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ABSTRACT: A significant part of the energy consumed during the tunnelling process of Earth Pressure Balanced (EPB) Tunnel Boring 
Machines (TBMs) is related to the main drive, consisting of a set of motors driving the rotation of the cutting wheel. An energy efficient EPB 
design requires the optimization of the main drive to avoid over- or under powering of the machine. Key aspect is therefore a precise and 
reliable estimation of the expected cutting wheel torque. In this paper state-of-the-art torque estimation models are compared to supervised 
machine learning (ML) approaches, including classification and regression trees (CART), support vector machines (SVM), Gaussian process 
regression (GPR) and decision tree ensembles (DTE). Feature selection algorithms are compared to models using manually selected input 
features. ML models are evaluated using accuracy metrics, residual analyses, and model validation. Torque prediction for a real-world 
validation project shows that utilization rates can be increased distinctively due to the application of ML techniques. 
 
KEYWORDS: EPB TBMs, energy efficiency, main drive utilization, torque estimation, supervised machine learning, feature selection 
 
 

1. INTRODUCTION 

The increasing demand to improve sustainability and energy 
efficiency of TBM tunnelling projects is currently challenging the 
tunnelling business. The TBM is one of the main assets on TBM 
tunnelling projects in terms of energy consumption, and it is therefore 
necessary to optimise the power consumption of the machine in the 
first place.  
During the TBM design phase the main drive torque is estimated to 
determine the number of motors required to turn the cutting wheel 
and excavate the ground throughout the tunnelling process. This 
estimation is crucial since the machine must be equipped with 
sufficient power to prevent the TBM from getting slowed down or 
stuck in the ground. On the other hand, the main drive should not be 
overpowered to save energy and reduce costs for purchase, operation 
and maintenance of motors and gears. 
Empirical and theoretical approaches to predict the main drive torque 
require input factors, which are difficult to estimate during the design 
phase of a TBM. This results in a wide range of torque estimation. To 
compensate this uncertainty and avoid torque related deceleration of 
the machine, safety margins are considered, frequently leading to an 
overpowering of the EPB main drive capacity. A reliable and accurate 
torque prediction facilitates the optimisation of the EPB main drive, 
improving the main drive utilization and energy efficiency of EPB 
TBMs. In this paper, a new torque estimation model is presented 
based on supervised ML techniques.  
 
2. TORQUE PREDICTION AND UTILIZATION 

An accurate prediction of the cutting wheel torque for EPB TBM 
design is challenging due to the large number of impact factors and 
reciprocal effects related to the active tunnel face support.  
First, the configuration of cutting wheel and working chamber as well 
as the TBM operation is of importance. Torque values increase with 
cutting wheel size and thrust forces pushing the TBM forward. Closed 
cutting wheel structures elevate friction forces leading to higher 
torque components.  
Second, the type of ground and its characteristics influence the 
amount of required main drive torque. Ground material with higher 
strength values for instance or cohesive ground with high clogging 
potential lead to increased torque values. 

 

Standard approaches to estimate the main drive torque MT are: 
 empirical approach, 

using the TBM diameter D as input factor and an empirical 
factor Eq. (1)), accounting for all remaining torque 
influencing parameters 
 
MT =  * D³ (1) 
 

 theoretical approach,  
sum of separately calculated torque components Ti caused by 
ground excavation, friction between rotating steel structure 
and excavated ground material as well as shearing of the 
ground material due to the cutting wheel rotation (Eq. (2)). 
System inherent components such as friction losses at the 
bearing and sealing system are usually small and neglectable. 
 
MT = ∑ Ti (2) 
 

The empirical approach has been published by (Krause, 1987) and 
slightly adapted by (JSCE, Japan Society of Civil Engineers, 2007) 
regarding the recommended range of the empirical factor . (Krause, 
1987) suggested  values between 12 and 24 whereas (JSCE, Japan 
Society of Civil Engineers, 2007) indorse  values ranging from 10 
to 25. 
(Shi, Yang, Gong, & Wang, 2011) used the theoretical approach and 
calculated 7 torque components to estimate the cutting wheel torque, 
whereas 4 components accounted for the friction between steel parts 
and ground material. To calculate these friction components, the 
authors use the friction coefficient . The values of the friction 
coefficient used in literature range between 0,14 to 0,73 (Song, Liu, 
& Guo, 2010). 
Both input factors, the empirical factor  as well as the friction 
coefficient , are unknown during the design phase of an EPB TBM 
and vary throughout the tunnelling process. They depend not only on 
the specific geotechnical conditions and the pressure situation at the 
tunnel face but also on the excavation and muck conditioning process. 
However, both factors,  and , are of critical importance for the 
torque estimation. Figure 1 shows torque ranges using both estimation 
approaches compared to monitored mean and maximum values of an 
8 m diameter EPB TBM. 
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Figure 1 estimated and monitored main drive torque for 

6 homogenous sections of an 8 m EPB drive 
 
The torque estimation range increases with the size of the TBM and 
so does the level of uncertainty. Similar results have been published 
e.g. by (Shi, Yang, Gong, & Wang, 2011) for the  value and (Ates, 
Bilgin, & Copur, 2014) for the friction coefficient .  
The analysis of monitored mean torque values per ring and installed 
nominal torque of completed EPB TBMs shows quite low average 
main drive torque utilization, ranging around 35% with significant 
potential for optimization (Figure 2). 

 
Figure 2 EPB Main Drive Torque Utilization 

 
A new torque prediction approach is presented based on a ML 
approach to optimize the main drive capacity of EPB TBMs. Input 
parameters required for the torque prediction using the ML model 
should be measurable, well-established, and available during the 
design phase of a TBM. 
 
3. METHODOLOGY 

ML approaches have been increasingly used to forecast TBM process 
related parameters, like penetration or advance rate. Usually, the ML 
models are trained on the data of a single project (e.g. Mooney, Yu, 
Mokhtari, Zhang, & Zhou, 2018). As a result, the transferability to 
other projects with differing characteristics is limited.  
The database utilized for this research shows a broad variance of input 
features. Model validation ensures that an accurate prediction is 
provided for new and unseen project data, as would be the case in a 
real-world design process.  
 
3.1 Reference Projects and Data Preparation 

The analysis of main drive torque utilization has been carried out 
based on the data of 231 completed EPB projects. 12 of these projects 
ranging from 7 m to 16 m diameter have been selected for the ML 
approach, mainly based on data quality and project range. The 
geotechnical conditions throughout the projects cover fine to medium 
grained soft ground as well as weathered to competent hard rock 
environments. 9 projects have been used to set up the prediction 
model, leaving 3 projects for model validation. In total 64 features 
(see Table 1 and 2) describe the characteristics of TBM design, 
geotechnical conditions, and TBM operation. Mean values per tunnel 
segment ring are used with geotechnical data being interpolated 
between boreholes. The database comprises a sample size of 16209 
rings.  

3.2 Feature Selection Algorithms (FSAs) 

It is standard practise to reduce the number of input features for ML 
tasks as far as prediction accuracy is not impaired. Identifying the 
crucial impact factors is an important task in predictive modelling. In 
scope of this research, the following methods have been used: 
 Spearman’s coefficient of correlation 
 Rrelief Algorithm 
 Neighbourhood Component Analysis (NCA) 
Spearman’s coefficient of correlation describes the relationship 
between the respective input feature and the cutting wheel torque, 
which is used to select features with large correlations. Coefficients 
vary between -1 and +1.  
RreliefF is a well-established algorithm for regression problems using 
k-nearest neighbours of an observation to assign weights between -1 
and 1 and penalize input features in an iterative process.  
NCA is based on the leave-one-out classification, where the function 
is trained on all parameters except one. The algorithm assigns 0 to 
irrelevant features. 
The selected feature sets are then used as predictors for the ML 
algorithms and compared to manually selected features.  
 
3.3 Machine Learning Algorithms 

To develop a new approach of main drive torque prediction for EPB 
TBMs the following supervised ML techniques have been applied 
and evaluated: 
 classification and regression trees (CART) 

using varying leave sizes (fine trees with 4 leaves, medium trees 
with 12 leaves and coarse leaves with 36 leaves) 

 decision tree ensembles (DTE) 
applying boosted tree ensembles and bagged ensembles 

 support vector machines (SVM) 
using linear, cubic, quadratic and Gaussian Kernel functions 

 Gaussian process regression (GPR) 
applying squared exponential kernel, exponential kernel, 
matern 5/2 kernel and rational quadratic kernel as covariant 
functions 

To reduce the risk of model overfitting 5 to 15-fold cross validation 
has been applied. 
 
3.4 Model Evaluation 

Main aspect of model evaluation is the accuracy of the prediction, 
which has been assessed using following common accuracy metrics: 
 coefficient of determination R² 

 

Rଶ = 1 −  
ୗୗ౨౛౩

ୗୗ౪౥౪
 (3) 

 
with the sum of squared deviations from predictive function 
SSres and the sum of squared deviations from mean value SStot. 

 root mean squared error RMSE 
the squared root of the sum of squared prediction errors 

Another very useful evaluation tool is the analysis of the residuals, 
the differences between the monitored target values and the predicted 
values. Residuals should be evenly distributed over predictions, 
samples, target values, and input variables. In cases whit increased 
errors over specific sections, this might hint to missing features, 
where the selected input does not sufficiently describe the underlying 
causalities.  
Model validation as third evaluation tool simulates a real-world 
design prediction of the cutting wheel torque. A 16 m diameter EPB 
project has been used to validate the models. The prediction results of 
the model validation give some indication on model transferability 
and show how well the model performs on unseen data. 
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4. RESULTS AND DISCUSSION 

4.1 Feature Selection 

The results of the FSAs are presented in Table 1 and 2. Threshold 
values for feature selection using Spearman’s coefficient have been 
defined, with features being selected if correlation is larger +0,7 or 
smaller -0,7. This algorithm selects 13 features in total. 5 features are 
selected by the RreliefF algorithm with weights larger than 0,009 
while using k=10 nearest neighbours for the algorithm. NCA 
identifies 7 features with major impact on the main drive torque. 13 
features are selected manually. 
 

Table 1 Feature Selection:  
TBM design and geotechnical parameters 

ca
te

go
ry

 

FSA method 

Sp
ea

rm
an

 

R
re

lie
fF

 
k=

10
 

N
C

A
 

m
an

ua
l 

no. features selected 13 5 7 13 

T
B

M
 d

es
ig

n 

diameter  [m]  - -  
degree of cutting wheel 
opening 

[%] - - -  

no. of hard rock tools 
(disks) 

[-] - - - - 

no. of soft ground tools 
(knife, ripper) 

[-] - - - - 

no. of buckets [-] - - - - 
no. of struts [-]  - - - 
no. of mixing bars [-]  - - - 
depth of tool gap and 
steel structure 

[m] - - - - 

depth of working 
chamber 

[m]  - - - 

weight of cutting wheel [t]  - - - 
diameter of bearing [m]  - - - 
no. of sealings [-]  - - - 
no. of hydraulic motors [-]  - - - 
no. of electric motors [-] - - - - 

ge
ot

ec
hn

ic
al

 p
ar

am
et

er
s 

c' - cohesion [kPa] - - -  
' – inner friction angle [°] - -   
UCS – unconfined 
compressive strength 

[MPa] - - -  

wl – liquid limit [%] - - - - 
wp – plastic limit [%] - -  - 
IP – plasticity index [%] - - -  
IC – consistency index [-] - - -  
W – natural water content [%] - - - - 
RQD  [%] - - - - 
GSI [-] - - - - 
cover above crown  [m] - - - - 
depth below ground 
water (crown) 

[m] - - - - 

cu – undrained shear 
strength 

[kPa] - -  - 

kf - permeability [m/s] - - - - 
SiO2 – quartzite fraction [%] - - - - 
CAI - abrasivity [-] - - - - 

 
Table 1 summarizes the results for TBM design parameters and 
geotechnical parameters, Table 2 shows the results for TBM 
operational parameters and virtual sensors. 
Table 3 lists the best performing ML algorithms for each FSA and 
compares the accuracy and residuals of these FSA- ML combinations. 
 

Table 2 Feature Selection:  
TBM operation and virtual sensors 

ca
te

go
ry

 

FSA method 

S
pe

ar
m

an
 

R
re

lie
fF

 
k=

10
 

N
C

A
 

m
an

ua
l 

no. features selected 13 5 7 13 

T
B

M
 o

pe
ra

ti
on

 

main drive torque [MNm] - - - - 
rotation speed  [rpm]  - -  
penetration  [mm/ 

rot] 
-  -  

advance speed  [mm/ 
min] 

-   - 

thrust force  [kN]  - -  
temperature center 
plate  

[°C] 
- - - - 

FER – foam expansion 
ratio 

[-] 
-  - - 

FIR – foam injection 
ratio 

[%] 
- - - - 

roll of shield (VMT) [mm/m] - - - - 
longitudinal inclination 
(VMT) 

[mm/m] 
- -  - 

copy cutter, extending 
right  

[°] 
- - - - 

copy cutter, extending 
left  

[°] 
- - - - 

band scale 1  [t]  - - - 
band scale 2  [t] - - - - 
rotation speed screw 
conveyor  

[rpm] 
-  - - 

torque screw conveyor  [kNm]  - - - 
main drive current [%] -  - - 
main drive torque 
[max/ring] 

[MNm] 
- - - - 

foam lines inner ring  [l] - - - - 
foam lines outer ring  [l] - - - - 
specific energy (PLC) [MJ/m³] - -  - 

vi
rt

ua
l s

en
so

rs
 

geological category  [-] - - - - 
operation mode [-] - - - - 
delta earth pressure 
crown previous ring 

[bar] 
- -  - 

mean earth pressure  [bar] - - -  
sum of foam injection  [l] - - - - 
sum water quantity  [l] - - - - 
sum of liquid injection 
(foam and water) 

[l] 
- - - - 

specific energy [MN/ 
m²] 

- - - - 

apparent muck density 
crown  

[kN/m²] 
- - -  

apparent muck density 
invert  

[kN/m²] 
- - -  

sum polymer 1+2  [l]  - - - 
sum greasing  [kg] - - - - 
sum bentonite [l] - - - - 

 
Spearman’s correlation attaches most importance to TBM design 
values, neglecting geotechnical characteristics entirely. The RreliefF 
algorithm focusses solemnly on TBM operational parameters, 
whereas NCA neglects TBM design parameters. Both algorithms 
ignore for instance the important factor of the TBM diameter.  
Algorithm based feature selection shows heterogenous results and 
neglects some principle causal interrelations.  
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Table 3 Evaluation of Feature Selection Models 
 

FSA 
Best 
performing  
ML algorithm 

R² RMSE 
residuals vs. 

predicted response 

target value - 1 0 
evenly distributed 

around 0-line 

Spearman’s 
Coefficient of 
Correlation 

GPR,  
Rational 
Quadratic 

0,94 0,27 
 

RreliefF 
GPR,  
Rational 
Quadratic 

0,93 0,22 

 

NCA 
GPR,  
Rational 
Quadratic 

0,95 0,232 

 

Manual 
Selection 

GPR, 
Exponential 

0,96 0,188 

 
 
Comparing the performing results of the different feature sets, the 
manual selection achieves the best model performance. Even though 
the residuals show slightly increased error for medium torque values, 
they are equally distributed around the 0-line. A heterogenous 
distribution as shown for NCA indicates that the selected input 
features do not fully represent the torque influencing parameters.  
 
4.2 Predictive Machine Learning Modelling 

Based on the FSA results, the manual feature selection has been used 
to set up the ML model. Performance evaluation of selected 
algorithms is summarized in Table (4).  
 

Table 4 Performance Evaluation of Machine Learning Models 

ML algorithms 

R
² 

R
M

SE
 

validation 

residuals vs. 
predicted response 

pr
ed

ic
tio

n 
[M

N
m

] 

pr
ed

ic
tio

n 
er

ro
r 

[M
N

m
] 

target value 1 0 25,93 0 
evenly distributed 

around 0-line 

Fine CART 0,95 2,285 26,30 0,37 
 

SVM, Linear 0,85 3,98 29,91 3,98 
 

SVM, Cubic 0,94 2,47 9,12 16,81 
 

Bagged DTE 0,96 1,93 26,10 0,17 
 

GPR, 
Exponential 

0,96 1,98 24,83 1,1 
 

 
The performance evaluation shows that the bagged DTE achieved the 
most accurate prediction for the mean main drive torque per ring.  
CART and DTE are robust ML algorithms, which are easy to interpret 
since all decisions are traceable. However, those algorithms are 
labelled to be less accurate than SVM, GPR, neural networks (NN) or 
deep learning (DL) algorithms. This conflict is often referred to as 

accuracy-interpretability trade off. CART and DTE models showed 
excellent results in terms of prediction accuracy while providing a 
transparent decision-making process, being a big plus compared to 
black box type of algorithms.  
However, for TBM design purposes, the maximum main drive torque 
is more pertinent than the mean torque. Analysis of the monitored 
torque values per ring show a clear correlation between maximum 
torque MTmax and mean torque MTmean. The following correlation has 
been used to calculate MTmax [MNm] for model validation based on 
the predicted MTmean [MNm] (Equation 4): 
 

MTmax = 6,3 + 1,3 * MTmean (4) 
 
This correlation applies for well maintained and operated machines 
only and projects with boundary conditions comparable to the 
reference projects. Excessive main drive torque e.g. due to squeezing 
ground conditions or inappropriate machine maintenance has not 
been considered in scope of this study. 
Utilization analysis of the validation project shows that the installed 
nominal torque lies well within the range of the predicted torque using 
the empirical approach (marked as grey area in Figure 3).  
 

 
Figure 3 monitored TBM data compared to installed and predicted 

torque using the empirical approach 
 
However, monitored values of torque and rotation speed are indicated 
as well, corresponding to an actual mean main drive torque utilization 
rate of only 35%.  
 

 
Figure 4 monitored TBM data compared to installed and predicted 

torque using the ML approach 
 
Analysing the utilisation rate under application of the ML approach 
shows a distinct improvement from 35% to 62% of main drive torque 
utilization (Figure 4).  
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5. CONCLUSIONS 

The application of feature selection algorithms did not improve 
prediction results compared to manually selected features. This might 
be caused by auto correlation and apparent correlation instead of 
physical causal relationships between input features and target value.  
Model evaluation demonstrates excellent prediction results, even for 
robust approaches. Especially decision tree ensembles seem capable 
to facilitate superior prediction results while providing a transparent 
decision process.  
Value creation of machine learning tasks lies in the creation of the 
database in the first place. Yet TBM tunnelling data usually displays 
significant quality variation. Hence, robust decision tree ensembles 
might be a preferred solution in cases of limited data quality, when 
black-box type of algorithms suggest an accuracy, which is 
insubstantial due to the haziness of the underlying database.  
Model validation proved transferability to real world design 
applications demonstrating an improvement of the main drive torque 
utilization from 35% to 62% for a 16 m EPB TBM. As a result, the 
energy efficiency of EPB TBMs can be improved using a machine 
learning approach to achieve more accurate torque predictions. 
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