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A B S T R A C T

We developed a dedicated computational framework by coupling the lattice-Boltzmann-method (LBM) model-
ing and the particle-swarm-optimization (PSO) algorithm to search optimal strategies of magnetic nanoparticle
(MNP) injection for hyperthermia-based cancer treatment. Two simplified tumor models were considered: a
circular model representing geometrically regular tumors and an elliptic model representing geometrically
irregular tumors, both sharing the same area. The temperature distribution in the tumor and its surrounding
healthy tissue was predicted by solving the Pennes’ bio-heat transfer equation (PBHTE). Both single- and multi-
site injection strategies were explored. The results suggest that the multi-site injection strategies generally work
well, while the single-site injection strategy fails even on the simplest circular tumor model. The more the
injection sites, the better the performance. In particular, when the number of injection sites reaches eight, all
temperature requirements can be nearly 100% satisfied in both tumor models. Whether or not including the
minimum dose requirement in the objective function only affects the optimization results by less than 2%. The
thermal dose was also assessed by considering both temperature and heat exposure time. It was found that the
optimal multi-site injection strategies perform reasonably well for both tumor models. Although the setting is
only two dimensional and the optimization is on very simplified tumor models, the framework adopted in this
present study works well and can provide useful insights into magnetic hyperthermia treatment.

1. Introduction

Hyperthermia treatment, or thermotherapy, is a cancer therapeutic
procedure in which tumor tissues are locally heated to approximately
above 43 ◦C, thereby to ablate malignant cells without overheating
the surrounding healthy tissue [1–3]. The damage on cells is irre-
versible since high temperature will cause the protein denaturation [4].
As one of hyperthermia modalities, magnetic hyperthermia treatment
utilizes magnetic nanoparticles (MNPs), which are injected into tu-
mor tissues and subjected to an alternating magnetic field (AMF),
to generate the required heat at target regions [5–7]. Such a heat
generation mechanism offers magnetic hyperthermia treatment sev-
eral advantages over conventional approaches, such as more targeted
and homogeneous heating, harmless to human body, and more ef-
fective treatment [8–10]. Although having been demonstrated to be
effective, magnetic hyperthermia treatment is still facing a great chal-
lenge, i.e., how to impose fatal thermal damage to cancerous tissues,
while minimizing the damage to surrounding healthy tissues? To tackle
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E-mail address: h.tang@polyu.edu.hk (H. Tang).

this challenge, optimal MNP concentrations and spatial distributions
must be identified, which requires detailed heat and mass transfer
analysis.

For the MNPs used in magnetic hyperthermia treatment, magnetite
(Fe3O4) has been chosen in many studies as an ideal candidate, since
such iron-oxide nanoparticles bear favorable magnetic properties and
low toxicity [11–13]. Nevertheless, iron-based nanoparticles are still
genotoxic to healthy skin and lung tissue [14]. According to Karpo-
nis et al. [11], iron intake in human body should be moderate, and
overdose may shorten life expectancy.

Regarding the distribution of MNPs, Liangruksa et al. [15] numeri-
cally compared the performance of uniform, exponential and Gaussian
distributions, and concluded that the Gaussian distribution can provide
the best efficacy while minimizing the possibility of generating hot
spots in the tumor. Salloum et al. [16] also confirmed that the Gaussian
distribution is a good fit with the observation from MNP delivery
experiments, which agrees with the analytical diffusion prediction. It
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Nomenclature

Parameters

(𝑥, 𝑦) Coordinates of injection site, m
𝛼 Reference thermal diffusivity, m2/s
𝛽 Inclination angle, ◦

𝛽0 Reference inclination angle, ◦

𝜒0 Equilibrium susceptibility
𝑚̇ density flux, kg/m3-s
Ψ Source term vector in LBM
𝐠 Five-dimensional distribution function vec-

tor in LBM
𝜔1 ∼ 𝜔4 Weighting factors of each basic requirement

in objective function
𝛷 Volume fraction with time variant
𝜙 Volume fraction without time variant
𝜙0 Reference volume fraction
𝜌 Density, kg/m3

𝜎 Standard deviation, m
𝜎0 Reference standard deviation, m
𝜏𝐵 Brownian relaxation time, s
𝜏𝑁 Neel relaxation time, s
𝜏𝑅 Effective relaxation time, s
𝑐 Specific heat, J/(kg-K)
𝐶𝐸𝑀 Coefficient, a function of temperature
𝐶𝐸𝑀43 Cumulative equivalent time at 43◦C, min
𝐷 Mass diffusivity, m2/s
𝑑 distance of injection site, m
𝑑0 Reference distance
𝑑𝑡𝑢𝑚 Diameter of circular tumor, m
𝐸𝑟𝑟 Error percentage, %
𝑓 (𝑥) Test function for PSO
𝐽 Objection function
𝑘 Thermal conductivity, W/m-K
𝑘𝛽 Inclination angle ratio
𝑘𝜙 Volume fraction ratio
𝑘𝜎 Standard deviation ratio
𝑘𝑑 Distance ratio of injection site
𝐿 Length of healthy tissue, m
𝑙 Number of time intervals
𝑁𝑥 ×𝑁𝑦 Grid number in LBM
𝑄 Heat induced by MNPs, W/m3

𝑅𝐶𝐸𝑀43 Percentage ratio of area for 𝐶𝐸𝑀43 ≥
60 min

𝑅𝑖𝑛𝑡 Temperature requirement at interface be-
tween healthy tissue and tumor tissue

𝑅𝑡𝑖𝑠 Temperature requirement in healthy tissue
𝑅𝑡𝑢𝑚 Temperature requirement in tumor tissue
𝑆 Area, m2

𝑇 Temperature, ◦C
𝑡 Time, min
𝑉 Volume of injected MNP solution, m3

𝑉𝐻 Hydrodynamic volume of single MNP, m3

𝑉𝑀 Magnetic volume of single MNP, m3

was believed that, since the MNP injection rate and the blood infusion
rate are slow enough, achieving the Gaussian distribution for MNPs in
real situations is feasible [16,17].

Subscripts

𝑏 Blood
𝑐 Tumor center
𝑖 Injection site number
𝑚𝑛𝑝 Magnetic nanoparticles
𝑛𝑓 Nanofluid, the mixture of tissue and in-

jected MNPs
𝑜𝑝𝑡 Optimal value
𝑟 The rightmost point on tumor boundary
𝑡𝑖𝑠 Healthy tissue
𝑡𝑢𝑚 Tumor tissue

In practice, it is challenging to manually fabricate the MNP distri-
bution for expected heating results, which is especially true for tumors
with irregular shapes. Golneshan and Lahonian [18] simulated the
MNP diffusion in a tumor with complex geometry, and pointed out
that with the same diffusion time multi-site injection is able to create
more uniform distribution and covers a larger area than single-site
injection. Other studies also demonstrated that multi-site injection is
a good strategy that can help enhance the effectiveness of magnetic
hyperthermia treatment [19,20].

Note that, in the above multi-site injection studies, the injection
sites were arbitrarily selected. To explore the best injection sites, using
optimization algorithms may be of great help. So far only a limited
number of studies were reported in this aspect though. For example,
Salloum et al. [21] and Tang et al. [22] applied the Nelder–Mead
simplex method, and Barba et al. [23] applied the epsilon-constraint
approach to optimize the temperature distribution in a tumor. How-
ever, both these two methods are local optimization algorithms, bearing
the drawbacks of only finding local optima and relying very much on
the initial guess of parameters, and hence are not capable of solv-
ing discrete optimization problems [24]. To address this issue, in a
simple setting without considering the influence of injection number
and geometrical complexity, Tang et al. [25] compared two stochastic
optimization techniques, i.e., the simulated annealing (SA) and the
particle swarm optimization (PSO), in exploring the best temperature
distribution for hyperthermia treatment, and illustrated that the PSO
shows better ability in handling a large number of independent vari-
ables. Nevertheless, with a two-site injection strategy they still had a
19.6% injury rate in healthy tissue when achieving a 99.9% ablation
rate in tumor. A similar treatment efficacy was also reported by Barba
et al. [26], who applied the non-dominated sorting genetic algorithm
(NSGA) on two-site injections and achieved a 91.2% ablation rate in
tumor along with a 16.7% injury rate in healthy tissue.

To further enhance the treatment efficacy, in this study we aim to
explore optimal MNP injection strategies for magnetic hyperthermia.
To facilitate effective and efficient search, a dedicated computational
framework is developed, in which the heat generation and transfer in
tissues is simulated by solving the Pennes’ bioheat transfer equation
(PBHTE) using the lattice Boltzmann method (LBM), and the MNP in-
jection strategies are evaluated and optimized using the PSO algorithm.
This ‘‘modeling + optimization’’ framework is then demonstrated on
two selected tumor models: one is a circle representing a geometrically
regular tumor, and the other is an ellipse representing a geometri-
cally irregular tumor. Both single- and multi-site injection strategies
are evaluated. The effects of some key factors, such as the minimum
dose requirement, are also studied. Moreover, the thermal dose in the
optimal multi-site injection strategies is assessed by considering both
temperature and heat exposure time.
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Fig. 1. Schematics of two tumor models surrounded by healthy tissue: (a) a circular tumor model, and (b) an elliptical tumor model. The gray regions represent the tumor and
the outer white regions represent the healthy tissue.

2. Problem description and methodology

The relevant physical and mathematical models will be introduced
in this section. First, the two selected tumor models are described
in Section 2.1. Then, the governing equations for simulating MNP-
induced heat generation and transfer in tissues are introduced in Sec-
tion 2.2. Last, the optimization algorithm adopted in the present study
is presented in Section 2.3.

2.1. Problem description

Two simplified tumor models were chosen in the present study, as
sketched in Fig. 1. One is a circle representing a geometrically regular
tumor, and the other is an ellipse representing a geometrically irregular
tumor. The diameter of the circular tumor is set as 10 mm. The major
and minor axes of the elliptical tumor are set as 12.5 mm and 8 mm,
respectively. Hence both tumors have the same area. Surrounded by
healthy tissue, each tumor is located at the center of a selected 50 mm
× 50 mm tissue block. Assuming the adiabatic condition on the outside
boundaries of the tissue block, the hyperthermia treatment is realized
through heat generation by the AMF driven MNPs, which are injected
at chosen sites in the tumor. Meanwhile, heat will also be taken away
by the blood flow embedded in the tumor and the tissue.

2.2. Governing equations

The temperature distribution in the tumor and its surrounding
healthy tissue, 𝑇 , is evaluated using the Pennes’ bioheat transfer equa-
tion (PBHTE) [27], which has been widely adopted for predicting
magnetic hyperthermia treatment efficacy [28–30]. It relates the evo-
lution of temperature in tissue with physiological and environmental
factors, such as the blood perfusion and MNP-generated heat

(𝜌𝑐)𝑛𝑓
𝜕𝑇
𝜕𝑡

= 𝑘𝑛𝑓

(

𝜕2𝑇
𝜕2𝑥

+ 𝜕2𝑇
𝜕2𝑦

)

+ 𝑚̇𝑏𝑐𝑏(𝑇𝑏 − 𝑇 ) +𝑄 (1)

where 𝜌, 𝑐 and 𝑘 are density, specific heat and thermal conductivity,
respectively. The subscript ‘‘𝑛𝑓 ’’ denotes properties of nanofluid or
modified tissue that is a mixture combining the tissue and the injected
MNPs, and ‘‘𝑏’’ denotes properties of blood. The properties of nanofluid
can be determined for given MNP’s volume fraction 𝜙 [31–33]

(𝜌𝑐)𝑛𝑓 = 𝜙(𝜌𝑐)𝑚𝑛𝑝 + (1 − 𝜙)(𝜌𝑐)𝑡𝑖𝑠 (2a)

𝑘𝑛𝑓 = 𝑘𝑡𝑖𝑠
𝑘𝑚𝑛𝑝 + 2𝑘𝑡𝑖𝑠 − 2𝜙(𝑘𝑡𝑖𝑠 − 𝑘𝑚𝑛𝑝)
𝑘𝑚𝑛𝑝 + 2𝑘𝑡𝑖𝑠 + 𝜙(𝑘𝑡𝑖𝑠 − 𝑘𝑚𝑛𝑝)

(2b)

Note that the subscript ‘‘𝑡𝑖𝑠’’ here includes the healthy tissue and the
tumor tissue, both sharing the same properties for simplification since

Table 1
Properties of the tissue and nanoparticles [34,37,38].

Tissue properties Value MNP properties Value

𝜌𝑡𝑖𝑠 (kg/m3) 1052 𝜌𝑚𝑛𝑝 (kg/m3) 5200
𝑐𝑡𝑖𝑠 (J/kg-K) 3800 𝑐𝑚𝑛𝑝 (J/kg-K) 670
𝑘𝑡𝑖𝑠 (W/m-K) 0.5 𝑘𝑚𝑛𝑝 (W/m-K) 6

the difference in their thermal properties is only up to about 5% [34–
36]. The detailed properties for the nanofluid formation are listed in
Table 1.

The second term on the right hand side of Eq. (1), 𝑚̇𝑏𝑐𝑏(𝑇𝑏 − 𝑇 ),
describes the rate of heat transfer from blood to tissue, where 𝑇𝑏 =
37 ◦C is the normal temperature of blood and 𝑚̇𝑏 is the mass flow rate
of perfusing blood per unit volume. According to Lang et al. [39], 𝑚̇𝑏
depends on local temperature as follows
In healthy tissue:

𝑚̇𝑏 =

{

0.45 + 3.55 exp[−(𝑇 − 45)2∕12] 𝑇 ≤ 45◦C
4.0 𝑇 > 45◦C

(3)

In tumor:

𝑚̇𝑏 =

⎧

⎪

⎨

⎪

⎩

0.833 𝑇 < 37◦C
0.8333 − (𝑇 − 37)4.8∕5438.0 37 < 𝑇 ≤ 42◦C
0.416 𝑇 > 42◦C

(4)

The last term in Eq. (1), 𝑄, represents the heat released from
MNPs as induced by an external AMF. Its evaluation is provided in
Appendix A.

Once injected at a selected site (𝑥𝑖, 𝑦𝑖), the evolution of MNPs’
volume fraction can be determined analytically as two-dimensional
diffusion

𝛷𝑖(𝑥, 𝑦, 𝑡) =
𝑉𝑖

4𝜋𝐷𝑡
exp

[

−
(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2

4𝐷𝑡

]

(5)

where 𝐷 is the mass diffusivity and 𝑉𝑖 is the volume of injected MNP
solution. Eq. (5) clearly indicates that, at any instant, the spatial dis-
tribution of MNPs follows the Gaussian distribution with the variance
2𝐷𝑡.

Note that, in magnetic hyperthermia treatment the AMF is usually
not applied at the time of injection. Instead, it is applied after the
MNPs have sufficiently diffused in the tumor. Since the MNP diffusion
is usually much slower than the thermal diffusion, which is reflected by
the large Lewis number 𝐿𝑒 = 𝛼∕𝐷 = 125 (𝛼 is the thermal diffusivity)
used in the present study, the temperature field governed by Eq. (1) is
solved by ‘‘freezing’’ the time for the mass diffusion [40]. That is, we
only consider a temperature diffusion problem by replacing 2𝐷𝑡 with a
constant variance 𝜎2, modifying Eq. (5) into

𝜙𝑖(𝑥, 𝑦) =
𝑉𝑖

2𝜋𝜎2
exp

[

−
(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2

2𝜎2

]

(6)
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In the scenario of multi-site injections, we assume all injections are
conducted at the same time and with the same dose, hence having the
same MNP distribution. The total volume fraction at a given location
(𝑥, 𝑦) is then the superposition of all injections

𝜙(𝑥, 𝑦) =
𝑛
∑

𝑖=1
𝜙𝑖(𝑥, 𝑦) (7)

where 𝑛 is the number of injections.
The temperature field governed by Eq. (1) is solved using a lat-

tice Boltzmann method (LBM) based computational framework. This
mesoscopic approach is an alternative to conventional finite-difference,
finite-element or finite-volume methods for computational fluid dynam-
ics (CFD), with its distinctive merits of easy programming, manageable
computer resources and numerical stability and accuracy [41]. Refer
to Appendix B for the formulation and validation of this computational
framework.

2.3. Optimization

The steady-state temperature distribution obtained from solving
Eq. (1) is then used to evaluate the performance of magnetic hyper-
thermia treatment and facilitate the optimization. For the optimization,
the parameters to be controlled in this study include the number of
injection sites 𝑛, the location of injections (𝑥𝑖, 𝑦𝑖), the dose applied in
each injection 𝑉𝑖, and the variance of MNP distribution 𝜎2 that reflects
the timing of applying the AMF.

To enable efficient and effective searches, some of the above pa-
rameters are normalized. That is, the location of injections is measured
by a distance ratio 𝑘𝑑,𝑖 = 𝑑𝑖∕𝑑0 where 𝑑𝑖 =

√

𝑥2𝑖 + 𝑦2𝑖 is the distance
of the injection site from the tumor center and 𝑑0 is a chosen reference
distance from the tumor center to point (𝑥0, 𝑦0). The spatial distribution
of MNPs is measured by a standard deviation ratio 𝑘𝜎 = 𝜎∕𝜎0 where
𝜎0 is a reference standard deviation obtained 20 min after the MNP
injection. The dose of each injection can also be measured by a dose
ratio in a similar way. However, here we replace 𝑉𝑖 by another quantity
related to the volume fraction, 𝑘𝜙, through 𝑉𝑖 = 𝑘2𝜎𝑘𝜙𝜙0, where 𝜙0 is
a reference volume fraction, so that only one optimization parameter
appears in the coefficient of the exponential function. As such, Eq. (6)
can be re-written as

𝜙𝑖(𝑥, 𝑦) =
𝑘𝜙𝜙0

2𝜋𝜎20
exp

[

−
(𝑥 − 𝑘𝑑,𝑖𝑥0)2 + (𝑦 − 𝑘𝑑,𝑖𝑦0)2

2𝑘2𝜎𝜎
2
0

]

(8)

Note that 𝑘𝜙 and 𝑘𝜎 do not carry the subscript 𝑖 since we have assumed
all injections share the same MNP dose and distribution.

In hyperthermia treatment, it is expected that the cancer tissue can
be ablated at a temperature above a threshold, i.e., 43 ◦C, while the
healthy tissue stays safe by strictly keeping its temperature under this
threshold. According to Hervault and Thanh [42], the temperature in
both types of tissues should also be maintained under 46 ◦C to avoid
possible inflammatory responses. Moreover, overdose of iron-based
MNPs may shorten life expectancy [11], so it is necessary to maintain
a low level of injection quantity. Therefore, four basic requirements
are formulated to evaluate the performance of magnetic hyperthermia
treatment simulated in the present study, i.e.,

𝑅𝑡𝑢𝑚 =
𝑆43◦C≤𝑇<46◦C 𝑖𝑛 𝑡𝑢𝑚𝑜𝑟

𝑆𝑡𝑢𝑚𝑜𝑟
(9a)

𝑅𝑡𝑖𝑠 =
𝑆𝑇<43◦C 𝑖𝑛 ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝑡𝑖𝑠𝑠𝑢𝑒

𝑆ℎ𝑒𝑎𝑙𝑡ℎ𝑦 𝑡𝑖𝑠𝑠𝑢𝑒
(9b)

𝑅𝑖𝑛𝑡 = exp
(

−

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑇𝑖 − 43)2

)

(9c)

𝑅𝑑𝑜𝑠𝑒 = 1 − 3
√

𝑛𝑘𝜙𝑘2𝜎 (9d)

where 𝑆 represents area and 𝑁 is the total number of points sampled
along the tumor–healthy-tissue interface. 𝑅𝑡𝑢𝑚 defines a ratio of the

tumor area with temperature between 43 ◦C and 46 ◦C to the entire
tumor area, which evaluates how much the temperature distribution in
the tumor satisfies the requirement. Similarly, 𝑅𝑡𝑖𝑠 defines a ratio of the
area in the healthy tissue with temperature below 43 ◦C over the entire
healthy tissue area, evaluating how much the temperature distribution
in the healthy tissue satisfies the requirement. 𝑅𝑖𝑛𝑡 describes how
different the temperature at the tumor–healthy-tissue interface deviates
from the required 43 ◦C. Different from the above three temperature
requirements, 𝑅𝑑𝑜𝑠𝑒 evaluates the dose requirement, since the total
volume of the dose is proportional to 𝑛𝑘𝜙𝑘2𝜎 . Note that, to improve the
optimization efficiency, the ideal maximum of all the four requirement
variables are designed to be 1, the larger the better.

With the four requirement variables defined, an objective function
for optimization can be formulated as

𝐽 = 𝜔1𝑅𝑡𝑢𝑚 + 𝜔2𝑅𝑡𝑖𝑠 + 𝜔3𝑅𝑖𝑛𝑡 + 𝜔4𝑅𝑑𝑜𝑠𝑒 (10)

To ensure 𝐽 roughly varies between 0 and 1 for good optimization
performance, and to put more emphasis on the temperature distribu-
tions, the weighting factors 𝜔1, 𝜔2, 𝜔3, 𝜔4 are set as 0.3, 0.3, 0.2, 0.2,
respectively, after several trial runs.

The optimization is conducted to search the maximum 𝐽 using
the particle swarm optimization (PSO) method, so that the best MNP
distribution for magnetic hyperthermia treatment can be identified.
PSO is a heuristic optimization algorithm, which performs stochastic
search, makes few or no assumptions about the problem being opti-
mized and can search very large spaces of candidate solutions [43].
See Appendix C for more details about this optimization method.

The optimization will generate a set of optimal ratios, i.e., 𝑘𝜙, 𝑘𝜎
and 𝑘𝑑 , with which the best waiting time 𝑡𝑜𝑝𝑡, the best volume of MNPs
𝑉𝑜𝑝𝑡 and the best distance of injection sites from the tumor center 𝑑𝑜𝑝𝑡
can be determined as

𝑡𝑜𝑝𝑡 =
𝑘2𝜎𝜎

2
0

2𝐷
(11a)

𝑉𝑜𝑝𝑡 = 𝑛𝑘2𝜎𝑘𝜙𝜙0 (11b)

𝑑𝑜𝑝𝑡 = 𝑘𝑑𝑑0 (11c)

3. Results and discussion

This section presents the optimization results and related discus-
sions about hyperthermia treatment on the two selected tumor models
under different MNP injection strategies. Sections 3.1 and 3.2 mainly
focus on the optimized temperature distributions, whereas Section 3.3
further considers the time of exposure to heat in the optimization.

3.1. Circular tumor

For this geometrically regular tumor, we assume all MNP injections,
if more than one, share the same dose and occur at the same time.
In addition, all injection sites share the same distance from the center
of the tumor and are evenly distributed in the azimuthal direction. As
such, only the three ratios introduced in Section 2.3, i.e., 𝑘𝜙, 𝑘𝜎 and 𝑘𝑑 ,
are involved in the optimization. Their corresponding reference values
are chosen as follows: 𝜙0 = 1.25 mm2 to ensure the volume fraction of
MNPs is not too large, 𝜎0 = 1.55 mm is the standard deviation of the
MNP distribution 20 minutes after the injection, which is obtained by
solving Eq. (5), and 𝑑0 = 4.5 mm is 90% the tumor radius that defines
the allowed area for MNP injections.

Three injection cases are considered here, namely one-site, four-site
and eight-site injections. For the one-site injection, it has to be at the
tumor center due to the geometrical symmetry, and hence 𝑘𝑑 = 0. For
the other two cases, one injection is located along the 𝑥 axis, while the
others are evenly distributed in the azimuthal direction.

In each PSO search, 20 particles are adopted and evolve for 300
generations. Take the four-site injection case as an example, the PSO
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Fig. 2. PSO searching process on the circular tumor model: Evolution of (a) the three ratios, i.e., 𝑘𝜙, 𝑘𝜎 and 𝑘𝑑 , and (b) the objective function 𝐽 in the four-site injection case;
Evolution of optimal parameters and corresponding 𝐽 in the cases of (c) one-site injection, (d) four-site injection, and (e) eight-site injection. The black lines depict the envelope
of the maximum 𝐽 .

searching process is shown in Fig. 2(a) and (b). Initially, the three
optimization parameters for all particles in the swarm are randomly
assigned between 0 and 1. After several generations, some particles
gradually identify suitable parameter combinations for increasing the
objective function 𝐽 , and pass the experience to other particles. This
effective learning process makes the three parameters of all particles
converge to their respective optimal values after about 100 generations,
and results in a consistent rise in the maximum 𝐽 of each generation
until it levels off at its optimal value (See Fig. 2(b)).

Figs. 2(c) to (e) show the evolution of the optimization parame-
ters and the collectively produced maximum 𝐽 in the three injection
cases. It reveals that all the three cases can quickly find their optima,
reflecting the appropriateness of the adopted PSO settings. Specifically,
the four-site injection case finds its optimal parameter combination
with the fastest pace, roughly after 50 generations, while the one-
site and eight-site injection cases take a bit longer, roughly after 100
and 75 generations, respectively. It is seen that, with the increase of
injection number, the optimal 𝑘𝜎 monotonically reduces from 0.93 to
0.23, which, according to Eq. (11a), reflects that the optimal waiting
time for the AMF significantly decreases, from 17.3 minutes for one-site
injection, to 6.3 minutes for four-site injection, and then to 1.1 minutes
for eight-site injection. It also shows that the optimal 𝑘𝑑 is about 0.62
in the two multi-site injection cases, which, according to Eq. (11c),
indicates that the optimal location of the injection sites is about 56%
the tumor radius from the center. The most important observation
made from these optimizations is that multi-site injections are bene-
ficial to hyperthermia treatment, as confirmed by the best performance
achieved in the eight-site injection case (with the largest 𝐽 = 0.87) and
the worst performance achieved in the single-site injection case (with
the lowest 𝐽 = 0.78).

Table 2 also lists the values at the optimal conditions for the
four requirements and the corresponding physical quantities as defined
in Eq. (11). It is noticed that 𝑅𝑡𝑢𝑚, the ratio of the tumor area satisfying

the hyperthermia temperature requirement, is only 0.708 for the single-
site injection case. Compared to those values almost or perfectly 1 in
the multi-site injection cases, it clearly indicates that the single-site
injection fails to fulfill the temperature requirements. Indeed, in this
case a large portion at the tumor center is overheated (i.e., 𝑇 > 46 ◦C),
as revealed in the temperature contour shown in Fig. 3(d). On the con-
trary, the two multi-site injection cases can generally fulfill all the three
temperature requirements, i.e., 𝑅𝑡𝑢𝑚, 𝑅𝑡𝑖𝑠 and 𝑅𝑖𝑛𝑡. The effectiveness of
multi-injection strategy has also been reported by Singh et al. [19]. If
comparing the temperature distribution along the interface, however,
the eight-site injection case slightly outperforms the four-site injection
case, which is evidenced by the listed 𝑅𝑖𝑛𝑡 values in Table 2 and the
radial temperature distribution near the interface as shown in the inset
of Fig. 3(g). It is this slight advantage that leads to a higher 𝐽 for the
eight-site injection case.

From Table 2, it is also found that the optimal total dose for
MNP injections varies slightly (less than 1%) among the three cases,
suggesting that the optimization may not be sensitive to the dose
requirement 𝑅𝑑𝑜𝑠𝑒, i.e., Eq. (9d). To further confirm this, we conduct
another optimization study, in which 𝑅𝑑𝑜𝑠𝑒 is not included in the
objective function. As revealed in Table 3, although including 𝑅𝑑𝑜𝑠𝑒 in
the objective function does help reduce the total dose, the reduction is
very marginal, which does not really affect the optimization results.

From Fig. 3(e), one can see that the multi-site injection may result in
directional difference in the temperature distribution, which then leads
to nonuniform temperature distribution along the circular interface, as
indicated in Table 2. This directional difference can be mitigated by
adding more injection sites along the azimuthal direction, like in the
eight-site injection case as shown in Fig. 3(f). Since in this study the
chosen computational domain is in a square shape, the direction of
the four-site injections could affect the optimization results. To assess
this effect, another four-site injection case is simulated, where the
original four injection sites are relocated from the 0◦ (i.e., 𝑥) and 90◦
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Table 2
Optimization results for the one-, four- and eight-site injection cases on the circular tumor model.
Injection strategy 𝑅𝑡𝑢𝑚 𝑅𝑡𝑖𝑠 𝑅𝑖𝑛𝑡 𝑅𝑑𝑜𝑠𝑒 𝐽 𝑡𝑜𝑝𝑡, min 𝑉𝑜𝑝𝑡, mm2 𝑑𝑜𝑝𝑡, mm

One-site 0.708 0.999 0.994 0.329 0.78 17.3 0.378 0
Four-site 0.987 0.999 0.925 0.328 0.85 6.3 0.380 2.75
Eight-site 1.000 0.999 0.998 0.330 0.87 1.1 0.376 2.82

Fig. 3. Optimal concentration and temperature distributions on the circular tumor model: (a), (b) and (c) the concentration fields for one-, four- and eight-site injection cases,
respectively; (d), (e) and (f) the corresponding temperature fields. The white crosses denote MNP injection sites. The red circle represents tumor boundary. In the temperature
fields, the black color denotes regions with temperature above 46 ◦C, the white color denotes regions with temperature under 43 ◦C, and the other colors denote regions with
temperature ranging between 43 ◦C and 46 ◦C. (g) the optimal temperature distribution along the 𝑥 axis. The inset shows more details near the tumor boundary, i.e., 𝑥∕𝐿 = 0.1
as represented by the vertical red line.

Table 3
Comparison of optimization results between cases including and not including the
minimum dose requirement.

Injection strategy 𝑅𝑡𝑢𝑚 𝑅𝑡𝑖𝑠 𝑅𝑖𝑛𝑡 𝑉𝑑𝑜𝑠𝑒, mm2

One-site w 𝑅𝑑𝑜𝑠𝑒 0.708 0.999 0.994 0.378
w/o 𝑅𝑑𝑜𝑠𝑒 0.708 0.999 0.994 0.378

Four-site w 𝑅𝑑𝑜𝑠𝑒 0.987 0.999 0.925 0.379
w/o 𝑅𝑑𝑜𝑠𝑒 1.000 0.999 0.936 0.384

Eight-site w 𝑅𝑑𝑜𝑠𝑒 1.000 0.999 0.998 0.376
w/o 𝑅𝑑𝑜𝑠𝑒 1.000 0.999 0.998 0.377

(i.e., 𝑦) axes to the ±45◦ axes. The new optimization results reveal

that such a rotation does not really affect the optimal distributions

of MNPs and temperature, as shown in Fig. 4. Meanwhile, although
not listed here for brevity, the rotation has negligible effects on the
hyperthermia treatment performance in terms of the temperature and
dose requirements.

3.2. Elliptical tumor

In general, tumors do not grow isotropically to form an ideal circle.
Instead, they often appear in irregular shapes. To tackle the complexity
caused by the geometric irregularity, another set optimization studies
is conducted on an elliptical tumor. As sketched in Fig. 1(b), this tumor
has a 12.5 mm major axis and a 8 mm minor axis, hence sharing the
same area with the circular tumor studied in Section 3.1.

Four different injection cases are considered for this elliptical tumor,
namely one-site, two-site, four-site and eight-site injections. The new
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Fig. 4. Optimal concentration and temperature distributions in two different four-site injection cases on the circular tumor model. In (a) and (c) the four injection cites are
arranged along 𝑥 and 𝑦 axes, which are rotated for 45◦ in (b) and (d). The red circle represents tumor boundary. The white crosses denote the injection sites. In the temperature
fields, the white color denotes regions with temperature under 43 ◦C, and the other colors denote regions with temperature ranging between 43 ◦C and 46 ◦C.

two-site injection case is introduced to represent the simplest injec-
tion pattern in order to address the geometric irregularity, where the
injection sites are arranged along the major axis, symmetric about
the tumor center. In the four-site injection case, two injection sites
are symmetrically arranged along the major axis, while the other two
are symmetrically arranged along the minor axis. For the eight-site
injection case, four more sites are introduced, which are arranged along
two lines that deviate from the major axis with an inclination angle 𝛽,
as denoted in Fig. 6(d).

To deal with the geometric irregularity, in the optimization the
injection sites are allowed to vary independently along different axes.
This is different from the cases for the circular tumor, where the
distances of the injection sites from the tumor center along different
axes are set identical. As such, the original location ratio parameter for
the circular tumor, 𝑘𝑑 , becomes 𝑘𝑑ℎ along the major (horizontal) axis,
𝑘𝑑𝑣 along the minor (vertical) axis, and 𝑘𝑑𝑖 along the inclined axes,
wherever applicable, for the elliptical tumor. The corresponding ranges
are set as 𝑑ℎ0 = 1.25𝑑0, 𝑑𝑣0 = 0.8𝑑0, and 𝑑𝑖0 = 𝑑0, respectively, according
to the given shape of the elliptical tumor. For the eight-site injection
case, the angle of the inclined axes is also allowed to vary through a
new ratio parameter 𝑘𝛽 together with a preset range 𝛽0 = 90◦. The
arrangements for these distance parameters are also listed in Table 4.
Like in the circular tumor case, all these ratio parameters vary in the
range between 0 and 1 for the best searching performance.

Fig. 5 shows the evolution of the optimization parameters and the
objective function in all the four injection cases. It is seen that all
cases can converge within 300 generations, confirming the capacity of
PSO in dealing with a large number of optimization parameters [25].

Table 4
Displacement parameters used in the elliptical tumor cases.

Strategy 𝑘𝑑ℎ 𝑘𝑑𝑣 𝑘𝑑𝑖 𝑘𝛽 𝑑ℎ0 𝑑𝑣0 𝑑𝑖0 𝛽0
One-site – – – – – – – –
Two-site ✓ – – – 1.25𝑑0 – – –
Four-site ✓ ✓ – – 1.25𝑑0 0.8𝑑0 – –
Eight-site ✓ ✓ ✓ ✓ 1.25𝑑0 0.8𝑑0 𝑑0 90◦

However, if compared with the corresponding cases for the circular
tumor, these cases generally require more generations to converge,
reflecting the complexity of this geometrically irregular problem. More-
over, sudden jumps are observed after 100 or even 150 generations in
the two-site and four-site injection cases, which were also reported in
Tang et al. [25]. These sudden jumps may be attributed to the multi-
extremum nature of the current optimization problem, which confirms
the capability of the PSO in global optimum search.

Fig. 5 also reveals that the objective function 𝐽 increases from 0.66
to 0.86 as the number of injection sites increases, which is also listed in
Table 5. This confirms that the more injections, the better. The optimal
temperature distribution for the four cases are presented in Fig. 6(a) ∼
(d). It is not surprising to see that the one-site injection fails to meet
the temperature requirements again. The circular temperature contour
cannot fit the tumor’s elliptical shape: On one hand overheating occurs
at the tumor center and in the healthy tissue near the minor axis, and on
the other hand underheating occurs inside the tumor along the major
axis. This intrinsic mismatch can be mitigated by using the two-site
injection strategy. As shown in Fig. 6(b), the two-site injection makes
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Fig. 5. PSO searching process for the cases on the elliptical tumor model: (a) one-site injection, (b) two-site injection, (c) four-site injection, and (d) eight-site injection.

Table 5
Optimization results for the one-, two-, four- and eight-site injection cases on the elliptical tumor model.
Strategy 𝑅𝑡𝑢𝑚 𝑅𝑡𝑖𝑠 𝑅𝑖𝑛𝑡 𝑅𝑑𝑜𝑠𝑒 𝐽 𝑡𝑜𝑝𝑡, min 𝑉𝑜𝑝𝑡, mm2 𝑑ℎ,𝑜𝑝𝑡, mm 𝑑𝑣,𝑜𝑝𝑡, mm 𝑑𝑖,𝑜𝑝𝑡, mm 𝛽, ◦

One-site 0.620 0.996 0.516 0.335 0.66 19.8 0.367 – – – –
Two-site 0.885 0.999 0.890 0.328 0.81 4.28 0.380 3.37 – – –
Four-site 0.974 0.999 0.884 0.327 0.83 7.23 0.381 4.80 1.55 – –
Eight-site 1.000 1.000 0.995 0.327 0.86 0.99 0.381 4.82 1.33 3.34 13.8

the 43 ◦C line fit reasonably well with the tumor boundary and protects
the healthy tissue from overheating, hence resulting in a significant
increase in 𝐽 . Unfortunately, it generates two small overheating spots
inside the tumor.

The situation gets much improved if the number of injection sites
are further increased to four. As shown in Fig. 6(c), the two injection
sites added in the minor axis help remove the overheating spots,
making the temperature at the tumor center the highest. However,
it requires about 3 more minutes waiting time for the operation of
AMF, and there are still some temperature mismatch around the tumor
boundary, as also revealed in the plots in Fig. 6(e) and (f). This
temperature mismatch can be further mitigated by adding four more
sites in the eight-site injection case. The added four more sites help
redistribute the MNPs, greatly reducing the waiting time to just about
1 min.

It is interesting to see from Table 5 that the optimal total MNP doses
in all four cases fluctuate only marginally with less than 3% difference.
They are also very close to the optimal total doses suggested for the
circular tumor of the same area. This indicates that the MNP dose is
neither sensitive to the injection strategy nor sensitive to the shape of
tumor. Instead, it seems mainly dependent on the area of the tumor,
consistent with observations in clinical trials [44].

In the eight-site injection case, the optimal inclination angle for
four injection sites is found to be 𝛽 = 13.8◦. To check how sensitive
the optimization is to this inclination angle, an additional eight-site
injection case is considered, in which the inclination angle is fixed
at 𝛽 = 30◦. As shown and compared in Fig. 7 as well as in Table 6,
these two inclination angles lead to quite different results. The globally
optimal injection sites in the 𝛽 = 13.8◦ case form an elliptical pattern

alike to the shape of the tumor. On the contrary, the eight sites in the
𝛽 = 30◦ case form a figure ‘‘8’’ pattern, with the two sites in the major
axis being further away and the two sites in the minor axis being much
closer. The latter pattern results in a bit mismatch in temperature along
the tumor boundary, leading to a slightly smaller 𝐽 .

Another apparent difference between these two cases lies in the
waiting time. The global optimal 𝛽 = 13.8◦ case only requires to wait
for about 1 min, while the 𝛽 = 30◦ case requires to wait for a much
longer time, i.e., about 8 min. This long waiting time allows the MNPs
to sufficiently diffuse, as confirmed in Fig. 7(a), resulting in much
smoother temperature distribution inside the tumor after the AMF is
applied, as shown in Fig. 7(c).

3.3. Thermal dose

In the above optimization work, the ideal outcome is a temperature
field in which the temperature in the tumor is between 43 ◦C and
46 ◦C, while the temperature in the surrounding healthy tissue stays
below 43 ◦C. In practice, the amount of cell death in hyperthermia
treatment depends not only on the temperature, but also on the time of
exposure to heat, i.e., thermal dose [45]. In this section, we will check
whether the optimal temperature distributions obtained for the two
tumor models are still good if the exposure time is taken into account.

The cumulative-equivalent-minutes-at-43 ◦C (CEM43) model is a
widely used model to evaluate thermal dose, which translates different
temperature–time histories to a single value representing a ‘‘thermal
isoeffect dose’’. Specifically, it is an equivalent exposure time expressed
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Fig. 6. (a)–(d) Optimal temperature distributions on the elliptical tumor model for the one-, two-, four- and eight-site injection cases, respectively. The white crosses denote the
injection sites. The red ellipse represents tumor boundary. The black color denotes regions with temperature above 46 ◦C, the white color denotes regions with temperature under
43 ◦C, and the other colors denote regions with temperature ranging between 43 ◦C and 46 ◦C. (e) and (f) optimal temperature distribution along the 𝑥 and 𝑦 axes, respectively.
The insets show more details near the tumor boundaries, i.e., 𝑥∕𝐿 = 0.125 and 𝑦∕𝐿 = 0.8 as represented by the vertical red lines.

Table 6
Comparison of optimization results between two eight-site injection cases with different inclination angles.
Inclination angle 𝑅𝑡𝑢𝑚 𝑅𝑡𝑖𝑠 𝑅𝑖𝑛𝑡 𝑅𝑑𝑜𝑠𝑒 𝐽 𝑡𝑜𝑝𝑡, min 𝑉𝑜𝑝𝑡, 10−7 m2 𝑑ℎ,𝑜𝑝𝑡, mm 𝑑𝑣,𝑜𝑝𝑡, mm 𝑑𝑖,𝑜𝑝𝑡, mm

𝛽 = 30◦ 1.000 1.000 0.940 0.322 0.85 8.03 3.89 5.62 0.49 3.50
𝛽 = 13.8◦ 1.000 1.000 0.995 0.327 0.86 0.99 3.81 4.82 1.33 3.34

as minutes at the reference temperature of 43 ◦C, i.e.,

CEM43 =
𝑙

∑

𝑖=1
𝐶𝐸𝑀

43−𝑇𝑖𝛿𝑡 (12)

where 𝑇𝑖 is the temperature in ◦C at the 𝑖th time step, 𝛿𝑡 represents the
time interval, and 𝑙 denotes the total number of time steps. 𝐶𝐸𝑀 is set
as 0.5 when 𝑇𝑖 > 43 ◦C and 0.25 otherwise [46]. It was suggested that
when CEM43 reaches 60 min, the related cells are regarded as killed
by the heat [19,45]. With this hypothesis, we assess the hyperthermia
treatment efficacy through the ratio of killed cells in a tumor or in its

surrounding healthy tissue

𝑅𝐶𝐸𝑀43 =
𝑆𝐶𝐸𝑀43≥60 min

𝑆𝑡𝑢𝑚
(13)

With this definition, 𝑅𝐶𝐸𝑀43 = 1 in tumor and 0 in healthy tissue
correspond to the ideal hyperthermia treatment efficacy, i.e., all the
tumor cells are killed while the healthy tissue stays safe.

By considering the effect of exposure time with the CEM43 model,
the cell ablation in the tumor and healthy tissue is assessed for the
two tumor models, starting from the optimal temperature distributions
obtained in Sections 3.1 and 3.2. Note that, in this assessment the evo-
lution of MNP diffusion, although much slower than thermal diffusion
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Fig. 7. Optimal concentration and temperature distributions in two different eight-site injection cases on the elliptical tumor model. In (a) and (c) four injection cites are arranged
along the pre-determined 𝛽 = ±30◦ axes, whereas in (b) and (d) they are arranged along the 𝛽 = ±27.5◦ axes, which is the optimization result. The red ellipse represents tumor
boundary. The white crosses denote the injection sites. In the temperature fields, the white color denotes regions with temperature under 43 ◦C, and the other colors denote
regions with temperature ranging between 43 ◦C and 46 ◦C.

in the present study, is taken into account since the treatment time is
usually long.

Fig. 8(a) presents the evolution of ablation ratios in the circular
tumor model. It is not surprising to see that, for such an axisymmetric
tumor model, ablation of cells in the surrounding healthy tissue starts
to occur right at the instant when 100% ablation is achieved inside
the tumor. Specifically, the one- and eight-site injection cases perfectly
complete the tumor ablation (i.e., 𝑅𝐶𝐸𝑀43 = 1 in tumor and 0 in
healthy tissue) in 104.8 min and 126.6 min, respectively, at a simi-
lar level as in experimental observations [47]. The four-site injection
case is a slight exception, which has 𝑅𝐶𝐸𝑀43 = 0.32% healthy tissue
destroyed when 100% ablation is achieved inside the tumor. This is
caused by the slight mismatch of temperature requirement along the
tumor-healthy-tissue interface at the start of ablation, as depicted in
Fig. 3.

Although not presented here for brevity, it is also observed that in
the one-site injection case an overheated (i.e., 𝑇 > 46 ◦C) region ap-
pears at the tumor center at 𝑡 = 6.2 min and, due to the MNP diffusion,
disappears at 𝑡 = 38.0 min. This 31.8 min overheat definitely influ-
ences the ablation efficacy [42]. As such, only the four- and eight-site
injections can be considered to perform well for the circular tumor.

Different from the circular tumor, the elliptical tumor does not show
any perfect treatment. As shown in Fig. 8(b) and listed in Table 7, in all
the injection cases, not all tumor cells are killed when the healthy tissue
starts to be destroyed. The one-site injection case performs the worst,
in which only 67% tumor cells are killed and also overheat occurs from
𝑡 = 9.5 to 26.2 min. Nevertheless, in the two- and eight-site injection
cases no less than 90% tumor cells are ablated.

Table 7
𝑅𝐶𝐸𝑀43 in tumor and exposure time when healthy tissue begins
to be injured.
Strategy 𝑅𝐶𝐸𝑀43 in tumor Exposure time, min

One-site 0.67 60.7
Two-site 0.95 122.7
Four-site 0.83 101.5
Eight-site 0.90 104.3

The ablation process in the eight-site injection case is illustrated
in Fig. 9. At the early stage (i.e., 𝑡 = 30 min), the ablated area (the
white ellipse) is thinner than the tumor due to the thinner pattern of
the eight injection sites determined by the optimization of temperature
requirements. As time advances, the MNPs diffuse almost uniformly
in all directions. Consequently, the ablated area becomes thicker and
gradually evolves towards a circle. At 𝑡 = 60 min, it has almost the
same but slightly smaller elliptic shape as the tumor. At 𝑡 = 120 min,
it reaches out of the tumor in the minor-axis direction, but is still
inside in the major-axis direction. This asynchronism reflects that the
almost perfect injection site pattern optimized through temperature
requirements may not work perfectly if the exposure time is considered,
especially for geometrically irregular tumor models.

4. Conclusions

In this study, the best MNP injection strategy for magnetic hyper-
thermia treatment was explored using a dedicated LBM modeling + PSO
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Fig. 8. Evolution of ablation ratio for (a) the circular tumor model and (b) the elliptical tumor model.

Fig. 9. Evolution of the ablation process in the eight-sight injection case for the elliptical tumor at (a) 𝑡 = 30 min, 𝑅𝐶𝐸𝑀43 = 0.15 in tumor and 0 in healthy tissue, (b) 𝑡 =
60 min, 𝑅𝐶𝐸𝑀43 = 0.64 in tumor and 0 in healthy tissue, (c) 𝑡 = 90 min, 𝑅𝐶𝐸𝑀43 = 0.85 in tumor and 0 in healthy tissue, (d) 𝑡 = 120 min, 𝑅𝐶𝐸𝑀43 = 0.93 in tumor and 0.02 in
healthy tissue, (e) 𝑡 = 150 min, 𝑅𝐶𝐸𝑀43 = 0.97 in tumor and 0.07 in healthy tissue, (f) 𝑡 = 180 min, 𝑅𝐶𝐸𝑀43 = 0.98 in tumor and 0.11 in healthy tissue. The black crosses denote
the injection sites determined by the optimization of temperature requirements. The black ellipse represents the tumor boundary and the white area represents the ablated region.

optimization framework. Two tumor models were considered, i.e., a cir-
cular model and an elliptical model that represent geometrically regular
and irregular tumors, respectively. The results clearly indicated that the
single-site injection strategy fails, even on the simplest circular tumor
model. In this case, a significant portion of the tumor at the center
overheats to more than 46 ◦C, causing serious inflammatory responses.
On the contrary, the multi-site injection strategies generally work well
for both regular and irregular tumor models in terms of temperature
distribution. Multi-site injection can also significantly reduce the wait-
ing time for MNP diffusion before the AMF operation. The more the
injection sites, the better the performance. However, too many injection
sites may cause inconvenience. Hence, four-site injection could be an
appropriate strategy that balances the temperature requirements with
practical complications.

The geometrical irregularity of the tumor requires more generations
for the optimum search, since it needs more parameters to describe the
injection strategy. However, the required MNP dose was found insen-
sitive to the shape of tumor. It was also found that whether including
the minimum MNP dose requirement (i.e., 𝑅𝑑𝑜𝑠𝑒) or not in the objective
function only slightly affects the optimization results by less than 2%.

This implies that the minimum dose requirement has automatically
been satisfied if the other three temperature requirements are satisfied.

If the thermal dose received by cells is considered, the optimal
multi-site injection strategies perform generally well for both tumor
models, especially for the circular tumor. For the elliptical tumor, if
the optimal two- and eight-site injection strategies are adopted, no less
than 90% tumor cells are killed when the healthy tissue starts to be
ablated.

Although the simulation is only two dimensional and the optimiza-
tion is conducted on very simplified tumor models, the framework
adopted in this present study works well and is able to provide useful
insights into magnetic hyperthermia treatment. In the near future,
more realistic settings will be considered for magnetic hyperthermia
simulations and optimizations, in which more physics are involved,
such as the dynamics of perfusing flow in tissue, the buoyancy and
Lorentz forces, and time-dependent diffusion of MNPs. Moreover, an
improved optimization framework will be developed to take the heat
exposure time into account.
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Appendix A. Evaluating 𝑸 in Eq. (1)

The last term 𝑄 in Eq. (1) represents the heat released from MNPs,
induced by an external AMF with amplitude 𝐻0 and frequency 𝑓 . In
general it includes the heat due to hysteresis loss and the heat from
Neel and Brownian relaxation. According to Chang et al. [12], however,
the size of MNPs used for magnetic hyperthermia is so small that
the hysteresis loss can be neglected. Hence only the heat from the
Neel and Brownian relaxation is considered, using the Rosensweig’s
model [48–50]

𝑄 = 𝜋𝜇0𝜒0𝐻
2
0𝑓

2𝜋𝑓𝜏𝑅
1 + (2𝜋𝑓𝜏𝑅)2

(A.1)

where 𝜇0 is the vacuum permeability. 𝜏𝑅 is the effective relaxation
time and can be evaluated with the Neel relaxation time 𝜏𝑁 and the
Brownian relaxation time 𝜏𝐵 as
1
𝜏𝑅

= 1
𝜏𝑁

+ 1
𝜏𝐵

(A.2)

where

𝜏𝑁 =

√

𝜋
2

𝜏0 exp(
𝐾𝑉𝑀
𝑘𝐵𝑇

)
√

𝐾𝑉𝑀
𝑘𝐵𝑇

(A.3)

𝜏𝐵 =
3𝜇𝑉𝐻
𝑘𝐵𝑇

(A.4)

Here 𝜏0 is a constant reference time, 𝐾 is the anisotropy constant
reflecting the level of directional dependence of the material’s magnetic
moment, 𝑘𝐵 is the Boltzmann constant, and 𝜇 is the fluid viscosity. 𝑉𝑀
and 𝑉𝐻 are magnetic volume and hydrodynamic volume of the MNP,
respectively, both equal to 𝜋𝑑3𝑚𝑛𝑝∕6.

𝜒0 in Eq. (A.1) accounts for equilibrium susceptibility and can be
evaluated as [50]

𝜒0 = 𝜒𝑖
3
𝜉
(coth 𝜉 − 1

𝜉
) (A.5)

where

𝜒𝑖 =
𝜇0𝜙𝑀2

𝑑𝑉𝑀
3𝑘𝐵𝑇

(A.6)

𝜉 =
𝜇0𝑀𝑑𝐻0𝑉𝑀

𝑘𝐵𝑇
(A.7)

Table A.1
Parameters for the Rosensweig’s model [49].
Parameters Value

Boltzmann constant, 𝑘𝐵 (J/K) 1.38 × 10−23

MNP mean diameter, 𝑑𝑚𝑛𝑝 (m) 12 × 10−9

Vacuum permeability, 𝜇0 (Tm/A) 4𝜋 × 10−7

Domain magnetization, 𝑀𝑑 (A/m) 4.46 × 105

Anisotropy constant, 𝐾 (J/m3) 2.3 × 104

Viscosity of carrier fluid, 𝜇 (Pa-s) 6.92 × 10−4

Magnetic field frequency, 𝑓 (Hz) 2.0 × 105

Magnetic field amplitude, 𝐻0 (A/m2) 8 × 103

Magnetic attempt time, 𝜏0 (s) 1.0 × 10−9

Here 𝑀𝑑 is the domain magnetization. The properties for calculation of
source term 𝑄 are listed as Table A.1. Note that temperature 𝑇 appears
in Eqs. (A.3), (A.4), (A.6) and (A.7), making the solution of Eq. (1) very
challenging. To simplify the problem, in these equations 𝑇 is fixed at a
constant temperature 43 ◦C, which has also be adopted in other studies
such as Refs. [49,51].

Appendix B. Solving PBHTE using LBM

The LBM is a relatively new CFD method for fluid flow and
heat/mass transfer simulations. Unlike traditional CFD methods, which
solve the conservation equations of macroscopic properties numeri-
cally, LBM models the fluid particles by distribution functions through
consecutive streaming and collision processes over a number of square
lattices [52–54]. Zhang [34] was probably the first to apply the LBM
to solving PBHTE, successfully demonstrating the capability of LBM
in simulating bioheat problems. This mesoscopic approach was then
widely applied for bioheat studies [18,55,56]. In the present study, a
D2Q5 (i.e., two-dimensional five-discrete-velocity) MRT (i.e., multiple-
relaxation-time, a collision model that is used to improve the numerical
stability [57]) LBM scheme is applied to obtain the temperature field
by solving Eq. (1) [58]

𝐠(𝑥𝑘 + 𝛿𝑡𝐞, 𝑡𝑛 + 𝛿𝑡) − 𝐠(𝑥𝑘, 𝑡𝑛) = −𝐍−1Θ[𝐧 − 𝐧(𝑒𝑞)]|(𝑥𝑘 ,𝑡𝑛)

+𝐍−1𝛿𝑡(𝐈 −Θ∕2)Ψ
(B.1)

where 𝐠(𝑥𝑘, 𝑡𝑛) = (𝑔0(𝑥𝑘, 𝑡𝑛), 𝑔1(𝑥𝑘, 𝑡𝑛),… , 𝑔4(𝑥𝑘, 𝑡𝑛))T is a five-dimensional
distribution function vector at time 𝑡𝑛 and node 𝑥𝑘. 𝐞 describes unit
velocities along 5 discrete directions

𝑒𝑖 =

{

(0, 0) 𝑖 = 0
(cos [(𝑖 − 1)𝜋∕2], sin [(𝑖 − 1)𝜋∕2])𝑐 𝑖 = 1 ∼ 4

(B.2)

where 𝑐 = 𝛿𝑥∕𝛿𝑡 is the lattice speed, which is 1 since 𝛿𝑥 = 𝛿𝑡 in the MRT
model. 𝐍 is a 5 × 5 orthogonal transformation matrix

𝐍 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1 1 1 1 1
0 1 0 −1 0
0 0 1 0 −1
−4 1 1 1 1
0 1 −1 1 −1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(B.3)

Θ is the diagonal relaxation matrix

Θ = diag(1, 1∕𝜏𝑇 , 1∕𝜏𝑇 , 1.5, 1.5) (B.4)

where 𝜏𝑇 can be linked to thermal diffusivity of nanofluid in Chapman–
Enskog analysis on Eq. (1) as

𝛼𝑛𝑓 = 𝑐2𝑠𝑇 (𝜏𝑇 − 0.5)𝛿𝑡 (B.5)

𝐧 and 𝐧(𝑒𝑞) are the velocity moments and the corresponding equilibrium
velocity moments, respectively. Ψ is a source vector including the heat
induced by both blood perfusion and nanoparticles. More details about
the D2Q5 MRT LBM can be found in [58].

In this study, the adiabatic boundary condition is applied at the four
sides of the healthy tissue block, as depicted in Fig. 1. As such, the Neu-
mann boundary condition proposed by Yoshino and Inamuro [59] is
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Fig. B.1. Validation of the current LBM based PBHTE solver with existing simulation results: (a) Schematic of the hyperthermia problem studied in Zhang [34]; Comparison of
temperature distributions in the three steady heat transfer scenarios (b) along the 𝑦 axis and (c) along the 𝑦 = 𝐿 line; (d) Comparison of temperature distributions in a transient
heat transfer process.

Table B.1
Studies on computational domain size and grid number.

Domain size
𝐿∕𝑑𝑡𝑢𝑚 𝑇𝑐 , ◦C 𝑇𝑟 , ◦C 𝐸𝑟𝑟𝑐 ,% 𝐸𝑟𝑟𝑟 ,%

5 45.88 43.00 0.36 0.39
10 45.71 42.83 – –

Grid number

𝑁𝑥 ×𝑁𝑦 𝑇𝑐 , ◦C 𝑇𝑟 , ◦C 𝐸𝑟𝑟𝑐 ,% 𝐸𝑟𝑟𝑟 ,%

50 × 50 47.61 43.97 3.77 2.27
100 × 100 45.88 43.00 0.03 0.05
200 × 200 45.89 43.02 – –

adopted, which enforces a zero normal heat flux at the four sides. At the
tumor–healthy-tissue interface, the continuous temperature condition is
enforced, i.e., 𝑇𝑡𝑢𝑚 = 𝑇𝑡𝑖𝑠.

The influence of computational domain size and grid number is also
assessed. Take the eight-site injection case on the circular tumor as an
example, two sets of domain size and three sets of grids are considered,
as listed in Table B.1. The simulated temperatures at two selected
locations, i.e., the tumor center (𝑇𝑐) and the rightmost point on the
tumor–healthy-tissue interface (𝑇𝑟), are compared, and the comparison
results suggest that the domain size of 5𝑑𝑡𝑢𝑚×5𝑑𝑡𝑢𝑚 and the grid number
of 100 × 100 are sufficient for this study.

To validate our LBM solver, we simulate the same problem studied
in Zhang [34], where, as sketched in Fig. B.1(a), a square tumor of
0.25𝐿 × 0.25𝐿 is surrounded by the healthy tissue that is represented
by a rectangle of 2𝐿 × 𝐿, where 𝐿 = 50 mm. First, three steady heat
transfer scenarios are simulated and compared with the results given
in Zhang [34]: (1) No tumor—the tumor behaves exactly the same
as the healthy tissue; (2) Tumor I—the tumor supplies 10 times the
metabolic heat and blood perfusion in the healthy tissue; (3) Tumor II—
the tumor supplies 100 times the metabolic heat and blood perfusion in

the healthy tissue. The simulated temperature distributions along 𝑥 = 0
and 𝑦 = 𝐿 are presented in Fig. B.1(c) and (d), respectively. They agree
very well with the reference. Then, a transient heat transfer process
is simulated, in which the tumor generates heat with a constant rate.
Good agreements are also achieved in Fig. B.1(b) between the simu-
lated temperature profiles along 𝑥 = 0 and the data from Zhang [34]
at three selected instants. This proves the capability of our solver in
solving transient heat transfer phenomena.

In another validation study, we simulated the temperature distribu-
tion in a rat limb that is subjected to magnetic hyperthermia treatment,
and compared it with experimental data [17]. The distribution of
injected ferrofluid is assumed to be a Gaussian shape. The reasonably
good agreements under two different ferrofluid doses as shown in
Fig. B.2 confirm the validity of using the present 2D framework to
simulate simple 3D problems.

Appendix C. Particle swarm optimization

Particle swarm optimization (PSO) is a heuristic optimization algo-
rithm, which performs stochastic search and does not rely on initial
conditions, makes few or no assumptions about the problem being
optimized and can search very large spaces of candidate solutions [43].
As a population-based iterative algorithm, PSO emulates the swarm
behavior of insects, animals herding, birds flocking, and fish schooling
where these swarms search for food in a collaborative manner, and each
member searches by learning the experience from itself and others [60].
Each member in the swarm can be treated as a particle. The movements
of these particles are guided by their own best-known position in
the search-space as well as the entire swarm’s best-known position.
As such, three mechanisms are involved in the search: inertia, self
recognition, and social communication, which enable PSO to balance
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Fig. B.2. Validation of the current LBM based PBHTE solver with existing experimental data obtained from rat limbs [17]: (a) 0.1 cc and (b) 0.2 cc ferrofluid injection.

Table C.1
Validation of the current PSO algorithm with benchmark optimization problems.
Function Type Dimension Numerical minimum Theoretical minimum

Sphere function Unimodal 5 7.8451 × 10−8 0
Shubert function Multimodal 2 −1.8673 × 102 −1.8673 × 102

Rastrigin function Multimodal 2 0 0
Rastrigin function Multimodal 5 3.3657 × 10−5 0

local exploitation and global exploration [61]. Since it is easy to
implement and capable of dealing with complex multimodal problems,
after being introduced in 1995 by Kennedy and Eberhart [43], PSO has
been successfully demonstrated in various applications [62–65], and
evolved into many improved schemes [60,66–71].

In the present study, the PSO with linear decreasing inertia weight
is adopted

𝑣𝑡+1 = 𝑤𝑣𝑡 + 𝑐1𝑟1(𝑝𝑡 − 𝑥𝑡) + 𝑐2𝑟2(𝑔𝑡 − 𝑥𝑡) (C.1)

𝑥𝑡+1 = 𝑣𝑡 + 𝑥𝑡 (C.2)

where 𝑥 denotes the position of particles and 𝑣 denotes their velocity. 𝑤
is the inertia weight. 𝑐1 and 𝑐2 are the acceleration constants describing
the rate of stochastic accelerations that pull the particles toward their
own and the group’s best positions. In this study, 𝑤 linearly reduces
from 0.8 to 0 (from 0.9 to 0.4 in the cases not considering 𝑅𝑑𝑜𝑠𝑒), while
𝑐1 and 𝑐2 are set as 1.5. 𝑟1 and 𝑟2 are random variables in the range of
[0, 1]. 𝑝 and 𝑔 are the historical best positions of the current particle
and the whole group, respectively.

To validate our PSO model, we perform optimization on three
representative benchmark functions as follows [72,73]
Sphere Function:

𝑓 (𝑥) =
𝑛
∑

𝑖=1
𝑥2𝑖

Shubert Function:

𝑓 (𝑥) =
𝑛
∑

𝑖=1
𝑖 cos((𝑖 + 1)𝑥1 + 1)

𝑛
∑

𝑖=1
𝑖 cos((𝑖 + 1)𝑥2 + 1)

Rastrigin Function:

𝑓 (𝑥) = 10𝑛 +
𝑛
∑

𝑖=1
(𝑥2𝑖 − 10 cos(2𝜋𝑥𝑖))

The sphere function is unimodal, while the Shubert and Rastrigin
functions are multimodal with a large number of local extremes. The
optimization results are compared with theoretical maximums as listed
in Table C.1. The good performance of our PSO model ensure its
validity in dealing with the optimization problem in the present study.
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