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Summary

In recent years, the demand for minerals and rare-earth elements are escalating due to rapid technological

advancements and developments. This condition raises the importance of Deep-Sea Mining (DSM) as an

option to fulfill the global demands, for the sake of future ambitious projects. On the other hand, DSM still

faces some drawbacks and obstacles in its operations, e.g. environmental impact of its tailings discharge.

Thus, the presence of tools for predicting the behavior and environmental impact of DSM tailings becomes

crucial for the sake of conducting sustainable DSM operations. Researches, both numerical and laboratory

experiments, are then done to achieve this goal.

In the study of DSM tailings behavior through numerical simulation, the challenge lies in the ability to

implement the complex physics phenomena around DSM plumes to a numerical model. This research is

thus aimed to observe one of the parts of the so-called physical phenomena, and numerical constraints on

the simulation of DSM plumes: the effects of implementing arbitrary non-orthogonal mesh. Arbitrary non-

orthogonal mesh would give users the freedom to refine the mesh based on the required resolution on a

certain area in the simulation domain.

In this research, an arbitrary non-orthogonal mesh is constructed forming a domain geometry of 3D tank

with round pipe as a source of tailings discharge, adapting the laboratory setup of Byishimo (2018). Mesh

refinement is done around the pipe discharge area, where the jet mainstream expected to occur, and near the

bottom, where settling of solids fraction and high velocity-gradients are expected to occur. Top-hat approxi-

mation theory is then used for defining the inlet boundary condition of the simulation domain, and smooth

solid wall is used for the bottom boundary.

In observing the effect of arbitrary mesh, two parameters are varied: solids settling rate, and differenti-

ation scheme. Following this, six simulation cases are prepared, containing three solids-settling conditions

(minimum, realistic, and extreme solids fraction settling) and two differentiation schemes (Gauss Gamma

and Gauss Linear). These cases are then simulated using the CFD drift-flux model in OpenFOAM for two

incompressible fluids, with ambient fluid and tailings mixture as the two incompressible fluids. Turbulence

is modeled using LES method, with Wall-Adapting Local Eddy-viscosity (WALE) LES model for modeling the

subgrid-scale of the turbulence. Two simulated field variables are picked to be observed and compared with

the laboratory measurement data: flow velocities and local Suspended Solids Concentration (SSC).

Simulations show that the constructed domain able to generate stable results using not only Gauss Gamma

differencing scheme but also Gauss Linear, which originally expected to give unbounded results. From sim-

ulations with various solids settling conditions, it is analyzed that the implementation of solids settling using

the mentioned function leads to constant settling rate with inability to re-suspend the settled solids. Thus,

simulation of cases with extreme solids settling leads to hyper-concentration of solids fraction in the cells on

the bottom. The top-hat profile of the inlet boundary condition is constantly sustained throughout the sim-

ulation, resulting in uniform jet vertical velocity profile. The simulations also show that momentum-driven

jet-like flow can be observed around the impingement point, while gravity current generated further from the

impingement point.

The simulation results show that the mesh refinement is enabling simulating and validating the flow with
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vi Summary

the required resolutions. Moreover, the constructed domain also shows that Gauss Linear can be used for

simulating DSM plumes, furthermore using full tank domain. The simulated SSC also turns out not only

affected by the simulation domain and mesh, but also the differencing scheme, and the presence of settling

and pick-up functions.

Keywords: CFD, tailings plume, non-orthogonal mesh, solids settling, buoyant-jet, deep-sea mining
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Co Courant number
C1 Ferguson coefficient 1
C2 Ferguson coefficient 2
Cw WALE coefficient
cm Maximum concentration in Gaussian profile
dp Particle diameter
D Source diameter
E Neighboring CV
F Face flux, buoyancy flux
f Face of CV
g Gravitational vector
g ′ Specific gravity
ls Length scale
M Momentum flux
n Richardson-Zaki coefficient

Pm Mixture pressure
Q Mass flux
r Radial direction

Rep Particle Reynolds number
S̄ Average dillution

dS Surface area vector
δS Closed-bounding surfaces of a CV
Si j Rate-of-strain tensor
T Viscous shear stress
Tt Turbulent shear stress
vm Mixture velocity
vk Phase velocity
vt s Terminal settling velocity
vp Particle velocity
v f Fluid velocity

vkm Phase relative-velocity to the mixture velocity
z Vertical distance





1
Introduction

In recent years, the demand for minerals and rare-earth elements are escalating, due to rapid technology

developments (Dutta et al., 2016). The global focus on developing technologies for industries, such as renew-

able energies, creates a global environment that requires high usage of minerals. This condition urges the

mining industry to expand its operations for fulfilling the mentioned demands. Soon mining stakeholders

are required to seek an alternative exploration option besides onshore mining. The rising land usage for resi-

dences and the latest This condition raises the importance of Deep-Sea Mining, as an option for fulfilling this

demand, for the sake of future ambitious projects. With its great potential lies within, DSM has become a hot

topic among mining industry for several decades. Researches aiming to investigate the feasibility of execut-

ing one has been around since 1960s, with a pilot project conducted in Japan. Nevertheless, DSM sector is

still considered to be at an early stage of development, where drawbacks still need to be answered and solved

before conducting a sustainable DSM operation.

Figure 1.1: The growth of mineral resources demand in the world economy (Dubiński, 2013)

One of the drawbacks of DSM operation is the environmental impact of its waste-water (tailings), see

Figure 1.2. Due to geographical and economic considerations, conventional tailings management method

(using onshore tailings dam) is considered not feasible for DSM operation. Thus in 1977, a method called

Deep-Sea Tailings Placement (DSTP) was proposed. By using DSTP, tailings are discharged back to the deep-

sea through a submerged pipe and expected to remain on the bed due to settling (Ramirez-Llodra et al., 2015).

1



2 1. Introduction

This method is considered as a suitable method for DSM operation. Although its advantages, DSTP method

still creates number of environmental impacts that still not yet understood completely, such as plume gener-

ation on the seafloor, turbidity occurrence in the water column, and addition of bottom sediments (Sharma,

2015). To ensure a fulfilment to the requirement for the environmental policy for the sake of a sustainable

DSM operation, a tool for predicting the behavior of Deep-Sea tailings plume, and consequently its environ-

mental impact, is crucial. Researches are then done, both through numerical and laboratory experiments, for

observing and understanding the behavior of the flow created by tailings discharge.

Figure 1.2: (left) Schematic illustration of DSM operation (Hoagland et al., 2010) and (right) its environmental impact (Miller et al., 2018)

1.1. Problem Identification
In the study of Deep-Sea Minings plume through numerical simulation, the challenge lies in the implementa-

tion of the complex physics phenomena and constrains around the plume to a numerical model. Researches

are then done to observe the implementation of each physics phenomenon individually and explore the pos-

sibility of constructing a proper numerical model for simulating the Deep-Sea Minings plume. Some of these

researches are briefly summarised as follows.

van Grunsven et al. (2016) did numerical simulations to observe the interaction between a turbidity source

and its environment. In this research, the main focus is the interaction between turbidity source with cross-

flow, submerged pipe, and various source types (plane and round). van Grunsven et al. (2016) used structured

block mesh for constructing the simulation domain, which is a 3D tank geometry. It was found in this research

that simulations using LES method show a considerably good agreement with measurement data.

Byishimo (2018) also did laboratory experiments and numerical simulations for observing the develop-

ment of DSM tailings with various discharge conditions, and its interaction with two types of seabeds: flat

and inclined by 10 degrees. The main goal of the research was to observe and also provide necessary mea-
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surement data for further use in validating similar numerical simulations. Both laboratory experiments and

numerical simulations were done by using domain setup of a tank with scale of 1:50, representing actual

field dimensions of 255m (length), 113m (width), and 105m (height). Numerical simulations were done using

structured orthogonal mesh, and LES model as in De Wit (2015).

In the numerical researches done so far, it is found that some simulation area requires higher resolution

compared to other areas. This treatment is important especially in simulation domain where high gradi-

ents are expected to occur. On the other hand, such treatment is limited when orthogonal mesh is used in

constructing the domain mesh. Thus an idea is proposed to observe the effect of implementing arbitrary,

non-orthogonal mesh.

Summarising the identified problems, the main goal of this research is formulated:

"To numerically simulate Deep-Sea Minings Plume using arbitrary, non-orthogonal mesh"

For achieving this research goal, some simulation cases are prepared for answering the following questions:

• How is the simulated DSM plumes using non-orthogonal mesh, with various solids settling condition?

• How is the simulated DSM plumes using non-orthogonal mesh, with various differentiation schemes?

• How is the simulated DSM plumes compared with laboratory measurement data?

1.2. Research Approach
In this research, numerical simulations are done using a method called Computational Fluid Dynamics (CFD).

Since tailings mixture can be considered as a fluid mixture, CFD is seen as a proper method. The numerical

simulation is then done using the drift-flux model (Brennan, 2001) for a system of a multiphase flow consist-

ing of two incompressible fluids. The drift-flux model would save some computational cost since it solves

only one momentum equation of the mixture, not the momentum equation of each phase in the system. The

tailings mixture is modeled as a slurry, consisting of monosize solid fraction. The settling of solid fraction

within the tailings mixture is modeled using the formulation of terminal settling velocity of Ferguson and

Church (2004).

The numerical simulation is done using a software called OpenFOAM (Open-source Field Operation and

Manipulation) version of 1706 (OpenFOAM-v1706). The governing equations of the flow are discretized us-

ing Finite of Volume method. The used drift-flux model can be found in the OpenFOAM as a solver named

driftFluxFoam.

1.3. Research Outline
The outline of this research is as follow:

• Chapter 1

In this chapter, the reader is presented with the introduction of the research, including the background

story of the research, the identified problem of the research, and also the research goal. The approach

of the research is also presented in this chapter.

• Chapter 2

This chapter presents the background theory related to physics phenomena occurred when tailings

mixture is discharged to a deep-sea environment. This chapter also addresses how is the interaction

between the tailings mixture and solid seabed as it impinges the seabed.
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• Chapter 3

In this chapter, the modeling techniques used in this study are presented. These include how to model

the tailings mixture and its governing equations. The modeling of the settling of the solids fraction in

the mixture is also discussed in this chapter. Another important subject within tailings flows modeling

is the modeling of the turbulence. This is also addressed in this chapter.

• Chapter 4

Chapter 4 presents the numerical implementation of the flow governing equations to the numerical

model. In this study, the governing equations are implemented using the Finite of Volume method.

The discretization of the simulation domain using non-orthogonal Control Volume and the discretiza-

tion of the flow governing equations are presented in this chapter. In OpenFOAM, these numerical

implementations are done by choosing available algorithms within it. In this study, PIMPLE algorithm

is used and also discussed within this chapter.

• Chapter 5

In this chapter, the preparation of the flow model is discussed, such as the simulated cases, the geome-

try of the simulation domain, the mesh construction, and the boundaries. In this study, two simulation

domains are used due to computational constraints. The motive and preliminary study regarding the

reconstruction of the domain are also presented in this chapter. The decomposition method used to

simulate in parallel also describes in this chapter.

• Chapter 6

This chapter presents the result of the simulations. The validation method of the simulation results is

also discussed in this chapter. The resulting spatial plot of the simulated SSC and flow velocities are

also discussed in this chapter, as well as the validation results.

• Chapter 7

This report then ends with an overview of the insight found in this research, summarised in conclusion

points. This chapter also proposes some recommendations for future researches.



2
Physics Around DSM Tailings Plume

In studying the behavior of DSM tailings plume, questions may arise regarding what physics phenomena

occur as a tailings mixture discharged to deep-sea environment. This chapter addresses such of this. The

chapter mainly consists of two parts. The first part focuses on briefly describing the physics phenomena

occurring around DSM plume, starting from the discharge point until its interaction with ambient envi-

ronment and seabed. The addressed physics phenomena are such as classification of tailing discharge as

a buoyant-jet, mixing occurred during discharging, entrainment of ambient water, and also top-hat approx-

imation method. Then the chapter continues with the second part, focusing on how to mathematically de-

scribe tailings buoyant-jet flow in a set of governing equations. In this research, drift-flux approach is used to

determine the motion between each phase in the tailings flow (Zuber and Findlay, 1965).

Figure 2.1: Schematic illustration of a discharging dense vertical buoyant-jet, adopted from Chowdhury and Testik (2014)

2.1. Deep-Sea Tailings Plume As A Buoyant-Jet
A discharged dense fluid, such as tailings, can be classified as a jet or plume, see Table 2.1. In this research,

DSM tailings discharge is considered as a vertical buoyant-jet (Lee and Chu, 2012). Tailings mixture experi-

5



6 2. Physics Around DSM Tailings Plume

ences both continuous buoyancy and momentum fluxes at its discharging source. This buoyancy flux occurs

due to the density difference between tailings and the ambient fluid (seawater). Moreover the presence of

solids fraction in the tailings mixture is the cause of this density difference. Since solids fraction is heavier

and denser than seawater, this buoyancy flux results in a downward motion of the mixture. On the other

hand, tailings mixture also experiences momentum flux at its source due to the momentum coming from the

jet. Since both fluxes work in the same direction, buoyancy and momentum fluxes amplified, resulting in the

same downward motion of the tailings flow (List, 1982), see Figure 2.1.

Table 2.1: Flow classifications based on the source type (Lee and Chu, 2012)

Source Type
Source Duration

Continuous Intermittent
Momentum Jet Puff

Buoyancy Plume Thermal
Momentum + Buoyancy Buoyant-Jet Buoyant-Puff

For a vertical buoyant-jet discharged through a round-source, there are four important flow parameters,

defining the development of the flow: initial discharge velocity w j o , initial volumetric flux Qo , initial mo-

mentum flux Mo , and initial buoyancy flux Fo . These parameters are mathematically expressed as (Jirka and

Domeker, 1991):

Qo = πD2

4
w j o (2.1)

Mo =Qo w j o (2.2)

Fo =Qo g ′ (2.3)

Where D is the source diameter, and g ′ is called specific gravity, and mathematically expressed as:

g ′ = ρm −ρa

ρa
g (2.4)

Where ρm is the mixture density, ρa is the ambient-water density, and g is gravity acceleration [m/s2]. For

tailings mixture, the specific gravity can be calculated using the volumetric concentration of the solids frac-

tion in the tailings mixture. This specific gravity is mathematically calculated as Byishimo (2018):

g ′
o = g αs,o

(
ρs −ρw

ρw

)
(2.5)

Whereαs,o is the initial volumetric concentration of solids fraction in tailings mixture, ρs is the solids fraction

density, and ρw is the water density.

As tailings buoyant-jet discharges, physics phenomena, such as mixing and entrainment, occurs between

tailings mixture and the ambient water. These are addressed in the following section.

2.2. Mixing of Tailings Buoyant-Jet
For vertical buoyant-jet, mixing between the discharged mixture and ambient water behaves differently with

distances from discharging source. This mixing classification is affected by the intensity of buoyancy and mo-

mentum fluxes experienced by the discharged mixture at each distance from the source. As the tailings mix-

ture propagates further from the source, the balance between momentum and buoyancy fluxes are changing.



2.3. Entrainment of Ambient Water 7

A parameter in this classification is called length-scale ls . The momentum flux experiences by the tailings

mixture from the jet source decay with distance, thus lowering the input of kinetic energy to the tailings

mixture. Consequently, buoyancy flux will dominate over momentum flux at a certain distance. This distance

is thus called the length-scale ls .

For calculating the length-scale, the contribution of each flux to a flow motion should be treated sep-

arately. Consider a flow generated only by momentum flux. The velocity at a certain distance z from the

discharging source is estimated as (Lee and Chu, 2012):

w j ≈ 7M 1/2
o z−1 (2.6)

On the other hand, for a flow generated only by buoyancy flux, the velocity at a certain distance z from the

discharging source is (Lee and Chu, 2012):

wp ≈ 4.7F 1/3
o z−1/3 (2.7)

Then, length-scale can be estimated as a distance from source where momentum-induced velocity w j is

approximately equal to the buoyancy-induced velocity wp :

ls ≈
M 3/4

o

F 1/2
o

(2.8)

By using this length-scale, the buoyant-jet is expected to behave plume-like, and the mixing is buoyant-

dominated for vertical distance z with z/ls > 1. On the other hand, the buoyant-jet is expected to behave

jet-like and thus creating jet-dominated mixing for vertical distance z with z/ls < 1.

Figure 2.2: (left) Illustration of entrainment in vertical buoyant-jet, (upper-right) its resulting Gaussian profile of the streamwise velocity
and SSC, and (lower-right) and its top-hat approximation profile, adopted from Byishimo (2018)

2.3. Entrainment of Ambient Water
Another physics phenomenon that occurs during the discharging of tailings mixture is the entrainment of

ambient water to the main jetstream, see Figure 2.2. Entrainment causes the momentum and buoyancy

fluxes of the tailings buoyant-jet to approach ambient values. Concerning entrainment, Lee and Chu (2012)

classified plume spatial region into two zones: Zone of Flow Establishment (ZFE) and Zone of Established
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Flow (ZEF).

ZFE is the region located in a range of distance z < 6.2D from the discharging source, where D is the

source diameter. In this region, the profile of streamwise velocity and Suspended Solids Concentration (SSC)

are uniform, with value of the initial streamwise velocity and SSC (Lee and Chu, 2012).

w(z,r ) = w j o (2.9)

C (z) =Co (2.10)

Where Co is the initial SSC at the dischraging source. Meanwhile, ZEF is the region located in a range of

distance z > 6.2D . In this region, the profiles of streamwise velocity and SSC are following Gaussian profile.

w(z,r ) = wm(z)exp(−
(

r

bw

)2

) (2.11)

C (z,r ) =Cm(z)exp(−
(

r

αbc

)2

) (2.12)

Where z,r are streamwise and radial coordinates, wm and Cm are respectively maximum streamwise velocity

and SSC, located at the centerline of the jetstream.

2.3.1. Top-Hat Approximation
For many practical problems, a Gaussian profile would result in an extensive analysis. A method is therefore

required to approximate the necessary profile of buoyant-jet flow velocity and SSC. A method called top-hat

approximation was introduced. In this method, the profile of buoyant-jet velocity and SSC are approximated

as uniform profiles across the jet (Lee and Chu, 2012). These are assumed to represent the overall mass and

momentum transports in the flow, which responsible for the large eddies in the jet. The top-hat approxima-

tion is mathematically expressed as:

W = wm

2
(2.13)

B =p
2 b j (2.14)

C̄ = Co

S̄
(2.15)

Where W , B , and C̄ are respectively the top-hat velocity, plume-width, and average concentration, wm is the

centerline velocity of the jet, b j is the jet-width, Co is the initial SSC, and S̄ is average dilution of the plume.

The resulting top-hat profile can be seen in Figure 2.2. Top-hat approximation offers analytical simplicity in

analyzing the profile of the buoyant-jet, and also avoid the ambiguity in profile assumption at the transition

between flow regimes. Besides, it also provides simplicity in mathematical derivations.

2.4. Tailings Buoyant-Jet Interaction With Seabed
Besides interacting with the surrounding water, tailings buoyant-jet which released at deep-sea environment

will also interact with the ocean bed, which represents a solid boundary. As a buoyant-jet impinges a solid

bottom, its flow propagates radially away from the impingement point (Chowdhury and Testik, 2014). This

flow is called underflows or outflows. Chowdhury and Testik (2014) also stated that this underflow experi-

ences two main propagation phases: (a) initial adjustment propagation phase at a distance near the impinge-

ment point and (b) gravity current propagation phase. Experiments done by Kotsovinos (2000), Lawrence and
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Maclatchy (2001), Kaye and Hunt (2007), and Cooper and Hunt (2007) showed that the first propagation phase

of the underflows (i.e. the initial adjustment propagation phase) is a momentum-driven wall jet-like phase.

As the underflow propagates further from the impingement point, buoyancy becomes more dominant over

momentum. Thus the underflow behaves as a fully-developed gravity current.

Figure 2.3: Illustration of gravity current structure (Ahmed, 2017)

Gravity current, itself, is a flow of fluid with a certain density in a certain ambient fluid with different

density (Ahmed, 2017). For bottom gravity currents, it is usually identified by the presence of a head region at

the front of the flow, and followed by its body (see Figure 2.3). As the flow propagates, the head must displace

the stationary ambient water. Thus it results in a thicker size compared to the body.

The typical profile of the velocity of a bottom gravity-current usually can be decomposed vertically into

the inner region and outer region (Ahmed, 2017), see Figure 2.4. These regions are separated by a vertical

height where maximum velocity occurs. The inner region consists of a positive velocity gradient. Therefore

it behaves like a conventional turbulent boundary layer. On the other hand, the outer region consists of a

negative velocity gradient, resulting it as a shear layer. The vertical location of the maximum velocity depends

on the ratio of the shear forces between the outer and inner regions.

Figure 2.4: Typical velocity profile of a bottom gravity current (Ahmed, 2017)





3
Modeling Techniques

3.1. Tailings Mixture Modeling
In the practical, tailings mixture is a multiphase liquid, consisting of water as a continuous phase or carrier

fluid, and solids fractions dispersing within the continuous phase. Each of these phases fills the mixture

volume with each certain volumetric concentration. As tailings mixture usually consists of multiple solids

fractions, the resulting flow consists of two or more phases. The computational cost for this flow condition is

considerably large. Thus an alternative method is implemented in this research.

In this research, the tailings mixture is modeled as a continuum slurry, consisting of single solid fraction.

By using continuum approach, the obligation to describe each particle motion is neglected. The solid fraction

in the mixture is assumed to fill the whole volume of the fraction uniformly. The resulting flow governing

equations are as follows.

3.1.1. Flow Governing Equations

In this research, drift-flux modeling is used for governing the flow motion. By using the drift-flux model,

the momentum equation for each phase is summed together, yielding a single mixture momentum equation

(Brennan, 2001). Thus the governing equations for the flow are as follow. For the derivations, see Zuber and

Findlay (1965), Manninen et al. (1996), Brennan (2001), Ishii and Hibiki (2010), and Goeree (2018). A short

derivation of the flow governing equations is also presented in Appendix section. The governing equations

are as follow:

Mixture Continuity Equation
The mixture continuity equation is defined as:

∂ρm

∂t
+∇· (ρm .vm) = 0 (3.1)

Where ρm and vm are respectively the mixture density and velocity vector.

11
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Mixture Momentum Equation

The mixture momentum equation is defined as:

∂ρm vm

∂t
+∇· (ρm vm vm

)=−∇Pm +∇·
[

T+Tt −∑
k
αkρk vkm vkm

]
+ρm g (3.2)

Where Pm , T, Tt , vkm , and g are respectively the mixture pressure, viscous and turbulent shear stress tensor,

phase relative-velocity with respect to mixture velocity, and gravitational acceleration vector.

Disperse-Phase Transport Equation

The transport equation for the phases in the two-phase flow system is defined as:

∂αkρk

∂t
+∇· (αkρk vk

)= 0 (3.3)

Where αk , ρk , and vk respectively the phase volumetric concentration, density, and velocity vector.

3.2. Solids Settling Modeling

In this research, the settling of the solid fraction within the tailings mixture is done by implementing the

terminal settling velocity of a particle of the solid fraction as the phase relative-velocity in the drift-flux model.

As mentioned before, tailings mixture is assumed to be filled by monosize fraction. Thus, the terminal settling

velocity of a particle of this solid fraction is assigned as the settling velocity of whole particle of the tailings

mixture.

In this research, the Richardson-Zaki relative velocity model is assigned to calculate the mentioned rela-

tive velocity. Consider the tailings mixture as the dispersed-phase (subscript d) within this two-fluid system,

the relative velocity of the dispersed phase to the mixture velocity is calculated as (Richardson and Zaki, 1997):

vdm = ρc

ρ
vt s (1−αd )n (3.4)

Where vt s is the terminal settling-velocity of a single solid particle in the mixture, αd is the disperse-phase

volumetric concentration, and n is the Richardson-Zaki coefficient. This formulation is equal to the calcula-

tion of a hindered settling velocity for particle with a certain concentration. The terminal settling velocity is

calculated using formula of Ferguson and Church (2004):

wo = ∆g d 2

C1ν+
√

0.75C2∆g d 3
(3.5)

Where d is the particle diameter, ρs is the solid-particle density, ρw is the water density, and ν is the water

kinematic viscosity. For natural sands, C1 and C2 are 18 and 1. For spherical particles, the value for C1 and C2

are 1 and 0.44. Richardson-Zaki coefficient is calculated using the formula of Rowe (1987), which smoothly

represents the empirical formulation of Richardson-Zaki.

n =
4.7+0.43 ·Re0.75

p

1+0.175 ·Re0.75
p

(3.6)



3.3. Turbulent Modeling 13

Where Rep is particle Reynolds number and calculated as:

Rep = ρw

∣∣vw −vp
∣∣dp

νw
(3.7)

With vp is the velocity of the particle, ρ f is the fluid density, ν f is the fluid kinematic-viscosity, and dp is the

particle diameter.

3.3. Turbulent Modeling
In this research, turbulent is modeled using Large Eddy Simulation (LES) method. In LES method, the turbu-

lence in a three-dimensional turbulent flow is classified into two scales: (a) larger unsteady motions and (b)

smaller scale motions. Eddies larger than the grid size, which are considered as the larger unsteady motion,

are directly solved while eddies smaller than the grid size are modeled using subgrid-scale modeling. LES

is expected to be a solution to overcome the extensive computational price of Direct Numerical Simulation

(DNS) method and the accuracy of Reynolds Averaging (RAS) method. In summary, there are four important

conceptual steps in LES (Pope, 2001):

1. Filtering operation.

By using filtering, the field variables (e.g. flow velocity) are spatially filtered into two components:

spatially-filtered component, which represents the large scale of turbulent, and subgrid-scale compo-

nent.

2. The evolution of filtered field variables are derived from Navier-Stokes equations.

3. Closure is done by implementing a model for the subgrid-scale eddy-viscosity.

4. The filtered equations are then modeled to obtain the approximation of the large-scale motion of the

flow in one realisation.

A thing to be considered in LES method is the selection of the subgrid-scale model. In this research, WALE

LES model is used to model the turbulent subgrid-scale tensor. For further derivations and implementation

of LES to the flow governing equations, see Wilcox et al. (1998), Pope (2001), and Goeree (2018).

3.3.1. WALE LES Model
In WALE LES Model, the turbulent eddy-viscosity is modeled as:

µt = ρCw∆V 1/3
Sd

i j Sd
i j

S̄i j Si j + (Sd
i j Sd

i j )5/4
(3.8)

Where Cw is the constant in the model, Si j is the rate-of-strain tensor, and∆V is the filter size which equals to

the cell size. In this research, the assigned value of Cw is 0.0325, the default value of Cw . WALE LES model is

picked as it is considered to be more stable compared to Smagorinsky model for simulating flow impinging to

a solid boundary since it is developed for industrial applications that contain complex geometries and shapes

(Goeree, 2018).





4
Numerical Implementation

To simulate the tailings buoyant-jet flow, the governing equations of the flow should be implemented to the

numerical model. There are several methods available for doing the implementation. The widely used dis-

cretisation methods are Finite of Difference Method, Finite of Element Method, and Finite of Volume method.

In this study, Finite of Volume method is used which is the main method of OpenFOAM (Greenshields, 2015).

The discretisation of Navier-Stokes equations is addressed in this chapter, where special attention to the dis-

cretisation should be given as the domain is constructed using non-orthogonal mesh. In this research, Gauss

Gamma and Gauss Linear differencing schemes are picked for discretisation of the advective and diffusive

terms, while the temporal derivative is discretised using Backward Differencing scheme. The boundary con-

ditions are also addressed in this chapter. In this study, the solution algorithm used in OpenFOAM is PIMPLE

(Pressure Implicit with Splitting of Operator) algorithm, which is a combination of PISO and SIMPLE methods

that are also available in OpenFOAM.

4.1. Finite of Volume Discretisation
To numerically simulate the turbulent buoyant-jet, the governing equations of the flow should be numerically

implemented through discretization. In this research, the flow governing equations are discretized using

Finite of Volume (FV) method. In general, the algorithm of FV method is as follow (Versteeg and Malalasekera,

2007):

• Governing equations are transformed to integral form.

• Simulation domain is divided into finite number of Control Volume (CV).

• Rate of change of field variables in each CV are determined by fluxes over the CV surfaces.

• Surface value of the field variables are calculated using differentiation scheme.

As can be seen from the algorithm above, FV method consists of two major steps: discretization of solution

domain and discretization of flow governing equations. These are addressed in this section. Since the re-

search uses non-orthogonal mesh, a special treatment is needed during the discretization.

15
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4.1.1. Discretisation of Simulation Domain

The first step of the FV method is the discretization of the solution domain. The simulation domain is then

divided into number of non-orthogonal Control Volume (CV), as can be seen in Figure 4.1. Each CV consists

of one centroid point (P ) and bounded by a set of flat faces ( f ). Each of these faces is shared with another

neighboring CV.

In the simulation domain, CV faces can be classified into two types: internal faces and boundary faces.

Internal faces are cell faces bounded between two CVs, while boundary faces are cell faces that coincide with

boundaries of the simulation domain. This face is also represented by vector S, representing normal vector

of the cell-face that pointing outward from the CV.

Non-orthogonal meshes give users higher freedom for creating mesh refinement in the domain area

where higher resolutions are required. This property is useful in the practice of complex three-dimensional

geometrical configurations (Jasak, 1996).

Figure 4.1: Illustration of non-orthogonal mesh (Jasak, 1996)

4.1.2. Discretisation of Flow Governing Equations

Here the discretization of flow governing equations is described. Once the simulation domain has been dis-

cretised, then the governing equations of the flow should be discretised. This is done by integrating the gov-

erning equations over each CV, and applying Gauss’ theorem. An important concept that needs to be un-

derstood in this part of discretization process is the usage of Gauss theorem, which translates a volumetric

integral to a surface integral. The Gauss theorem is mathematically expressed as follow:∫
V
∇·φdV =

∫
δS
φ ·dS (4.1)

∫
V
∇φdV =

∫
δS
φdS (4.2)

Where dS is the surface area vector and δS is the closed-bounding surfaces of the CV. This step results in a set

of discretised equations, written in terms of the CV centre values. By using Gauss theorem, the rate of change

of a field variable in a CV can be seen to be defined by the summation of all fluxes of the surrounding faces of

the CV.

In order to achieve this, the governing equations of the flow in drift-flux model is written in a generic form
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of transport equation for scalar or vector as follow (Brennan, 2001):

∂ρφ

∂t
+∇·ρvφ−∇·ρΓφ∇φ= Sφ(φ) (4.3)

Where the first term on LHS represents the temporal derivative, the second term on LHS represents the con-

vection term, the third term on LHS represents the diffusion term, and the term on RHS represents the source

term. The corresponding value of φ, Γφ, and Sφ(φ) for each governing equations in drift-flux model are sum-

marised in Table 4.1. Since FV method requires the governing equations to be satisfied over the Control

Volume around its centre point, Equation 4.3 is written as follow. Consider a CV with a volume of VP and

centre point P :

∫ t+∆t

t

[∫
VP

(
∂ρφ

∂t

)
dV +

∫
VP

(∇·ρvφ
)

dV −
∫

VP

(∇·ρΓφ∇φ
)

dV

]
d t =

∫ t+∆t

t

[∫
VP

(
Sφ(φ)

)]
d t (4.4)

The discretisation of each term in Equation 4.4 is addressed in the following section.

Table 4.1: Assigned values of φ, Γφ, and Sφ for each governing equations of drift-flux model (Brennan, 2001)

Equation φ Γφ Sφ
Mixt. Continuity 1 0 0

Mixt. Momentum vm µe f f −∇Pm +∇· [T+Tt −∑
k αkρk vkm vkm

]+ρm g
Phase Transport αk

µt
σ ∇Γφ∇αk

Discretisation of Spatial Terms
There are two spatial terms that can be identified in Equation 4.4: the convective term, and the diffusive term.

Each of these terms are discretised separately.

• Convective Term Discretisation

Using Gauss’ theorem and midpoint rule, the convective term is discretised as the summation of the

mass-flux of all faces of the CV. Thus it is mathematically expressed as in Equation 4.5. Consider again

a CV with a volume of VP and centre point of P :∫
VP

∇· (ρvφ) dV =∑
f

F φ f (4.5)

Where subscript f denotes the cell faces,φ f represents the value ofφ at the cell-face,
∑

f represents the

summation over all faces of CV, and F represents the mass-flux through each face of CV. The mass-flux

F is mathematically expressed as:

F = S · (ρ v
)

f (4.6)

Equation 4.5 and 4.6 requires the calculations of face value of the variablesφ and v. This can be done by

calculating from the values of the cell-centres, using a convection differencing scheme. In the frame-

work of using arbitrary non-orthogonal mesh, the used cell-centre values should be limited only to the

nearest neighboring CV due to a risk of storage overhead associated with the additional addressing in-

formation. Thus the relation between the value of face f , the CV centre value P , and the neighboring

CV value E is illustrated in Figure 4.2. There are various differencing schemes available for Finite of

Volume method, see Jasak (1996), Brennan (2001), and Goeree (2018). In this research, Gauss Linear

and Gauss Gamma differencing schemes are used.
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Figure 4.2: Illustration of face f , the value of φ f , and its surrounding CVs (P and E)

In Gauss Linear differencing scheme, the variation of φ between centre point P and E is assumed to be

linear, see Figure 4.2. Thus the face value φ f can be calculated as:

φ f = fxφP + (1− fx )φE (4.7)

Where fx is the interpolation factor, and calculated as the ratio of distances face f to neighboring centre

E and CV centre P to neighboring centre E .

fx =
f E

PE
(4.8)

Gauss Linear differencing scheme is expected to give solution that is second-order accurate (Ferziger

and Peric, 2012). Although its accuracy, Gauss Linear differencing could results in unphysical oscilla-

tions of the solution for convection-dominated flows (Jasak, 1996). Thus it could create unbounded

solution.

Gamma differencing scheme is a High Resolution second-order differencing scheme (Jasak, 1996), based

on Normalised Variable Diagram (NVD). This differencing scheme is specially developed for arbitrary

non-orthogonal mesh. The algorithm of Gamma differencing scheme is described in Jasak (1996).

Gamma differencing scheme is seen as the blending between Upwind Differencing scheme and Central

Differencing scheme, and the blending is defined by a variable called blending factor (γ). For a good

resolution of sharp profile, the blending factor is recommended to be defined as 0.1 (Jasak, 1996). Thus

in this study, blending factor of 0.1 is assigned.

• Diffusive Term Discretisation

The discretisation of diffusive term is done in a similar way as the discretisation of convective term.

Firstly, the diffusive term is discretised using Gauss’ theorem and midpoint rule as:∫
VP

∇· (ρΓφ∇φ)
dV =∑

f
S · (ρΓφ∇φ)

(4.9)

In the discretisation of diffusive term for non-orthogonal mesh, it is important to consider the vector

representing the distance between centre point of the neighboring CVs (vector d) and also the normal
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vector of the cell face (vector S), see Figure 4.3. When the mesh is orthogonal, vector d and S are parallel.

Figure 4.3: Vector d and S in a non-orthogonal mesh, adopted from (Jasak, 1996)

Thus, the value of gradient ofφ at cell face can be assumed as a linear interpolation between both values

at each cell centres, and calculated as follow:

S · (∇φ)
f = |S|φE −φP

|d| (4.10)

Using the interpolation factor, the face value is also calculated as follow:

(∇φ) f = fx
(∇φ)

P + (1− fx )
(∇φ)

E (4.11)

For non-orthogonal mesh, an adjustment needs to be done to Equation 4.10. The product of S · (∇φ) f

is splitted into two parts: a part representing the orthogonal contribution (first term RHS of Equation

4.12) and a part representing the non-orthogonal correction (second term RHS of Equation 4.12) (Jasak,

1996).

S · (∇φ) f =∆ · (∇φ) f +k · (∇φ) f (4.12)

Where ∆ and k are vectors decomposing vector S (see Figure 4.4) and should satisfy the following iden-

tity:

S =∆+k (4.13)

Figure 4.4: Illustration of vectors configuration for non-orthogonal mesh, using minimum correction method, as adopted from Jasak
(1996)

There are several methods available for decomposing S, see Jasak (1996). In this research, minimum-

correction method is used. The decomposition of vector S results in vector ∆ which parallel with vec-

tor d. Thus Equation 4.10 can be directly used representing the orthogonal contribution in Equation

4.12. By implementing minimum-correction method, S is decomposed in such a way that the non-

orthogonal correction is kept as low as possible. The non-orthogonal correction got a potential to cre-

ate unboundedness, especially when the non-orthogonality degree of the mesh is high Jasak (1996).

Thus when the priority of the simulation is to preserve stability and boundedness, the non-orthogonal

correction should be limited as low as possible. This is done by making vector k and ∆ perpendicular.
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This condition is mathematically expressed as:

∆= d ·S

d ·d
d (4.14)

Then k is calculated using Equation 4.13. Therefore the final form of the discretised diffusive term is as

follow. Since d and ∆ is kept in parallel, the orthogonal contribution is discretised as:

∆ · (∇φ) f = |∆|φE −φP

|d| (4.15)

Thus the discretised form of Equation 4.12 is:

S · (∇φ) f = |∆|φE −φP

|d| +k · (∇φ) f (4.16)

Where the face interpolate of ∇φ is calculate using Equation 4.11.

Discretisation of Temporal Terms
In this research, to achieve the second-order requirement, Backward Differencing method is used, see Jasak

(1996). The discretisation starts by considering Taylor expansion ofφ in time. In Backward Differencing, three

time levels are used. Thus the Taylor series is expanded to include two "old" time-level:

φ(t −∆t ) =φoo =φn −2
∂φ

∂t
∆t +2

∂2φ

∂t 2 ∆t 2 +O(∆t 3) (4.17)

Where φn = φ(t +∆t ), and φo = φ(t ). Therefore, the second-order approximation of the temporal derivative

is:
∂φ

∂t
= 3/2φn −2φo +1/2φoo

∆t
(4.18)

Therefore the final form of the discretised transport equation is:

3/2φn −2φo +1/2φoo

∆t
VP +∑

f
Fφ f −

∑
f

(ρΓφ) f S · (∇φ) f = SuVP +SpVPφ
n
P (4.19)

4.2. Numerical Solution and Algorithm Controls

4.2.1. Pressure Poisson Equation Solver
In Finite of Volume method, the pressure field values are solved using pressure Poisson Equation (see Jasak

(1996), Moukalled et al. (2016), and Goeree (2018) for the derivations). To solve the pressure Poisson equation

numerically, a solver is required. In this research, Multi-grid method is used in this research (in OpenFOAM:

G AMG solver). In Multi-grid method, the pressure Poisson equation is solved using multiple cells on coarse

level of the domain, using Jacobi relaxation method. Then the solution obtained from the coarse levels are

mapped to the finer cells, until finally mapped to the finest cells. This procedure is repeated several times

until the solution reaches convergence. The convergence are defined when one of the following conditions

are fulfiled:

• The residual falls below the assigned tolerance.

• The ratio of current to initial residual falls below the assigned relative tolerance.

• The number of iteration exceeds the assigned maximum number of iterations.
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In this research, for solving the pressure Poisson equation, the assigned tolerance is 1 · 10−9, with relative

tolerance of 0.01. The coarse level is assigned to include 10 cells. The number ofiteration of this solver is

based on the number of corrector iterations in the pressure-velocity coupling algorithm. Since the velocity

field affects the resulting pressure field and vice versa, the pressure and velocity needs to be coupled. This is

addressed in the following section.

4.2.2. Pressure-Velocity Coupling
To solve the Navier-Stokes equations for the incompressible flows, the pressure and velocity needs to be cou-

pled. In this research, PIMPLE algorithm is used, which is ainly used for transient cases. PIMPLE algorithm

is a variation of PISO (Pressure Implicit with Splitting of Operator) algorithm and SIMPLE (Semi-Implicit

Method for Pressure-Linked Equations) (Robertson et al., 2015). The flowchart of PIMPLE algorithm is illus-

trated in Figure 4.5.

Figure 4.5: Flowchart of PIMPLE algorithm (Robertson et al., 2015)

In PIMPLE algorithm, there are variables to be defined: outer correctors, inner correctors, relaxation fac-

tors, and tolerance. The number of outer correctors defines how many system of equations are performed

beforer the simulation is forced to move onto the next timestep, regardless of whether that timestep has

reached convergence or not. The criteria of timestep convergence is defined as the absolute tolerance of the

solver. In this research, the number of outer corrector is defined as 100, with the absolute tolerance of 1·10−5.

The number of inner correctors is the number of times the algorithm solves the pressure eqeuation and

momentum corrector in each timestep. The suggested value of inner corrector is 1 - 3 (Greenshields, 2015).

In this research, the number of inner correctors is defined as 2.



22 4. Numerical Implementation

Under-relaxation, a technique used for improving the stability of the computation, is used in this study.

Under-relaxation works by limiting the amount which a variable changes from one iteration to the next iter-

ation. In this study, the value of relaxation factors of 0.1 is used for the pressure, and 0.7 for the velocity.

4.2.3. Solution Procedure for Navier-Stokes System
As the discretisation and the solution solvers already defined, it is now possible to describe the algorithm

for solving the Navier-Stokes equations. For solving a transient incompressible flows, the algorithms are as

follow (Jasak, 1996):

1. Setup the initial and boundary conditions for all field values.

2. Start the calculation of the new timestep of the field values.

3. Go through PIMPLE algorithm until the conergence is reachd. In this stage, the pressure and velocity

fields for current timestep are obtained, as well as the new set of conservative fluxes.

4. Using these conservative fluxes, solve all equations in the system.

5. If the final timestep is not yet reached, return to step 2.

The assigned setting of numerical solution and algorithm controls in this study is summarised in Table 4.2.

Table 4.2: Setting of numerical solution and algorithm controls in this study

Pressure Poisson solver: Multi-Grid (GAMG)
Number of cells in coarse level 10

Pressure-velocity coupling: PIMPLE
Outer correctors 100
Inner correctors 2

Non-orthogonal correctors 2
Residual (Pressure):

(1). Tolerance
(2). Absolute tolerance

(1). 5 ·10−4

(2). 0

Residual (Velocity)
(1). Tolerance

(2). Absolute tolerance

(1). 1 ·10−5

(2). 0

Under-relaxation factor:
Pressure 0.1
Velocity 0.7



5
Model and Simulation Setup

In numerically simulating flow in computational fluid dynamics, things need to be set up before conducting

one simulation: domain of the simulation and also the setting in OpenFOAM. These are addressed in this

chapter. The chapter starts by describing the domain used in the simulation, and the preliminary study was

done regarding the simulation domain. Then the chapter continues with the setup done in OpenFOAM,

including the algorithm setting and transport properties of the simulated flow, such as the mixture density,

volumetric concentration, and inlet condition. This chapter also addresses the decomposition method of the

domain in order to do parallel simulation the flow.

5.1. Simulation Cases Setup
In this research, six cases are prepared to be simulated. The cases are summarised in Table 5.1. These cases

are prepared following one of the laboratory experiment case of Byishimo (2018). In observing the imple-

mentation of the arbitrary non-orthogonal mesh, two parameters are varied throughout the prepared cases:

solids settling condition and differentiation scheme. Since the simulated tailings use monosize solids frac-

tion assumption, three solids settling conditions are prepared, named "minimum," "extreme," and "realistic"

solids settling conditions.

In cases using the "minimum solids settling" condition, the assigned terminal settling velocity of the

solids fraction within the tailings mixture is 0, thus creating as well 0 hindered settling velocity. Therefore

the settling of the tailings mixture is assumed to be affected only by the gravitational body force of the tailings

as a continuum fluid, not by the relative velocity between both fluids in the system. In the Table 5.1, these

cases are represented by Case 1 (both A and B).

In cases using "extreme solids settling" condition, the settling of the tailings mixture is assumed due to

a high settling velocity of the solids particle within the tailings mixture. For creating such of condition, the

tailings mixture is assumed to be filled by monosize particles with a diameter of 95 · 10−6m. The resulting

terminal settling velocity of this particle diameter is 6.878 ·10−3m/s. In these cases, we can see the extreme

effect of implementing solids settling in drift-flux method. These cases are represented by Case 2 (both A and

B).

"Realistic solids settling" condition should give the simulation results closer to the laboratory experiment

23
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results. In these cases, the tailings mixture is assumed to be filled by monosize particle with a diameter of

45 ·10−6m, which is the d50 of the mixture used in the laboratory experiment of Byishimo (2018). By using

this diameter, the expected settling velocity of the solid particle is 1.487 · 10−3m/s, approximately six times

less than the cases with "extreme solids settling" condition. These cases are represented by Case 3 (both A

and B).

In these cases as well, the effect of two differencing schemes are observed. These differencing schemes

are Gauss Gamma differencing scheme and Gauss Linear differencing scheme. Cases with Gauss Gamma

differencing scheme are represented by alphabetic A, while cases with Gauss Linear differencing scheme are

represented by alphabetic B.

All cases are simulating a discharging tailings mixture with initial velocity of 0.71m/s. The discharged

tailings has a density of 1011.5kg /m3. These mixture density represents a mixture with solids concentra-

tion of 20g /l , or equal to 0.0005 solids volumetric concentration. The ambient water density is assigned as

1000kg /m3.

Table 5.1: Setup of the simulation cases

Cases 1A 1B 2A 2B 3A 3B
Description "Minimum solids settling" cases "Extreme solids settling" cases "Realistic solids settling" cases
Discharging

jet-velocity [m/s]
0.710 0.710 0.710 0.710 0.710 0.710

Mixt.
Density (ρm ) (kg /m3)

1011.5 1011.5 1011.5 1011.5 1011.5 1011.5

Water
Density (ρw ) (kg /m3)

1000 1000 1000 1000 1000 1000

Solid-fraction
density (ρs ) (kg /m3)

2650 2650 2650 2650 2650 2650

initial
SSC [g /l ]

20 20 20 20 20 20

αs 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005
Particle

diameter [m]
- - 95 ·10−6 95 ·10−6 45 ·10−6 45 ·10−6

vt s [m/s] - - 6.878 ·10−3 6.878 ·10−3 1.487 ·10−3 1.487 ·10−3

Differentiation
Scheme

Gauss Gamma Gauss Linear Gauss Gamma Gauss Linear Gauss Gamma Gauss Linear

5.2. Geometries of Simulation Domain
In this research, the simulation domain is following a tank geometry with a round pipe as the inlet of the

tailings mixture, adopted from the laboratory experiments of Byishimo (2018). The construction of the sim-

ulation domain and mesh are done with assistance and help from Frans van Grunsven. These geometries,

mesh construction, and geometries adaptation are discussed in this section.

The domain geometry is constructed as a modular tank with dimensions as described in Table 5.2 and

illustrated in Figure 5.1. This setup is picked as it showed no sediment deposition-ring during the laboratory

experiment done by Byishimo (2018), which needs to be avoided as it would lead to numerical complexity.

This tank was constructed to mimic a deep-sea field condition, with a scale of 1:50. An artificial seabed is

implemented by placing a table at the bottom of the tank to create a gap between the observed flow and the

tank walls. Therefore the interaction between tank walls and the flow can be minimized. A round pipe is

located 1m above the tabletop, with a diameter of 0.01m. This round pipe is assigned as the source of the

tailings discharge.
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Table 5.2: Dimensions of the simulation domain, following the laboratory setup of Byishimo (2018)

Prototype Field Unit

Tank:
Length 5 255 [m]
Width 2.25 113 [m]
Height 2 105 [m]
Table:

Length 4.5 225 [m]
Width 1.75 98 [m]
Height 1 50 [m]

Round pipe:
Diameter 0.01 0.5 [m]

Height (from table surface) 1 50 [m]

Figure 5.1: Geometries of the simulation domain

5.2.1. Mesh Construction

The construction of the mesh in the original domain is illustrated in Figure 5.2. In this study, the mesh con-

struction is done with help by Ir. Frans van Grunsven. In the original domain, the mesh is constructed to be

filled by 5,255,692 cells in total. Refinement is done in the inlet pipe, near the pipe-end, and the area where

main jetstream expected to occur. For achieving the required resolution as in the laboratory measurement

and also resolving the turbulent boundary layer, cell layers are constructed near the tabletop and also at the

inlet pipe walls, where the resulting y+ value should be 12. Coarser cells are constructed at the area further

from the inlet and tabletop.

5.3. Preliminary Study: Original Domain
A preliminary study is then done to ensure whether the constructed domain should be able to simulate the

wanted physics and flow. This is done by simulating one of the prepared cases for a short simulation time and
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then checking the numerical performance of the simulation. In this study, the preliminary simulation is done

using Case 1A and 2A. During the simulations, the used timestep is assigned to be adjustable, based on the

maximum allowable Courant number. This is done to see the maximum allowable timestep when simulating

using this domain. As can be seen in Table 5.3, the obtained timestep when using maximum Courant number

of 0.9 is 3 ·10−5s. Hence the simulation can only run until 0.1691s for a realtime of 18 hours.

Consequently, using this domain, running 1-minute of simulation time would require 6386 hours of re-

altime. This is equal to approximately 266 days and considered not feasible due to the time restriction of

the research. Therefore an adjustment needs to be done to the simulation domain. This is addressed in the

following section.

Table 5.3: Numerical performance using original domain

Case 1A Case 2A
Max. allowable Co [-] 0.9 0.9
Obtained timestep [s] 3 ·10−5 3 ·10−5

Obtained simulation time [s] 0.1691 0.079
Realtime [hours] 18 18

Figure 5.2: Boundaries of the original domain and its mesh construction
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5.4. Domain Readjustment: Cutting Off The Domain
As described in the preliminary study, it is not feasible to simulate for the prepared cases using the original

domain due to the extensive simulation time and lack of necessary computational performance. Thus the

simulation domain is reconstructed in this research. The reconstruction is done by cutting off the domain

vertically, getting rid of half of the domain in the vertical direction, which requires very fine mesh (especially

for the constructed mesh around the discharging pipe). The resulting cutoff domain is illustrated in Figure

5.3. The resulting domain dimensions are summarised in Table 5.4.

Table 5.4: Comparison between the dimensions of the original domain and the reconstructed cutoff domain

Original domain Cutoff domain Unit

Tank:
Length 5 5 [m]
Width 2.25 2.25 [m]
Height 2 1.5 [m]
Table:

Length 4.5 4.5 [m]
Width 1.75 1.75 [m]
Height 1 1 [m]

Round pipe:
Diameter 0.01 - [m]

Height (from table surface) 1 - [m]

By implementing this domain reconstruction, an adaptation needs to be done as well to the inlet bound-

ary of the domain. In the original domain, the inlet is assigned as a pipe. This inlet pipe is replaced by an inlet

patch using buoyant-jet theory in the new domain, as described in Chapter 2. The steps for readjusting the

inlet condition are as follow:

1. Determine the initial parameters of the momentum and buoyancy flux of the buoyant-jet.

2. Determine the transition length-scale of the buoyant-jet from behaving jet-like to plume-like.

3. Determine the properties of the develope jet or plume at the desired distance of the new inlet patch.

First, the length-scale (ls ) of which the jet-plume transition occurs is calculated. To calculate this, the

mass, momentum, and buoyancy fluxes of the original buoyant-jet are calculated. Using Equation 2.1, 2.2,

and 2.3, and also the original condition of the buoyant-jet source (D = 0.01m, vo = 0.71m/s), the mass, mo-

mentum, and buoyancy fluxes of the buoyant-jet are obtained as follow:

Qo = 5.6 ·10−5m3/s

Mo = 3.93 ·10−5m4/s2

g ′ = 0.1128m/s2

Fo = 6.3 ·10−6m4/s3

The length-scale is then calculated using above values and Equation 2.8, which is approximately 0.2m. Thus

the buoyant-jet can be considered to behave as a pure jet at a vertical distance below 0.2m from the discharg-

ing source (z < 0.2m). On the other hand, it is considered as a pure plume at a vertical distance five times the
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length-scale (z = 1m) (Lee and Chu, 2012). Hence at vertical distance z of 0.5m from the discharging source,

the buoyant-jet is considered to be in a transition regime. The contribution for each pure-jet and pure-plume

needs to be determined first for calculating the flow condition at a transition regime.

Figure 5.3: The new reconstructed simulation domain

For a pure round-jet originating from a nozzle with a certain diameter D and initial velocity vo , the jet

width b j , centerline velocity vmax, j and its average dilution S̄ j can be calculated using the following equations

(Lee and Chu, 2012):

b j = 0.114z (5.1)

vmax, j = 7 ·M 1/2
o z−1 (5.2)

S̄ = 0.32
z

D
(5.3)

Then assigning a value of z of 0.5m and pipe diameter D of 0.1m, the obtained jet-width b j , centerline velocity

vmax, j , and average dilution S̄ j are:

b j = 0.06m

vmax, j = 0.088m/s

S̄ = 16

For a pure plume, the plume-width bp , centerline velocity vmax,p , and average dilution Sp are calculated

using the following equations (Lee and Chu, 2012):

bp = 0.105z (5.4)

vmax,p = 4.7 ·F 1/3
o · z−1/3 (5.5)

S̄p = 0.163 ·F 1/3
o · z5/3 ·Q−1

o (5.6)

Again using the value of z of 0.5m and pipe diameter of 0.1m, the calculated plume width, centerline velocity,
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and average dilution are:

bp = 0.053m

vmax,p = 0.109m/s

S̄p = 17

Then linear interpolation is assumed for calculating the values at the distance z of 0.5m from the discharging

pipe. Hence, the obtained conditions at vertical distance of 0.5m are:

bp = 0.056m

vmax,p = 0.096m/s

S̄p = 16.4

The above-obtained conditions are the Gaussian profile of the inlet at the distance of 0.5m. Although the

required Gaussian profile for the inlet patch is obtained already, its implementation requires further compu-

tational skills. To overcome this, top-hat approximation is implemented to the obtained inlet condition in

this research. Using Equation in Chapter 2 for top-hat approximation, the resulting inlet conditions are as

follow:

B = 0.078m

vmax = 0.048m/s

c̄ = 1.22g /L

αs = 0.0005

These are the implemented inlet condition representing the new buoyant-jet inlet patch.

5.4.1. Mesh Construction
As in the original domain, an arbitrary non-orthogonal mesh is also implemented in the new simulation

domain. The mesh construction is also in assistance and help of Ir. Frans van Grunsven. Cell sizes are varying,

with a total of 3,014,508 numbers of cells. The advantages of arbitrary, non-orthogonal mesh are the ability

to construct finer cells (CV) on the area where the expected main flow stream to occur. The coarser cells are

then constructed in the area, which less detailed of the flows needed. A proper gradient profile of the cell

sizes is still required to prevent high hydraulic jumps due to the drastic velocity change between cells. The

construction of the mesh for this domain can be seen in Figure ??. The summary of the mesh construction is

summarised in Table 5.5.

To achieve the proper simulation result, care to the construction of the domain mesh is needed, especially

in the area where high velocities, high velocity-gradient, and shear layer are expected to occur. The inability

to properly estimate a proper cell size would lead to instability of the simulation. In this research, the max-

imum cell-size on the mentioned areas is calculated based on the maximum allowable Courant number of

the simulation. Courant number is a variable which is assigned as the stability requirement of the simulation

and is defined as:

Co = v∆t

∆x
(5.7)

Where ∆t is the simulation timestep, v is the expected maximum flow-velocity, and ∆x is the maximum cell

size. To ensure stability is sustained throughout the simulation, the allowable maximum Courant number

should not be bigger than 1. Moreover, to further ensure the stability, the picked maximum Courant number

in this research is 0.5. Using an expected maximum flow velocity of 0.109m/s or approximately 0.11m/s, and

∆t of 8 ·10−3 s, the maximum cell size is:
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∆x = v·∆t
Co

∆x = 0.0018m ≈ 0.002m

Therefore the maximum allowed cell size is approximately 0.002m. Besides the non-orthogonal mesh, cell

layers are also constructed near the tabletop. The construction of the cell layers is following the required

resolution to be compared to the laboratory measurement data. Although the accuracy priority, the cell layers

should be constructed so the computational time still within the limit. Thus the constructed cell layers are

as summarised in Table 5.6, where the constructed cell layers should fulfill y+ of 12, as in the original mesh

construction. These cell layers contain 15 layers to create an acceptable transition from the plume to the

tabletop. The first cell layer size is 1mm which follows the resolution of the laboratory measurement. For

the next cell layer, the cell size is increasing by 10 percent. Thus the next cell-layer size is 1.1mm. This

construction creates cell layers with accumulative height of 31.8mm. The simulated flow is expected to reach

its maximum magnitude at the height of 10mm from the tabletop. Therefore the assigned cell layer at this

height is around 2mm, which is the requirement from the calculation using Courant number above.

Table 5.5: Mesh construction of the simulation domain

Number of CVs (cells) [-] 3,014,508
Non-orthogonality degree [o]:

(a) Average
(b) Maximum

(a) 14.67o

(b) 81.27o

CV face:
(a) minimum area [m2]
(b) maximum area [m2]

(a) 1.64 ·10−6m2

(b) 0.00803m2

Table 5.6: Layers implementation on top of the tabletop boundary

Layer (from tabletop) Cell size [mm] Accumulative layers height (mm)
1 1 1
2 1.1 2.1
3 1.2 3.3
4 1.3 4.6
5 1.5 6.1
6 1.6 7.7
7 1.8 9.5
8 1.9 11.4
9 2.1 13.6

10 2.4 15.9
11 2.6 18.5
12 2.9 21.4
13 3.1 24.5
14 3.5 28.0
15 3.8 31.8
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Figure 5.4: Mesh construction of the reconstructed domain, and the cell layers implemented in the area near tabletop boundary
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5.4.2. Boundary Conditions
As in the original domain, boundary conditions of the field variables should also be defined. For this research,

the boundary conditions for the following field variables must be specified: velocity, the volumetric concen-

tration of each phase, and pressure. The boundaries of the simulation domain are illustrated in Figure 5.5.

The assigned boundary conditions are summarised in Table 5.7.

Table 5.7: Boundaries conditions of the simulation field variables

Boundary U (velocity) αsol i d αw ater P

Tank Top Inlet-Outlet Inlet-Outlet Inlet-Outlet Fixed value of 0
Tank Wall Wall (no slip) Zero gradient Zero gradient Zero gradient

Tank Bottom Wall (no slip) Zero gradient Zero gradient Zero gradient
Jet Inlet Fixed value of 0.048m/s Fixed value Fixed value Zero gradient

Table Top Wall (no slip) Zero gradient Zero gradient Zero gradient
Table Wall Wall (no slip) Zero gradient Zero gradient Zero gradient

For velocity, the following conditions apply. At the inlet and top of the tank, the velocity is specified. For

the other boundaries, the no-slip condition is implemented. This means that it is assumed that the fluid is

attached to the wall. As the walls are not moving, a velocity of zero in all directions is then implemented. At

the inlet boundary, a fixed inlet velocity of 0.048m/s, as calculated from the previous section is implemented.

At tank-top boundary, inlet-outlet condition is applied. This means that the fluids can flow out of the domain

from this boundary to preserve the continuity within the domain, and when specified, inlet of the fluid with

a certain velocity can also occur as well through this boundary.

The pressure is zero-gradient boundary condition everywhere except the tank-top boundary. In this

boundary, the pressure is assigned as a fixed value of 0.

For the volumetric concentration of both tailings and water phases, zero-gradient conditions are imple-

mented in all boundaries except the tank-top and inlet boundary. Since the simulated cases assume a con-

stant inlet of tailings mixture with a constant volumetric concentration, the inlet boundary condition of vol-

umetric concentrations is thus assigned as a fixed value. At the tan-top boundary, inlet-outlet condition is

imposed for both phases volumetric concentration.

Figure 5.5: Boundaries of the reconstructed domain
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5.5. Decomposition Method
In this research, the simulation runs in parallel using the Reynolds cluster. To simulate in parallel, the domain

is decomposed into parts which each part will be run by one core. The domain is decomposed using cylindri-

cal decomposition method, where the doamin can be decomposed in axial, radial, and azimuthal directions.

In this research, the domain is decomposed in azimuthal direction, where the coordinate of the inlet patch is

picked as the origin point of the decomposition. This decomposition is illustrated in Figure 5.6.

Before running the full simulation, the performance of the decomposition is observed first to analyze the

optimal number of core for running the simulation. To observe this, the simulation using the reconstructed

domain is run for one hour (3600 seconds), and then the simulated time and resulting maximum Courant

number are compared for each decomposition case. This decomposition observation is summarised in Table

5.8. As the decomposition number becomes higher, the simulated time becomes longer for the same amount

of real-time. Hence, the domain is then decomposed into twenty-seven (27) parts, following the maximum

allowable core to be used in Reynolds cluster. By decomposing the domain into 27 parts, each core now only

needs to simulate 111649 CVs. Moreover 27 cores also observed to result in the longest simulated time for the

same period of realtime, as summarised in Table 5.8.

Table 5.8: Observation of the decomposition performance

Decomposing Cases
(Radial, Azimuthal, Axial)

RealTime [s] Simulated Time [s] Max. Courant number

No decomposing 3600 0.027022 0.48182
(1 3 1) 3600 0.10956 0.5035
(1 4 1) 3600 0.157833 0.50688
(1 8 1) 3600 0.215431 0.516277

(1 16 1) 3600 0.222639 0.527
(1 20 1) 3600 0.222639 0.527
(1 27 1) 3600 0.222983 0.511

Figure 5.6: Illustration of domain decomposition of the reconstructed domain using radial decomposition-method with Axial, Azymuth,
and Radial values of 1, 3, 1
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Simulation Cases and Results

In this chapter, the simulation results with reconstructed domain are presented. Before the simulation results

are presented, validation method of the simulation is described first.

6.1. Validation Method
For validating the simulation, the simulated field variables are compared to the laboratory measurement

done by Byishimo (2018). In this section, the methodology of the laboratory measurement is briefly ex-

plained. For more detailed explanations and descriptions regarding the laboratory measurements, see By-

ishimo (2018).

In this research, the validated variables are the simulated flow velocities and Suspended Solid Concen-

tration (SSC). In the laboratory experiments, the measurements were done in 8 points on the tabletop, with

nine vertical heights for each point (see Figure 6.1). The measurements of these flow velocities and SSC were

done as the tailings flow reached steady-state. To measure the flow velocity, each vertical elevation for each

measurement point was measured for 60 seconds using a sensor at 15 Hz frequency. Thus the sensor obtains

1000 samples per each height of measurement point for every minute. Then the samples were averaged for

sixty seconds to obtain the time-averaged velocity at each vertical elevation z. By using this method, at least

48 data are available for each measurement point, consisting of both lateral and axial flow velocities. For SSC,

the measurement was done using direct turbidity measurement of local, near-bed SSC. Valves were installed

on the tabletop, which can be opened for collecting the fluids near the tabletop. After the experiment started

and reached steady-state, tube’s end valves were opened for 30 seconds to flush the tube clean. Then 100 ml

samples were taken at each measurement point. It was noticed during the measurement that water from a

column of about 20mm above the measurement point was sucked as well into the tubes. Hence the measured

SSC turned out giving the value of 20-mm averaged SSC (local-averaged SSC).

In summary, the available laboratory data for validation are 60-seconds averaged flow velocities for each

vertical height of each measurement point, and 20-mm local-averaged SSC of each measurement points.

These data are obtained by taking a 60-seconds measurement after the tailings flow reached steady-state.

Then, the measurement data are compared to the simulation data to get insight on how the results of each

simulation cases representing the actual flow phenomena.

35
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Figure 6.1: Measurement points, its coordinates from the Impingement Point (IP), and the measured vertical distances from the table
top

6.2. Simulation Results

6.2.1. Numerical Performance
In this research, the simulation is done using fixed timestep of 2.5 ·10−3 s. Using this timestep, the simulation

runs with maximum Courant number of around 0.3, and the mean Courant number around 4 ·10−4. Hence

the assigned timestep should fulfill the stability requirement. By using this timestep, each timestep should

take around realtime of 7 - 10 seconds. Consequently, running a 1-minute simulation requires realtime of

approximately 162.942s ≈ 45.3 hours. This numerical performance is summarised in Table 6.1.

Table 6.1: Numerical performance of the simulations using the constructed grids, domains, and boundary conditions

∆t [s] 2.5 ·10−3s
Resulting max. Co [-] 0.3

Average Co. [-] 4 ·10−4s
Real-time per time-step [s] 7−10

Required real-time for 60s simulation time [s] 162,942s ≈ 45.3hour s

6.2.2. Steady-State Identification
As stated in the validation method, the simulation should be ensured to reach a steady-state condition first

before being validated. The steady-state condition is identified by calculating 1-minute averaged of simulated

flow velocities for every one minute simulation time, at each designated measurement points.

It is observed that the flow does not reach steady-state conditions at the same time due to the various

distance of each measurement point. After running the simulations for around 9 minutes of simulation time,

only measurement points 4, 5, 6, 14, 15, and 16 that are seen to approximately reach steady-state condition
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(see Figure 6.2, 6.3, 6.4, 6.5, and 6.6). For reaching steady-state at points 7 and 8 would require longer com-

putational time, which is restricted due to the time limit of the research project. Hence, it is decided that the

observation and validation are done for Point 4, 5, 6, 14, 15, and 16 only. The validation is then done for each

simulated case at these measurement points.

After the simulation is finished, the simulated field variables are plotted spatially. Hence the spatial

spreading and variation of the field variables can be observed. The domain is then cut halfwidth when ob-

serving the spatial plot to observe the area near the mainstream of the tailings jet. Since the tailings mixture

is expected to spread radially after impingement, the observation between spatial plotting at the x-axis and y-

axis as the normal axis should give similar results. As mentioned in the validation section, the observed field

variables are the flow velocities and SSC. To convert the simulated solids volumetric concentration (αsol i d s )

into SSC, the following equation is used:

SSC [mg /l ] = 2.65 ·106 ·αsol i d s (6.1)

Where αsol i d s denotes the simulated solids volumetric concentration. The SSC unit of mg /l is used follow-

ing the unit of the laboratory measurement data. Thus the resulting spatial plot and validation of the flow

velocities and SSC of each simulation cases are presented in the following section.
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Figure 6.2: Identifying steady-state condition of the simulated flow at Point 4
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Figure 6.3: Identifying steady-state condition of the simulated flow at Point 5
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Figure 6.4: Identifying steady-state condition of the simulated flow at Point 14
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Figure 6.5: Identifying steady-state condition of the simulated flow at Point 15
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Figure 6.6: Identifying steady-state condition of the simulated flow at Point 16
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6.2.3. Case 1: Minimum Solids Settling (vt s = 0)
The spatial plot of the SSC from simulation cases 1A and 1B can be seen in Figure 6.7 and 6.8. Although the

constructed simulation setup is expected to generate stable result in Gauss Gamma differencing scheme, it

turns out to also shows a stable result using Gauss Linear differencing scheme. At the initial phase of discharg-

ing, it can be seen that the interaction between the jet and the ambient water creates large eddies structure

besides the main jetstream. These eddy structures can be seen in both cases 1A and 1B. Then the impinge-

ment of the buoyant-jet to the tabletop results in a radial spreading of the mixture. Since there is no hindered

settling velocity assigned as the relative velocity of the tailings phase, the spreading of the tailings mixture

becomes wider as the simulation time goes. It can be seen that the eddies in the water column become larger

as the simulation goes further. One thing to be noted is the simulation using Gauss Linear (case 1B) seems

to result in more turbulent structures around the tabletop compared to the simulation using Gauss Gamma

as the differencing scheme (case 1A). Thus it can be noticed that Gauss Gamma differencing scheme with γ

value of 0.1 seems resulting in too bounded solutions for the sake of stability. This phenomenon can also be

seen near the inlet patch boundary since entrainment and mixing should have occurred as well in this area.

However, as can be seen in Figure 6.7, a smoother solution is observed, neglecting the expected eddies and

vortices.

From the spatial plot of the flow velocities (see Figure 6.9 and 6.11), it can be seen that the resulting flow

profile is jet-like. This is due to the assumption used, and the adaptation implemented which is required

to maintain an acceptable computational time and performance. Hence top-hat profile implemented at the

inlet patch seems to be well-conserved. This can be seen from the profile of the vertical velocity at the core

of the jetstream, which shows a uniform top-hat profile. The upward velocity occurring on the tabletop is

observed to follow the transport of the tailings mixture since both SSC and vertical velocity plots show a

similar profile. After the impingement, the resulting horizontal flow velocity is seen to be developing in an

approximately similar magnitude as the inlet jet velocity.
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SSC - Case 1A

Figure 6.7: Spatial plotting of the simulated SSC of Case 1A, at halfwidth of domain with x-axis as the normal axis
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SSC - Case 1B

Figure 6.8: Spatial plotting of the simulated SSC of Case 1B, at halfwidth of domain with x-axis as the normal axis
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Flow vertical velocity - Case 1A

Figure 6.9: Spatial plotting of the simulated vertical velocity of Case 1A, at halfwidth of domain with x-axis as the normal axis
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Flow vertical velocity - Case 1B

Figure 6.10: Spatial plotting of the simulated vertical velocity of Case 1B, at halfwidth of domain with x-axis as the normal axis
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Flow horizontal velocity - Case 1A

Figure 6.11: Spatial plotting of the simulated horizontal velocity of Case 1A, at halfwidth of domain with x-axis as the normal axis
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Flow horizontal velocity - Case 1B

Figure 6.12: Spatial plotting of the simulated horizontal velocity of Case 1B, at halfwidth of domain with x-axis as the normal axis
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6.2.4. Case 2: Extreme Solids Settling
A thing that can be directly noticed from the spatial plot of SSC of Case 2A and 2B is the absence of solids frac-

tion in the water column after some simulation time (see Figure 6.13 and 6.14). The absence of the suspended

solids is due to the high settling velocity that is implemented. To validate this hypothesis, the profile of the

solids concentration in cells near the tabletop should be observed. As solids fraction usually has a higher

density than water, the buoyancy, amplified by the implemented relative velocity, should lead to downward

motion of the solids that still suspended in the water column. In Figure 6.13 and 6.14, there are layers near

tabletop that can be observed with high concentration of solids, indicated with the bright red color. This can

be observed clearer in Figure 6.15. The concentration of the solids in cells near the tabletop is kept on in-

creasing as the simulation goes longer. It even results in hyper-concentration of the solids fraction in the first

layer of the cells on the tabletop.

Another thing to be observed is during the comparison between the SSC plot (Figure 6.13 and 6.14) and

flow vertical velocity plot (Figure 6.16). Observed in the vertical velocity plot, there are upward flow velocities

occurring around the tabletop, with a magnitude of around 10mm/s. This magnitude is higher than the

implemented relative velocity from the terminal settling velocity of the solids fraction in these cases (around

6.8mm/s). Thus the resulting motion of the mixture should be upward and thus re-suspend the solids fraction

to the water column. However observing the SSC plot, the concentration of the suspended solids fraction

is visually unobserved. The suspect of this inability of solids re-suspension is due to the absence of pick-

up/erosion function in the numerical model. Thus although there are high buoyant-jet momentum impinges

the solids particles in the cells on the tabletop, the expected erosion of the solids does not occur. Moreover

the remaining solids that still suspending in the water column are going in a constant settling process due

to the constant relative velocity — hence resulting in a high concentration of solids in the cell layers on the

tabletop.
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SSC - Case 2A

Figure 6.13: Spatial plotting of the simulated SSC of Case 2A, at halfwidth of domain with x-axis as the normal axis
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SSC - Case 2B

Figure 6.14: Spatial plotting of the simulated SSC of Case 2B, at halfwidth of domain with x-axis as the normal axis
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SSC at tabletop [topview] - Case 2A

Figure 6.15: Spatial plotting of the simulated SSC of Case 2A, at topview of the tabletop
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Flow vertical velocities - Case 2B

Figure 6.16: Spatial plotting of the simulated vertical velocity of Case 2B, at halfwidth of domain with x-axis as the normal axis
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Flow horizontal velocities - Case 2B

Figure 6.17: Spatial plotting of the simulated horizontal velocity of Case 2B, at halfwidth of domain with x-axis as the normal axis
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6.2.5. Case 3: Realistic Solids Settling
Here the spatial plotting of the SSC of Case 3 simulations is presented. As mentioned before, Case 3 uses

particle diameter of d50 from the laboratory measurement. The picked diameter results in settling velocity

six times smaller than resulting settling velocity in Case 2. Therefore more suspension of solids can be seen

compared to Case 2. Comparing Case 3A and 3B, there are fewer solids suspending at t = 60s for Case 3A

compared to Case 3B.

Moreover, there are less turbulent structures around the jet in Case 3A, which uses Gauss Gamma dif-

ferencing scheme. There are also more turbulent structures around the front of the underflow compared to

Case 2, which identifies the mixing occurring between the underflow and the ambient water. As the simula-

tion goes, settling of the suspended solids still occurs due to the constant settling velocity, which results in

hyper-concentration of the cell layers near the tabletop. Hence it can be concluded that pick-up function is

needed to be implemented along with the solids settling function.

SSC - Case 3A

Figure 6.18: Spatial plotting of the simulated SSC of Case 3A, at halfwidth of domain with x-axis as the normal axis
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SSC - Case 3B

Figure 6.19: Spatial plotting of the simulated SSC of Case 3B, at halfwidth of domain with x-axis as the normal axis
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6.2.6. Validation of Simulation Results
After observing the spatial plot and variation of the field variables, the simulated field variables are then

validated with the laboratory measurement data to observe how the simulation can represent the actual lab-

oratory experiments as mentioned before the validation is done at measurement points 4, 5, 14, 15, and 16,

due to the steady-state condition.

Validation of Flow Velocities
The validation of the flow velocities is classified for each measurement point, where each main cases (Case 1,

Case 2, and Case 3) are compared individually to the laboratory measurement. The validation of Case 1 (Case

1A and Case 1B) can be seen in Figure 6.20, 6.23, 6.26, 6.29, and 6.32. The validation of Case 2 (Case 2A and

Case 2B) can be seen in Figure 6.21, 6.24, 6.27, 6.30, and 6.33. The validation of Case 3 (Case 3A and Case 3B)

can be seen in Figure 6.22, 6.25, 6.28, 6.31, and 6.34. As can be seen, the simulated horizontal and vertical

velocities at Point 4 are similar for all cases. This similarity is approximately due to the location of Point 4

which is very close to the Impingement Point (IP). Thus the momentum from the main jetstream is still dom-

inant. Therefore the buoyancy does not give huge effect at this point. The simulated horizontal flow velocity

at this point underestimates the laboratory measurement data, while the vertical velocity overestimates the

laboratory measurement data.

The difference between cases starts to be recognizable at Point 5. As seen in Figure 6.23, simulation Case

1A results in a maximum horizontal velocity with the same magnitude as the laboratory measurement data.

But the resulting horizontal velocity profile at the outer region has a steep gradient compared to the labo-

ratory data. On the other hand, Case 1B, which uses Gauss Linear differencing scheme, does not result in a

maximum velocity with the same magnitude as the laboratory measurement data but has less steep gradient

in the outer region of the horizontal velocity profile. At the furthest vertical height (60mm height from bed),

Case 1B even has a horizontal velocity magnitude similar to the laboratory measurement.

Since the buoyant-jet is expected to flow radially after the impingement, the resulting velocity profile of

Point 14, 15, and 16 are expected to be identical with Point 4 and 5. Point 14 shows a similar result with Point

4 as the distance of both points to the impingement point is similar. Thus the jet momentum also still domi-

nates at Point 14. Point 15 is located between Point 14 and 16, which is also in the same distance as in between

Point 4 and 5. As can be seen in Figure 6.29, 6.30, and 6.31, the resulting horizontal flow velocities are similar

for all cases. The resulting maximum velocity gives the same magnitude as the laboratory measurement data,

yet with its vertical height lower than the laboratory data. For Case 1 and Case 2, Gauss Linear and Gauss

Gamma are seen to result in a similar horizontal flow profile, and a steep gradient occurred as vertical height

increases above the maximum-velocity height. A difference can be seen in Case 3 where Gauss Linear has a

slightly higher horizontal velocity magnitude for vertical height of 30 - 40 mm from the bed. This condition

can be seen as one of the footage of damping in Gauss Gamma differencing scheme. Clearer footage can be

seen in the comparison of vertical velocity of Case 2 and Case 3 at the same measurement point. As seen in

Figure 6.30 and 6.31, Case 2A and 3A which use Gauss Gamma differencing scheme show lower magnitude

in overall compared to the simulation using Gauss Linear differencing scheme (Case 2B and 3B). At Point 16,

simulations of Case 3 seem to result in horizontal velocity profiles similar to the laboratory measurement, yet

with lower magnitude. For the vertical velocity, both simulations of Case 3 result in upward vertical velocity,

while the laboratory measurement shows downward motion for almost all heights. For simulations of Case 1,

there are huge differences between horizontal velocity profile of Case 1A and 1B. Case 1A, which uses Gauss

Gamma differencing schemes, results in a horizontal velocity that has the same magnitude of maximum ve-

locity but steep gradient. On the other hand, Case 1B, which uses Gauss Linear differencing schemes, results
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in lower magnitude of maximum velocity but with lower gradient at the outer region.

Validation of Suspended Solids Concentration
As mentioned before, the considered SSC to be validated is the local-SSC, which is represented by the 20mm-

averaged SSC. In this study, the value of simulated SSC starting at the height of 3mm - 20mm is used since

the sampling starts from 3mm height from tabletop. The validation is done per each differencing scheme and

axis. Thus the validation of SSC for Gauss Gamma differencing scheme can be seen in Figure 6.35. For SSC of

cases with Gauss Linear differencing scheme, the validation result can be seen in Figure 6.36.

The SSC profiles for all cases are overestimating the laboratory measurement data at Point 4. At other

measurement points, the resulting profile seems close to the expected result. For validation of both Gauss

Gamma (Case 1A, 2A, and 3A) and Gauss Linear (Case 1B, 2B, and 3B) cases, SSC from Case 1 overestimates

the laboratory-measured SSC since in this case no solids are settling implemented to the model. Meanwhile

simulated SSC from Case 2 underestimates the laboratory-measured SSC. In Case 2, the tailings mixture is

assumed to be filled by particles with diameter higher of 95 ·10−6m, higher than the particle diameters used

in the mixture during the laboratory measurement. Thus the resulting settling velocity of the solid particle is

higher than the settling velocity of particles in the laboratory experiments.

Consequently, more solids are settling, creating less suspension of solids in the water column. Hence the

simulated SSC of Case 2 should give the "extreme" low value of SSC compared to the laboratory data. For

simulation of Case 3, there are more solids suspended in the water column compared to Case 2, but less than

Case 1. This condition results in SSC value that close to the laboratory-measured SSC, as can be seen in Figure

6.35 and 6.36. At Point 5 and 16 of simulation Case 3B, even the simulated SSC gives value approximately

equal to the laboratory-measured SSC.
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Figure 6.20: Flow velocities validation of simulation Case 1 at Point 4
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Figure 6.21: Flow velocities validation of simulation Case 2 at Point 4
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Figure 6.22: Flow velocities validation of simulation Case 3 at Point 4
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Figure 6.23: Flow velocities validation of simulation Case 1 at Point 5
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Figure 6.24: Flow velocities validation of simulation Case 2 at Point 5
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Figure 6.25: Flow velocities validation of simulation Case 3 at Point 5
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Figure 6.26: Flow velocities validation of simulation Case 1 at Point 14
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Figure 6.27: Flow velocities validation of simulation Case 2 at Point 14
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Figure 6.28: Flow velocities validation of simulation Case 3 at Point 14
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Figure 6.29: Flow velocities validation of simulation Case 1 at Point 15
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Figure 6.30: Flow velocities validation of simulation Case 2 at Point 15
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Figure 6.31: Flow velocities validation of simulation Case 3 at Point 15
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Figure 6.32: Flow velocities validation of simulation Case 1 at Point 16
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Figure 6.33: Flow velocities validation of simulation Case 2 at Point 16
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Figure 6.34: Flow velocities validation of simulation Case 3 at Point 16
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Figure 6.35: Validation of SSC for cases with Gauss Gamma differencing scheme
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Figure 6.36: Validation of SSC for cases with Gauss Linear differencing scheme



7
Conclusions and Recommendations

7.1. Conclusions
Some conclusions can be taken in this study:

• Simulating tailings flow using the drift-flux model, LES turbulent model, non-orthogonal mesh, and

particle diameter of d50 gives a proper estimation of the tailings SSC. Meanwhile, simulation with-

out solids settling results in overestimation of the simulated SSC and simulation with extreme value

of solids settling results in underestimation of the simulated SSC.

• Gauss Gamma differencing scheme with γ value of 0.1 turns out are giving too bounded solutions for

the sake of stability. Hence, the expected resolution and physics of the simulated flow can not be seen

when Gauss Gamma differencing scheme is implemented. Meanwhile more turbulent structures can

be seen when Gauss Linear differencing scheme is implemented.

• Top-hat approach for the buoyant-jet inlet results in a simplification of the simulated tailings flow.

Hence the expected entrainment and mixing throughout the jet stream does not occur, and uniform

profile of the core of the tailings flow turns out to be observed.

• In this study, the solids settling is implemented by using monosize fraction assumption and assigning

the settling velocity as the relative velocity of the phase. Thus a proper consideration of the imple-

mented particle diameter is crucial in representing the wanted settling rate since the practical tailings

mixture consists of multisize fractions.

• The simulated suspended-solids in the water column is not only affected by the implemented settling

rate through settling-velocity, but also the differentiation schemes used for numerically solving the

governing equations.

• Implementing solids settling function without pick-up or erosion function leads to hyper-concentration

of solids in the cells near the tabletop boundary as the settled solids are not able to re-suspend into the

water column. Hence with a constant influx of solids concentration and settling rate, more solids are

settling and concentrating to the bottom.
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7.2. Recommendations
For future research and developments, some recommendations can be formulated from this research, such

as:

• It is recommended to further the research by simulating using the original domain and the original inlet

pipe to include all the necessary physics, in case there is enough computational performance available.

• It is recommended to also simulate further by implementing higher resolutions near the tabletop, es-

pecially around Point 4, where the jet-momentum still dominates the flow.

• It is recommended to further the research by observing the implementation of the Gauss linear differ-

encing scheme using non-orthogonal correction, especially since the non-orthogonality of the mesh is

high.

• Since it is observed that the simulation domain gives stable results using Gauss linear differencing

scheme, it is recommended to further the simulation using Gauss linear differencing scheme.

• As tailings mixtures practically consist of multisize solid fractions, it is recommended to further the

research for enabling the implementation of multisize solid fractions in the simulated mixture. Thus

resulting in a more proper physics interpretation in the numerical simulation.

• It is recommended to not only implementing solids settling function during the simulation of the tail-

ings mixture, but also the pick-up function. Thus it is also recommended to further the research by

investigating the effect of implementing pick-up function to the drift-flux model to observe whether

the expected physics can be numerically simulated or not.

• It is recommended to investigate the effect of solids settling with a settling-velocity model other than

the Richardson-Zaki relative-velocity model (e.g. see Brennan (2001)), as the Richardson-Zaki relative-

velocity model is meant for calculating the settling rate of solids particle in a still fluid. Meanwhile the

observed flow phenomena are transient.
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Appendix

A.1. Derivation of Drift-Flux Governing Equations

By using drift-flux approach, the observed liquids are seen to be consisted of two phases: continuous-phase

and dispersed-phase. Each of this phase is considered as continuum. Thus the obligation to describe each

particle motion in the observed fluids is neglected. This condition includes as well if there are solids frac-

tion in the mixture. The solids fraction is seen as continuum which particles are assumed to uniformly fill

the whole fraction volume. By using drift-flux approach, the continuity equation for each phase are added

together to yield a mixture continuity equation, and the momentum equations are added to yield a single

mixture momentum equation (Brennan, 2001). In this section, the derivation of the flow governing equa-

tions follows the derivation of Brennan (2001).

A.1.1. Variable Definitions in Drift-Flux Model

In the derivation of flow governing equations using drift-flux approach, some variables need to be defined

first.

Since all phases in the flow are seen as continuum in drift-flux approach, the average amount of volume

filled by a certain phase k in the mixture (αk ) can be defined as the ratio between the volume occupied by the

phase k and the total volume Vo .

αk = Vk

Vo
(A.1)

The identity of this volumetric concentration is that the summation of the volumetic concentration of all

phases should equal as 1.

α1 +α2 = 1 (A.2)

The mixture density is defined as the summation of each phase-density times its volumetric concentration.

ρm =α1ρ1 +α2ρ2 (A.3)
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The same approach is used as well for defining the mixture pressure:

Pm =α1P1 +α2P2 (A.4)

Where P1,2 represents the pressure of each phase in the mixture. The velocity of the mixture (vm) is defined

by calculating the velocity at the center of the mass of the mixture.

vm = α1ρ1v1 +α2ρ2v2

ρm
(A.5)

Where v1,2 represents each phase-velocity. The relative velocity (vr ) is defined as the difference between each

phase velocity.

vr = v1 −v2 (A.6)

Ishii and Hibiki (2010) then defined following identities:

v1 = v1m +vm (A.7)

α1ρ1v1m +α2ρ2v2m = 0 (A.8)

α1ρ1v1 +α2ρ2v2 = ρm vm (A.9)

A.1.2. Mixture Continuity Equation

The derivation of the mixture continuity equation starts by defining the continuity constraint for each phase

in the mixture. The continuity equations for each phase in the mixture are defined as:

∂α1ρ1

∂t
+∇·α1ρ1v1 = 0 (A.10)

∂α2ρ2

∂t
+∇·α2ρ2v2 = 0 (A.11)

Where subscripts 1,2 denotes for each phase in the mixture. Summing both continuity constraints (Equation

A.10 and A.11) results in:
∂(α1ρ1 +α2ρ2)

∂t
+∇· (α1ρ1v1 +α2ρ2v2

)= 0 (A.12)

Using the variable definitions in Equation A.3, A.7, and A.8, the second-term at Left-Hand Side (LHS) in Equa-

tion A.12 becomes:

α1ρ1v1 +α2ρ2v2 =α1ρ1vm +α2ρ2vm +α1ρ1v1m +α2ρ2v2m (A.13)

Where v1m and v2m represents the velocity of phase 1,2 relative to the mixture center of mass velocity. Thus,

using the identity in Equation A.9 , the following form is obtained:

α1ρ1v1 +α2ρ2v2 =
(
α1ρ1 +α2ρ2

)
vm (A.14)

Therefore the mixture continuity equation is defined as:

∂ρm

∂t
+∇· (ρm .vm) = 0 (A.15)
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A.1.3. Mixture Momentum Equation

Since drift-flux uses continuum assumption, the motion of all phases in the mixture are consequently able to

be described by Navier-Stokes equations. Therefore the momentum equation for each phase is:

∂αkρk vk

∂t
+∇· (αkρk vk vk ) =−∇αk Pk +∇· (αk Tk +αk Tt

k )+αkρk gk +αk mk (A.16)

Where Tk and Tt
k are tensors counting for viscous and turbulent stresses of the phase, mk is the source term

representing the interacting force between each phase, Pk is the phase pressure, and gk is the gravitational-

acceleration vector experienced by each phase. Since the number of the observed phases are 2, and using

the definition of mixture density and velocity in Equation A.9, the following form for the mixture temporal

derivative (first term on LHS of Equation A.16) is obtained:

∂α1ρ1v1

∂t
+ ∂α2ρ2v2

∂t
= ∂ρm vm

∂t
(A.17)

For the pressure gradient (first term on RHS of Equation A.16), the mixture pressure gradient term is defined

as:

α1P1 +α2P2 = Pm (A.18)

For the mixture convective term, each phase convective-term is summed while using definition in Equation

A.7 and A.8:

α1ρ1v1v1 +α2ρ2v2v2 =α1ρ1
[
v2

1m +2v1m vm +v2
m

]+α2ρ2
[
v2

2m +2v2m vm +v2
m

]
(A.19)

Rearranging gives:

α1ρ1v1v1 +α2ρ2v2v2 =α1ρ1v2
1m +α2ρ2v2

2m +2
[
α1ρ1v1m +α2ρ2v2m

]
vm + [

α1ρ1 +α2ρ2
]

v2
m (A.20)

Then, using the definition in Equation A.8, the following form is obtained for the mixture convective term:

α1ρ1v1v1 +α2ρ2v2v2 = ρm vm vm +α1ρ1v1m v1m +α2ρ2v2m v2m (A.21)

= ρm vm vm +∑
k
αkρk vkm vkm (A.22)

Then, the mixture gravity term is obtained by summing as well each phase gravity term:

α1ρ1g1 +α2ρ2g2 = ρm g (A.23)

Arranging all the obtained terms results in the mixture momentum equation:

∂ρm vm

∂t
+∇· (ρm vm vm

)=−∇Pm +∇·
[

T+Tt −∑
k
αkρk vkm vkm

]
+ρm g (A.24)

In drift-flux model, the mixture momentum equation can also be stated in the form of volumetric flux. Us-

ing the previous relation in Equation A.21 and the definitions in Equation A.8 and A.9 results in the following

form:

α1ρ1v1m v1m +α2ρ2v2m v2m =α1ρ1

(
α2

α1

ρ2

ρm
v2 j

)2

+α2ρ2

(
ρ1

ρm
v2 j

)2

(A.25)
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Rearranging results in the following form:

α1ρ1v1m v1m +α2ρ2v2m v2m = α2ρ1ρ2

ρ2
m

v2
2 j

[
α2ρ2

ρ1
+ρ1

]
(A.26)

Multiplying the ρ1 term in the bracket with α1
α1

:

α1ρ1v1m v1m +α2ρ2v2m v2m = α2ρ1ρ2

ρ2
m

v2
2 j

[
α2ρ2

ρ1
+ α1ρ1

α1

]
(A.27)

Thus results in the following form:

α1ρ1v1m v1m +α2ρ2v2m v2m = α2

(1−α2)

ρ1ρ2

ρm
v2

2 j (A.28)

By using Equation A.28, the following form of mixture momentum equation is obtained:

∂ρm vm

∂t
+∇· (ρm vm vm

)=−∇Pm +∇· [T+Tt ]−∇·
[

αd

(1−αd )

ρcρd

ρm
vd j vd j

]
+ρm g+mm (A.29)

A.1.4. Disperse-Phase Transport Equation
The derivation of the disperse-phase transport equation for drift-flux model starts from the dispersed-phase

continuity equation. Rewritten Equation A.11, the continuity equation for the dispersed-phase is:

∂α2ρ2

∂t
+∇·α2ρ2v2 = 0 (A.30)

Using definitions of:

v2 = v2m +vm (A.31)

v2m = ρ1

ρm
v2 j (A.32)

To the Equation A.11 results in the following form:

∂α2ρ2

∂t
+∇α2ρ2

(
vm + ρ1

ρm
v2 j

)
= 0 (A.33)

Rearranging gives the disperse-phase transport equation:

∂α2ρ2

∂t
+∇α2ρ2vm =−∇

(
α2ρ1ρ2

ρm

)
v2 j (A.34)
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A.2. Validation of Simulated SSC

Figure A.1: SSC comparison of laboratory measurement and Case 1A & 1B
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Figure A.2: SSC comparison of laboratory measurement and Case 2A & 2B
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Figure A.3: SSC comparison of laboratory measurement and Case 3A & 3B
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