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Abstract—Data movement has long been identified as the
biggest challenge facing modern computer systems’ designers.
To tackle this challenge, many novel data compression algo-
rithms have been developed. Often variable rate compression
algorithms are favored over fixed rate. However, variable
rate decompression is difficult to parallelize. Most existing
algorithms adopt a single parallelization strategy suited for
a particular HW platform. Such an approach fails to harness
the parallelism found in diverse modern HW architectures.
We propose a parallelization method for tiled variable rate
compression algorithms that consists of multiple strategies that
can be applied interchangeably. This allows an algorithm to
apply the strategy most suitable for a specific HW platform.
Our strategies are based on generating metadata during en-
coding, which is used to parallelize the decoding process. To
demonstrate the effectiveness of our strategies, we implement
them in a state-of-the-art compression algorithm called ZFP.
We show that the strategies suited for multicore CPUs are
different from the ones suited for GPUs. On a CPU, we achieve
a near optimal decoding speedup and an overhead size which
is consistently less than 0.04% of the compressed data size. On
a GPU, we achieve average decoding rates of up to 100 GiB/s.
Our strategies allow the user to make a trade-off between
decoding throughput and metadata size overhead.

I. INTRODUCTION

Memory bandwidth and data movement have long been
identified as the biggest challenge facing computer sys-
tems’ designers in the current decade [1]. This challenge
becomes even harder in massively data-parallel architectures
such as GPUs [2]. In order to overcome the infamous
”Memory Wall”, a lot of research has been focusing on
novel online data compression techniques [3]. In online
compression, the data encoding and/or decoding happens at
run-time as part of another application. The primary goal
of online compression is to reduce the amount of data
that the application has to transfer into/from memory at
the expense of sacrificing extra compute power to perform
the encoding/decoding steps. As the memory bandwidth gap
worsens, any savings in data transfer time lead to substantial
savings in the total application execution time, even with
the additional overhead used to encode/decode the data.
This is especially important when offloading computations
to external acceleration devices, where the bandwidth of
the interface to the device is often orders of magnitude
lower than the internal memory bandwidth. In contrast to
online compression, offline compression focuses solely on

reducing, as much as possible, the compressed data size.
At first look, both online and offline compression seem
to share the same final goal. However, online compression
focuses, in addition to reducing the compressed data size,
on reducing the time overhead of encoding and decoding.
To this aim, many online compression algorithms focus
on utilizing modern architectural features such as vector
instructions, multicore CPUs, and caches [3]. In many real-
time and embedded systems, data decompression is in the
critical path of the application execution and compression is
either done offline or is done online but outside the critical
path. In such applications it is important to speed up the
decompression as much as possible.

Compression algorithms can be analyzed based on many
metrics. In this work, we focus on compression ratio and
data granularity. An algorithm is said to be a tiled al-
gorithm if it divides the input data into tiles or blocks
(i.e., groups) of n values and then compresses each tile
independently from other tiles. In this work we will use
tiled algorithms, as the independence of tiles allows for
tile-level parallel compression. Furthermore we can classify
compression algorithms into: (i) fixed rate, and (ii) variable
rate. In fixed rate compression, each tile in the original
dataset is encoded using a fixed number of bits. This means
that the location of each compressed tile in the compressed
bitstream can be calculated once we know the compression
ratio. In contrast, with variable rate compression, the number
of bits per compressed tile varies across the data. This means
that in variable rate decompression, finding the location
of each compressed tile is much harder as we need to
accumulate the bit lengths of all previous compressed tiles in
the bitstream. Variable rate modes are often favored because
of their generally higher compression ratios compared to
fixed rate modes. Therefore, we aim to accelerate variable
rate decompression.

A. Problem Statement

Accelerating variable rate decompression has been the
focus of many studies [4]–[7]. However, most of the existing
literature addresses the acceleration problem by adopting a
particular HW platform and a particular execution strategy
suitable for that platform. Such an approach couples the al-
gorithm with the acceleration strategy. This coupling makes
it difficult to achieve good performance on different HW



(a) Execution path without compression

(b) Execution path with compression

(c) Execution path with compression including metadata
Figure 1: Execution paths from Memory to Processing Unit

platforms. In this work, we alleviate this problem by decou-
pling the decompression method from the parallel execution
strategy. This allows us to find a suitable parallelization
strategy for each platform, without having to adjust the
algorithm.

B. Paper Contributions
We propose to parallelize variable rate decompression

by generating extra information during the encoding phase,
and passing this to the decoder as metadata. Using this
metadata, the decoder can compute very quickly the location
of each tile in the compressed bitstream. We compare three
different strategies to encode the metadata and show that the
content and granularity have a large influence on decoding
throughput across different HW platforms such as CPUs
and GPUs. We also show that in many cases the size
overhead introduced by the additional metadata is very small
compared to the compressed data size.

II. BACKGROUND

A bandwidth-bound application is one where the majority
of the total execution time is spent in data transfers. As
mentioned in Section I, compression can be used to reduce
the data transfer time since a reduction in data size is also a
reduction in transfer time. We will show this by comparing
execution with and without compression.

Let Ttransfer be the time needed to transfer the data over
the bandwidth-limited channel, and Tapp be the time needed
to process the data once it arrives. Assume that data transfer
and computation are pipelined. Then, it follows that the
latency and period of the system without compression are
given by:

Latency = Ttransfer + Tapp (1)
Period = max (Ttransfer, Tapp) (2)

This situation is illustrated in Figure 1a. Now, suppose that
we compress the data before sending it with a compression
ratio denoted by R, as shown in Figure 1b. Our working

assumption is that the data is decompressed upon arrival.
It follows that the latency and period of the system with
compression are given by:

Latency =
Ttransfer

R
+ Tdecode + Tapp (3)

Period = max

(
Ttransfer

R
, Tdecode + Tapp

)
(4)

It is straightforward to see from Equations 3 and 4 that
the data transfer time is reduced by a factor R. However, as
shown in Figure 1b, a decode step is added that has its own
latency (denoted by Tdecode). Therefore, it is important to
keep the decoding time as short as possible. In this work, we
achieve that by parallelizing the decode step using different
strategies that aim to maximize the utilization of different
modern parallel HW platforms.

As mentioned in Section I, in this work we focus on
tiled compression algorithms. There are different examples
of such algorithms in the literature such as ZFP [8] and
GFC [5]. We chose to use ZFP to prototype our solution
and demonstrate its advantages. ZFP is a state-of-the-art
compression algorithm that is able to achieve high data
compression ratios for correlated floating-point or integer
data. In short, the compression steps of ZFP can be described
as follows [9]:

1) Divide the array into blocks (i.e., tiles)
2) Apply a decorrelation transformation on each block
3) Encode the blocks with either fixed or variable rate

The first step shows clearly that ZFP is a tiled algorithm
as it divides the data in tiles, from now on referred to as
blocks. The number of values in a block is set to 4d, where
d is the dimensionality of the data (i.e., 1D, 2D, 3D, etc.).
An advantage of tiling, as mentioned earlier in Section I is
that, after step (1), the resulting blocks are independent. This
means that every subsequent operation applied to a block
does not require any information from other blocks. As a
result, all blocks can be encoded in parallel.

To decode a specific block from a compressed bitstream,
we have to apply the inverse of the compression steps. This
means that we need to know the bit position corresponding
to the start of this compressed block in the bitstream. We
call this position the block offset and define it as follows:

Definition 1. (Block Offset) The block offset of block
n, denoted by D(n), is the number of bits between the
start of a compressed bitstream and the starting bit of the
nth compressed block, with n ≥ 0 and Li the length of
compressed block i in bits. D(n) is given by:

D(n) =

n−1∑
i=0

Li (5)

Recall from Section I that in fixed rate the blocks in
the compressed bitstream have the same compression ratio.
This means that a fixed-rate compressed block length is the
original block length divided by the compression ratio R.



In the case of ZFP, the length of an uncompressed block in
bits is given by 4d · p, where p is the precision of the input
data type in number of bits. Substituting this in Equation 5
gives:

D(n) =

n−1∑
i=0

Li = n · 4
d · p
R

(6)

This means that the offset of any block in a fixed-rate com-
pressed bitstream can be computed easily if the compression
ratio R is known. As these parameters are constant and
known at encode- and decode-time, fixed rate decompression
is easy to parallelize, as is done in ZFP [10].

On the other hand, with variable rate compression, the
compressed block length is not constant. This means that
the expression from Equation 5 does not simplify like in
Equation 6. It remains a summation where the offset of
the current block depends on the accumulated length of all
previous blocks. Hence, the challenge in parallel variable
rate decompression is to find a solution to speed up the
computation of this summation.

III. RELATED WORK

In [4], the author implemented a parallel variable length
encoding (PVLE) scheme suited for integer data sets. The
scheme is based on saving the length of each codeword and
then performing a parallel prefix sum [11] on the array of
lengths. Our work differs from [4] in two main aspects. First,
we explore different schemes for generating the metadata
needed to parallelize the decompression process and show
that the lengths based approach used in [4] is not the
most suitable one for modern GPUs. Second, we target
different parallel architectures (multicore CPUs and GPUs)
and show that our approach allows us to use different parallel
execution strategies based on the architecture.

In [5], the authors proposed an algorithm, called GFC,
for parallel decompression on GPUs. GFC shares many
similarities with the ZFP algorithm used in our work. Both
algorithms are tiled compression algorithms and support
floating-point data. However, compared to GFC, our work
differs in decoupling the generation of the metadata (needed
for parallel decoding) from the underlying algorithm. This
decoupling enables us to try different execution policies
for different HW platforms. Our execution policies can, in
principle, be applied to GFC as well.

In [6] an approach to parallelize JPEG is proposed. It is
based on placing restart markers in the compressed stream,
which creates blocks that can be decompressed indepen-
dently. Then the bit locations of these restart markers with
respect to the start of the bitstream, the offsets, are stored
and used to parallelize the decoding. This is very similar
to our offsets strategy. The difference with our approach is
that this method requires insertion of restart markers into
the compressed bitstream, which means the parallelization
strategy and algorithm are not completely decoupled. This
is needed because in JPEG the blocks are coupled. We
only target algorithms where the blocks are independent.
Furthermore, we provide different methods of encoding the

(a) Strategy 1, bold underlined values are encoded offsets

(b) Strategy 2, values under the chunks are encoded lengths

(c) Strategy 3, with P = 3, bold underlined values are chunk
offsets, others values are chunk lengths
Figure 2: Metadata under different strategies for 12 blocks of
the Brain benchmark [12] that was compressed using ZFP
with a fixed accuracy of 0.05. For all strategies we used
C = 2, values inside the blocks are the block lengths in bits

information besides simply storing the offsets. This means
that our proposed framework is more flexible, as it allows
the user to trade off compression ratio for decoding speed.

In [7], the authors proposed a new approach to parallel
decoding based on speculative execution. They developed
a prediction algorithm that tries to predict block offsets in
the compressed bitstream. These predictions are fed into a
parallel decoding stage. For the correctly predicted offsets
the decoded blocks are merged into the decompressed result,
while mis-predictions are discarded. This process continues
until all blocks are correctly decoded. The approach in [7]
does not incur extra metadata overhead. However due to
the mis-prediction penalty their speedup is limited when
scaling-up the number of cores used. They report maximum
speedups of 8.53, 6.42 and 1.20 for bzip2, H.264 and zlib
respectively on a 36 core platform. Also, they show that the
maximum speedup in these cases is achieved when using 14,
18 and 3 cores. This shows that their approach is not scalable
into the thousands of cores and therefore not efficient on
GPUs. For applications where decode latency should be
minimized, speculative decoding is not suitable.

IV. PROPOSED SOLUTION

As mentioned in Section II, in order to decode blocks in
parallel, the block offsets have to be known before decoding
starts. These block offsets can be stored directly or can
be computed with the sum in Equation 5. If one has only
the compressed bitstream, neither the block offsets nor the
block lengths needed for the sum are known at the decoder.
Therefore our solution is to generate metadata, containing
this information, during encoding. Figure 1c illustrates the
concept by depicting the execution path with compression
and the addition of the metadata.

Sending extra data over a bandwidth-limited communica-
tion channel seems counter-intuitive, since it will increase
data transfer time. However, it allows us to reduce the
decoding time massively. There is a trade-off between the
decoder speedup and the introduced metadata size overhead.



The metadata can be compressed itself to reduce its size
further, for example using Binary Interpolative Coding [13].
However, for the sake of simplicity, in the rest of this paper
we assume that it is sent as is. We start introducing our
solution by defining an overhead factor and an effective
compression ratio as shown in Definition 2 and Definition 3.

Definition 2. (Overhead Factor) Let S be the total size of
the original uncompressed data in bits, R be the compression
ratio and I be the total number of bits required to encode
the metadata. The overhead factor, denoted by f , is given
by:

f =
I

S/R
(7)

Definition 3. (Effective Compression Ratio) The effective
compression ratio, denoted by Re, is the original un-
compressed data size divided by the total amount of data
transferred over the communication channel. Re is given
by:

Re =
S

S/R+ I
=

R

1 + f
(8)

It can be seen from Equation 8 that the effective com-
pression ratio depends merely on two factors: (i) the average
compression ratio R, and (ii) the overhead factor introduced
in Definition 2. To minimize the impact of the metadata on
the transfer time, one would like to minimize the metadata
size I with respect to the original data size S, as this in turn
minimizes f . To explain our strategies which minimize I and
still allow for a large decoding speedup, we will introduce
a number of definitions. Given a block with length L, we
define the number of bits required to encode L as IL and it
is given by:

IL = dlog2(L)e (9)

Similarly, given a block with block offset D(n), then the
number of bits required to encode D(n) is denoted by ID(n)

for n > 0 and it is given by:

ID(n) =

⌈
log2

(
n−1∑
i=0

Li

)⌉
(10)

Finally, we define ID to be the maximum number of bits
required to encode an offset for any block in a compressed
bitstream of N blocks with an average data compression
ratio of R. As an offset is a cumulative sum of lengths, the
largest offset is the one of the last compressed block in the
bitstream. Then ID is given by:

ID =

⌈
log2

(
N−1∑
i=0

Li

)⌉
≤
⌈
log2

(
S

R

)⌉
(11)

Now, we are ready to detail what and how much extra
information we send to compute the block offsets before we
start decoding. In the following sub-sections we introduce
our strategies for encoding the metadata.

A. Strategy 1: Offset Encoding
The first and simplest strategy is to plainly transfer the

block offsets. This means that the metadata can be used
without any preprocessing step during decoding. However,
from Equation 11, it can be seen that the number of bits
required to encode offsets grows with the original data size
S, resulting in significant transfer size overhead. To reduce
this, we introduce the concept of chunks.

Definition 4. (Chunk) A chunk is a set of C consecutive
compressed blocks to be decoded by a single thread.

We group the blocks in chunks of granularity C and
encode one offset per chunk rather than one offset per block.
As a result, during decompression, every thread decodes a
chunk instead of a block. This reduces the metadata size
by a factor C. However, the increase in blocks per thread
introduces the following two issues:

1) A decoding dependency between blocks in a chunk,
which introduces a control loop

2) The access granularity becomes more coarse by a
factor C

The impact of these issues differs per HW architecture and
will be explored later.

Figure 2a gives a visual impression of blocks and chunks
for a selection of 12 compressed blocks from the Brain
benchmark [12].

B. Strategy 2: Length Encoding
From Equation 5, it can be seen that it is also possible to

compute any offset as a cumulative sum of the lengths of
the previous blocks. Recall that for an uncompressed ZFP
block, L is constant and is equal to 4d · p. Assume R ≥ 1
for each block, meaning the length of any compressed block
is smaller than or equal to the length of an uncompressed
block. Then, from Equation 9 it follows that for compressed
ZFP blocks the number of bits required is given by:

IL,ZFP =
⌈
log2

(
(4d · p)/R

)⌉
≤ 2d+ log2(p) (12)

Equation 12 shows that, contrary to offset encoding, the
number of bits required to encode the length of a ZFP block
does not scale with array size and has an upper bound based
on the data precision and dimensionality. Therefore, instead
of transferring block offsets, we propose to transfer block
lengths and introduce a preprocessing step at the decoder.
The preprocessing step computes the required block offsets
through a cumulative sum of all the block lengths. Such
a sum introduces a dependency between blocks, where the
block offset of block n is dependent on the block lengths
of the previous n − 1 blocks. This cumulative sum is also
known as Exclusive Scan or Prefix Sum [11]. There are
work-efficient parallel algorithms to perform Prefix Sum in
O(N) operations in O (log2 (N)) parallel steps [14].

Similar to Strategy 1, we might create chunks of blocks
and encode the length of a chunk rather than a block. This
reduces the number of elements in the Prefix Sum by a factor
C. However the number of bits needed to encode a chunk



length is larger than the number of bits required to encode
a block length, as the maximum length of a chunk of C
consecutive blocks in bits is C times larger than the length of
a single block. This effect can be quantified by substituting
L with L·C in Equation 9 to see that it increases the required
number of metadata bits per chunk by log2(C).

Figure 2b shows the chunk lengths that would be encoded
on the example bitstream. Here, it can be seen that contrary
to chunk offsets, the chunk lengths do not accumulate. Hence
the number of bits needed to store them does not scale with
the compressed data size.

If we compare Strategy 1 to Strategy 2, we see that
Strategy 2 has an advantage in the sense that the required
information is encoded more efficiently. Therefore the over-
head size of Strategy 2 is smaller than for Strategy 1.
However in Strategy 2 a preprocessing step is needed to
reconstruct the chunk offsets. The main issue with this
preprocessing step is that even in a work efficient parallel
implementation, its duration scales with the number of
blocks. In order to address the issues associated with both
strategies, we propose a third hybrid strategy that combines
the advantages of strategies 1 and 2 in order to minimize
both size and computation overhead.

C. Strategy 3: Hybrid Encoding

The core concept of this strategy is to divide the decoding
work over independent partitions. This means that the com-
plexity of any preprocessing step is bounded by the partition
size. We define a partition as follows:

Definition 5. (Partition) A partition is a set of P consec-
utive chunks, hence a partition contains P · C consecutive
blocks.

For a partition of cardinality P , the first element is
encoded as a single chunk offset and the remaining P − 1
elements will be encoded as chunk lengths. Using an offset
as first element decouples the partition from other partitions,
which decouples the complexity of the preprocessing step
from the array size. As a result, the preprocessing will
consist of P small steps rather than a single large step.
Figure 2c shows Strategy 3 applied to the example bitstream.

The chunk lengths within a partition are used to compute
the chunk offsets using Prefix Sum. The overhead size for
large partitions is comparable to that of Strategy 2 as for
every P blocks we store P − 1 chunk lengths and only
a single chunk offset. Thus, the overhead per partition is
defined by:

IH = ID + (P − 1) · IL (13)

D. Overhead Analysis and Implementation Considerations

To compare the overhead size of the different strategies we
use Table I. The values for f are computed by substituting
the expression of I in Equation 7 for every strategy. This
means that these values are the maximum achievable f ,
as they assume a size-optimal implementation, meaning

Table I: Overhead factor f for the metadata encoding
strategies, where Y = R/(C · L)

Strategy f

1: Offsets Y · dlog2 (S/R)e
2: Lengths Y · dlog2(C · L)e
3: Hybrid (Y · dlog2 (S/R)e+ (P − 1) · dlog2(C · L)e)/P

Table II: The setup used for evaluating the strategies

Item Value

CPU Intel Xeon Bronze 3106 (dual socket, 6 cores/socket)
GPU NVIDIA Tesla V100 32 GiB (PCI-E Gen3 16 lanes)

RAM 256 GiB DDR4 2666 EEC
Storage 1.92 TiB SSD SATA disk

OS CentOS 7.5.1804 kernel 3.10.0-957 (64 bit)
Compiler GNU GCC 4.8.5

CUDA CUDA version 10.0.130

that the information is stored in the absolute minimum
number of bits required. However, there are several practical
considerations and hardware limitations that prevent us from
using the minimum number of bits. First, most modern
computer architectures work most efficiently with data types
that are multiples of bytes. Therefore, we choose to imple-
ment schemes where lengths and offsets are encoded using
standard data types. Second, in the case of ZFP, the number
of bits required to encode chunk lengths in Strategy 2 and
3 is dependent on the dimensionality of the array. In order
to make one general solution that is applicable to all modes,
one would have to ”over-size” the type used for storing the
chunk lengths. Third, the number of bits used to encode
chunk offsets places an upper bound on the compressed file
size. In this work, we have a design requirement to support
compressed files with sizes up to 1 TiB. Such a file size
means that the chunk offset must be encoded with at least
43 bits. In order to fit a 43 bit value within standard data
types, we choose to encode chunk offsets as 64 bit integers.

V. EVALUATION AND RESULTS

In this section, we present the results of evaluating our
three proposed strategies in Section IV. We start by describ-
ing our experimental setup used for evaluation.

A. Experimental Setup
We evaluate the proposed strategies on both a CPU with

an OpenMP implementation and a GPU with a CUDA
implementation. We use a server whose configuration is
outlined in Table II.

We implement the strategies on top of ZFP version 0.5.4
released on October 1, 2018 [10]. ZFP v0.5.4 is the first
official ZFP release to support CUDA encoding and decod-
ing. However, its CUDA support is limited to fixed rate. We
first introduce the concept of chunks and then implement the
calculation of the chunk offsets using metadata for variable
rate modes. The metadata is encoded using the strategies as
outlined in Section IV. ZFP release v0.5.4 does not support
OpenMP decoding at all. However, it does support OpenMP
encoding as well as serial decoding. We implement the



Table III: The used datasets. More extensive descriptions can be found in the referenced sources

Name Description Dimensions Precision Size (MiB) R Source

NYX Cosmological hydrodynamics simulation 3D: 512x512x512 (6 fields) Single 3072.0 4.94 [15]
ISABEL Hurricane simulation 3D: 100x500x500 (13 fields) Single 1239.8 3.22 [15]
CESM-ATM Climate simulation 2D: 3600x1800 (79 fields) Single 1952.9 5.60 [15]
BRAIN Brain impact simulation 2D: 17730 x 1000 Double 135.3 7.45 [12]
BROWN Synthetic Brown data 1D: 8388609 Double 64.0 5.75 [15]
PLASMA Plasma temperature simulation 1D: 4386200 Single 16.7 1.88 [12]

Require: A benchmark to be evaluated
1: R = ∅ {List of mean compression ratios}
2: T = ∅ {List of mean execution times}
3: I = ∅ {List of metadata sizes}
4: for i = 0 to 12 do
5: C = 4i

6: Γ = ∅
7: Λ = ∅
8: for j = 8 to 24 (incremented by 4) do
9: Invoke ZFP fixed precision mode on the benchmark with precision j

10: Append the resulting compression ratio to Γ
11: Append the execution time in Λ
12: end for
13: Compute the harmonic mean of Γ and append it to R
14: Compute the standard mean of Λ and append it to T
15: Compute the metadata size I and append it to I
16: end for
17: return Harmonic mean compression ratio, mean overhead, and mean execution

time of the benchmark under every chunk granularity C

Figure 3: Evaluation methodology for the CPU implemen-
tation

parallel decoding by using the metadata encoding strategies
to compute chunk offsets and from there launch threads
that decode the chunks in parallel. We use static OpenMP
scheduling. Our implementations can be found on [16].

We choose to use open source floating-point datasets
used in research on compression algorithms in order to get
representative results. They are listed in Table III. For all
benchmarks on a CPU, we use the evaluation methodology
outlined in Figure 3. The decoding throughput is defined
as the uncompressed array size divided by the decoding
time, so S/Tdecode. In ZFP, the decoding throughput is
highly dependent on array dimensionality, data type and
compression ratio. We use multiple datasets which have
different dimensionalities and data types. For every dataset
we use 5 ZFP precision values and we compute the harmonic
mean of the compression ratios and mean of the execution
times. The rationale to average over these parameters is that
we aim to analyze the impact of our proposed parallelization
strategies on a high level, rather than the maximum ZFP
performance using optimal settings. When optimizing for
a specific dataset, we are able to achieve significantly
higher decoding throughput. On a GPU we use the same
methodology with C = {1, 2, 4, 8, 16}.

B. CPU Results

We start by evaluating the OpenMP implementation and
showing the impact of chunk granularity C on the decoding
throughput and size overhead. Then, we show the speedup
obtained.

Figure 4 shows the decoding throughput of the OpenMP
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Figure 4: CPU decoding throughput, under Strategy 1, as a
function of C

implementation as a function of C. We observe that as we
increase C the decoding throughput increases until a certain
threshold. Then, it is roughly constant up until we reach a
next threshold, from where it start to degrade. Increasing the
chunk granularity leads to more coarse-grain parallelism, as
we parallelize per chunk of C blocks rather than per block.
For large C, this leads to insufficient load balancing. For
the considered benchmarks, one can conclude that a chunk
granularity in the range [103, 104] would correspond to near-
optimal decoding throughput. The exact value is data and
platform dependent, but is not of interest in this paper as our
goal is to show the trend and design trade-offs to consider
when using this approach.

Figure 5 shows the size overhead introduced by Strategy
1 as a function of C. When f = 1 the introduced overhead
is as large as the compressed data itself. We observe that
Strategy 1 suffers from very large size overhead when C
is small. However, as the chunk granularity increases, the
overhead drops dramatically and becomes less than 0.0004
for C = 4096.

Figure 6 shows the speedup achieved with the OpenMP
implementation on a 6-core CPU for C = 4096. We see
that the implementation has a near-optimal speedup, as it is
nearly linear with the number of threads. We observe similar
results when performing the same test on a Xeon Gold 6126
using up to 24 threads. If we combine the findings from
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Figure 6: CPU decoding speedup, under Strategy 1, as a
function of the number of threads with C = 4096

Figures 4, 5, and 6, then one can conclude that when C
is large Strategy 1 is a very good choice for CPUs as it
provides near-optimal speedup for negligible overhead.

Recall from Section IV that the advantage of strategies
2 and 3 is a reduction of the size of the metadata, at the
cost of decoding throughput due to an added preprocessing
step. These strategies are useful in cases where increasing
the chunk granularity is not favorable. We observe that
increasing the chunk granularity is feasible with our datasets
and test setup and therefore we do not further investigate
strategies 2 and 3 on a CPU.

C. GPU Results

On the GPU, we start by implementing Strategy 1 and
investigating differences with the CPU implementation.

1) Strategy 1: Offsets: Figure 7 shows the decoding
throughput of the CUDA implementation of Strategy 1. If
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Figure 7: GPU decoding throughput, under Strategy 1, as a
function of C

we compare Figure 7 to Figure 4 we observe that CUDA
decoding throughput decreases if we increase C. This is
in contrast to OpenMP, where increasing C would increase
decoding throughput up to a threshold. The reasons for this
decrease are the control loop and access granularity issues
introduced in Section IV-A. Since a GPU has many more
cores than a CPU we observe the load balancing issues at a
lower chunk granularity compared to the CPU. Furthermore
the introduction of a control loop has a larger impact on
a GPU than on a CPU. This is due to the fact that after
each loop iteration all threads in a warp need to synchronize.
Finally the overhead associated with launching many threads
is less on a GPU.

Table IV lists the overhead factor of the datasets for
strategies 1 and 3 with a chunk granularity of 1. Due
to the large decrease in decoding throughput, it is not
feasible to increase C to the same extent as in the OpenMP
implementation. Therefore, when comparing to the overhead
for the OpenMP implementation (Figure 5), we see that the
CUDA implementation suffers from a much larger overhead
factor. We will implement strategies 2 and 3 in CUDA with
the goal to reduce this overhead factor without significant
loss of decoding throughput.

2) Strategy 2: Lengths: In order to evaluate Strategy 2 we
used a work efficient parallel implementation of Prefix Sum
as described in [14]. We found that for large arrays the time
needed to perform the Prefix Sum is the dominant factor in
the decoder execution time. As a result, in Strategy 2 de-
coding throughput is more than halved compared to Strategy
1. This is consistent with observations of other authors who
also used Prefix Sum for parallel decompression on GPUs
and reached the conclusion that it is a significant portion
of their execution time [4]. Since our primary objective
is maximizing the decoding throughput, we conclude that
Strategy 2 is not promising for GPUs.

3) Strategy 3: Hybrid: A dominant factor in the Prefix
Sum execution time for large arrays is data dependencies



Table IV: f for CUDA implementations of strategies 1 and
3 for various datasets with C = 1

Dataset Strategy 1 Strategy 3

NYX 0.15 0.04
ISABEL 0.10 0.03
CESM-ATM 0.70 0.20
BRAIN 0.47 0.13
BROWN 1.44 0.40
PLASMA 0.94 0.26

between warps. In order to eliminate these inter-warp de-
pendencies, we propose a partition size of 32, which is the
warp size for modern NVIDIA GPUs [17]. This minimizes
the preprocessing time needed per block, and also leads to
a significantly lower overhead size compared to Strategy 1.

When we implement Strategy 3 with a partition size of 32,
we observe that the execution time of the preprocessing step
is minimal. The difference in decoding throughput compared
to Strategy 1 is < 3% for every C and every dataset. If we
consider the size overhead of the CUDA implementation
of Strategy 3 as shown in Table IV, then we see the clear
advantage of this strategy. Under Strategy 1, the overhead
is 64 bits per chunk, while under Strategy 3 the overhead is
64 + 32 · 16 bits per partition, which is 18 bits per chunk.
This is an overhead reduction with a factor of 3.55 for a
loss in decoding throughput that is consistently lower than
3%. This shows clearly that Strategy 3 is well suited for
GPUs. Reducing the overhead size further involves a trade-
off as increasing the chunk granularity impacts the decoding
throughput significantly. This trade-off is data-dependent
in the case of ZFP and it requires consideration of the
application requirements.

VI. CONCLUSIONS

In this paper, we presented an approach to parallelize
variable rate decompression in a tiled compression algo-
rithm. This approach is to transfer metadata, in addition to
the compressed data, to allow parallelization. This metadata
introduces a storage overhead, but also greatly increases the
decoding throughput. We presented three strategies for gen-
erating and storing the metadata and showed that the optimal
strategy depends on the hardware platform used. On a CPU,
we are able to achieve a speedup in decoding throughput
that is near linear with the number of cores, with a storage
overhead of less than 0.04% of the compressed data size.
On a GPU, we were able to achieve a decoding throughput
of up to 100 GiB/s. However, the storage overhead in this
case is almost 40% of the compressed data size. Strategy 1
(offsets) is an effective strategy in cases where it is possible
to use a coarse chunk granularity. On a CPU this is often
a good approach as this will also lead to a high decoding
throughput. On a GPU this is often not feasible, as it will
result in a low decoding throughput due to load balancing
issues. Here, Strategy 3 (hybrid) is more efficient since it
maps well to the HW, for example when using a partition
size equal to the warp size on NVIDIA GPUs. Finding an

optimal chunk granularity is dependent on the input data
and application requirements. Our method can be applied to
other tiled compression algorithms, since it decouples the
parallelization strategy from the compression. This allows
optimizing for different architectures and applications.
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