ij

xi − L
(k)
i

(2.4)

where,
p
(k)
ij = max

{
0,
(
U

(k)
i − x

(k)
i

)2 ∂gj
∂xi

∣∣∣∣
X(k)

}
q
(k)
ij = max

{
0, −

(
x
(k)
i − L

(k)
i

)2 ∂gj
∂xi

∣∣∣∣
X(k)

} (2.5)

with r
(k)
j collecting all 0th-order terms and L

(k)
i , U

(k)
i acting as lower and upper ‘asymptotes’ of the current approxima-

tion, such that L
(k)
i < xi < U

(k)
i [13]. These asymptotes play the role of move limits, restricting the allowable step in

the design space. The behaviour of the MMA approximation can be adjusted by fine-tuning their values. More specif-
ically, as the asymptotes approach the expansion point, the approximation’s convexity is increased and the step-size
is reduced. What is more, by substituting Li = 0 and Ui → ∞ in Eq. (2.4), one obtains the CONLIN approximation
of Eq. (2.3). Initial values and update schemes for the asymptotes are given by [27] as heuristic rules:

• for k = 1, 2 :
L
(k)
i = x

(k)
i − s0(xi − xi)

U
(k)
i = x

(k)
i + s0(xi − xi)

(2.6)

where, s0 = 0.5

• for k > 2 :
L
(k)
i = x

(k)
i − s(k)

(
x
(k−1)
i − L

(k−1)
i

)
U

(k)
i = x

(k)
i + s(k)

(
U

(k−1)
i − x

(k−1)
i

) (2.7)

where,

s(k) =


0.7, if

(
x
(k−2)
i − x

(k−1)
i

)
·
(
x
(k−1)
i − x

(k)
i

)
< 0

1.2, if
(
x
(k−2)
i − x

(k−1)
i

)
·
(
x
(k−1)
i − x

(k)
i

)
> 0

1, if
(
x
(k−2)
i − x

(k−1)
i

)
·
(
x
(k−1)
i − x

(k)
i

)
= 0

(2.8)

In Eq. (2.8), the 1st case applies when oscillating behaviour is detected. Then, step-size should be reduced by
increasing the approximation’s convexity as the asymptotes get shifted towards the expansion point X(k). The 2nd
case applies when convergence is smooth and one wants to increase the step-size by relaxing the approximation’s
convexity, as the asymptotes are moved away from the expansion point to accelerate convergence. In the 3rd

case, the asymptotes (and therefore the step-size) are kept constant because of their adequacy.
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Furthermore, MMA – and all of its variations found in the present report – use the following bounds to limit
allowable variable change every iteration:

α
(k)
i = min{xi , 0.9L

(k)
i + 0.1x

(k)
i } , ∀i (2.9a)

β
(k)
i = min{xi , 0.9U

(k)
i + 0.1x

(k)
i } , ∀i (2.9b)

GMMA
MMA uses the same set of asymptotes for all responses gj(X), j = 0, . . . ,m. Although this is quite efficient in terms
of computational cost, considering the diversity of responses in Eq. (1.1) for a SO problem, it can compromise the
quality of the approximation. GMMA is an attempt to add some flexibility and adjust the approximation of each
response according to its own ‘structure’, see [39]. In practice, this means adding a set of moving asymptotes to each
response, i.e. use L

(k)
ij , U

(k)
ij instead of L(k)

i , U
(k)
i . This is accomplished by using information from previous iteration

points to determine the value of parameter s(k), by enforcing the current approximation to satisfy:

g̃j(X
(k−1)) = gj(X

(k−1)) (2.10)

which requires however an additional iterative numerical scheme in order to solve Eq. (2.10) [13]. The resulting formula
is similar to Eq. (2.4) and reads as:

g̃j(x) = r
(k)
j +

n∑
i=1

p
(k)
ij

U
(k)
ij − xi

+

n∑
i=1

q
(k)
ij

xi − L
(k)
ij

(2.11)

where, p(k)ij , q
(k)
ij are – similarly to Eq. (2.5) – given by:

p
(k)
ij = max

{
0,
(
U

(k)
ij − x

(k)
i

)2 ∂gj
∂xi

∣∣∣∣
X(k)

}
q
(k)
ij = max

{
0, −

(
x
(k)
i − L

(k)
ij

)2 ∂gj
∂xi

∣∣∣∣
X(k)

} (2.12)

Similarly to Eq. (2.7), the asymptotes are updated by:

L
(k)
ij = x

(k)
i − s

(k)
j

(
x
(k−1)
i − L

(k−1)
ij

)
U

(k)
ij = x

(k)
i + s

(k)
j

(
U

(k−1)
ij − x

(k−1)
i

) (2.13)

only this time, a systematic method to calculate an appropriate value for the parameter s
(k)
j is required. The most

promising ways of doing so – in order to tailor the asymptotes to each response’s ‘structure’ – are by using either
the approximated diagonal elements of the Hessian [44], i.e. ∂2gj/∂x

2
i , or by enforcing the approximation to satisfy

the previous iteration point, i.e. Eq. (2.10). However, both methods require a one-dimensional line search with an
iterative scheme (e.g. Newton-Raphson) to solve the implicit Lagrangian problems, see [39].

2.3 Mid-range function approximations
In this section, methods that make use of multi-point information are described. Typically, information from previous
iteration points that is readily available – if stored – is used. What is more, various methods of the previous section
can be transformed to mid-range approximations by incorporating multi-point information in parameter estimation,
such as enforcing the condition of Eq. (2.10).

GCMMA
Generally, the actual function we aim to approximate is nonmonotonous. Thus, using monotonous approximations
will probably lead to oscillations as we approach a local minimum, even when a move limit strategy is applied. As one

18



can see in Fig. 2.5a, the current optimization step results in an optimum that has a higher objective function value
than its starting point, i.e. gj(X

(k)) < gj(X
∗(k)). An efficient way to restrict the motion of the MMA algorithm is

to use both lower and upper asymptotes simultaneously, as in GCMMA [45]. This way, the iteration steps become
more robust due to better local fitting of the approximation to the actual function, see Fig. 2.5b. However, researchers
have reported [13] that for problems where MMA converges, GCMMA is usually slower because the approximation
becomes increasingly conservative, resulting unnecessarily small steps and thus more iterations.

(a) MMA with move limits (b) GCMMA

Figure 2.5: Oscillating approximation behaviour of nonmonotonous functions [13]

As suggested by Svanberg (i.e. the founder of MMA) in his improved version with diagonal 2nd-order information [4],
the resulting approximation formula is given by:

g̃j(X) = gj(X
(k)) +

n∑
i=1

p
(k)
ij

(
1

U
(k)
i − xi

− 1

U
(k)
i − x

(k)
i

)
+

n∑
i=1

q
(k)
ij

(
1

xi − L
(k)
i

− 1

x
(k)
i − L

(k)
i

)
(2.14)

where p
(k)
ij , q

(k)
ij can be simultaneously nonzero, i.e. both L

(k)
i , U

(k)
i are used in Eq. (2.14), and read as [45]:

p
(k)
ij =

(
U

(k)
i − x

(k)
i

)3
2
(
U

(k)
i − L

(k)
i

) ·
[
2
∂gj
∂xi

∣∣∣∣
X(k)

+
(
x
(k)
i − L

(k)
i

) ∂2gj
∂x2

i

∣∣∣∣
X(k)

]

q
(k)
ij =

(
x
(k)
i − L

(k)
i

)3
2
(
U

(k)
i − L

(k)
i

) ·
[
−2

∂gj
∂xi

∣∣∣∣
X(k)

+
(
U

(k)
i − x

(k)
i

) ∂2gj
∂x2

i

∣∣∣∣
X(k)

]
.

(2.15)

The most important drawback of the GCMMA method is the lack of an explicit primal-dual relationship [12], i.e.
X = X(λ). Consequently, an iterative solution scheme (e.g. Newton-Raphson) is required at each iteration to solve
the above system numerically. What is more, in Eq. (2.15), only diagonal terms of the Hessian matrix ∂2gj/∂xixj are
used, which are often approximated by finite differences [4]. This only makes sense close to a local optimum where
the step-size is small and the approximations are accurate.

There are multiple variations of the MMA family of approximations of which we only mention some examples here-
under:

• GCMMA1 — The original version of GCMMA that uses nonmonotonic parameters ρ
(k)
j to ensure convexity

• GCMMA2 — The version described above. It is an improved version of the original that replaces the parameter
ρ
(k)
j with the use of diagonal 2nd-order information, as in Eq. (2.15)

• GBMMA1 — A version of GCMMA that matches the response gradients at the current and previous iteration
points, i.e. ∂g̃j(X

(k−1))/∂xi = ∂gj(X
(k−1))/∂xi and ∂g̃j(X

(k))/∂xi = ∂gj(X
(k))/∂xi

• GBMMA2 — Here, a backward finite difference scheme for ∂2g̃j(X
(k))/∂x2

i in Eq. (2.15) is used
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• GBMMA3 — This is a combination of Eq. (2.14) and Eq. (2.13)

• GBMMA4 — Eq. (2.14) and Eq. (2.10) are combined

• TGMMA — This is a modified mid-range version of MMA with previous point information, tailor made for
TO problems of compliant mechanisms [37]

For more information on the above methods and a detailed review of the MMA family up to 2002, the interested
reader is referred to [4].

Exponential Approximation
Another way to adjust the curvature of the approximation to the needs of each response’s local structure, is the
exponential approximation [46]. This monotonous method can be seen as a generalization of some of the aforementioned
methods, as it is essentially a 1st-order Taylor expansion with respect to the intermediate variable yi = x

α
(k)
i

i . Here,
α
(k)
i is the exponent parameter for each design variable xi at the current iteration (k). One can easily see that for

α
(k)
i = 1 we obtain the linear approximation of Section 2.2 and for α

(k)
i = −1, we get the reciprocal approximation of

Section 2.2. The resulting approximation is given by:

g̃j(X) = gj(X
(k)) +

n∑
i=1

∂gj
∂xi

∣∣∣∣
X(k)

(
x
(k)
i

α
(k)
i

)( xi

x
(k)
i

)α
(k)
i

− 1

 (2.16)

Convexity of Eq. (2.16) is guaranteed by choosing the appropriate exponents as [12]:

• If ∂gj
∂xi

∣∣
X(k) < 0, then α

(k)
i < 1

• If ∂gj
∂xi

∣∣
X(k) > 0, then α

(k)
i > 1

In practice, exponential approximation is applied by making use of the previous iteration point, as given by [46]:

∂g̃j
∂xi

∣∣∣∣
X(k−1)

=
∂gj
∂xi

∣∣∣∣
X(k−1)

=⇒ α
(k)
i = 1 + ln

[
∂gj
∂xi

∣∣
X(k−1)

∂gj
∂xi

∣∣
X(k)

]/
ln

[
x
(k−1)
i

x
(k)
i

]
, i = 1, ..., n (2.17)

Numerical complications in Eq. (2.17), e.g. negative values within logarithms, are dealt with manual assignment of
values for α

(k)
i [32]:

• If ∂gj
∂xi

∣∣
X(k) < 0, then α

(k)
i = min

{
α
(k)
i , 1

}
• If ∂gj

∂xi

∣∣
X(k) > 0, then α

(k)
i = max

{
α
(k)
i , 1

}
• If α(k)

i ∈ Im, then α
(k)
i = −1

Although the exponential approximation is usually superior to the reciprocal – because parameter α(k)
i can be used to

tune the conservatism of the approximation g̃j – when different exponents α
(k)
i are used for different responses gj in

a dual framework, it is often impossible to find a simple primal-dual relationship that can be solved analytically [32].
Consequently, one must either use a single value for α

(k)
i for all responses or allocate some extra computational

resources to obtain these relationships in order to exploit the capabilities of this method to the fullest.

TANA family

The Two-point Adaptive Nonlinear Approximation is a modification of the exponential (i.e. yi = x
α

(k)
i

i ), where a
correction term is added to Eq. (2.16) in order to compensate for the approximation error. As with the exponential
approximation, in this method each design variable xi has a corresponding exponent α

(k)
i at each iteration (k).

Therefore, the (n+ 1) parameters α
(k)
i , ∀i and ε(X) are found by enforcing (n+ 1) coupled equations: g̃j(X

(k−1)) =
gj(X

(k−1)) and ∇g̃j(X
(k−1)) = ∇gj(X

(k−1)). Furthermore, the 1st-order Taylor expansion of Eq. (2.16) is enriched
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with 2nd-order diagonal information, as seen in Eq. (2.18), which describes the most recent TANA version, i.e. TANA-
3 [31]:

g̃j(X) = gj(X
(k))+

n∑
i=1

∂gj∂xi

∣∣∣∣
X(k)

(
x
(k)
i

)1−α
(k)
i

α
(k)
i

(
(xi)

α
(k)
i −

(
x
(k)
i

)α(k)
i

)+ 1

2
ε(X)

n∑
i=1

[
(xi)

α
(k)
i −

(
x
(k)
i

)α(k)
i

]2
(2.18)

where,

ε(X) =

2

gj(X
(k−1))− gj(X

(k))−
∑n

i=1

∂gj
∂xi

∣∣
X(k)

(x
(k−1)
i

x
(k)
i

)α
(k)
i

− 1

( x
(k)
i

α
(k)
i

)
∑n

i=1

[
(xi)

α
(k)
i −

(
x
(k−1)
i

)α(k)
i

]2
+
∑n

i=1

[
(xi)

α
(k)
i −

(
x
(k−2)
i

)α(k)
i

]2 (2.19)

Although this method has proved to be efficient in many cases, it cannot yield an explicit primal-dual relationship of
the form X = X(λ). Similarly to GMMA, an iterative solution scheme (e.g. Newton-Raphson) is required at each
iteration to solve the above system numerically, which might lead to prohibitive computational cost. There are various
versions of this method (e.g. TPEA, TANA-1, TANA-2, TANA-3, TDQA). The main difference lies in the calculation
of their parameters (e.g. α

(k)
i , ε(X)). For a thorough review and a detailed comparison of these methods, the reader

is referred to [31], [47] and [48].

DQA
The Diagonal Quadratic Approximation applies a 2nd-order Taylor expansion to a response function, while only
considering the diagonal terms of its Hessian matrix, i.e. ∂2g̃j/∂x

2
i . These terms can be easily approximated by

efficient Quasi-Newton methods, e.g. BFGS. Within the SO literature, this method is typically applied to a function
approximation (e.g. MMA, reciprocal, exponential, etc.) instead of the exact function itself. The reasons for that
counter-intuitive choice will become apparent later on. The resulting formula is given below [12], where the symbol˜̃gj is to emphasise that this is a (quadratic) approximation of an approximation function:

˜̃gj(X) = g̃j(X
(k)) +

n∑
i=1

[
∂g̃j
∂xi

∣∣∣∣
X(k)

(
xi − x

(k)
i

)]
+

1

2

n∑
i=1

[
ci

(k)
j

(
xi − x

(k)
i

)2]
(2.20)

Depending on the selection of intermediate variables yi = yi(xi), the curvatures ci
(k)
j of the approximation ˜̃gj(X) in

Eq. (2.20) are calculated as follows:

• For all design variables: ∀yi

∂g̃j
∂xi

∣∣∣∣
X(k)

=
∂gj
∂xi

∣∣∣∣
X(k)

(2.21)

• Direct variables: yi = xi

This is effectively a diagonal quadratic approximation of the actual response gj(X). No approximated approxi-
mation is used since there are no intermediate variables. The curvatures are approximated by:

ci
(k)
j =

∂2g̃j
∂x2

i

∣∣∣∣
X(k)

=
∂2gj
∂x2

i

∣∣∣∣
X(k)

(2.22)

• Reciprocal intermediate variables: yi = 1/xi

In this case, the response gj(X) is approximated by g̃j(X) given in Eq. (2.2). Subsequently, the function g̃j(X)
is again approximated by its 2nd-order diagonal Taylor expansion of Eq. (2.20). The resulting approximation is
denoted by (T2:R) and its curvatures are estimated by:

ci
(k)
j =

∂2g̃j
∂x2

i

∣∣∣∣
X(k)

= − 2

x
(k)
i

∂gj
∂xi

∣∣∣∣
X(k)

(2.23)
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• Exponential intermediate variables: yi = x
α

(k)
i

i

Here the response gj(X) is approximated by g̃j(X) given in Eq. (2.16). Then, the function g̃j(X) is again
approximated by its 2nd-order diagonal Taylor expansion of Eq. (2.20). The resulting approximation is denoted
by (T2:E) and its curvatures are estimated by

ci
(k)
j =

∂2g̃j
∂x2

i

∣∣∣∣
X(k)

=
α
(k)
i − 1

x
(k)
i

∂gj
∂xi

∣∣∣∣
X(k)

(2.24)

Additional examples of various intermediate variables can be found in [42], [32], [47]. Another popular way to handle the
curvatures ci(k)j is to make the so-called spherical approximation, developed by [49] and made popular by [50]. This
method can be used in conjunction with the above intermediate variables and selects ci(k)j = cj

(k) ∀i, which effectively
means only a single parameter needs to be determined for each approximated approximation ˜̃gj . For example, enforcing
condition Eq. (2.25) is probably the simplest form of a two-point approximation one can encounter, see [28].

g̃j(X
(k−1)) = gj(X

(k−1)) =⇒ cj
(k) =

2
[
gj(X

(k−1))− gj(X
(k))−∇T gj(X

(k))
(
X(k−1) −X(k)

)]∥∥X(k−1) −X(k)
∥∥2 (2.25)

Other ideas for curvature manipulation exist as well. The most recent one [12], checks certain conditions – based
on information stored from previous iteration points – and adjusts the curvature accordingly. That way a type
of mixed approximation scheme is formulated that can exploit the benefits of various approximations (e.g. linear,
reciprocal, exponential, etc.) and avoid the complications of using a different approximation for each response (e.g.
non-analytical primal-dual relationships). While the idea of approximated approximations may initially seem counter-
intuitive, researchers [32] have shown it can become very powerful in combination with purely dual methods for an SAO
framework. In addition to the approximations considered above, many others may be subjected to similar treatment.
The main benefits of a diagonal quadratic approximation of an approximation are listed below [32]:

• Different approximation methods can be used for different responses gj , thus allowing each response to be
approximated by the most suitable method, while having only one general dual statement. Otherwise, the
introduction of new intermediate variables for a response requires the formulation of a new dual.

• The sub-problems generated yield simple analytical primal-dual relationships, i.e. X = X(λ), which means there
is no need for a time-consuming iterative solution scheme for them, as is often the case for enriched approximation
methods (e.g. GMMA, GCMMA, TANA) for cases where the computational cost of the optimizer and the total
cost are of the same magnitude.

• Conservatism can be enforced by increasing the diagonal curvatures, i.e. ∂2g̃j/∂x
2
i , which is beneficial as far as

global convergence is concerned 2. This can be done by adding an inner loop (l) – within each iteration (k) –
which will increase the curvatures ci

(k)
j of non-conservative approximations until conservatism is achieved, i.e.

g̃j(X
∗(k)) ≥ gj(X

∗(k)).

• Although quadratic approximations of the approximation functions may differ significantly from their original
counterparts (see Fig. 2.6), they are similar enough within the trust region they are supposed to operate in,
considering that the original approximations (e.g. reciprocal, exponential, MMA, etc.) have their own limited
region of validity.

What is more: researchers [28] have shown that the DQA method can also be used should one wish to apply an efficient
SQP (primal) method in case dual solvers are computationally inadvantageous, as is the case in a Simultaneous Analysis
and Design (SAND) setting, wherein m ≈ n or m > n.

The foregoing methods are by no means exhaustive and the interested reader is referred to [11] for a thorough survey
up to 1993, to [42] for an overview of the Incomplete Series Expansion methods, as well as [4] for a detailed review
on the MMA family of approximations. Although the variations of approximation methods are numerous, the ones
described in Section 2.2 and Section 2.3 seem to prevail over the field of SAO.

2Global convergence in the sense of converging to a local minimum from any arbitrary starting point
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Figure 2.6: Diagonal 2nd-order Taylor approximation f̃T2:R(X) of the reciprocal approximation f̃R(X) [14]

2.4 Mixed schemes
As mentioned in Section 1.4, researchers have revealed the benefits of mixed approximation schemes in an SAO
framework for problems that include a diverse set of design variables and response functions. However, choosing the
most appropriate function at any arbitrary point X(k) becomes crucial. In this step, every scenario the optimizer
might encounter must be predicted and accounted for, in order for a mixed scheme to have the desired behaviour.
This section briefly discusses some of the most popular mixed schemes found in literature in order to better understand
the functionality of a robust and adaptive scheme we aim to generate. At this point, an subtle – but important –
distinction must be made between the following terms:

• Approximation functions/methods
These are essentially the local Taylor-like expansions g̃j(X) described in Section 2.2 that approximate gj(X) at
an arbitrary point X(k), e.g. Linear, MMA, GCMMA, GMMA, etc.

• Approximation scheme
An approximation scheme comprises of one or more approximation functions/methods. Depending on how these
functions are combined, a novel categorization method is introduced in Section 4.1.

2.4.1 GBMMA family mixed scheme
Based on the popular MMA approximation function, researchers introduced an enriched version of it with previous
point information and created a family of approximations, see Section 2.3. As one can see from Fig. 2.7, initially
the non-monotonous GCMMA scheme is used to avoid approximating a non-monotonous function with a monotonous
one. Then, if the design variable change is small (e.g. in the vicinity of the optimum), approximate second order
information is used to accelerate convergence by opting for GBMMA2. Otherwise, the previous point gradients are
matched by using GBMMA1. If the resulting approximation is non-convex, the scheme preserves convexity by falling
back to the more conservative GCMMA approximation. That way, accelerated convergence is achieved by using stored
information without compromising robustness.
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Figure 2.7: GBMMA family mixed scheme [13]

2.4.2 Adaptive quadratic approximation scheme
More recently, researchers [12] used a diagonal quadratic approximation algorithm (DQA) and analyzed all the possible
cases for an arbitrary set of {fj , xi, ∂fj/∂xi} used in Eq. (2.26), see Fig. 2.8. Then, using the values of certain ratios
defined by Eq. (2.27), they opt for an appropriate value for the quadratic term of the approximation (i.e. ci

(k)
j ).

f̃j(X) = fj(X
(k)) +

n∑
i=1

[
∂fj
∂xi

∣∣∣∣
X(k)

(
xi − x

(k)
i

)]
+

1

2

n∑
i=1

[
ci

(k)
j

(
xi − x

(k)
i

)2]
(2.26)

Ni ≜
∂fj
∂xi

(X(k−1))
∂fj
∂xi

(X(k))
, i = 1, ..., n

Di ≜
x
(k−1)
i

x
(k)
i

, i = 1, ..., n

(2.27)

Figure 2.8: Examples of possible scenarios for the set of {fj , xi,
∂fj
∂xi

} [12]
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Further details on this method, as well as some numerical examples that show the benefits of using such an adaptive
scheme for truss optimization problems can be found in the aforementioned publication.

2.4.3 Numerical implementation considerations
Along the same lines, other mixed schemes can be found in literature, the description of which is out of the scope of
the present report. As an example, the interested reader is referred to [40] for another mixed scheme of the MMA
family and to [5] for a combination of GMMA and DQA.

It should be clear by now that – from an implementation point of view – approximation functions should be compatible
with one another for the resulting mixed scheme to be both versatile and computationally efficient. To the author’s
knowledge, most strategies found in literature attempt to use a versatile approximation method as a base (typically
the popular MMA method) and fine-tune its convexity based on the available information (e.g. previous points).
This is attributed to the fact that fine-tuning the parameters of an approximating function (e.g. parameter ci

(k)
j of

Eq. (2.26)) must be done automatically and efficiently to better capture the true behaviour of the functions involved
in the optimization problem at hand. Thus, one must conclude that the versatility required from the adaptive scheme
we aim to generate will be based on an existing approximation family with the ability of adjustment to a variety of
different conditions.

Taking the above into consideration, in order to generate a robust and adaptive mixed approximation scheme, one
must create a modular toolbox that facilitates the generation, analysis and evaluation of all candidate schemes. To
this end, an object-oriented modular software library is implemented, see Appendix A, that is herein referred to as
‘Optimization Lab’. This environment is effectively a framework, within which different approximation schemes can be
tested and compared. Among other modules, it includes several problems, approximations and solvers, whose influence
can be investigated by using certain performance metrics.
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3 | Optimizer evaluation
3.1 Preliminary definitions
This chapter discusses the evaluation of different approximation schemes. It is important to define a set of performance
measures for two reasons: to compare different schemes fairly and to obtain a clear image of each approximation’s fit
on the respective exact function at every iteration. First, we define a template optimization problem, which will be
used as an example by applying on it all the performance measures used herein. This problem was chosen considering
the following argumentation:

• Being a 2-bar truss problem, it shares similar response functions to some of the SO problems we target our
method to (i.e. weight minimization subject to stress constraints)

• It is widely used by the SO community to evaluate the performance of approximation functions

• It is 2D, which facilitates graphical representation

It goes without saying that by no means do we claim that this problem is able to represent the entirety of SO
problems. Nonetheless, it is a simple – and relative to SO – example that can facilitate the comprehension of the
forthcoming performance measures. The interested reader is referred to [12] for further details on the aforementioned
problem.

PNLP =



minimize
X

g0(X) = c1x1

√
1 + x2

2

s.t. g1(X) = c2

√
1 + x2

2

(
8

x1
+

1

x1x2

)
− 1 ≤ 0

g2(X) = c2

√
1 + x2

2

(
8

x1
− 1

x1x2

)
− 1 ≤ 0

0.2 ≤ x1 ≤ 4

0.1 ≤ x2 ≤ 1.6

(3.1)

A summarizing list of the performance measures used in the Optimization Lab of Appendix A can be found hereunder.
They are classified with respect to their field of application into two main categories: the global convergence plots and
the local approximation quality plots. On the one hand, the former indicate how well an optimizer (and therefore its
approximation scheme) performs from a macroscopic point of view (e.g. redundant iterations, oscillatory behaviour,
function value comparison). On the other hand, the latter show a more detailed picture of the approximation quality
at an arbitrary iteration point X(k) of the optimization cycle (e.g. how P̃NLP changes between iterations, the error
propagation in the direction indicated by the solver, and the contribution of each design variable xi to each function
gj). More information on each performance measure can be found in the coming sections, wherein the template
problem of Eq. (3.1) will be used.

• Post-optimization performance measures

– Global convergence plots

∗ Function value plots: gj(X
(k)) – iterations

∗ Design variable plots: x
(k)
i – iterations

∗ KKT norm plot: ||KKT ||2 – iterations

∗ Norm of variable change plot: ||∆X(k)||2 – iterations

∗ Approximation quality index: Φj – iterations

∗ Exact problem contour plots (only for 2D problems): PNLP – iterations

– Local approximation quality plots (at any iteration)

∗ Approximate problem contour plots (only for 2D problems): P̃NLP – iteration
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∗ Pair analysis plots: gj − xi

∗ Approximation error plots: ej − α

• Real-time behaviour indicators

– Any index derived from {xi, gj , ∂gj/∂xi}(l) , l = k − 2, k − 1, k

• Additional indicators

– Direction index

– Expectation index

– Participation index

– Switching frequency array

• Performance profiles [51]

The strategy here is to run an arbitrary structural, nonlinear, bounded and continuously differentiable optimization
problem, e.g. Eq. (3.1), with multiple approximation schemes and analyze their performance using the above post-
optimization performance measures. Cases of undesired behaviour (e.g. oscillations, small steps, etc.) are located
by the global convergence plots, and subsequently further investigation on those cases is conducted using the local
approximation quality plots (e.g. pair analysis). This analysis is then used to construct real-time indicators from the
available information, i.e. {xi, gj , ∂gj/∂xi}, aiming at eliminating the undesired behaviour detected by the post-
optimization performance measures. This strategy is only applicable to optimization problems whose ‘characteristic
size’ n · (m + 1) is relatively small. When problems of high dimensionality are to be included, aggregating functions
must be applied to (some of) the aforementioned measures. Finally, after several problems are solved, an elaborate
and objective approximation scheme comparison is conducted by generating the performance profiles thereof.

3.2 Post-optimization performance measures
This section covers all the performance measures involved in post-processing. After an optimization algorithm has
converged to a stationary point, several plots are generated in order to gain further insight on its performance.
Therefore, the measures described herein cannot be used to assess the performance of a scheme in ‘real-time’ and
make decisions (e.g. choose which approximation method to use on a function gj(X)) while the optimization is still
in progress.

3.2.1 Global convergence plots
As mentioned in Section 3.1, this is the first level of analysis for the approximation schemes under investigation. Using
the template problem of Eq. (3.1), we obtain the following plots, wherein 3 of the most prominent optimizers of the
SO field are compared with one of the generated mixed schemes called ‘FVAwith’, see Section 4.4.

Response and design variable history
By using these performance measures in combination, the information one can infer is maximized because they
complement each other. The performance of every design can be seen from the function values of Fig. 3.1a, whereas
areas where a gj(X) plateaus can only be investigated through the design variables of Fig. 3.1b, since the function value
does not change. Furthermore, oscillatory behaviour – which leads to redundant iterations – is easily detected when
variable values x

(k)
i and function values gj(X

(k)) are inspected simultaneously. More information can be derived from
plotting several other performance measures with respect to iterations (e.g. ∂gj/∂xi(X

(k)), ||∇g||) but the numerical
experiments conducted thus far have shown that they do not add much value to the search for a robust and adaptive
mixed scheme.
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Figure 3.1: Function values (a) and design variables (b) for Eq. (3.1)

Aggregated function and variable plots
For problems with a large number of design variables n (and/or response functions m), using Fig. 3.1b (or Fig. 3.1a)
becomes impractical. Thus, aggregated versions of those figures are only applicable, as in Fig. 3.2. However, it should
be noted that useful information may be lost when considering the Eucledian norm of a vector (i.e. ||∆X(k)||2 or
||∆g(X(k))||2 respectively) instead of its constituent elements.
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Figure 3.2: Euclidean norm of response vector change (a) and design variable change (b) for Eq. (3.1)

KKT norm
The KKT conditions, see Eq. (1.4), are a widely applied convergence criterion in the field of optimization. They are
used to confirm that the converged point X∗(k) is indeed a local optimum. Although the norm of the KKT residual is a
strong indication for a local optimum, mathematically Eq. (1.4) are necessary optimality conditions and not sufficient.
Therefore, one should keep in mind that there is still a possibility these 1st-order conditions can be misleading (e.g.
inflection points). Nevertheless, Fig. 3.3 is one of the most widely applied convergence plots that can be found in the
optimization literature.

28



2 4 6 8 10 12 14 16

iteration

10−6

10−5

10−4

10−3

10−2

10−1

100

||K
K
T
|| 2

||KKT ||2 = ||∇g0 + λT · ∇g||2
MMA

GCMMA

GMMA

FVAwith

Figure 3.3: KKT modulus of Eq. (1.4a)

Approximation quality index
This performance measure aims to compare different approximation functions g̃j(X) at an arbitrary point X(k) con-
sistently and equitably. To achieve this, the same sequence of points X(k) must be used for the approximations under
comparison. Since the reference approximation method used for TO problems is MMA, its solution path (i.e. the
sequence of X(k) produced by MMA in an optimization run, see Fig. 3.5a) was used for all approximations. At every
point, each approximation scheme is used to calculate its constituent functions g̃j(X), resulting to the formulation
of its respective local approximate sub-problem P̃NLP shown in Eq. (1.2). Then, the implemented primal-dual solver
(see [35]) finds the Newton step direction and the following function is evaluated to assess the error propagation of
each function g̃j(X) in that direction:

ej(α) = f [gj(α), g̃j(α)] , ∀j (3.2)

where,

α Line-search step-size in the Newton direction (X = X(k) + αD(k))

D(k) Newton direction indicated by the solver [35]

UBj Upper bound for the step-size used when investigating the error propagation of g̃j(X), i.e.
0 ≤ α ≤ UBj , defined by the most conservative terms (i.e. closer to the expansion point X(k))
between the move limits, the asymptotes and the domain bounds, see Eq. (3.4)

f [gj(α), g̃j(α)] Error function for 0 ≤ α ≤ UBj

As an example, we can define the following error function from Eq. (3.2):

ej(α) = |gj(X(α))− g̃j(X(α))| , ∀j (3.3)

This is the function used Fig. 3.4a, where m + 1 plots are generated at an arbitrary point X(k). The last step is to
integrate Eq. (3.2) in order to get a scalar valued index for each approximation function at each point, i.e. Φj :

Φj =

∫ UBj

0

ej(α) dα , ∀j

UBj ≜ argmax
X

α(X) =


min

approx

{
min
i

{xi + δi, Ui, xi}
}
, if ∆x

(k)
i > 0

max
approx

{
max

i
{xi − δi, Li, xi}

}
, if ∆x

(k)
i < 0

, ∀j
(3.4)
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Clearly, the best approximation for a function gj(X) at a point X(k), is the one that has the lowest value of Φj at
iteration (k).
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(a) Error function ej for the 5th iteration given by Eq. (3.3)
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Figure 3.4: Evaluation of approximation quality index Φj , ∀X(k) found by MMA in Eq. (3.1)

Contour plots (only for 2D)
For the special case of 2D problems, we can also generate contour plots for the functions involved. The benefit of
using such plots is that by looking at the solution path of an approximation scheme, see Fig. 3.5a, one can get a clear
overview of the optimization. For example, using such plots, macroscopic phenomena like clustering in the vicinity
of a local optima – even before the step-size ∆X(k) reduces – can be detected. This information can be exploited by
adding criteria for the density of visited points within a hyper-sphere of a certain radius around the current point
X(k). That way, proximity to optimum can be identified as early as possible and – if used properly (e.g. choosing
more conservative approximations, reducing step-size, etc.) – this can lead to a further reduction of the number of
iterations required to converge. In order to analyze the behaviour of the optimizer shown in Fig. 3.5a, an additional
contour plot of the current approximate sub-problem P̃NLP can be generated every iteration, wherein the initial point
X(k) and the local optimum X∗(k) are displayed, see Fig. 3.5b.

(a) PNLP: First 5 points of MMA’s solution path (b) P̃NLP for the 4th iteration of MMA

Figure 3.5: Exact problem PNLP (a) and approximate sub-problem P̃NLP (b)
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3.2.2 Local approximation quality plots
After recognizing an occurrence of undesirable behaviour using the global convergence plots (e.g. small step-size,
oscillations, bad approximation quality, etc.), a more in-depth investigation is performed using the local plots. To put
it simply, with the global plots an issue is detected and by using the local plots one tries to understand what causes
it. This is an important step needed to handle the arising approximation issues efficiently when designing an adaptive
mixed scheme.

Pair analysis plots
Although Fig. 3.5b and Fig. 3.4a can be regarded as local plots as well, by far the most insightful category of post-
optimization performance measures found in this report is the pair analysis plots. Our numerical experiments indicate
that one can infer from them much more information about the quality of an approximation than any other local
plot generated herein. Inspired by the approach of [12], every detrimental situation of the optimization problems
found in Chapter 5 is analyzed on a fundamental level using pair plots. The biggest advantage of these plots is that
they offer a simple and clear image of how each response function gj(X) depends on each design variable xi. Thus
all unwanted behaviours can be explained by superposing {xi, g̃j} on {xi, gj} plots, as in Fig. 3.6. However, as a
problem’s characteristic size (i.e. n · (m + 1)) – and therefore the number of pair plots – increases, this performance
measure becomes impractical and to the author’s knowledge there is no aggregated alternative.

Figure 3.6: Pair analysis plots for the 4th iteration of Eq. (3.1) with MMA. Good ({x1, g0}, {x1, g1}, {x1, g2}, {x2, g0}) and
bad ({x2, g1}, {x2, g2}) approximation quality for the respective design variables

3.3 Real-time behaviour indicators
After detecting an approximation issue and understanding its cause (e.g. oscillatory behaviour caused by approximat-
ing a non-monotonous gj(X) with a monotonous g̃j(X)), the next step one needs to take towards generating a robust
and efficient mixed scheme is to prevent the issue’s occurrence. This is achieved by evaluating certain indicators from
the available information, as the optimization is running (i.e. real-time). Taking into account the large-scale nature of
the TO problems we ultimately aim to address, our approach requires storing information of the last 3 visited points.
Our numerical experiments showed that – for the studied problems of Chapter 5 – 3 points were enough to estimate
the behaviour of functions gj(X) and predict the aforementioned issues from occurring.

By analyzing several problems, a list of important checks to prevent bad approximations was generated. These are
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common causes for undesired optimizer behaviour. This list is by no means exhaustive and by including more problems,
more causes for low approximation quality are likely to be found.

• Linearity/Concavity
Since the implemented solver can only handle convex functions g̃j(X), the best approximation for a non-convex (or
linear) region of gj(X) is the linear one. Those instances are detected by the following checks:∣∣∣∣∂gj∂xi

∣∣∣∣
X(k)

− ∂gj
∂xi

∣∣∣∣
X(k−1)

∣∣∣∣ < ε1 , ∀i, j (3.5a)(
∂gj
∂xi

∣∣∣∣
X(k)

− ∂gj
∂xi

∣∣∣∣
X(k−1)

)
·
(
x
(k)
i − x

(k−1)
i

)
< 0 , ∀i, j (3.5b)

for which, our numerical experiments show that a reasonable value could be ε1 ≈ 10−5.

• Proximity to optimum
As the optimizer approaches the true local minimum of PNLP (i.e. X∗), oscillatory behaviour often occurs. Taking
too large of a step in any direction can lead to redundant iterations and consequently unnecessary function eval-
uations. Therefore, in the vicinity of X∗, one must opt for the most conservative approximation functions g̃j(X)

to ensure that a relatively large step-size does not turn the approximate local minimum of P̃NLP (i.e. X∗(k)) away
from X∗. Proximity to optimum X∗ is detected by:∣∣∣∣x(k)

i − x
(k−1)
i

xi − xi

∣∣∣∣ < ε2 , ∀i (3.6)

for which, our numerical experiments show that a reasonable value could be ε2 ≈ 10−2.

• Monotonicity
In order to achieve the ‘best-fit’ of g̃j(X) on gj(X), the structure of those functions must be alike. Therefore, it is
desirable to approximate a monotonous (non-monotonous) gj(X) with with a monotonous (non-monotonous) g̃j(X).
Otherwise, either convergence is slowed down by small steps, or oscillations occur due to large steps. Monotonicity
is checked as follows: (

x
(k)
i − x

(k−1)
i

)
·
(
x
(k−1)
i − x

(k−2)
i

)
> 0 , ∀i (3.7a)(

gj(X)− gj(X
(k−1))

)
·
(
gj(X

(k−1))− gj(X
(k−2))

)
> 0 , ∀j (3.7b)

∂gj
∂xi

∣∣∣∣
X(k)

· ∂gj
∂xi

∣∣∣∣
X(k−1)

> 0 , ∀i, j (3.7c)

So far we have mentioned indicators that have already been applied to other mixes schemes of the literature, e.g. [12]. In
the coming section, a set innovative indicators will be presented that aims to improve the outcome of the approximation
function selection.

3.4 Unreported inadequacies of approximation enhancement
Although using history information to improve the ‘fit’ of g̃j(X) on gj(X) at a given point X(k) sounds intuitively
beneficial, it is often not the case. What is more, as the number of variables (n) increases, enriching g̃j(X) with
previous point information is more likely to be detrimental. To the author’s knowledge, at the time of writing this
report there is no research available in the corresponding literature on when enriching a function g̃j(X) with history
information is beneficial or not.

In this section we report the undesired effect history information may have on the function approximation quality.
More specifically, we attempt to answer the following question: when should one use the available information stored
in previous iterations to enrich an approximation g̃j(X)? Moreover, since using previous point information is common
practice in SAO algorithm enhancement (see Section 2.1), our conclusions are expected to be extrapolatable on other
approximation methods (e.g. [42]), besides the MMA family of approximations that was implemented.
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Using the pair analysis plots described in Section 3.2.2 on low-dimensional analytical problems, the behaviour of the
exact functions with respect to all variables (i.e. exact pair of {xi, gj}), as well as their respective approximations
(i.e. approximate pair of {xi, g̃j}), can be captured in n · (m + 1) plots, see Fig. 3.6. Then, by superposing the pair
plots of two successive iterations (i.e. at X(k−1) and X(k)) as in Fig. 3.7, one can clearly see when the use of the
previous point x

(k−1)
i may improve or worsen the ‘fit’ of {xi, g̃j} on {xi, gj}. Looking at Fig. 3.7, if the exact function

of {xi, gj} shown in the solid curves has changed significantly between the two iterations due to a change in the
remaining design variables of the problem, forcing the current approximate pair (i.e. red dashed curve) to satisfy the
previous point (i.e. g̃j(x

(k−1)
i ) = gj(x

(k−1)
i )) and/or its partial derivative (i.e. ∂g̃j/∂xi(x

(k−1)
i ) = ∂gj/∂xi(x

(k−1)
i )) is

not advisable, see Fig. 3.7b. On the contrary, when the exact pair of {xi, gj} is not influenced as much by a change in
the remaining design variables, enriching the current approximate pair with previous point information is beneficial,
see Fig. 3.7a. From an implementation point of view, fitting the current approximation through the previous point
requires adjusting its asymptotes by an iterative Newton-Raphson scheme, see Eq. (2.10). Thus, it only makes sense
to do so when the accuracy of the approximation is likely to be improved, as in Fig. 3.7a. In any other case, see
Fig. 3.7b, attempting to fit the current approximation (red dashed curve) through the previous point (black circle)
will result in unnecessary Newton-Raphson iterations and – possibly – worsen the approximation quality. This can be
handled to some extent by imposing move limits on the asymptotes, improving the stability of methods that enrich
their approximations with previous point information (e.g. GMMA). Nevertheless, it is completely unnecessary to
perform these computationally intensive iterations when it can be predicted that the previous point is likely not usable
and therefore the risk of worsening the approximation quality is high.
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Figure 3.7: Pair plots of {xi, gj} (solid lines) and {xi, g̃j} (dashed lines) for the 1st (blue) and 2nd (red for GMMA and black
for MMA) iterations of Eq. (3.1)

As mentioned before, this analysis is only possible for low-dimensional problems for which we can evaluate all the
functions involved at any point we desire. Consequently, after understanding the logic of when using history information
is beneficial or not, one must include this information in an approximation selection criterion, e.g. Eq. (3.10), in order
to generate a robust and efficient approximation scheme. Thus, stemming from the observations of Fig. 3.7, and in
addition to the real-time indicators presented in Section 3.3, we propose the following criterion to assess the usability
of X(k−1):

• Usability of X(k−1)

We first introduce the following backward finite difference scheme:

A
(k)
ij =

gj(X
(k))− gj(X

(k−1))

x
(k)
i − x

(k−1)
i

∀i , ∀j (3.8)

Subsequently, one can formulate a ratio between the exact partial derivative and its approximation by the afore-
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mentioned finite difference scheme:

B
(k)
ij =

∂gj
∂xi

∣∣
X(k)

A
(k)
ij

=

∂gj
∂xi

∣∣
X(k) ·

(
x
(k)
i − x

(k−1)
i

)
gj(X(k))− gj(X(k−1))

=
∆gj

∣∣
predicted

∆gj
∣∣
actual

, ∀i , ∀j (3.9)

Using Eq. (3.8) and Eq. (3.9) one can formulate the following conditions:

0.8 ≤ B
(l)
ij ≤ 1.2 , ∀i , ∀j , l = k − 1, k (3.10a)

∂gj
∂xi

∣∣∣∣
X(k)

≤ A
(k)
ij ≤ ∂gj

∂xi

∣∣∣∣
X(k−1)

, ∀i , ∀j (3.10b)

∂gj
∂xi

∣∣∣∣
X(k−1)

≤ A
(k)
ij ≤ ∂gj

∂xi

∣∣∣∣
X(k)

, ∀i , ∀j (3.10c)

which are then used to assess the usability of X(k−1) according to the Algorithm 1 below:

Algorithm 1: Algorithm to assess the usability of X(k−1)

for i in range(1, n):
for j in range(0, m):

if Eq. (3.10a), ∀l == True:
X(k−1) can be used for the pair {xi, gj}

elif (Eq. (3.10b) == True) or (Eq. (3.10c) == True):
X(k−1) can be used for the pair {xi, gj}

else:
X(k−1) cannot be used for the pair {xi, gj}

j = j + 1
i = i + 1

As seen in Eq. (3.9), B(k)
ij is the ratio between the change in function value that occurred (denominator), compared

to the change that could be predicted based on only the change of the considered variable (nominator). Assuming
small changes in all design variables, which is guaranteed by applying the move limits of Eq. (1.6), the dominant
source of discrepancies between the nominator and the denominator of Eq. (3.9) is the change in the remaining
design variables. Consequently, Eq. (3.10a) can be interpreted as follows: if B

(k)
ij is close to 1, enriching the

approximation with previous point information will likely be beneficial. On the other hand, if B(k)
ij diverges from

unity, either the function is highly nonlinear with respect to xi, or the remaining design variables have caused
a significant change in gj(X) in the vicinity of X(k). In both cases, using information from x

(k−1)
i is risky, see

Fig. 3.8a.

A criterion like Eq. (3.10a) can not predict all the detrimental scenarios an optimizer might encounter. For
example, as the step-size increases, the finite difference scheme of Eq. (3.8) becomes less accurate and Eq. (3.10a)
might incorrectly classify the previous point unusable. This possibility is accounted for by applying Eq. (3.10b) and
Eq. (3.10c). If either of those conditions hold and the response function gj(X) is monotonous with respect to xi

between [x
(k−1)
i , x

(k)
i ], the previous point is likely usable, see Fig. 3.8b. Our numerical experiments, see Chapter 5,

indicate that Algorithm 1 – in combination with the behaviour indicators presented in Section 3.3 – can reduce the
number of iterations required by an SAO method to converge. More information on the generated mixed scheme
can be found on the next chapter.
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Figure 3.8: Applying Algorithm 1 to assess the usability of X(k−1)

3.5 Additional indicators
This section contains several additional indicators that have proven to be useful in assessing the performance of an
approximation scheme.

• Direction index
This is a scalar valued metric that indicates the consistency in the direction of the solution path an optimization
algorithm follows. A boundary filter is applied to remove the undesired influence of variables that have reached
their bounds (within a tolerance εi).

d =

(
F∆X(k)

)T ·
(
F∆X(k−1)

)∣∣∣∣F∆X(k)
∣∣∣∣
2
·
∣∣∣∣F∆X(k−1)

∣∣∣∣
2

, − 1 ≤ d ≤ 1 (3.11a)

Fii = tanh
(
3(xi − xi)

εi

)
tanh

(
3(−xi + xi)

εi

)
, ∀i (3.11b)

for which a reasonable value could be εi ≈ (xi −xi) · 10−2. In Fig. 3.9 one can see how Eq. (3.11) can be applied to
the template problem of Eq. (3.1). Furthermore, 3 distinctive cases for the values Eq. (3.11a) can be found below:

if d = 1 =⇒ ∆X(k) ↑↑ ∆X(k−1)

if d = −1 =⇒ ∆X(k) ↑↓ ∆X(k−1)

if d = 0 =⇒ ∆X(k) and ∆X(k−1) are unrelated

One can observe from Fig. 3.9a that after the 6th iteration, d ≈ −1 for most approximations methods. This means
that these optimizers oscillate around a point, as the steps taken have opposite directions for several iterations.
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Figure 3.9: Direction index and boundary filter used

• Expectation index
Eq. (3.9) can be aggregated to a scalar valued index for each response function gj . Although some information is
lost in this aggregation, the macroscopic view of a function’s behaviour that is provided by the following index can
be useful. This is an index that essentially shows the average degree of nonlinearity of a function gj . It is defined
as follows:

ej =

(
∆X(k)

)T ·
(

dgj
dX

∣∣
X(k)

)
g
(k)
j − g

(k−1)
j

, ∀j (3.13)

The most distinctive values of Eq. (3.13) can be found below:

if ej > 1 =⇒ gj resembles concave functions for X ∈ [X(k−1),X(k)]

if ej = 1 =⇒ gj resembles linear functions for X ∈ [X(k−1),X(k)]

if ej < 1 =⇒ gj resembles convex functions for X ∈ [X(k−1),X(k)]

Obviously, when Eq. (3.13) is used, one must make sure that ∆g
(k)
j = g

(k)
j −g

(k−1)
j ̸= 0. Therefore, towards the end

of the optimization (when ∆g
(k)
j → 0 and/or ∆X(k) → 0) the use of this index is not suggested. For example, in

Fig. 3.10a one can see that at the 7th iteration of MMA numerical complications arise because ∆g
(k)
1 → 0. What is

more, although e2 suggests that g2 is behaving linearly around the points MMA visits from the 9th iteration onward,
this is not the case. This happens because the step-size taken by MMA is reduced substantially, yielding ∆X(k) → 0.
Reasonably, any continuous function resembles a linear one within a region defined by X ∈ [X(k−1),X(k)] if that
region is infinitesimal.

• Participation index
This index shows the participation of a partial derivative ∂gj

∂xi

∣∣
X(k) in the change of each variable ∆x

(k)
i . It holds

that:

pj =

(
F∆X(k)

)T ·
(
F

dgj
dX

∣∣
X(k)

)
∣∣∣∣F∆X(k)

∣∣∣∣
2
·
∣∣∣∣Fdgj

dX

∣∣
X(k)

∣∣∣∣
2

, ∀j (3.15)

where,
−1 ≤ pj ≤ 1 , ∀j

Similarly to the direction index, the filter of Fig. 3.9b is applied to remove the influence of variables that have
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essentially reached their bounds. The most distinctive cases for Eq. (3.15) can be found below:

if pj = 1 =⇒ dgj
dX

∣∣∣
X(k)

↑↑ ∆X(k)

if pj = −1 =⇒ dgj
dX

∣∣∣
X(k)

↑↓ ∆X(k)

if pj = 0 =⇒ dgj
dX

∣∣∣
X(k)

and ∆X(k) are unrelated

The use of Eq. (3.15) can be seen in Fig. 3.10b, wherein one can observe the oscillatory behaviour of most SAO
schemes depicted. Furthermore, it can be concluded that these fluctuations are attributed to constraint g2, since p2
oscillates between -1 and 1 from the 6th iteration onward. On the contrary, p0 and p1 converge to 0 for most of the
depicted schemes, indicating a lack of participation in the steps taken from most schemes after the 6th iteration.
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Figure 3.10: Evolution of direction and participation indices ∀gj of Eq. (3.1) for different approximation methods

• Switching frequency array
This is a useful metric that can be used to oversee the utilization of a mixed scheme. It is a 2D array of size (m+1)×n
that displays the number of times the approximation function of {gj , xi} is changed. By using it, one gains further
insight on how a mixed scheme behaves. For example, it is possible to detect ‘over-switching’ occurrences that
could lead to oscillatory behaviour. One can clearly see in Fig. 3.11 that switching the approximation function for
{g11, x9} 20 times in an optimization that converges after 29 iterations is – at best – unnecessary.

Figure 3.11: The transpose of an array of size (m + 1) × n that displays the number of times a mixed scheme changes the
approximation function for the pair of {gj , xi}. This array refers to the 10-bar truss problem of Section 5.1 that converges after
29 iterations.
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3.6 Performance profiles
Comparing different approximation schemes objectively is far from trivial. There are many factors that need to be
considered, all of which are hard to be captured in a single comparison technique. For example, when different
optimizers are compared with respect to their performance on a specific problem set, non-convergence of an optimizer
in a particular problem is an issue. One can must either remove the problem from the considered set, or penalize its
performance. Both approaches are problematic: the former causes information loss and the latter depends strongly on
the penalization factor used. Furthermore, averaging/summing performance measures can be misleading, as outliers
can influence the results in an undesirable way.

A performance profile is generated in order to obtain an indication of the relative performance of different methods
(e.g. approximation schemes), instead of their relative capability to solve certain problems [15]. Obviously, this
method becomes more reliable as the number and variety of the included problems increase. Introduced by [51],
performance profiles enable the comparison of n optimization methods (i.e. s1, s2, ..., sn) with respect to a single
performance measure Φ (e.g. the number of iterations needed for convergence, the objective value obtained, etc.)
when a problem set of m different problems (i.e. p1, p2, ..., pm) is considered. Assuming the minimization of Φ is
desired, by solving the problem p1 with all methods sj , one can obtain the method with the best performance sbest,
for which Φbest = min{Φ1, ...,Φn}. Moreover, one can also obtain a performance ratio ∀sj defined as: Φj/Φbest.
Obviously, Φj/Φbest ≥ 1 and the equality holds only for the method(s) with the top performance for p1.

A performance profile of a method sj indicates the number of problems solved by this method within a certain ratio of
Φj/Φbest from the method with the top performance (for that particular problem). For example, in Fig. 3.12 we can
see that Method A has the best performance for 70% of the problems (since for ΦA/Φbest = 1 the value of the profile
is 70%). For Method B, 60% of the problems can be solved successfully with a 10% relaxed performance measure (i.e.
ΦB/Φbest = 1.1 =⇒ ΦB = 1.1 · Φbest). Another important characteristic of those plots is that non-convergence can
also be addressed. If we assume that the maximum allowed performance measure is 20% more than the optimal one
(i.e. Φmax/Φbest = 1.2), one can see that Method A solves 100% of the considered problems, whereas Methods B and
C solve around 85% and 79% respectively. This means that overall convergence and robustness can also be evaluated
through these profiles.

What is more, one can see that Method C plateaus for 1 ≤ ΦC/Φbest ≤ 1.05 and increases with a steep slope for
1.05 ≤ ΦC/Φbest ≤ 1.08. On the one hand, a plateau region means that the considered method will not solve
successfully more of the implemented problems for the coming increase in performance ratio. On the other hand, a
steep slope signifies a large increase in the number of problems that are successfully solved with a small increase in
performance ratio. In short, profile curves that are higher than others perform better – in terms of the considered
performance measure Φ – for the considered problem set.

Taking the above into consideration, this method is applied on the approximation schemes under comparison in
Section 5.3. This concise – yet informative – representation of the results offers a clear image of the relative performance
of the aforementioned schemes and facilitates the derivation of conclusions.

Φj/Φbest

Figure 3.12: Example of performance profiles of 3 optimizers when tested on 225 minimum compliance problems [15]
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4 | Novel mixed schemes
4.1 Classification of mixed schemes
In this chapter we present a set of novel mixed schemes for function approximations based on the MMA family of
approximations. Throughout this report we have presented argumentation in favor of mixed schemes and the benefits
of their use in SAO algorithms. Thus, considering the impact an efficient mixed scheme could have on such algorithms,
it is of utmost importance to explore all the possible features such schemes may offer. To this end, a novel classification
method for the approximation schemes is introduced in Fig. 4.1 and used in the Optimization Lab of Appendix A. All
possible approximation schemes are categorized according to their degree of adaptiveness.

Definitions of scheme types
One can find 3 generic types of adaptive approximation schemes in Fig. 4.1:

• Non-Mixed (NM)
This type uses a single approximation method ∀gj ,∀xi throughout all iterations of the optimization. One can
see in Fig. 4.1 that – if the Linear approximation method is chosen – all responses gj(X) at all iterations are
approximated by it. Therefore this type is not a mixed scheme and its adaptiveness depends on the inherent
adaptiveness of the approximation method used. For example, a Linear approximation method does not adapt
to the local characteristics of the response gj(X) it is applied on, whereas MMA can adjust its convexity by
moving its asymptotes accordingly between iterations.

• Initially-Mixed (IM)
This type of mixed schemes can assign a different approximation method to each response gj(X). This assignment
remains constant throughout all iterations of the optimization (with the exception perhaps of a few initial ‘test’
iterations, wherein one can collect some data in order to assign the most appropriate method to each response).
All the variables of that response, i.e. ∀xi ∈ gj(X), are approximated by the same approximation method (e.g.
MMA is used for g0, Linear is used for g1 and GMMA is used for g2, see Fig. 4.1).

• Adaptively-Mixed (AM)
This type of mixed schemes is far more adaptive than the previous ones. Furthermore, it is divided into 2
sub-categories: Function-Adaptive (FA) schemes use the same approximation method ∀xi of a response gj(X),
whereas for Function-Variable-Adaptive (FVA) schemes that is not the case. When FVA schemes are used,
one can assign a different approximation method to the contribution of each variable xi to a response function
gj(X). Since all methods used herein are separable, the contribution of each variable to each function can be
extracted. This feature may be particularly useful for problems with dissimilar behaviour of design variables,
see Section 1.4.

It is important to note that by making a scheme more adaptive (i.e. Non-Mixed → Initially-Μixed →
Adaptively-Mixed) the computational cost of the approximation process performed every iteration increases signifi-
cantly. Therefore, taking into account the specific characteristics of the addressed problem (e.g. dissimilar behaviour
of design variables, see Section 1.4), one must choose between a ‘flexible and expensive’ AM scheme, or a ‘stiff and
inexpensive’ one like IM schemes. In other words, there is a trade-off between the adaptiveness of the generated
approximation and its computational cost.
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Figure 4.1: Classification of approximation schemes with respect to their degree of adaptiveness. The main categories are
non-mixed (NM), initially-mixed (IM) and adaptively-mixed schemes (AM). The latter ones are divided in function-adaptive
(FA) and function-variable-adaptive (FVA) schemes depending on their adaptive capabilities.

Given the importance of this chapter, an overview of the implementation of the different mixed schemes that are
included in the Optimization Lab of Appendix A can be seen in the coming sections. At the time of writing this report,
the framework within which different approximation functions are combined to create a mixed scheme resembles the
GMMA approximation. To be specific, all approximations to be used are transformed in a GMMA-compatible format
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(i.e. by having a set of p(k)ij , q
(k)
ij , L

(k)
ij , U

(k)
ij , α

(k)
i , β

(k)
i , r

(k)
j ) that can be used to assemble the constituent approximations

to a g̃j(X), as in Eq. (4.1):
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ij

1

x
(k)
i − L

(k)
ij

} (4.1)

However, one could generate a similar mixed scheme for any other family of approximation functions with minimal
changes to the Optimization Lab. Different families of approximation functions can also be combined, as long as the
assembly of Eq. (4.1) includes only separable and convex functions. For example, a mixed scheme that includes the
exponential approximation of Eq. (2.16) could be useful in problems that include functions of similar – exponential –
structure. In that case, g̃ij(xi) terms must be used to assemble the approximation g̃j(X), instead of p(k)ij , q

(k)
ij . That

way, one need not be limited to using approximations that are compatible with MMA. This generalized approach, along
with several other approximation methods of Section 2.2, will be realized in an updated version of the Optimization
Lab.

4.2 A Non-Mixed scheme
Non-Mixed schemes have been studied extensively in literature, see Chapter 2. However, in order to better under-
stand the functionality of the generated mixed schemes that will follow, a concise flowchart of the implementation of
Non-Mixed schemes in the Optimization Lab is given in Fig. A.4a.

4.3 An Initially-Mixed scheme
The significant advantage of Initially-Mixed schemes is that they are easily applicable to large problems, since their
additional computational cost is marginal compared to the Non-Mixed schemes that are currently being used. However,
it is questionable how to determine a-priori – or within a few ‘test’ iterations – which approximation function fits better
the ‘structure’ of a response gj(X) without prior knowledge of that response’s properties. What is more, even if an
approximation function fits well a response for several iterations, one cannot guarantee that this will not change as the
optimization progresses. Consequently, if an IM scheme is selected and no prior knowledge of the response functions
is available, it is assumed that the initial iterations are representative of the whole optimization. Namely, there are 3
enhancements these schemes can offer to the currently used NM schemes:

• Different approximation method per response function

• When available, including information on a response function’s structure (e.g. linear volume constraints, recip-
rocal stress/displacement constraints for sizing variables, etc.)

• Sampling data at initial iterations and estimating the structure of response functions

Although these schemes are computationally efficient, their use is more advantageous in cases where prior knowledge
of the functions’ structure is available. Currently, no criterion has been found that can predict robustly the structure
of unknown responses by sampling data from initial iterations. Therefore, a simple criterion based on the approach
of Fig. 2.7 is used, see Fig. A.6. However, the benefits of these schemes can still be shown by choosing a-priori the
approximation method for (some of) the functions involved. For example, in Eq. (3.1) we can estimate that the
objective function (weight of truss) is almost linear with respect to its design variables and that the stress constraints
will have a reciprocal-like behaviour, with respect to x1. The effect of including this information on the approximation
can be seen in the figures of Section 5.3. There, two IM schemes are used: one that includes information on responses
whenever available (i.e. ‘IMwith’), and one that does not (i.e. ‘IMwithout’). In Fig. A.5, one can see a flowchart of
the implementation of such schemes in the context of the Optimization Lab.
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4.4 An Adaptively-Mixed scheme
Although the FA and FVA schemes that constitute Adaptively-Mixed schemes may look inherently different, to
the author’s knowledge they share the same computational cost. This is attributed to the fact that by using a
different method (and therefore its corresponding update formula) every iteration, the adaptiveness of an MMA-based
approximation is compromised and oscillations occur. More specifically, the ability of using any approximation method
(e.g. MMA, GMMA, Linear) on any response gj(X) at any iteration, requires one of the 2 following options: one must
either have available all approximation methods ∀gj ,∀xi at every iteration, or, use information from the approximation
method used in the previous iteration. Either way, information must be passed from one iteration to the next in order
to preserve the adaptiveness of MMA-based methods. An example of this can be seen in the FA scheme of Fig. 4.1:
for the 2nd iteration of g0, one must either update MMA’s asymptotes (calculated by Eq. (2.7)), or, have available
GMMA’s asymptotes for the 1st iteration (calculated by Eq. (2.13)) even though it was not used. The first option
adds a significant computational cost to the approximation process, whereas the second one introduces oscillatory
behaviour due to the different update formulas of the constituent approximations’ asymptotes. Therefore, the only
viable option – so far – for a mixed scheme of this type is to compute all its constituent approximations, ∀gj ,∀xi at
every iteration. However, this could be addressed to some extent with parallel computing, since all the constituent
approximations can be computed simultaneously (i.e. in parallel).

Being the most general and adaptive of the approximation schemes described herein, FVA schemes can be reduced to
any other type. Furthermore, adding prior knowledge of response function types – as in IM schemes – is also possible.
However, the accompanying high computational cost of making redundant function approximations every iteration
needs to be addressed. All the scheme types mentioned in the previous section have advantages and disadvantages
depending on the peculiarities of the problem at hand. The approximation methods used in the generated FVA scheme
– all of which are convex and separable – can be seen below:

• Linear , MMA [35] , GCMMA [35] , GMMA [39] , GBMMA family [4]

As mentioned before, it is important to note that approximation functions of any other family can be added to such
a scheme with minimal changes to the Optimization Lab. The only constraints for the approximation functions that
are included in Eq. (4.2) are convexity and separability.

In order to capture the behaviour of PNLP more accurately, we adjust the convexity – and therefore the asymptotes –
of the contribution of each variable xi to each response gj(X) separately. The idea is that by doing so, one can achieve
a better local fit of P̃NLP on PNLP, as the former becomes more adaptive/flexible. As seen in Eq. (4.1), and since
all approximations used herein are separable and compatible with MMA, one can write the resulting approximate
function g̃j(X), ∀j of a mixed scheme as follows:

g̃j(X) = gj(X
(k)) +

n∑
i=1

{
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ij
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(4.2)

where, g̃ij(xi) is the contribution of variable xi to response g̃j(X). At each X(k) we construct all the aforemen-
tioned approximations for all the functions involved independently of one another. This means that we have a set of
g̃ij(xi) ∀i, j, for all the above approximations. Now, we must select the most ‘appropriate’ approximation for each
term of g̃ij(xi) in order to construct a g̃j(X) that resembles gj(X) as much as possible.

The selection criterion is based on information stored from previously visited points, see Section 3.3. In Fig. A.4b,
one can see a flowchart of the implementation of AM schemes in the context of the Optimization Lab, and in Fig. A.8
one can see the flowchart of the approximation selection criterion for the generated FVA scheme. It goes without
saying that this scheme is not the ‘best’ scheme for all the problems of the SO field. However, after building a library
of diverse problems, see Chapter 5, our goal is to show that such a mixed scheme can outperform its constituent
members for a large set of problems. Obviously, this means that the approximation selection criterion must be
designed carefully.
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4.5 A Hybrid scheme
Ideally, one would like exploit the benefits and suppress the weaknesses of the aforementioned scheme types. The goal
is to use the adaptiveness of AM schemes, while maintaining the low computational cost of IM schemes. To this end,
the aforementioned schemes can be combined to form a hybrid scheme (herein referred to as HY). Such a scheme can
be designed as follows:

• Several AM (FA or FVA) schemes are designed and tested in several problems

• The most promising selection criteria are located

• These are then added to an efficient IM scheme

• The process is iterated several times

For example, one can see the outcome of this methodology in Fig. A.9. There, the flowchart of an HY scheme that is
composed of the IM scheme of Fig. A.5 with the addition of the gray blocks of Fig. A.8 is presented. The use of these
blocks was found to be beneficial for the problem set of Section 5.1. With this additional ‘feature’, one can estimate
when a function gj(X) is nonmonotonous with respect to a variable xi, and use a nonmonotonous function g̃ij(xi) to
approximate its contribution. Our numerical experiments suggest that the additional computational cost is a small
price to pay for the accompanying increase in approximation quality, see Section 5.3.

In general, every additional feature that is to be included in an HY scheme should be reviewed carefully. The benefits of
including it must be weighted against the additional computational cost. Reasonably, only if the enhanced performance
outweighs the increased cost including it is beneficial. A criterion that can be used to provide estimated values for
this trade-off can be found in Eq. (5.4).
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5 | Numerical examples
5.1 Problems used
The performance of any optimizer is problem-specific. Consequently, when an SO algorithm is evaluated in com-
parison to others, one cannot extrapolate the observed results on other – perhaps dissimilar – problems. There are
several papers in the literature on optimization methods showing the difficulty of objective algorithm comparison,
see [52]. Creating a mixed approximation scheme for an SAO setting and evaluating its performance is no exception.
Consequently, a diverse library of problems that can simulate the scenarios such a scheme might be exposed to in
practice must be used in the Optimization Lab of Appendix A. What is more, due to the complexity of large-scale
TO problems we eventually intend to apply our schemes to, the problems used in the designing and evaluating phase
of our mixed schemes must be chosen carefully. To this end, a set of 10 low-dimensional, hard to optimize, structural
and analytical problems was chosen as a base for generating and evaluating our schemes. Reasonably, further research
on the behaviour of mixed schemes in an SAO setting requires expanding the above set of problems. In a subsequent
stage, any generated scheme must be tested in TO problems that are known to cause difficulties to the state-of-the-art
approximation methods of Section 2.1.

In this section we present the aforementioned benchmark problems that were used as a base for the generation of our
mixed schemes. The initial points that were used for all problems are displayed in Table B.1. It is important to note
that although these problems exhibit useful characteristics we exploited while designing our schemes (e.g. structural
response functions of trusses, high non-linearity, dissimilar response functions, etc.), they are by no means exhaustive.
Thus, one can extend this library of problems by including problems that are relevant to SO and whose behaviour
cannot be captured by the considered set.

2-bar truss (analytical)
This is the problem of Eq. (3.1) used throughout Chapter 3. It is comprised of analytical functions that are easy to
implement, has been used by other researchers – which is important for validation purposes – and is low-dimensional,
which is advantageous for the analysis associated with generating local plots, see Section 3.2.2.

(a) Configuration of 2-bar truss
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(b) Contour plot for PNLP of Eq. (3.1)

Figure 5.1: 2-bar truss problem [12] with 3 different starting points

3-bar and 10-bar trusses (FEA)
Along the same lines, the next problems considered are truss configurations of 3-bars (Fig. 5.2a) and 10-bars (Fig. 5.2b)
respectively. As before, the design variables to be optimized are the cross-sectional areas of the truss elements
and the motivation for selecting them is similar to the 2-bar truss problem. Note however that for these problems
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there is no analytical description of the exact functions of PNLP and a linear FEA was implemented to evaluate
gj(X

(k)). Moreover, the sensitivities ∂gj
∂xi

∣∣
X(k) were calculated by the finite difference method. By doing so, we aim

to imitate the simulation-based SO optimization problems we ultimately address our method to. What is more, for
truss configurations, the problem’s dimension rapidly increases with the number of elements. To be specific, the
characteristic size of the 3-bar truss reads as n · (m + 1) = 18, whereas for the 10-bar configuration it holds that
n · (m+ 1) = 190. Further details on these problems can be found in [12], wherein several other truss configurations
are considered.

(a) 3-bar truss (b) 10-bar truss

Figure 5.2: Truss configurations solved by a linear FEA [12]

8-bar truss (FEA)
This truss configuration problem is inherently dissimilar to the ones considered above. The design variables under
optimization are the nodal coordinates (i.e. X = [d1 d2 d3]

T due to symmetry planes XZ, Y Z) instead of the elements’
cross-sectional areas. This means that the response functions involved (i.e. gj(X)) will be significantly different to the
ones of the aforementioned truss problems.

(a) Top view (b) Front view

Figure 5.3: 8-bar truss configuration solved by a linear FEA [4]

Welded beam (analytical)
This is a highly non-linear low-dimensional analytical problem, wherein the geometry of a welded beam with a rectan-
gular cross-sectional area is optimized, see Fig. 5.4a. The design variables to be optimized are the beam’s length (L),
height (t), width (b) and the thickness of weldment (h) under stress. The feasible domain is bounded by stress, dis-
placement, load and geometric constraints, and the objective is to minimize its fabrication cost. A detailed description
of this problem along with a list of all the parameters used can be found in [16].
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Axial spring (analytical)
Similarly to the welded beam, the axial spring design problem is also inherently non-linear and low-dimensional. Here,
the design variables to be optimized are the number of active coils (N), the mean coil diameter (D) and the wire
diameter (d). The objective is to minimize its weight under deflection, stress and surge frequency constraints, see
Fig. 5.4b. Further details on this problem, as well as several other non-linear optimization problems, can be found
in [16].

(a) Welded beam design problem (b) Axial spring design problem

Figure 5.4: Analytical nonlinear problems of a welded beam (left) and an axial spring (right) [16]

Analytical benchmark functions
These are some of the most famous analytical benchmark functions for non-linear optimization. Important to note
is that all the functions listed in Appendix B are shifted with respect to their design variables (i.e. X = [x1 x2]) to
alleviate the optimizer from the numerical complications that arise when xi changes sign. We justify this choice by
the fact that the SO problems we address our method to include exclusively positive design variables (i.e. xi > 0 , ∀i).
The interested reader is referred to Appendix B for the exact formulations of these problems.

5.2 Influence of parameters
Achieving a fair comparison between different schemes is far from trivial. After selecting a diverse set of structural and
benchmark problems to apply our schemes to, we must ensure that the observed results have a general character and
are – to some extent – parameter insensitive. To this end, the influence of the involved parameters must be investigated
and assessed. Thus, in the coming sections a parameter sweep for the initial point selection, the convergence criterion
used and the tolerance that terminates the optimization is performed. By doing so, the value of the conclusions drawn
from the results of Section 5.3 is increased.

Initial point
The selection of initial point influences greatly the performance of optimization algorithms. In general, its influence
can be observed more clearly when gradient-based methods are used to solve problems with multiple local minima.
There, one can expect that a different starting point might result in a different optimal point of the domain. Although
all optimization methods used herein are gradient-based, the problems described in Section 5.1 do not necessarily
have many local optima. Consequently, the different starting points must be chosen such that the influence of a local
approximation function becomes apparent. Considering the above, 3 different types of initial points are chosen for
each problem:

• A point used by other researchers: By comparing the performance of the implemented approximation
methods with the results found in literature, one can confirm the correct implementation thereof. Obviously,
this is only applicable to the problems of Section 5.1 that were used by other researchers. Nonetheless, validating
the correct implementation of the approximation methods used is an important step.

• A point near the optimum: By choosing such a starting point, the oscillatory behaviour of an optimizer in the
proximity of the optimum can be studied in detail, removing any influence from the path taken before reaching
that region. Our numerical experiments have shown that most NM schemes fluctuate for several iterations before
settling to a stationary point.
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• A point far from the optimum: By starting the optimization far from the optimum the effect of different
optimizers will become more clear. This is attributed to the fact that by increasing the number of iterations
an algorithm takes to converge, the number of generated approximations do so as well, and the scenarios the
optimizers face are more diverse. As a result, the possibility of creating approximations of low quality is increased
and the robustness of an approximation scheme can be pushed to its limits.

In Table B.1 one can find all the initial points used in the present thesis, as well as the optima obtained for all the
considered problems.

Convergence criteria
The use of different convergence criteria can also influence the comparison of optimizers. Thus, 4 different criteria are
used for the implemented problems and the results are combined in the average performance profiles of the coming
section:

• Norm of KKT conditions: See Eq. (1.4) and Fig. 3.3 for more information. This criterion reads as:

||KKT ||2 < ε (5.1)

• Norm of design change: A feasible point (i.e. all constraints are satisfied) for which the design does not
change anymore, see Eq. (3.6) and Fig. 3.2b. This criterion reads as:∣∣∣∣∣∣∣∣∆X(k)
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• Absolute value of objective change: A feasible point for which the objective does not change anymore. This
criterion reads as: ∣∣∣∣∆g
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• All of the above: Here, equations Eq. (5.1), Eq. (5.2) and Eq. (5.3) must be satisfied simultaneously to
attain convergence. By using this criterion one can push each approximation scheme to its limits, since it is the
hardest to satisfy. Therefore, if an approximation scheme is designed for robustness, this is the most appropriate
criterion.

Moreover, a parameter sweep for the allowed convergence tolerance (i.e. ε) is also possible. In the present research,
numerical experiments were conducted for ε = {10−3, 10−4, 10−5}.

5.3 Results and discussion
The performance of different mixed schemes compared to the most prominent approximation methods of the SO
literature can be seen in the figures below. By no means do we suggest that the generated methods are superior to
all other approximations for any optimization problem one can formulate. Despite fine-tuning our schemes by using
the problems of Section 5.1, the present report argues in favor of the feasibility of generating a mixed scheme that is
superior to its constituent members. Although further research is necessary to improve the robustness of such schemes
against the numerous detrimental scenarios any SAO algorithm encounters in practice, the versatility, efficiency and
adaptiveness of mixed schemes are hard to ignore.

The current section is divided as follows: first, a performance profile is generated according to Section 3.6 for the
initial points found in literature (whenever available). It is followed by a profile corresponding to starting points near
the optimum, and another one for which the initial points are selected to be far from it. Lastly, an overall analysis
is presented. For all starting points, a maximum threshold of 100 iterations is used as well as all the convergence
criteria and termination tolerances seen in Section 5.2, increasing the validity of the present research. The performance
measure Φ, see Section 3.6, used to generate these profiles is the number of iterations necessary to attain convergence
for all the considered cases. For the types of problems that were used (i.e. low-dimensional problems with a small
number of local minima), this is the most relevant performance measure. However, other options are possible if they
are of interest (e.g. objective function value obtained). Furthermore, assuming a normal distribution of data points
around their mean, error bars that correspond to a confidence level of 95% are given in all plots.
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Initial points from literature
Fig. 5.5 shows the performance profile of the generated IM, HY and FVA schemes (‘with’ and ‘without’ a-priori
knowledge of function types) in comparison to the most prominent approximation methods found in literature. It
is clear that, although MMA and GMMA perform similarly for the set of initial points considered here, the novel
mixed schemes perform better. This plot is essentially an average profile of data points generated by applying the 4
convergence criteria and the 3 corresponding termination tolerances found in Section 5.2. As expected, Fig. 5.5 suggests
that – for the current selection of initial points – MMA and GMMA are the least robust methods. For GMMA, there are
no significant improvements from the use of history information, as the 2 profiles cannot be distinguished with statistical
confidence. The monotonous structure that characterises both MMA and GMMA can explain in part why for more
than 30% of the considered problems they cannot attain convergence – even for large performance ratios. Although
GMMA converges faster than MMA in (most of) the problems that they both converge, in terms of robustness, it
appears to be marginally worse than MMA. Several comments found in literature about the overall – albeit slow –
convergence of GCMMA can also be confirmed by Fig. 5.5. Although it is clearly the slowest algorithm, it achieves
convergence for 80% of the implemented problems, surpassing beyond doubt all the other variants of the MMA family
except for the mixed schemes. This is also to be expected, since it has been reported that the nonmonotonous GCMMA
becomes increasingly conservative, resulting in unnecessarily small steps and thus more iterations [13].

Moreover, one can clearly see that the worst mixed scheme is the IM without information on the functions’ structure,
i.e. ‘IMwithout’. This is to be expected, as it is the simplest mixed scheme found herein. It uses a simple combination
of MMA and GCMMA (see Fig. A.6) and therefore cannot provide significant improvements. However, one can
observe an improved performance compared to its constituent members. By comparing the dashed lines to their solid
counterparts of the same colour in Fig. 5.5, one can also conclude that adding information on the functions’ structure
improves the performance of all mixed schemes. What is more, the FVA and HY schemes notably outperform all
their competitors, with the ‘HYwithout’ even surpassing ‘FVAwithout’. Although the difference is marginal and their
respective error bars overlap greatly, this can be explained by the fact that changing the approximation function too
often makes an approximation scheme prone to oscillatory behaviour, see Fig. 3.11. In other words, the methodology
of enhancing IM schemes with criteria found by AM schemes (like FVA) appears to be successful for this set of initial
points.

Initial points near the optimum
For initial points near the optimum the results are somewhat similar, as seen in Fig. 5.6. Most mixed schemes clearly
outperform the state-of-the-art methods, whose performance is similar as before. More specifically, the trend in Fig. 5.6
is the following: MMA and GMMA have the worst performance by converging slower than their competitors for less
than 70% of the considered problems and failing to converge in the remaining 30% of them. Next, GCMMA converges
slightly faster than MMA and GMMA in most problems and attains convergence eventually in almost 90% of them.
As in Fig. 5.5, the FVA scheme clearly outperforms its competitors (including the HY scheme this time) by having
the top performance in 52% of the problems and eventually attaining convergence in more than 92% of them when
no information is available (i.e. ‘FVAwithout’). Obviously, adding information on the functions’ structure further
improves its performance by increasing these numbers to 82% and 98% respectively. However, as in Fig. 5.5, one must
note that this additional information improves the performance of all mixed schemes.

Generally, in Fig. 5.6 the picture is somewhat similar to Fig. 5.5. The IM scheme is the worst mixed scheme, followed
by an improved HY scheme and a clearly better FVA scheme. Compared to the previously used set of initial points,
one can observe that the difference between the state-of-the-art methods and the mixed schemes is slightly smaller.
Especially when no information on the functions’ structure is available, i.e. solid curves. This is attributed to the fact
that the effect of multiple iterations (and therefore approximations) adds up and amplifies the performance differences.
Therefore, fewer iterations reduce the effect of a mixed scheme. However, amongst the mixed schemes seen in Fig. 5.6,
the adaptiveness of FVA appears to be important in the proximity of the optimum, since the difference between the
performance of FVA schemes and their HY and IM counterparts is intensified.

One can also look at this plot as an opportunity for improvements. Since the effect of the mixed schemes compared
to the state-of-the-art methods is smaller for the case of unknown types of functions, one can estimate that this is the
area where the schemes have the most room for improvements. Obviously, by no means does this mean that in all
other areas they have reached their full potential. Nonetheless, the behaviour of a mixed scheme near the optimum is
a good place to start.

Another interesting observation is the similarity Fig. 5.5 and Fig. 5.6. This effectively means that – to some extent –
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Figure 5.5: Average performance profiles of various SAO schemes for different convergence criteria and termination tolerances.
Starting points implemented in other research papers are used. The error bars indicate a 95% confidence level,
assuming a normal distribution of data points. Mixed schemes ‘with’ and ‘without’ information on the response functions’
structure are compared.

the non-convergence of approximation schemes for several problems is insensitive to the selection of starting point.
Since these methods do not converge even in the vicinity of the optimum, one can estimate that it is the ‘structure’
of the response functions involved in the aforementioned problems that determines convergence (or lack thereof).
This is also confirmed by the addition of information on the functions’ structure to the considered mixed schemes,
see dashed curves. By doing so, the overall convergence is improved, indicating that a sub-optimal ‘fit’ of g̃j(X)
on gj(X) is responsible – to some extent – for the lack of convergence. Thus, the inability the most prominent NM
schemes of the SAO field to capture the behaviour of different combinations of response functions near the optimum
is confirmed.

Initial points far from the optimum
The performance profiles obtained for starting points far from the optimum are given in Fig. 5.7. In comparison to
Fig. 5.6, it can be seen that the differences of the approximation methods under investigation are somewhat intensified
(especially when no information on the functions’ structure is available). As mentioned before, this is because of the
increased number of iterations for all methods used. Once again the trend is similar, which is a strong indication of
validity in the results. The IM scheme performs similarly to the state-of-the-art methods, the FVA scheme outperforms
all others, and HY lies in between. As before, adding information on the type of the involved functions improves overall
performance regardless of the scheme used.
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Figure 5.6: Average performance profiles of various SAO schemes for different convergence criteria and termination tolerances.
All starting points are selected near the optimum. The error bars indicate a 95% confidence level, assuming a normal
distribution of data points. Mixed schemes ‘with’ and ‘without’ information on the response functions’ structure are compared.

Overall results
After sweeping a diverse set of starting points, using the most prominent convergence criteria one can encounter and
applying several termination tolerances, the aggregated results are summarized in Fig. 5.8. There, all the different
parameters of Section 5.2 are considered, as this plot summarizes 360 optimization runs that include:

• 10 approximation methods: MMA, GMMA, GCMMA, IMwith, IMwithout, HYwith, HYwithout, FVAwith,
FVAwithout

• 4 convergence criteria: Eq. (5.2), Eq. (5.1), Eq. (5.3) and all of them simultaneously

• 3 sets of initial points: A set used by other researchers, another set near the optimum and one far from it

• 3 termination tolerances: ε = {10−3, 10−4, 10−5}

This plot is effectively an average of all possible optimization settings and is the most general comparison plot of the
present thesis. The corresponding error bars of ±2σ result in a confidence level of 95%, assuming a normal distribution
of data points, indicate that the mixed schemes confidently outperform the state-of-the-art methods for the considered
problem set. The trend for all profiles is the similar to the figures above: FVA outperforms its competitors, followed
by HY. Then, IM performs slightly better than GCMMA. Although GCMMA outperforms MMA and GMMA overall,
in the problems that all of 3 of them converge, GCMMA is the slowest. This can be seen in low performance ratios, i.e.
for Φj/Φbest ≤ 2. The performance of MMA and GMMA is very similar and cannot be distinguished with statistical
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Figure 5.7: Average performance profiles of various SAO schemes for different convergence criteria and termination tolerances.
All starting points are selected far from the optimum. The error bars indicate a 95% confidence level, assuming a
normal distribution of data points. Mixed schemes ‘with’ and ‘without’ information on the response functions’ structure are
compared.

confidence. However, MMA appears to be slightly more robust and GMMA seems somewhat faster in the problems
that they both converge.

Overall, one can see in Fig. 5.8 that (when no additional information is available on the functions involved)
FVAwithout has the best performance for 46% of the considered problems and eventually converges in 95% of them
for ΦFVAwithout/Φbest ≈ 3.7. HYwithout comes next with the top performance in 32% of the problems and overall
convergence in 92% of them for ΦHYwithout/Φbest ≈ 3.7. IMwithout and GCMMA perform similarly by having the top
performance in approximately 15% of the problems and eventually attaining convergence in 88% and 85% of them
respectively for Φj/Φbest ≈ 5.2. Finally, although MMA and GMMA appear to be the optimal choice in approximately
20% of the problems, they can only converge in less than 70% of them. Thus, one can conclude that they have the
worst overall performance – as far as robustness in concerned. Lastly, one can see in Fig. 5.8 that the performance of
all mixed schemes is improved when the structure of (some of) the response functions is known, as all dashed profiles
are shifted vertically by a notable amount compared to their solid counterparts.

Combining of all convergence criteria results in a single dataset, as in Fig. 5.8, gives a representation of the ‘average
performance’ assuming a representative set of users would use a similar mix of criteria. In addition to such a profile,
it is interesting to make a performance profile only for the strictest convergence criterion of Section 5.2. That is
when convergence is achieved only if Eq. (5.1), Eq. (5.2) and Eq. (5.3) are satisfied simultaneously. In conclusion,
by comparing Fig. 5.8 to Fig. 5.9 one can argue that the superiority of mixed schemes compared to their constituent
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Figure 5.8: Average performance profiles of Fig. 5.5, Fig. 5.6 and Fig. 5.7. This figure considers all possible combinations
of initial points, convergence criteria and termination tolerances. The error bars indicate a 95% confidence level,
assuming a normal distribution of data points. Mixed schemes ‘with’ and ‘without’ information on the response functions’
structure are compared.

members – as far as the considered problem set is concerned – is parameter insensitive.

Computational cost considerations
The implemented Optimization Lab of Appendix A is used to perform some measurements on the efficiency of the
generated mixed schemes compared to the state-of-the-art methods of SAO. Since MMA is the reference method in
the SAO literature, the measurements are normalized accordingly. In Fig. 5.10 one can clearly see that the improved
performance mentioned above does not come without cost. As the characteristic size of a problem n·(m+1) increases, so
does the time required by any approximation scheme to generate its approximation. However, the increase is significant
and needs to be addressed. Although it is widely accepted within the SO community that, for the large-scale problems
we ultimately aim to address, the computational cost of the approximation part is insignificant compared to the cost
of simulation-based function evaluations (i.e. FEA), any generated scheme should be closely monitored with respect
to the currently used methods in terms of approximation time spent per iteration. However, it is important to note
that a large part of the computations conducted by AM schemes can be done in parallel since, at each iteration, all
approximations can be generated simultaneously. This can reduce the elapsed real time (i.e. wall time) required for
the approximation process of such schemes significantly.

What is more, one must understand to what extent enriching an approximation function with history information is
cost effective. Taking into account the fact that researchers have reported that the wall time of the simulation-based
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Figure 5.9: Average performance profiles of all initial points and termination tolerances when the most strict
convergence criterion is used, see Section 5.2. This figure considers 9 different combinations of initial points and termination
tolerances. The error bars indicate a 95% confidence level, assuming a normal distribution of data points. Mixed schemes ‘with’
and ‘without’ information on the response functions’ structure are compared.

function evaluations, i.e. FEA, of large-scale TO problems takes approximately 97% of the total wall time of an SAO
iteration [17], one can obtain a rough estimation of the viable region for the approximation enrichment. Under the
assumptions seen below, the ratio of a mixed scheme’s approximation wall time with respect to MMA’s is given as a
function of the respective ratio of the number of required iterations until convergence is attained.

ttot = k · tloop
tloop ≜ tfea + tapprox

tfea ≜ 0.97 · tloop

 =⇒ tmixed

tMMA
≤ 33.33 · 1

kmixed

kMMA

− 32.33 (5.4)

As seen in Fig. 5.11, a larger reduction in the number of iterations by a mixed scheme will permit a larger increase in
the wall time of its approximation process. As long as a scheme operates within the green area of Fig. 5.11, the total
wall time is reduced and its use is beneficial. In any other case, using a mixed scheme is not cost effective, even for
large-scale TO problems. As an example, one can compare Fig. 5.10 and Fig. 5.11 for a problem of n · (m+ 1) = 190.
For this case, FVA schemes must provide a minimum reduction in the number of iterations of around 40%, HY schemes
must reduce it by approximately 25%, and IM schemes by 15%.
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Figure 5.10: Elapsed real time (i.e. ‘wall’ time) of a single iteration for different approximation schemes. Measurements for
problems of increasing characteristic size are normalized with respect to MMA.

Further discussion
The use of previous point information to enrich approximation functions needs to be addressed carefully. As an
example, although GMMA can improve the approximation quality in some cases, the additional computational cost
of the required Newton-Raphson scheme that accompanies the enrichment of the generated approximation, in com-
bination with the instabilities caused by its potentially detrimental use, does not seem a fair trade-off. Likewise,
our numerical experiments have shown that other MMA variants that use a similar approach (e.g. GBMMA3 and
GBMMA4, see [4]) do not seem to provide adequate improvements compared to their additional computational cost.
To make matters worse, this is expected to intensify as the number of design variables increases and more intricate
problems are included. The computational cost of the Newton-Raphson scheme will increase greatly and the risk of
misusing history information will be even higher, as the local ‘structure’ of a function will likely change more radically
between consecutive iterations because of the combined influence of a large number of variables. However, when
handled appropriately, exploiting information that is readily available from previously visited points can lead to faster
convergence by improving the generated approximation quality.

It should be clear by now that the aim of the present thesis is not to find a mixed approximation scheme that will
outperform any other for every problem. This is impossible. The goal is to prove that a mixed scheme – being mixed –
can combine advantages of different methods and, if handled appropriately, suppress their weaknesses. We are confident
that more research on mixed schemes will shed more light on the topic and will result in improved schemes that are
able to outperform their constituent members for larger sets of problems, as there is plenty of room for further
improvements.

Revisiting the inadequacies addressed in Section 1.4, the above results show that the complications that arise when
response functions with dissimilar design variables are used can be handled successfully. Similarly, high quality function
approximations of dissimilar response functions is also possible, due to the inherent adaptiveness that characterizes
IM and AM mixed schemes (as well as their hybrid counterparts). These observations provide adequate motivation to
continue the research on such adaptive SAO schemes by applying them to large-scale problems.

On the other hand, the performance of mixed schemes in problems that include design-dependent and aggregated
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Figure 5.11: Area wherein approximation enrichment is beneficial (green area): Τhe ratio of wall time for a mixed scheme
relative to MMA is given as a function of the respective ratio for the number of iterations, assuming large-scale TO problems
wherein tfea ≈ 0.97 · tloop [17]

response functions could not be addressed in detail. Testing the generated schemes in such problems requires the
enrichment of the implemented problem set with several large-scale TO problems. However, it is the author’s belief
that the adaptive character of mixed approximation schemes would be capable of ‘fitting’ much better/faster than
the current approaches on the abruptly changing and highly nonlinear functions that the aforementioned problems
typically involve. However, caution is needed not to abuse the adaptiveness of mixed schemes, as this could lead to
oscillatory behaviour deriving from switching between approximation methods too often.
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6 | Conclusions and future work
6.1 Conclusions
In an SAO setting, the approximation quality of the response functions involved affects significantly the total com-
putational cost of the optimization process. As the cost of function evaluations increases (e.g. by addressing more
complex and multi-disciplinary optimization problems), the benefits/consequences of a good/bad approximation are
amplified.

The main objective of this research is to improve SAO algorithms by minimizing the number of ‘expensive’ function
evaluations needed. This is possible by improving the generated function approximation quality (e.g. by enhancing
an approximation with history information), which causes a reduction in the number of iterations that are necessary
to attain convergence. In short, the results indicate that this is possible for a small set of low-dimensional – albeit
challenging – problems.

More specifically, all the goals of the present research are reassessed below:

• Review of current methods: An extensive literature review was performed on the state-of-the-art SAO
algorithms and an in-depth understanding of them was obtained on a fundamental level. It appears that MMA
is the most widely used method and that its variants have not been tested yet in large-scale problems. Several
other enriched Taylor-like expansions are available, none of which have been used extensively in practice. As far
as mixed schemes are concerned, although the benefits of adaptive mixed schemes are self-evident, there has not
been any significant breakthrough during the last decades. Thus, there is plenty of room for further research
in that direction. Furthermore, although the solver was not under the scope of the present thesis, due to its
inherent coupling with the approximation process, it requires some research as well. Although the literature
on SAO methods seems to agree that purely dual solvers are the most efficient option, other alternatives (e.g.
primal-dual interior point algorithms) have been used extensively without issues. This is important for the future
of SAO methods, as purely dual solvers have strict prerequisites that limit the complexity – and therefore the
information – one can include in an approximation function. Obviously, there is a trade-off between the efficiency
of the solver and the amount of information it is capable of handling.

• Locating and understanding their inadequacies: In combination with the aforementioned literature survey,
an implementation of several different problems made this possible. Namely, different types of design variables,
diverse ‘structures’ of response functions, as well as mishandling history information were the most important
causes for inadequate performance of the currently used methods.

• Toolbox for mixed schemes: A modular toolbox for classifying, generating, analyzing and evaluating fairly
different adaptive structural optimization schemes was implemented. An efficient object-oriented architecture was
realized, minimizing the effort needed to add further modules in the future. Different problems, approximations,
solvers and convergence criteria can enrich this Optimization Lab without any significant changes to the current
structure.

• Generation of novel mixed schemes: Apart from the implementation of the currently used methods, a
framework for generating different types of adaptive approximation schemes was introduced, along with the
necessary tools to perform an in-depth analysis on them. Several indices that offer great insight on a scheme’s
behaviour on a fundamental level are presented, thus facilitating the generation and oversight of robust and
predictable mixed schemes. More specifically, 2 different types of mixed schemes were generated: IM schemes
that can provide a different approximation per response function, and AM schemes, that can additionally change
the approximation method of each response function as the optimization progresses. IM schemes are almost
computationally equivalent to the currently used methods (e.g. MMA) but require prior knowledge of the
functions’ structure to be most efficient, whereas AM schemes are far more adaptive, their efficiency is – to
some extent – decoupled from the use of a-priori knowledge of the functions’ structure, but have an increased
computational cost. Depending on the peculiarities of the addressed problem, the use of some scheme types may
be advantageous over others. The use of hybrid schemes (referred to as HY schemes) is also an option that is
investigated and compared with its generic counterparts.

• Implementation of challenging problems to test the generated schemes: A problem set of 10 low-
dimensional – albeit challenging – problems were implemented to test all the methods used herein. Although
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this goal was achieved, implementing some of the large-scale problems we ultimately address our method to
was not realized. However, this will become possible in the near future, as the modular architecture of the
aforementioned toolbox allows the expansion of the problem set that is being used to evaluate the methods
under investigation.

• Algorithm performance evaluation: The most prominent performance evaluation method one can find in
the literature on optimization algorithms was applied on the methods under comparison. For the aforementioned
problem set, numerical experiments were performed, the influence of parameters involved was addressed and – to
some extent – minimized. Different sets of starting points, termination criteria and allowed tolerances were used.
The results were averaged in performance profile plots. To be specific, the numerical experiments conducted
herein show that – on average – an FVA scheme outperforms the most prominent methods of the MMA family
in 46% of the problems in terms iterations used, followed by the HY scheme that is the optimal method for 32%
of the problems. The IM scheme, MMA, GMMA and GCMMA are the best choices for approximately 15% of
the considered problems. As far as robustness is concerned, the FVA mixed scheme outperforms its competitors
once again. Eventually, 95% of problems converge to the optimum when FVA is used. The HY and IM schemes
come next by successfully solving 92% and 88% of the problems respectively, and GCMMA follows by doing
so for 85% of them. MMA and GMMA are the least robust methods by converging to 72% and 68% of the
problems respectively. Lastly, it was concluded that the performance of all mixed schemes is improved notably
when information on the response functions’ structure is available.

• Viability of approximation enhancement: The computational cost of using adaptive mixed schemes in
an SAO framework was investigated. The cost reduction that accompanies the (hopefully) reduced number of
iterations was compared to the increased approximation cost for large-scale systems. The result is an estimated
area within which all generated schemes must lie in order to achieve a reduced overall optimization wall time.
This is an important test, capable of estimating whether the use of an ‘expensive’ and adaptive mixed scheme
is beneficial or not compared to the currently used methods.

Overall, the use of previous point information to enrich approximation functions needs to be addressed carefully. If it
is used wisely, it can improve approximation quality and accelerate convergence. If not, it adds an unnecessary (and
high) computational cost and creates instabilities. To make matters worse, this is expected to intensify as the number
of design variables increases and more intricate problems are addressed.

In summary, throughout the present report a strong case in favor of mixed schemes compared to non-mixed ones
emerges. Although the mixed schemes generated thus far are far from perfect, there are encouraging indications that
an adaptive mixed scheme can outperform its constituent members for a large subset of any considered problem set.
Finally, it should be clear at this point that designing a robust approximation selection criterion for any mixed scheme
is crucial for its overall performance.

6.2 Future work
Further investigation on adaptive approximation schemes is necessary, as there is still plenty of room for improvements.
Namely, the most important suggestions for future work can be seen below.

After confirming that, for a set of challenging low-dimensional problems, function approximations of high quality
– achieved by adaptive mixed schemes – lead to a reduced number of iterations, and by extension to the number of
function evaluations required, one must apply such schemes to high-dimensional problems. Given the ultimate aim
of this research, the most important next step is to apply the generated schemes to TO problems. Although many
features of the generated schemes offer great capabilities when applied to low-dimensional problems, their scalability
is still questionable (e.g. FVA schemes). However, a large part of the computations conducted by AM schemes can
be done in parallel, reducing the wall time of the approximation process to (hopefully) acceptable values. In short,
a set of intricate TO problems must test the limitations of each type of mixed scheme. At this stage, it is of utmost
importance to include such problems in order ensure compatibility with large-scale systems.

Since these schemes are designed for large-scale TO problems, one must make sure they are implemented efficiently.
Although the current architecture is already efficient, larger dimensions will require further code optimization and
may even necessitate a switch to compiled code. As we have already shown, relative efficiency graphs are very useful
to visualize the scalability of new schemes (or lack thereof). After applying such schemes to large-scale problems, the
cost of the approximation process itself must be profiled with respect to the total cost of the SAO algorithm. Only
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after obtaining a detailed insight on each scheme’s computational cost can one conclude on the problems it can address
efficiently.

Moreover, the Optimization Lab can be enriched. More approximations, solvers and performance indices can be
included. The performance profile generation can also be automated. By doing so, testing schemes in large problem
sets will produce interpretable results much faster.

The numerical experiments showed that near the optimum all methods used herein – including the generated mixed
schemes – can be improved. A possible direction could be to create a local response surface by fitting certain parame-
ters. Although traditional fitting tools are prohibitively expensive (e.g. a quadratic function in n-dimensional design
space requires (n+ 2) · (n+ 1)/2 data points to fit the corresponding coefficients) it would be interesting to see if
simplified curve fitting tools – in combination with dimensionality reduction techniques – could be used. For example,
variables at their bounds would be irrelevant to such a fit, as they would remain constant for all the data points con-
sidered. This fitting could be assisted by using the stored information from the previously visited points. Nonetheless,
the computational cost of such a procedure must be evaluated with respect to the benefits of using it.

Last but not least, new approximation selection criteria must be generated, tested and evaluated for all types of
approximation schemes. It is certain that including more problems will lead to inadequacies of the current schemes
and upgrades will be necessary. Therefore, this step must be reiterated several times before one can claim to have
generated a robust mixed scheme for large-scale SO problems. It is the author’s belief that when the characteristic
size of the addressed problems increases by several orders of magnitude, the approach must include some machine
learning. A very large amount of data will be generated, the necessary supervision model will be quite simple, and
human oversight by aggregated indices will be insufficient. Training an algorithm to monitor several indices that
can represent the behaviour of an approximation function on a fundamental level will be much more effective when
scaled to higher dimensions. After all, most cases that share similar characteristics (i.e. an approximation selection
criterion can be seen as a classification problem) are already being solved much more effectively by machines than
humans.
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A | Optimization Lab architecture
This appendix describes the structure of the software library we herein refer to as ‘Optimization Lab’. All different
modules and their respective inputs/outputs are given, as well as a detailed list of the library’s features. In Fig. A.1
one can find a flowchart of the basic modules used in an optimization run.

General layout
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Eq. (5.2)
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Altogether
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Figure A.1: A color-coded general layout of the Optimization Lab

More specifically, the different modules of the above figure are described below:

• constants
This file contains all the constants used throughout the Optimization Lab. Lists of names for problems, approxi-
mations and solvers, along with several flags that determine the optimization options can be found herein.

• main(problem list, approximation list, solver, criterion)
This is the main function from which all other modules/functions are called. It takes as arguments a list of names
for the problems to be solved, the solver to be used, the termination criterion to stop the optimization and the list
of approximations under comparison. A detailed flowchart that explains its functionality can be seen in Fig. A.2.

• Approximation schemes
This directory contains all the implemented approximation schemes. Each scheme is implemented as a separate
class, and more advanced functions/schemes (e.g. GMMA) inherit attributes and methods from their generic
counterparts (e.g. MMA). More details on the structure of approximation schemes can be seen in Fig. A.3c.

• Solvers
This directory contains all the available solvers. At the time of writing this report, only a primal-dual interior-point
algorithm has been implemented. In the future, we hope the influence of the solver can be investigated as well by
performing a comparison of the most prominent ones, as done with approximation schemes. More details on the
structure of solvers can be seen in Fig. A.3b.

• Problems
Thus far, only test problems and the problems of Section 5.1 are included in the library. In addition, a linear
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truss solver is also included herein, in order to define and solve any 2D or 3D truss problem one can conceive. Any
problem compatible with Fig. A.3a can be added to and solved by the Optimization Lab. It is of utmost importance
to extend this module with additional problems in order to increase further the validity of the present research.

• Convergence criteria
A class of convergence criteria is defined according to Section 5.2. This class includes methods that return the value
of the different termination criteria. This means that one can select any termination criterion without any changes
to the main function.

• Auxiliary functions
This directory contains the following:

– Choose approximation: A function that selects and initializes a user-specified approximation scheme.

– Choose problem: A function that selects and initializes a user-specified problem.

– Choose solver: A function that selects and initializes a user-specified solver.

– Plotting function: A class of functions that contains all the possible plots one can generate with the Opti-
mization Lab. A list of (some of) the available options can be found in Section 3.1 and some examples in
Section 3.2.

• Post processor
The class of the PostProcessor stores all the necessary information one may need to perform an in-depth analysis
of the results after the optimization process ends. Obviously, depending on the characteristic size of the addressed
problem, different options apply. For example, a low-dimensional problem can be subject to the local plots of
Section 3.2.2, whereas a large-scale problem cannot. This is taken into consideration automatically by using certain
flags defined in the constants file.
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B | Numerical examples’ details
This appendix contains details on the numerical examples of Section 5.1. More specifically, the exact equations of
all benchmark functions used, a graphical representation of the respective solution spaces, as well as a table with the
initial points selected and the optima obtained for all optimization runs can be found herein.

Rosenbrock’s function

PNLP =


minimize

X
g0(X) = (2.5− x1)

2 + 100 · ((x2 − 0.5)− (x1 − 1.5)2)2

s.t. g1(X) = (x1 − 2.5)3 − x2 + 1.5 ≤ 0

g2(X) = x1 + x2 − 4 ≤ 0

(a) Isometric view of objective function [53] (b) Top view of objective and constraint functions

Figure B.1: Rosenbrock’s function with cubic and linear constraints [18]

Mishra’s bird function

PNLP =

minimize
X

g0(X) = sin(x2 − 6.5) · e[1−cos(x1−10)]2 + cos(x1 − 10) · e[1−sin(x2−6.5)]2 + (x1 − x2 − 3.5)2

s.t. g1(X) = (x1 − 5.)2 + (x2 − 1.5)2 − 25 ≤ 0
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(a) Isometric view of objective function [19] (b) Top view of objective and constraint functions

Figure B.2: Mishra’s bird function with circular constraint [19]

Townsend’s function

PNLP =


minimize

X
g0(X) = −(cos((x1 − 2.35) · (x2 − 2.5)))2 − (x1 − 2.25) · sin(3 · (x1 − 2.25) + x2 − 2.5)

s.t. g1(X) = (x1 − 2.25)2 + (x2 − 2.5)2 − [2 cos(t)− 0.5 cos(2t)− 0.25 cos(3t)− 1

8
cos(4t)]2

− [2 sin(t)]2 ≤ 0

where,

t = arctan2(x1 − 2.25, x2 − 2.5)

(a) Isometric view of objective function [20] (b) Top view of objective and constraint functions

Figure B.3: Townsend’s function [20]
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Simionescu’s function

PNLP =


minimize

X
g0(X) = 0.1 · (x1 − 1.25) · (x2 − 1.25)

s.t. g1(X) = (x1 − 1.25)2 + (x2 − 1.25)2 −
[
1 + 0.2 cos

(
8 arctan

(x1 − 1.25)

(x2 − 1.25)

)]2

Figure B.4: Simionescu’s function [21]
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