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Summary

The construction of the Grand Ethiopian Renaissance Dam (GERD), a massive hydroelectric project on the Blue
Nile, is part of the broader Nile River basin, which spans across 11 countries in northeastern Africa, including
Ethiopia, Sudan, and Egypt. The GERD is designed to be the largest dam in Africa, with the primary purpose of
generating electricity to power Ethiopia’s development and provide energy to neighbouring countries. However,
its construction has ignited significant debate, particularly due to concerns from downstream countries, Sudan
and Egypt, which rely heavily on the Nile’s waters for agriculture, drinking water, and energy production. The
dam’s operation and management have far-reaching implications for the entire Nile basin region. Adding to this
complexity is the uncertainty of future climate conditions, which could drastically change water availability in the
region. To navigate these challenges, it is essential to develop robust reservoir management strategies—policies that
are resilient and adaptable to various future scenarios. This thesis explores a broader and more detailed approach to
evaluating the robustness of water management policies, focusing on the case of the Nile River. Instead of relying
on a single metric, we use multiple robustness metrics; Percentile-based Skewness, Mean-Variance, Undesirable
Deviations, and Minimax Regret to see how they might lead to different conclusions about the best strategies.

To evaluate the resilience of these policies against future uncertainties, a series of steps are involved. First, policies
are generated using optimization techniques designed to identify the best strategies that could foster cooperation
among the countries, while also addressing their individual objectives. These strategies are then tested for their
effectiveness under various future scenarios, which is done by applying robustness metrics. A robustness metric is
a quantitative measure used to assess the resilience and stability of a system or process in the face of uncertainties,
disturbances, or perturbations. It provides a way to quantify how well a system can maintain its performance
or functionality under varying conditions. These metrics can range from assessing absolute performance or
regret prioritizing risk-aversion, maximizing performance, or minimizing variance, depending on the specific
uncertainties and the decision-maker’s risk tolerance. However, many previous studies done on robustness of
reservoir control rely on the 90th Percentile Regret metric which looks at how much worse a given strategy performs
compared to the best possible outcome. While useful and practical, this approach doesn’t fully capture the range of
different ways to test against future scenarios.

This research reveals that the choice of robustness metric can greatly affect the evaluation of different policies.
Using four different metrics, we were able to conclude different “most robust” policies. Using minimax regret
metric, Compromise Policie(s) are the most robust. However, using Undesirable Deviations metric, Best Egypt
Irrigation Policy is the most robust. Using Percentile-Based Skewness yields Compromise: Percentile and Best
Sudan Irrigation Policy as the most robust, and using Mean-Variance metric, only Best Sudan Irrigation policy
emerged as the most robust. This variation occurs because different robustness metric prioritizes different aspects
of policy performance under uncertainty. While the regret metric focuses on minimizing the worst-case scenario
outcomes, other metrics like Percentile-Based Skewness emphasize the consistency of outcomes across a range of
scenarios.

These findings emphasize the importance of using a diverse set of robustness metrics in policy evaluation. A diverse
set of metrics allows for a more comprehensive assessment of policies by capturing different aspects of performance
and risk under uncertainty. Depending on which metric is used, different strategies may be recommended, leading
to potentially different outcomes for the countries involved. While strategies may seem mutually exclusive, a
more nuanced approach can involve balancing the trade-offs highlighted by the various metrics, leading to a more
informed and robust decision-making process.
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1
Introduction

The management of transboundary river systems is a complex and challenging tasks in global water
governance (Lorenz et al., 2001). Transboundary river systems, which span multiple countries, often
serve as critical lifelines for millions of people, providing essential resources such as water for agriculture,
industry, and domestic use, as well as supporting energy generation through hydropower (Varis et al.,
2008; Zeitoun et al., 2017; Wheeler et al., 2018).

The Nile River, the world’s longest river, is a quintessential example of such a system (Swain, 1997).
Flowing through eleven countries in northeastern Africa, the Nile has been a cornerstone of civilization
in the region for millennia (Paisley and Henshaw, 2013). Today, it remains vital to the livelihoods and
economies of the nations it traverses (Yitayew and Melesse, 2011).

The construction of the Grand Ethiopian Renaissance Dam (GERD) on the Blue Nile, one of the Nile’s
major tributaries, has brought the complexities of transboundary water management to the forefront
(Wheeler et al., 2018). As Ethiopia seeks to harness the river’s potential for hydropower, downstream
countries, particularly Sudan and Egypt, have expressed concerns over the implications for their own
water security and agricultural productivity (Elsayed et al., 2020). These concerns have led to heightened
tensions and stalled negotiations, underlining the intricate balance of interests that must be maintained
in managing the Nile’s waters. This dispute, however, is not new; it is a reopening of longstanding
conflicts over Nile water rights that date back to the Anglo-Egyptian Treaty of 1929 (Mohyeldeen, 2021).

In addition to the political and social challenges, the management of the Nile Basin is further complicated
by environmental factors, including climate change, and socio-economic changes such as population
growth and urbanization (Tariku and Gan, 2018). The potential for altered precipitation patterns
and increased frequency of extreme weather events introduces significant uncertainty into the future
availability of water resources (Tariku and Gan, 2018). This makes it imperative to develop reservoir
management strategies that are not only effective under current conditions but are also resilient to a
wide range of possible future scenarios (Zaitchik et al., 2012).

Given these challenges, there is a critical need for robust water management policies that can address
the diverse and often conflicting objectives of the countries within the Nile Basin. Such policies must be
capable of withstanding the uncertainties associated with both political dynamics and climate variability.
This thesis aims to explore the development and evaluation of these policies, focusing on the use of
multiple robustness metrics to assess their effectiveness. The rationale for using multiple metrics is to
capture the diverse challenges and uncertainties inherent in managing the Nile Basin, as will be further
explained in Section 1.4. By doing so, this study seeks to contribute to the ongoing discourse on how
best to manage one of the world’s most important and contested river systems.

1.1. On the Nile Basin
The Nile River is a crucial water resource in northeast Africa and plays a significant role in nurturing one
of the earliest human civilizations (Bunbury et al., 2023). Its basin spans over 11 nations, and the river

1



1.2. On Robustness 2

serves essential purposes such as hydropower, municipal, industrial, and agricultural needs (Wheeler
et al., 2020). Egypt, as the most downstream country, has historically been the primary user of the Nile’s
water, along with Sudan as also one of its main users (Kendie, 1999). However, the initiation of the
Grand Ethiopian Renaissance DAM (GERD) by Ethiopia in 2011 has introduced a new dynamic to the
region (Tsega, 2017).

The GERD, designed to harness Ethiopia’s hydropower potential, has raised concerns among downstream
countries like Sudan and Egypt, who perceive it as a threat to their water security and sovereignty
(Salman, 2018; Mohyeldeen, 2021). The filling of the GERD’s reservoir has become a point of dispute,
with negotiations for a filling agreement deadlocked, leading to escalated tensions (Attia and Saleh,
2021). This situation is further complicated by environmental and demographic challenges in the Nile
Basin, including water variability, population growth, and increased economic activities (Swain, 1997).

Developing operational strategies for the basin’s reservoirs is a complex task that necessitates considera-
tions of physical infrastructure, geopolitics, socioeconomic factors, and hydro-climatic uncertainties.
The management of the GERD and its impacts under current and future climates is a critical issue that
requires careful assessment, as the potential implications of the GERD on downstream countries is an
urgent need for agreements on filling and operational rules, especially during periods of drought (Aty,
2022).

The construction and operation of the GERD have introduced significant political tensions in the
eastern Nile Basin, making it important to develop of cooperative transboundary river management
strategies to address the challenges posed by the dam. Resolving the complexities surrounding the
GERD requires a comprehensive consideration of its impacts on water security, hydrology, and regional
stability, emphasizing the need for collaborative efforts among all involved nations for the long-term.

1.2. On Robustness
The concept of robustness in water management is grounded in the need to ensure reliable and resilient
access to water resources despite uncertainties such as climate variability, hydrologic response, and
socio-economic developments (Haasnoot et al., 2011; Salazar et al., 2016). Unlike optimal strategies
which may perform best under a single predicted scenario, robust strategies are designed to perform
satisfactorily across a broad spectrum of potential futures (Beh et al., 2017; Matrosov et al., 2013), given
the characteristics of future conditions, especially climate change, to be nonstationary (Milly et al.,
2008), and deeply uncertain (Lempert, 2014; Dittrich et al., 2016). Nonstationary refers to changes
in the statistical properties of random variables with shifts in time (Razavi and Gupta, 2016), while
deep uncertainty refers to situations in which analysts don’t know and cannot agree on probabilistic
distributions of key random variables and parameters (Lempert et al., 2003; Ben-Haim, 2006; Hallegatte
et al., 2012; Brown et al., 2020).

Failure to incorporate robustness in transboundary rivers can lead to detrimental consequences. Without
robust strategies, there is an increased risk of water scarcity, conflicts over water allocation, and
instability in the region. Lack of robustness can lead to ineffective water management policies that
cannot successfully meet the growing difficulties given by climate change and rising water demands
(Quinn et al., 2020; Hadjimichael et al., 2020).

Uncertainties in environmental decision-making has traditionally been managed by focusing on localized
uncertainties around expected future conditions, using metrics such as reliability, vulnerability, and
resiliency (Howard, 1966; Howard and Matheson, 2005; Hashimoto et al., 1982). However, as climatic,
sociopolitical, and technological changes increasingly challenge the localized assumptions, there has
been a shift towards addressing resiliency from a deep uncertainty perspective – situations where future
conditions cannot be predicted or agreed upon as its no longer feasible to determine a single best guess
of how future conditions might evolve, especially when considering longer planning horizon (Döll and
Romero-Lankao, 2017; Kwakkel et al., 2010; Walker et al., 2013).

1.2.1. Knowledge Gap
Based on the literature review that will be explained thoroughly in Chapter 2, significant gaps exist
in the study of robust reservoir operations in the Nile Basin. Although multi-objective optimization
(MOO) has been widely applied, few studies have focused on the robustness of these operations post-
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optimization, which is crucial for ensuring effectiveness under various future scenarios. The existing
robustness analyses within MOO typically use single metrics like the 90th percentile or minimax regret,
offering a limited perspective. Employing multiple robustness metrics, as suggested by approaches like
Evolutionary Multi-Objective Direct Policy Search (EMODPS), would provide a more comprehensive
assessment. However, no studies in the Nile Basin have yet adopted this multi-metric approach, leaving
a critical gap in current research. This knowledge gap is further explained in Chapter 2.

1.3. Research Objective
The objective of this study is to evaluate and compare the robustness of reservoir control strategies
in the Nile Basin by applying multiple robustness metric approach. The study aims to explore the
impact associated with using different robustness metrics in assessing optimized reservoir control policy
alternatives under conditions of uncertainty. By analyzing the robustness of selected policies through
a multi-metrics approach, this research seeks to enhance the understanding of how varying metrics
influence the perceived resiliency of policy choices. Ultimately, the study will provide decision-makers
with a more comprehensive and nuanced framework for robust water resource management in the face
of diverse future scenarios.

1.4. Research Question
Incorporating a multi-metrics approach of robustness metric into many-objective optimization within the
context of the Nile River Basin remains largely unexplored, especially when considering the combination
of deep uncertainty variables and their impacts. Conducting a case study in this context can provide
valuable insights and inform methodological advancements. Therefore, this research aims to address
the following question:

What is the consequence of applying multiple robustness metrics within many-objective optimization
models to address water allocation issues under deep uncertainty in the Nile River Basin?

1.4.1. Research Sub-questions
SQ1: What are the trade-offs of the Pareto-optimal policy alternatives of the optimal reservoir control
in the Nile River Basin?

This question aims to explore the balance between different goals (such as maximizing water supply,
generating hydroelectric power, and preserving the environment) in the best possible reservoir manage-
ment policies. It seeks to understand the compromises that need to be made when trying to achieve
these competing objectives simultaneously.

SQ2: How do different robustness metrics influence the selection of optimal policy alternatives in
the Nile River Basin?

This sub-question will investigate how the choice of robustness metrics affects the identification and
prioritization of policy alternatives.

SQ3: What are the implications of using different robustness metrics for stakeholder decision-making
in the Nile River Basin?

This sub-question will explore how the application of various robustness metrics can impact the
decision-making process for different stakeholders involved in Nile River Basin management.

1.5. Organization of the Report
The methods of the study will be presented in Chapter 3. Section 3.1 will cover the Modelling Approach,
explaining the theoretical framework and choose methods. Section 3.3 will detail how the system is
modelled, including model components, assumptions, and data sources. Section 3.5 will outline the
experimental strategy, describing the design, scenarios, and evaluation criteria. Chapter 4 will present
the experimental results, highlighting the performance of different policy alternatives. Chapter 5 will
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discuss these results, interpret the findings, and explore their implications for water management in
the Nile River Basin. Finally, Chapter 6 will revisit the research questions, summarize the study’s
contributions, and provide policy recommendations and suggestions for future research.



2
Literature Review

This chapter aims to review the evolution of reservoir operations and robustness analysis in water
resource management. It explores key methodologies, from traditional to advanced approaches, and
examines how these concepts have been applied, particularly in the Nile Basin. The chapter also discusses
various robustness metrics and their impact on decision-making under uncertainty, identifying gaps
and opportunities to enhance reservoir management practices.

2.1. Optimal Reservoir Operations
Reservoir operations refer to the process of managing the storage and release of water in a reservoir to
achieve specific objectives, and are critical to managing water resources globally, playing a vital role
in enhancing water availability, generating renewable electricity, and mitigating flood risks. Since the
1960s, reservoir operations have been one of the most active areas of research in the water systems
literature (Yeh, 1985; Kim et al., 2021), focused on two main topic branches: forecast-informed reservoir
operations (Tejada-Guibert et al., 1995; Kim and Palmer, 1997; Zhao et al., 2012; Turner et al., 2017).

Historically, reservoir control progressed from deterministic methods based on rule curves and linear
programming to more adaptive approaches. Traditional methods frequently fail to account for real-world
uncertainties (Giuliani et al., 2014; Zarfl et al., 2015). Stochastic Dynamic Programming (SDP) increased
realism but had limitations such as dimensionality and handling multiple objectives (Esogbue and
Kacprzyk, 1998; Giuliani et al., 2014; Tsitsiklis and Van Roy, 1996). The Parametrization-Simulation-
Optimization (PSO) approach, which uses systematic simulation runs, evolved into the Direct Policy
Search (DPS) method, which combines machine learning and evolutionary algorithms for adaptive
policy optimization (Koutsoyiannis and Economou, 2003; Maier et al., 2014).

The Evolutionary Multi-Objective Direct Policy Search (EMODPS) framework improves computational
efficiency, adaptability, and effectiveness when managing large-scale, multi-objective systems, allowing
for real-time adjustments and balancing competing demands (Giuliani et al., 2015). Recent advancements,
including artificial intelligence and advanced simulation techniques, enhance the robustness of reservoir
operations against climate change and socioeconomic variability. Despite its benefits, EMODPS demands
significant data and computational resources, studies may benefit when concentrating on improving
data integration and creating comprehensive frameworks for managing the complexities of water
systems under extreme uncertainty (Giuliani et al., 2015).

2.2. Robustness Analysis in Reservoir Control Studies
Robustness in reservoir operations refers to the ability of a system to maintain acceptable performance
even when faced with uncertainties and unexpected conditions (Huang et al., 2022). To address
uncertainties in hydrologic processes, such as changes in precipitation, streamflow, or water demands,
stochastic optimization techniques have been developed. These techniques incorporate random or
unknown variables to create effective operational policies for both single reservoirs (Butcher, 1971;
Saadat and Asghari, 2019) and multi-reservoir systems (Stedinger et al., 2013; Salazar et al., 2017).

5
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The development of these techniques began with the Linear Decision Rule (LDR), introduced by (Revelle
et al., 1969), which set guidelines for reservoir releases based on predefined parameters like hydropower
targets or minimum flow requirements. While LDR laid the groundwork for managing uncertainty, it
was limited by its linear approach and focus on a single objective, often treating environmental needs as
secondary concerns (Butcher, 1971; Saadat and Asghari, 2019).

Over time, more advanced non-linear stochastic methods were developed. For example, Stochastic Dual
Dynamic Programming (SDDP) has been used in multi-reservoir systems to create robust policies that
account for uncertainties in water inflows (Pereira and Pinto, 1991; Tilmant and Kelman, 2007). Further
improvements, such as incorporating stream-aquifer interactions (Macian-Sorribes and Pulido-Velazquez,
2020), have made these models more complex and robust. Similarly, Sampling Stochastic Dynamic
Programming (SSDP) has shown better performance by explicitly considering inflow uncertainties,
proving to be more effective than deterministic methods (Kim et al., 2007; Eum and Kim, 2010).

More recently, the Iterative Linear Decision Rule (ILDR) has emerged as a more manageable robust
optimization model. ILDR, used in systems like the Three Gorges Dam and Shasta-Trinity reservoirs,
integrates non-linear objectives and offers robustness comparable to advanced stochastic methods like
SSDP (Pan et al., 2015). However, these methods often rely on a single or limited robustness metric,
like minimizing the risk of poor decisions (Gaivoronski et al., 2012), which doesn’t fully capture all
dimensions of robustness. This leaves a gap in providing a more complete view of system performance
under uncertainty.

Comparative studies have looked at different approaches to evaluating robustness in reservoir operations.
The "a posteriori" decision support approach generates decision alternatives through computational
search before considering stakeholder preferences, allowing for more flexibility in evaluating robustness
(Cohon and Marks, 1973, 1975). On the other hand, "a priori" methods require preferences to be set before
generating alternatives, which can limit the robustness of the chosen solutions (Reuss, 2003; Banzhaf
et al., 2009). "A posteriori" methods, such as Multi-Objective Robust Decision Making (MORDM), help
identify near-optimal solutions under expected conditions and then evaluate them under uncertainty,
supporting adaptive and resilient decision-making (Kasprzyk et al., 2013; Paton et al., 2014). In contrast,
"a priori" methods may provide optimal solutions for assumed conditions but often fail when conditions
change, highlighting the need for flexibility and adaptability in robustness analysis.

2.3. Robust Reservoir Operations in Nile Basin
Robust reservoir operations have been a critical focus of research in the Nile Basin, given the complex
hydrological, geopolitical, and climatic challenges that the region faces. Early work by Stedinger et al.
(1984) pioneered the application of Stochastic Dynamic Programming (SDP) using data from the High
Aswan Dam (HAD). This foundational study laid the groundwork for later research by introducing
probabilistic methods to address uncertainties in water management.

Jeuland and Whittington (2014) introduced a combined approach using real options and robust decision-
making for the Blue Nile. Their method identified key uncertainties and employed Monte Carlo
simulations to evaluate different investment alternatives, using a 90𝑡ℎ percentile Net Present Value (NPV)
distribution-based metric to assess the robustness of these investments under varying future scenarios.
Alexander et al. (2021) enhanced the robustness of reservoir operations by integrating forecast-informed
frameworks with seasonal streamflow predictions, optimizing water releases to improve hydropower
and agricultural outcomes in the Blue Nile Basin.

Recent studies have further advanced the field by exploring multi-objective optimization approaches.
Geressu and Harou (2015) and their later work in 2019 applied Pareto-optimal design principles to
address trade-offs between conflicting objectives in the Blue Nile’s reservoir operations, with a particular
focus on the impacts of dam filling periods. Wheeler et al. (2018) and Sari (2022) also investigated the
robustness of cooperative reservoir operations in the Eastern Nile using multi-objective evolutionary
algorithms, applying minimax regret and 90𝑡ℎ percentile regret scores, respectively, to evaluate and
minimize potential losses under worst-case scenarios.
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2.4. Robustness Metrics
Measuring robustness in water management involves evaluating how well different strategies perform
under a wide range of plausible future conditions (Herman et al., 2015). This evaluation is typically done
using various robustness metrics, each providing different insights into the resilience and adaptability of
management approaches. The choice of metric is crucial, as it can significantly influence the outcomes
of the decision-making process (McPhail et al., 2018).

A variety of robustness metrics type can be used to measure system performance under deep uncertainty
(McPhail et al., 2018), including:

1. Expected Value Metrics Type: Metrics that falls under this type assesses the expected level of
performance across a range of scenarios, providing a baseline for evaluating robustness (Wald and
Wolfowitz, 1950).

2. Higher-Order Moment Metrics Type: Metrics that falls under this type, such as variance, skewness,
offers insights into how the expected performance varies across multiple scenarios, helping to
capture the range and distribution of potential outcomes (Kwakkel et al., 2016).

3. Regret-based Metrics Type: Metrics that falls under this type evaluates robustness by comparing
the performance of a chosen strategy against the best possible performance across various scenarios,
with lower regret indicating a more robust strategy (Savage, 1951).

4. Satisficing Metrics Type: Metrics that falls under these types focus on the range of scenarios
where a strategy meets a predefined performance threshold, with a strategy considered robust if it
performs satisfactorily across a wide range of plausible futures (Simon, 1956).

Each of these metrics reflects different aspects of robustness, thus the choice of metric is therefore not
only a technical decision but also a reflection of the decision-makers’ risk preference and priorities
(Lempert and Collins, 2007; Herman et al., 2015).

(McPhail et al., 2018) identifies 11 robustness metrics for environmental systems, including:

Table 2.1: Classification of Robustness Metrics from McPhail et al. (2018)

Metrics Reference Type

Maximin Wald and Wolfowitz (1950) Expected Value Metrics
Maximax Wald and Wolfowitz (1950) Expected Value Metrics

Hurwicz Optimism-Pessimism Rule Hurwicz (1953) Expected Value Metrics
Laplace’s Principle of Inufficient Reason Laplace and Simon (1951) Expected Value Metrics

Minimax Regret Savage (1951) and Giuliani and Castelletti (2016) Regret-Based Metrics
90th Percentile Minimax Regret Savage (1951) Regret-Based Metrics

Mean-Variance Hamarat et al. (2014) Higher-Order Moment Metrics
Undesirable Deviations Kwakkel et al. (2016) Regret-Based Metrics

Percentile-based skewness Voudouris et al. (2014) and Kwakkel et al. (2016) Higher-Order Moment Metrics
Percentile-based peakedness Voudouris et al. (2016) and Kwakkel et al. (2016) Higher-Order Moment Metrics

Starr’s domain criterion Starr (1963) and Schneller and Sphicas (1983) Satisficing Metrics

Which metrics are chosen has different relative level of inherent risk aversion. Maximax has the
lowest risk aversion, as it considers only the best-case scenario, while Maximin has the highest,
focusing solely on the worst-case scenario. Metrics like Minimax Regret are also highly risk-averse,
emphasizing minimizing the worst relative performance. In contrast, metrics such as Mean-Variance,
Percentile-based Skewness, and Laplace’s Principle of Insufficient Reason fall in the middle, providing
a balanced perspective by using a range of scenarios. The Hurwicz Optimism-Pessimism Rule can
vary widely on the risk aversion scale depending on the chosen weighting between the best and worst
scenarios. Similarly, Starr’s Domain Criterion is adaptable, as its placement depends on the user-defined
performance threshold, which can lead to high or low risk aversion. Metrics like Undesirable Deviations
and 90𝑡ℎ Percentile Minimax Regret lean towards higher risk aversion by focusing on specific subsets of
scenarios that are less balanced, often nearer to worst-case conditions.
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Table 3.
Classification of Robustness Metrics in Terms of Scenario Subset Selection (T2)

Scenarios from S used to form the subset S
′

Subset

Robustness metric Single Number All

Maximin Worst-case

Maximax Best-case

Hurwicz optimism-pessimism rule Best- and worst-case

Laplace’s principle of insufficient reason All

Minimax regret Worst-case

90th percentile minimax regret 90th percentile

Mean-variance All

Undesirable deviations All performance values
worse than the 50th
percentile

Percentile-based skewness 10th, 50th and 90th
percentiles

Percentile-based peakedness 10th, 25th, 75th and
90th percentiles

Starr’s domain criterion All

Figure 3. Classification of robustness metrics in terms of relative level of risk
aversion from a low level of risk aversion (green) to highly risk averse (blue).
*Hurwicz optimism-pessimism rule is a weighted average between the minimax
and maximax metrics, where the weighting is chosen by the decision-maker (see
Section 3.3). Hence this metric could be placed anywhere on the scale. **As Starr’s
domain criterion is based on a user-selected threshold, which scenarios are
considered in the robustness calculation is variable (see Table 2). Consequently,
this metric could be placed anywhere on the scale. It should be noted that the
relative level of risk aversion is subjective and is included for illustrative purposes
only.

and percentile-based peakedness,
which uses the 10th, 25th, 75th, and
90th percentiles (Table 3). Intuitively,
Hurwicz’s optimism-pessimism rule
should also belong to this category,
as it utilizes both the best and worst
values of f (xi , S). However, as these
values are weighted in the calculation
of R using user-defined values (see
Section 3.3), the resulting robustness
values can correspond to either low
to high levels of intrinsic risk aversion,
depending on the selected weight-
ings, as indicated in Figure 3. Similarly,
robustness values obtained using
Starr’s domain criterion could range
from low to high, depending on the
value of the user-selected minimum
performance threshold. For example,
if this threshold corresponds to a very
high level of performance, the resul-
tant robustness value will correspond
to a very high level of intrinsic risk
aversion and vice versa.

The undesirable deviations and 90th
percentile minimax metrics also use a subset S

′
, however, these scenarios do not cover all regions of this S

and are therefore less balanced. The undesirable deviations metric considers regret from the median for sce-
narios for which values of f (xi , S) are less than the median, resulting in robustness values that have a higher
level of intrinsic risk aversion than those obtained using metrics that used information from all regions of
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Figure 2.1: Classification of Robustness Metrics based on Risk Aversion Level (Taken from McPhail et al. (2018)).

However, it should be noted that the metrics all measure system performance over a set of future
states of the world, they do so in different ways, which makes the assessment of how robust a system’s
performance truly complicated. Different robustness metrics highlight different aspects of what is
robustness, making it difficult to determine the absolute robustness of an alternative or to compare
alternatives objectively. Choice of robustness metrics can have a large effect, with some robustness
metrics may disagree, and some may show similar performance depending on the transformation, or
the calculation used in the robustness metric itself (Giuliani and Castelletti, 2016; Herman et al., 2015).
There exists “interutility robustness tradeoffs”, and ultimately settling on a single most robust policy
would require negotiation and compromise between decision makers (Herman et al., 2014).

When multiple robustness metrics yield different most robust solutions for a set of policies, choosing
the best solution needs to consider a few factors, including stability of performance across multiple
metrics, and alignment with decision context and priorities. It may be beneficial to consider a composite
or weighted approach, to gain insight from multiple metrics rather than relying on a single metric
(McPhail et al., 2018).

2.5. Literature Review: A Conclusion
Several significant gaps in the study of robust reservoir operations in the Nile Basin have been identified.
Firstly, while multi-objective optimization (MOO) has been extensively applied to reservoir operations in
the Nile Basin, only a few studies have focused specifically on the robustness aspect of these operations
after the optimization process. Robustness is key to ensuring that reservoir operations remain effective
under a wide range of future scenarios, making this an oversight. Secondly, the robustness analyses that
have been conducted within MOO predominantly rely on single metrics, such as the 90th percentile
regret or minimax regret. While these metrics are valuable, they provide only a limited view of
robustness.

Given that the Evolutionary Multi-Objective Direct Policy Search (EMODPS) and other multi-objective
optimization approaches inherently consider robustness, it would be highly beneficial to employ multiple
robustness metrics for comparison. Different robustness metrics can highlight different facets of what
makes a solution robust. The use of multiple metrics would provide a more comprehensive assessment
of robustness and help ensure that policy alternatives are truly resilient. Despite the importance of the
approach, no studies on the Nile Basin have yet utilized a multi-metrics approach to analyse robustness
post-MOO. This represents a significant gap in the current research, as relying on a single metric may
not capture the full complexity of robustness in reservoir operations.



3
Methods

3.1. Methodological Framework
The methodology of this thesis is inspired and adapted from the study conducted by Sari (2022) that
explores trade-offs in reservoir operations through multi-objective optimization, using the same case as
our focus, the Nile River Basin. The study builds a simulation model using the EMODPS (Evolutionary
Multi-Objective Direct Policy Search) framework. A set of policies are then selected from the Pareto-front
generated by the optimisation, and simulations under varying uncertain scenarios are carried out.

Our methodology in this study diverges from Sari’s study, as we focus on the robustness analysis of
the policies, hence we take out the scenario discovery approach, and instead focus on the robustness
analysis which is loosely inspired by post-MORDM robustness policy mapping (Bonham et al., 2022),
which presents decision makers with a visual representation of decision variable values, objective values,
and robustness values to ease with decision making, from a multi-metrics perspective.

Following the methodological framework laid out in Sari (2022)’s work, the methodological framework
of this study is adapted from the Multi-Objective Robust Decision-Making framework by Kasprzyk
et al. (2013), adapted to our research objective. The framework consists of Data Collection, Problem
Formulation, Policy Generation, and Robustness Analysis.

Our first step, data collection, entails collection of data that is going to be used for our research. Three
types of data are required, including physical system quantities, hydroclimatic data, and water demand.
Physical System Quantities entails quantitative data about the reservoir operations. Hydroclimatic data
consists of flow rates of the streamflows included in the scope of our water system from catchments, as
well as the rate of evaporation and precipitation of the reservoirs. The final data required is the water
demand of irrigation districts. The data in this study utilizes the data from Sari (2022), which mainly
uses data from Wheeler et al. (2016), Wheeler et al. (2018), UN Global Runoff Data Center, and other
sources.

The problem formulation defines the scope of the decision problem in terms of objective formulation
and exogenous uncertainties. Exogenous uncertainties refer to factors outside the explicit control of the
decision maker, such as hydroclimatic factors and socioeconomic factors that will be included in the
uncertainty parameter. In this stage we will also define the robustness metrics that will be utilized for
our robustness analysis.

After the problem formulation and system modelling, policy generation is performed using multi-
objective simulation-based optimization. The algorithm used will generate policies, and the model
will evaluate the performance objectives. The outcome of the solutions generated by the algorithm are
referred as ‘policies’, consisting of vectors of decision variable values. Building on the result of the policy
generation, to incorporate uncertainty values for variables that are not included in the optimisation
space, we conduct additional analysis by sampling over the uncertainty space and re-evaluating the
optimised solutions.

9
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Figure 3.1: Methodological Framework Schematic Workflow.

Lastly, we analyzed how the performance of the policies changes under different SOWs (State of Worlds),
a multivariate sample of the uncertainty factors that is created to sample each factor’s bounds. The
robustness of the policies is selected using a selection of robustness metrics, to follow the multi-metrics
research objective, and based on the robustness scores we will examine the possible trade-offs among
objectives, and based on the most robust policies we will also analyze how the policies impact the
physical water system.

3.2. EMODPS
EMODPS method used in this study is chosen for its flexibility in addressing complex many-objective
reservoir control problems. It can simultaneously handle various objective functions, such as minimizing
worst-case scenarios or optimizing for expected values (Giuliani and Castelletti, 2016). EMODPS also
effectively manages uncertainties through simulation-based methods (Giuliani et al., 2014) and offers
lower computational costs compared to methods like SDP. It provides an approximation of the Pareto
front from the first generation of solutions, making it well-suited for complex systems like the Nile
(Giuliani et al., 2015). Its adaptive policy decisions enhance robustness against changing conditions.

The success of EMODPS, however, relies on the accurate representation operating policies and the
capability of the many-objective evolutionary algorithm (MOEA) to optimize them. To address potential
challenges, we selected 𝜖-NSGA-II for its search diversity and ability to escape local optima (Kasprzyk
et al., 2013; Salazar et al., 2016; Kollat and Reed, 2005). EMODPS involves integrating a nonlinear
network that approximates decision-making rules directly into a simulation model. This network,
acting as a policy function, determines the appropriate release decisions at each time step during the
simulation based on the current state of the system at that given moment.

In the optimization process, the parameters of the policy function are gradually refined with each
generation of a many-objective evolutionary algorithm run (Giuliani et al., 2015). Ideally, this process
should lead to a set of solutions that represent the best possible trade-offs among the different objectives,
known as a Pareto-optimal set.

We present a visual summary of the EMODPS methodology, taken from Kwakkel (2017), in a XLRM
framework that identifies four possible locations where uncertainties exist in any system (Lempert et al.,
2003). In this figure:
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1. External Factors are labeled as "X" (these are elements outside the system that can affect its
performance).

2. The Policy Function is shown as the "Relationship" within the System (R).
3. The Multi-objective Evolutionary Algorithm (MOEA) is used to measure performance ("M"),

which then feeds back into the Policy Function and influences the Policy Levers ("L").

Ultimately, this process is designed to converge on a set of near-optimal policy alternatives, known as
the Pareto-Approximate Policy Alternative(s).

Figure 3.2: Illustration of EMODPS in an XLRM Framework, adapted from Kwakkel (2017).

The EMODPS method used in this study uses a mechanistis model for the water system adapted from
Soncini-Sessa et al. (2007) to quantitatively explain the physical water system’s operation, with the
following formula:

3.2.1. System Modelling
The EMODPS method used in this study uses a mechanistis model for the water system adapted from
Soncini-Sessa et al. (2007) to quantitatively explain the physical water system’s operation, with the
following mass-balance equation:

𝑆𝑇+1 = 𝑆𝑇 +𝑄𝑇+1 − 𝐸𝑇+1 − 𝑅𝑇+1 (3.1)

where:

• 𝑆𝑇 is the volume of water at the beginning of the decision step 𝜏

• 𝑄𝑇+1 is the total inflow to the reservoir,
• 𝐸𝑇+1 is the total net evaporation,
• 𝑅𝑇+1 is the total volume of water released from the reservoir between decision steps 𝜏 and 𝜏 + 1

We use a monthly decision interval, which balances capturing seasonal variations with the feasibility of
long-term simulations. Each component of the mass-balance equation is calculated using known data at
the time.
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3.2.2. Policy Function
EMODPS in reservoir operations enhances the resilience and adaptability of reservoir systems by
optimizing the parameters of control policies within a specified family of functions, including artificial
neural networks (ANN) and radial basis functions (RBFs) (Quinn et al., 2017). A study by Giuliani
et al. (2015) comparatively analyzed the potential of ANN and RBF policy parameterizations in solving
EMODPS, and the result shows that RBF solutions are more effective in designing Pareto-approximate
policies with better performance in terms of convergence, consistency, reliability, interpretability and
diversity. Thus, RBFs are chosen over ANN for this study. We specifically use a structure adopted in
Giuliani et al. (2020), a weighted sum of Gaussian RBFs, as the function that returns the release decisions.
Gaussian distribution of the RBF parameters is used for its unbounded support, and effectivity in
solving multi-objective control problems (Salazar et al., 2024; Giuliani and Castelletti, 2016).

The mathematical representation of this structure is the following:

𝑢𝑘𝜏 = 𝑢𝑘𝜃 (�̄�𝜏) =
𝑛∑
𝑖=1

(
𝑤𝑘
𝑖 𝜑𝑖 (�̄�𝜏) + 𝛼𝑘

)
(3.2)

Where:

• 𝑢𝑘𝜏 is the 𝑘-th release decision at month 𝜏,
• 𝜃 is the parameter vector for RBF𝑠 , 𝜃 =

��𝑐 𝑗 ,𝑖 , 𝑏 𝑗 ,𝑖 , 𝑤𝑘
𝑖

��,
• 𝑍𝜏 is the input vector,
• 𝛼𝑘 is the constant adjustment parameter that fine-tunes the release decision

The total number of free parameters in a Gaussian RBF network is calculated as (2𝑚𝑛) + (𝑛𝐾) +𝐾, where
𝑚 represents the number of inputs, 𝑛 represents the number of RBF𝑠 , and 𝐾 represents the number of
release decisions.

3.3. Simulation Model
After the study area and the modelling approach has been laid out, we now define the simulation model
for running experiments. This model explores the system behaviour of the Nile Basin under various
conditions and policy alternatives. We implement the model in Python for its user-friendliness and
extensive supplementary packages, for a transparent and reproducible process.

3.3.1. Model Conceptualization
The scope of the model focuses on the Blue Nile, incorporating the GERD Dam while treating the White
Nile and Atbara rivers as exogenous inputs. The simulation covers a period from 2022 to 2042 (20 years)
and captures both the filling period of the GERD and subsequent operational impacts. We employ an
assumption that there is a cooperative setup in place where a hypothetical central authority coordinates
release decisions for all reservoirs to enhance the flexibility and simplification in our policy exploration.
Our model includes reservoirs, hydropower plants, irrigation districts, and catchments for determining
system state and calculating our problem objectives.

The model components include:

1. Reservoirs
The model includes four reservoirs: GERD, Roseires, Sennar, and the High Aswan Dam (HAD).
These reservoirs influence the system state by storing and releasing water, with significant
evaporation losses from their surfaces. Roseires (5.9 BCM) and Sennar (0.4 BCM) are vital for
Sudan’s agricultural irrigation schemes, while the HAD (148 BCM) is crucial for Egypt’s water
supply and serves as an indicator of downstream impacts from GERD.

2. Hydropower Plants
Hydropower plants are modelled to calculate the amont the hydroelectric energy generated by
the dams. All four dams included in this model have hydroenergy generation capacities, with
GERD being a major focus for Ethiopia due to its significant potential for electricity production.
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3. Irrigation Districts
Irrigation districts represent major sources of water consumption such as agricultural irrigation
schemes and urban districts. The model includes five irrigation districts in Sudan and one
aggregate irrigation district for Egypt. The irrigation districts in Sudan includes Upstream Sennar,
Gezira-Managil, Downstream Sennar, Tamaniat to Hassanab, and Hassanab to Dongola.

4. Catchments
Catchments are areas where precipication accumulates and contributes inflows to the system. In
addition to the main tributaries (Blue Nile, White Nile, and Atbara), the model includes five more
catchments based on the detailed schematic provided by Wheeler et al. (2018), including Dinder
River, Rahad River, Lower Atbara, Upper Blue Nile, and Central Blue Nile.

The following topological chart illustrates the components of the system, showing the layout of reservoirs,
irrigation districts and catchments. The main paths, smaller branches, and minor catchments are shown
in purple. Water usage by irrigation districts is indicated with dashed arrows.

HAD

Sennar

Roseires

GERDOperational reservoir

Under construction

Agricultural demand

Mixed consumptive demand
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Ethiopia
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Figure 3.3: Topology of the Conceptual Model, taken from Sari (2022).

3.3.2. Model Formulation
The model’s mathematical framework uses mass-balance equations to represent water storage dynamics
and release decisions. The policy function for release decisions is based on radial basis functions (RBFs),
with the release decision 𝑢𝑘𝜏 for reservoir 𝑘 at month 𝜏 calculated as:

𝑢𝑘𝜏 =
∑
𝑖

[
𝑤𝑘
𝑖 𝜑𝑖(𝑆𝜏 ,

∑
𝑝

𝑄
𝑝

𝜏−1 , 𝜏 𝑚𝑜𝑑 12) + 𝛼𝑘

]
(3.3)
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where 𝜑𝑖 are the RBF𝑠 , 𝑆𝜏 is the storage vector, 𝑄𝑝

𝜏−1 are the catchment inflows, and 𝛼𝑘 are constant
adjustment parameters. The mass-balance equations track changes in the reservoir storage, with the
following formula:

𝑠𝑘𝜏+1 = 𝑠𝑘𝜏 +
∫ 1

0
𝑓 (𝑠𝑘𝜏+𝑡 , 𝑞𝑘𝜏 , 𝑒 𝑘𝜏 , 𝑢𝑘𝜏 ) 𝑑𝑡 (3.4)

𝑓 =
Δ𝑠𝑘𝜏+𝑡
Δ𝑡

= 𝑞𝑘𝜏 − 𝐴𝑘(𝑠𝑘𝜏+𝑡)𝑒 𝑘𝜏 − 𝑟𝑘(𝑠𝑘𝜏+𝑡 , 𝑢𝑘𝜏 ) (3.5)

1
20

240∑
𝜏

max(0, 𝐷𝐸𝑔𝑦𝑝𝑡
𝜏 −𝑉𝐸𝑔𝑦𝑝𝑡

𝜏 ) (3.6)

where 𝐷𝐸𝑔𝑦𝑝𝑡
𝜏 is the water demand of Egypt and𝑉𝐸𝑔𝑦𝑝𝑡

𝜏 is the received water flow by the irrigation
district of Egypt in month 𝜏. Egypt average yearly demand deficit is expressed in BCM/year for
20 years of the model run.

2. HAD frequence of months below minimum power generation level (Egypt Low HAD) minimizes
the frequency of months when the HAD water level falls below the minimum power generation
level (159 masl).

𝐻𝐴𝐷𝜏 =

{
1, if ℎ𝐻𝐴𝐷(𝑆𝜏) < 159.
0, otherwise.

(3.7)

3. Sudan Average yearly demand deficit (Sudan Irrigation Deficit) minimizes the yearly average
value of unmet demand in Sudan, aggregated across multiple irrigation districts.

1
20

240∑
𝜏

∑
𝑗∈𝑆𝐷

max(0, 𝐷𝐸𝑔𝑦𝑝𝑡
𝜏 −𝑉𝐸𝑔𝑦𝑝𝑡

𝜏 ) (3.8)

where 𝑆𝐷 is the set of irrigation districts in Sudan.
4. Ethiopia yearly hydroenergy generation from GERD (Ethiopia Hydropower Generation) maximize

the yearly hydroelectric energy generation from GERD.

1
20

240∑
𝜏

𝑃𝐺𝐸𝑅𝐷𝜏 · 𝑑(𝜏𝑚𝑜𝑑12) · 24 (3.9)

where 𝑓 includes net inflow, evaporation, and actual release calculations.

3.3.3. Objectives
Our model is streamlining the objectives adapted from Sari (2022) from six objectives to four objectives 
to reduce computational complexity. The decision to reduce the objectives from six to four was driven
by several considerations. Firstly, the 90𝑡ℎ percentile irrigation deficits for Egypt and Sudan did not 
significantly differ from the average irrigation deficits, making the additional complexity unnecessary.
Secondly, the 90𝑡ℎ percentile Egypt irrigation deficit resulted in multiple best-performing policies under 
all scenarios, indicating redundancy in evaluating both average and 90th percentile metrics separately.
Finally, reducing the number of objectives helps save computational resources to make the modelling 
process more efficient.

The selected objectives are:

1. Egypt Average yearly demand deficit (Egypt Irrigation Deficit): Minimizes the yearly average 
value of unmet demand in Egypt.
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𝑃𝐺𝐸𝑅𝐷𝜏 = 𝑚𝑖𝑛
(
𝑟𝐺𝐸𝑅𝐷𝜏 , 𝑟𝐺𝐸𝑅𝐷𝑚𝑎𝑥

)
· 𝑔 · max(0, ℎ𝐺𝐸𝑅𝐷𝑆𝜏

− ℎ𝐺𝐸𝑅𝐷
𝑡𝑢𝑟𝑏𝑖𝑛𝑒

) · 𝜂𝐺𝐸𝑅𝐷 (3.10)

where 𝑟𝐺𝐸𝑅𝐷𝜏 is the flow corresponding to the maximum rotational speed of the turbine, ℎ𝐺𝐸𝑅𝐷
𝑡𝑢𝑟𝑏𝑖𝑛𝑒

is
the height of the GERD turbines, and 𝜂𝐺𝐸𝑅𝐷 is the efficiency of the hydropower generation.

To summarize, the following are the objective formulations we’ll use in the study:

Table 3.1: Summary of Optimisation Objectives

Country Objective Aggregation Level Unit Direction

Egypt Demand Deficit Yearly Average BCM/year Minimise
Egypt HAD level Reliability Frequency over 20 years % Minimise
Sudan Demand Deficit Yearly Average BCM/year Minimise

Ethiopia Hydroenergy Generation Yearly Average TWh/year Maximise

3.3.4. Data Requirements
Three data types are required, including physical system quantities (such as storage-level-surface
conversions, release constraints, and hydropower plant parameters), hydroclimatic data (including
streamflows of major tributaries, minor catchments, and monthly evaporation rates), and demand data
(considering water demand growth based on population growth rates in Egypt, Sudan, and Ethiopia).
The detailed specifications and sources of this data are provided in Sari (2022).

3.3.5. Key Assumptions
Our simulation model incorporates several key assumptions for simplicity and focus. Firstly, the lag
times between components are approximated, generally assuming water transitions occurs within the
same month, except for a one-month delay between the Tamaniat and Hassanab irrigation districts.
Sceond, no specific filling rule for the GERD is imposed, allowing exploration of various filling patterns
to determine the optimal strategy for maximizing hydroelectric power generation. Third, the number
of Radial Basis Functions (RBFs) is determined using heuristics from previous studies, resulting in
ten RBFs. This is based on the sum of six input variables (storage values of four dams, total inflow
of the previous month, and the current month index) and four output variables (release decisions for
each dam). These assumptions are placed to streamline the model while maintaining its flexibility and
robustness.

3.4. Uncertainty and Robustness Analysis
3.4.1. Quantifying Robustness of Policy Alternatives
The mechanisms of robustness analysis in this study are adapted from the many-objective robust
decision making (MORDM) framework. After problem formulation and the policy generation, it is
followed by robustness analysis to determine how well policies perform in uncertainties – which can be
the basis for decision makers to settle on a policy to apply in real life.

After running the simulation model and generating our Policy Alternative(s), we conduct a robustness
analysis to evaluate its effectiveness, ensuring that the policy alternatives we develop can perform
well under a variety of uncertain future conditions. It should be noted that the policy alternative(s)
obtained in the simulation model exhibits performance trade-offs, where improving in one objective
necessitates inferior performance in one or more objectives. However, it is non-dominated, or no policies
are ultimately better than the others. In this stage, we account for uncertainties in the system by testing
each selected policy against a wide range of possible future scenarios, known as States of the World
(SOWs). These scenarios represent different plausible futures. We then use robustness metrics, to
measure how well each policy performs across all these scenarios, giving us a clear understanding of its
reliability under varying conditions (Bonham et al., 2022).

There exists different robustness metrics which uses varying transformations and statistical calculations
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across the sampled SOWs. Each performance metric reflects different prioritization of objectives,
thresholds, and risk aversion level of decision makers (McPhail et al., 2018). It should also be noted that
different robustness metrics define robustness differently based on their respective performance criteria,
and there exists inter-utility robustness tradeoffs (Herman et al., 2014).

Our goal in this study is to test multiple robustness metrics on the selected policies. Consequently, each
policy will yield multiple robustness scores. To facilitate comparison, we will quantify these scores into
a single, comparable value by calculating a weighted sum robustness score for each policy, with equal
weights assigned to each robustness metric (Sahabuddin and Khan, 2021). This will provide a single
robustness score per policy, simplifying the comparison of their overall performance.

3.4.2. Robustness Metrics
McPhail et al. (2018) defines 11 classifications of robustness metrics, each with varying levels of risk
aversion and each with their own transformations, laid out in Table 3.4. Due to computational and
scope limitation, we further narrow down the robustness metrics into four metrics for selection. Each
robustness metrics have different prioritization, especially risk aversion level of decision makers. We
aim to select robustness metrics with varying risk aversion level for a comprehensive analysis and to
capture a broad spectrum of decision-making preferences.

We ultimately selected four metrics: Percentile-based Skewness, which measures the asymmetry in
outcome distribution (Voudouris et al., 2014; Kwakkel et al., 2016); Mean-Variance, which assesses
average performance and its variability (Hamarat et al., 2014); Undesirable Deviations, which quantifies
the extent of negative deviations from a target (Kwakkel et al., 2016); and Minimax Regret, which focuses
on minimizing the worst-case regret (Savage, 1951; Giuliani et al., 2016).

Figure 3.4: Selected Robustness Metrics based on Risk Level.

The spectrum of robustness metrics ranges from lower to higher risk level. Metrics at the top, like
Percentile-based Skewness, have lower risk aversion, thus allowing for higher risk by considering
extreme outcomes. As we move down, the metrics show increasing risk aversion and lower level of risk,
favoring more cautious decision-making.

Percentile-based Skewness is positioned at the top of the spectrum, emphasizing the asymmetry in
outcome distribution. It has the lowest risk aversion and highest risk level, allowing for greater variability
and the possibility of extreme results. Mean-Variance sits in the middle of the spectrum, balancing
the average performance with the variability of outcomes. It represents a moderate approach to risk,
considering both the potential rewards and the associated risks. Undesirable Deviations is further
down the spectrum, prioritizing the minimization of negative deviations from a target, which aligns
with a more risk-averse, cautious strategy. Finally, Minimax Regret lies at the bottom of the spectrum,
embodying the highest level of risk aversion and lower risk. It focuses on minimizing the worst possible
regret, making it the most conservative choice.
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We can calculate the respective robustness metrics with the following equations:

1. Minimax Regret bases decisions based on the concept of regret, defined as the difference between
the performance of the best possible alternative when 𝑤 𝑗 is the true state of the world, and the
performance of the chosen alternative a under the same state 𝑤 𝑗 .

𝑟 𝑗 (𝑎) = max𝑎
(
𝑓
(
𝑎, 𝑤 𝑗

) )
− 𝑓 (𝑎, 𝑤 𝑗) (3.11)

The optimal alternative is then selected by adopting a pessimistic approach, which involves
minimizing the maximum regret across all possible states of the world:

𝑎∗ = arg min𝑎(maxΞ𝑟 (𝑎)) (3.12)

2. Undesirable Deviations is variant of the approach where the mean and undesirable deviations
from a target value are measured as separate objectives. This metric is formulated by the following:

• For minimization:

𝑓𝑖 (𝑥) = −𝜇𝑖 ,
𝑘∑
𝑘=1

(𝑥𝑘 − 𝑞50)2 [𝑥𝑘 > 𝑞50] (3.13)

• For maximization

𝑓𝑖 (𝑥) = −𝜇𝑖 ,
𝑘∑
𝑘=1

(𝑥𝑘 − 𝑞50)2 [𝑥𝑘 < 𝑞50] (3.14)

𝑞50 represents the median performance, 𝑘 is a scenario, and 𝑥𝑘 is the score for the 𝑖-th outcome
indicator in scenario 𝑘. The summation is only performed for cases that meet the specified
condition. This approach sums the squared differences from the median in the undesirable
direction, effectively using these differences as a proxy for the skewness of the distribution.

3. Percentile-based Skewness is a method to measure the skewness of outcome distributions,
utilizing a quantile-based approach as described by Voudouris et al. This approach addresses the
potential unreliability of moment-based skewness definitions, particularly when the distribution
is fat-tailed, meaning there are many data points in the tail regions.

• For minimization:

𝑓𝑖 (𝑥) = −𝜇𝑖
( (𝑞90 + 𝑞10)/2 − 𝑞50

(𝑞90 − 𝑞10)/2

)
(3.15)

• For maximization:

𝑓𝑖 (𝑥) = 𝜇𝑖

( (𝑞90 + 𝑞10)/2 − 𝑞50

(𝑞90 − 𝑞10)/2

)
(3.16)

For these equations, 𝑞10, 𝑞50, and 𝑞90 represents the 10𝑡ℎ , 50𝑡ℎ , and 90𝑡ℎ percentiles of the outcome
distribution for the i-th indicator. A more positive value of this metric indicates that the density
estimate is skewed to the right (higher values), while a more negative value indicates left skewness
(lower values).

4. Mean-Variance aims to enhance the expected outcomes of a policy while reducing sensitivity
to uncertainties. This approach increases the certainty of expected outcomes across various
scenarios. For maximization objectives, robustness is defined as the mean divided by the standard
deviation, where a higher mean and lower standard deviation indicate higher robustness. For
minimization objectives, robustness is the mean multiplied by the standard deviation, with lower
values indicating higher robustness.
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• For minimization:

𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
(3.17)

• For maximization:

𝑚𝑒𝑎𝑛 × 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (3.18)

3.5. Experimental Setup
3.5.1. Baseline Optimisation
After developing the simulation mode, we execute the evolutionary optimization within the policy lever
space, which includes 164 decision variables. This is calculated based on the formula of free parameters
in a Gaussian RBF in chapter 2.2.1., as (2𝑚𝑛) + (𝑛𝐾) +𝐾, thus (2 × 10 × 6) + (10 × 4) + 4 = 164. We utilize
the 𝜖-NSGA-II algorithm, running 50,000 function evaluations while tracking epsilon progress and
hypervolume metrics to ensure convergence. Epsilon values for all objectives, as well as the convergence
result are detailed in the Appendix.

Our model is connected to the Python library Exploratory Modelling and Analysis (EMA) Workbench
to run the 𝜖-NSGA-II optimization algorithm (Kwakkel, 2017). The experiments are conducted using a
48-CPU computing node from the Delft High Performance Computing Centre (DHPC) / DelftBlue.

3.5.2. Uncertainty and Robustness Analysis
Although the model does incorporate uncertain hydro-climatic and socioeconomic factors, we must
assign a specific value to every variable not included in the optimization search space to run the
optimization. These requirement(s) mean that the optimization is conditioned on a reference scenario
(Watson and Kaspryzk, 2017). Consequently, trade-offs identified in one scenario may not be significant
if the process is repeated under varying SOWs (State of Worlds).

To address this limitation, we performed additional analyses based on the results of the baseline
optimization. The main idea behind these analyses is to sample across the uncertainty space, generate
alternative SOWs, and re-evaluate the optimized solutions under each scenario. The uncertain variables
considered in this study, along with their sampling ranges, are presented in the following table.

Table 3.2: Uncertainty Variables and Ranges

Uncertainty Variable Baseline Value Range

Yearly Demand Growth Rate 0.0216 0.01-0.03
Blue Nile Mean Coefficient 1 0.75-1.25

White Nile Mean Coefficient 1 0.75-1.25
Atbara Nile Mean Coefficient 1 0.75-1.25

Blue Nile Deviation Coefficient 1 0.5-1.5
White Nile Deviation Coefficient 1 0.5-1.5
Atbara Nile Deviation Coefficient 1 0.5-1.5

The baseline annual demand growth rate of 2.16% for the Nile Basin countries is supported by population
growth trends (World Bank, 2022). Agricultural expansion, driven by irrigation, is projected to grow
annually by 1.72% and 1.43% until 2050 (IWMI, 2021), though these projections do not fully account
for urban freshwater needs. Egypt and Ethiopia are expected to be among the top eight countries
globally in population growth, with the Nile Basin’s population nearing one billion by 2050 (Allan et al.,
2019; McCartney and Menker Girma, 2012; Siam and Eltahir, 2017). To account for various possibilities,
annual demand growth rates range between 0.01 and 0.03.

Among seven uncertain variables, six pertain to the hydrology of the Nile’s major tributaries, except
for the yearly demand growth rate. Probability distributions for monthly flow values, derived from
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historical data, introduce uncertainty influenced by inter-annual variability and climate change. Water
consumption patterns beyond the focus area, such as increased usage in Ethiopia and upper White
Nile countries, could significantly impact inflows. To cover a range of potential scenarios, adjustments
were made to the mean and standard deviation of the probability distributions generating monthly
streamflows, with a range of ±25% for the mean and ±50% for the standard deviation of baseline values.
Using the Latin hypercube sampling technique, 5,000 alternative States of the World (SOWs) were
created to efficiently cover the uncertainty space (Helton and Davis, 2003), forming the basis for further
uncertainty analysis.

For computational and time limitation, after the Latin hypercube sampling is run, we will narrow down
the policies to further analyze down to six policies, consisting of four extreme policies (best performing
in the given objective), and two compromise policies.

Global Sensitivity Analysis
To investigate the influence of uncertainty variables and policy selection in explaining the variability in
the outcomes of interest, we conduct a global sensitivity analysis. The objective values are evaluated
through resimulation of a selected set of policies under the State of Worlds (SOWs) obtained from Latin
Hypercube Sampling. We use the extra trees algorithm utilizing multiple regression trees for analysis,
for assessing the significance of each uncertain variable and policy selection. Through this approach,
the influence of each input on the various outcomes of interest can be quantified.

Robustness of Policy Analysis
The primary objective of this research is to evaluate how well policy alternatives performs under
different definitions of robustness. We use four selected robustness metrics: Percentile-based Skewness,
Mean-variance, Undesirable Deviations, and Minimax Regret. Overall Robustness Scores are the
weighted sum of each policy performance under different robustness metrics.



4
Results

4.1. Baseline Optimization
We run the EMODPS optimization under the baseline scenario without the uncertainties accounted in.
This results in 748 Pareto-optimal solution alternatives. The convergence analysis for this optimisation
run can be found in the Appendix.

4.1.1. Objective Trade-Offs
The following presents the Parallel Coordinate plot, representation of the optimization results. Each line
in the parallel plot represents a different policy alternative generated by the optimization. The plot itself
shows how each policy alternative performs across multiple objectives, displayed on the vertical axis.
Each axis corresponds to a specific performance metric, such as Egypt Irrigation Deficit and Ethiopia
Hydropower. The position of the lines on each axis indicates the value of that objective for a particular
policy, with the direction of preference indicated by the arrow on the right side of the plot – the higher
the position of the line, the preferable it will be, in our case.

The highlighted, colour-coded lines highlight specific policy alternatives that performs best for objectives,
as indicated in the legend. For example, the light pink line represents the policy with the best performance
for Egypt’s Irrigation (Best Egypt Irr).

The main goal of the parallel plot is to show how performance of each policy alternative changes relative
to other objectives, as indicated by the lines moving across the axes. A steep upward or downward
movement between axes shows a significant trade-off between objectives.

Trade-Offs Extreme and Compromise Policies
From the plot, we highlight six policies, which consist of four extreme policies and two compromise
policies. The extreme policies are:

1. Best Egypt Irrigation Deficit (policy with the best performance for Egypt Irrigation Deficit,
represented in Pink).

2. Best Egypt Low HAD (policy with the best performance for Egypt HAD Level Reliability,
represented in Purple).

3. Best Sudan Irrigation Deficit (policy with the best performance for Sudan Irrigation Deficit,
represented in Green).

4. Best Ethiopia Hydropower (policy with the best performance for Ethiopia Hydropower Level,
represented in Blue).

We then add two compromise solutions to the extreme policy set, in which both were obtained through
imposing a constraint on the objective value sets. The policy Compromise: Percentile Threshold
represented in Orange makes all objectives attain a value that is more desirable than the 45𝑡ℎ percentile
(100𝑡ℎ percentile is the most desirable or best objective value). Meanwhile, the policy Compromise:

20
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Figure 4.1: Parallel coordinates plot of Pareto-optimal solutions of baseline optimisation with Compromise Policies.

Absolute Threshold represented in Yellow corresponds to all objectives that attain a value that is higher
than 0.75 on the normalised scale where the best objective value corresponds to 1.

For the extreme solutions, a similar theme is observed, where the solutions perform best at their
respected extreme objectives, however always at the expense of other objectives. Best Egypt Irrigation
Deficit Policy prioritizes minimizing Egypt’s irrigation deficit, but this comes at the expense of other
objectives, such as Ethiopia’s Hydropower generation and Sudan Irrigation Needs. Best Egypt Low
HAD Policy focuses on maximizing the reliability of Egypt’s High Aswan Dam (HAD) levels but leads
to deficits in irrigation and reduced Ethiopia hydropower generation and performs very poorly in Sudan
Irrigation deficit goals.

Best Sudan Irrigation Deficit optimizes Sudan’s irrigation deficit, but poorly compromises Ethiopia’s
Hydropower and other objectives, although its Egypt Irrigation Deficit has a decent performance. Best
Ethiopia Hydropower maximizes Ethiopia’s hydropower generation well, however, performs very
poorly in Egypt Irrigation Deficit and Egypt Low HAD.

For compromise solutions, we see a more balanced approach. Both Compromise: Percentile Threshold
and Compromise: Absolute Threshold policies all achieve objective performance that are more balanced
and has lower difference. Although the performance in all objectives is never the best, or not optimizing
any single objectives compared to the extreme policies, its performance is still scoring quite well and
competitively across all objectives.

Pairplot Comparison of Objectives
To examine the overall trade-off patterns within the full Pareto front, in addition to the differences
between individual performance maximising policies, we visualize two-way comparisons between
objectives with a pair plot as shown in figure 4.2. Each scatter plot is fitted a regression line which
informs about the trend between two objectives. When the angle between the regression line and
the x-axis is approximately 45◦ in the positive direction, it is an indication that there is an alignment
between two objectives. On the other hand, when the angle is -45◦, it indicates a trade-off in a similar
manner. The slope of the regression fitted for each objective pair is shown in table 1. In these scatter
plots, each colored point represents a specific policy alternative, as indicated in the legend. For the
Ethiopia Hydropower objective (maximization), the axes are reversed so that objective values get more
desirable towards the bottom on the y-axis, and the left on the x-axis.
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Figure 4.2: Pairplot of Objective Values.

It should be noted that the slope itself is not enough to draw conclusions on about the significance of
the relation. If the points are scattered dispersedly and there is no substantial accumulation around the
regression line, the slope may be misleading. In this regard, we also use Pearson correlation coefficient
to quantify the significance of the relation between the two objectives. The closer the coefficient is to +1
or to -1, the more stable the relation is. The Pearson correlation coefficients calculated for each objective
pairs can be found in table 2.

The slopes and Pearson correlation coefficients reveal important insights about the relationships between
the objectives. The most prominent relation among all objective pairs is the trade-off between Egypt’s
irrigation deficit and Sudan’s irrigation deficit. Tables 1 show that the slope is -0.943137 and the
Pearson correlation coefficient is -0.625568. This strong negative alignment suggests that policies
aiming to reduce Egypt’s irrigation deficit are likely to increase Sudan’s irrigation deficit. This result
highlights a significant trade-off that policymakers need to consider when formulating strategies for
water management in these regions.

Another notable pattern is the relationship between Egypt’s irrigation deficit and Ethiopia’s hydropower.
The slope of -0.794570 and the Pearson correlation coefficient of -0.711667 indicate a strong negative
relation, suggesting that improvements in Egypt’s irrigation deficit are associated with reductions in
Ethiopia’s hydropower generation. This trade-off is critical as it shows the potential conflict between
agricultural water use in Egypt and energy production in Ethiopia.

In contrast, the relationship between Sudan’s irrigation deficit and Ethiopia’s hydropower exhibits a
moderate positive slope of 0.611221 and a Pearson correlation coefficient of 0.585811. This indicates a
potential synergy where policies that improve Sudan’s irrigation deficit could also benefit Ethiopia’s
hydropower generation. This positive relationship suggests that cooperative water management
strategies could be developed to enhance both irrigation and hydropower objectives.

Interestingly, Egypt’s Low HAD objective shows minimal interaction with other objectives. For instance,
the slope of 0.074666 and the Pearson correlation coefficient of 0.063587 between Egypt’s Low HAD and
Sudan’s irrigation deficit suggest that policies affecting Egypt’s Low HAD have little to no impact on
Sudan’s irrigation deficit. This weak relationship indicates that Egypt’s reservoir management can be
somewhat decoupled from Sudan’s irrigation outcomes.

Moreover, Ethiopia’s hydropower objective generally has negative relations with the irrigation deficit
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objectives of both Egypt and Sudan. However, this relationship is more pronounced with Egypt, as
shown by the slope and correlation values. Despite these negative correlations, the spread of deficit
outcomes over a wide range of values for Egypt and Sudan suggests that there might be room for
negotiation and finding mutually acceptable policies.

Although individual color-coded policies might suggest an alignment between Ethiopia Hydropower
and Egypt Low HAD, the overall Pareto-optimal set indicates that these two objectives are uncorrelated.
This lack of correlation is because both objectives are influenced by major decision points like releases
from the GERD and the HAD. The Pareto-approximate set flexibly represents various possibilities
for these decision points, covering scenarios where the GERD releases are not optimal from Egypt’s
perspective. This flexibility points to an internal trade off for Egypt between maintaining reservoir
levels and managing irrigation deficits downstream.

Table 4.1: Regression Slopes between Objective.

Egypt Irr. Deficit Egypt Low HAD Sudan Irr. Deficit Ethiopia Hydropower

Egypt Irr. Deficit 1 -0.522202 -0.943137 -0.79457

Egypt Low HAD -0.522202 1 0.074666 0.01991

Sudan Irr. Deficit -0.943137 0.074666 1 0.611221

Ethiopia Hydropower -0.79457 0.01991 0.611221 1

Table 4.2: Pearson Correlation Coefficient between Objectives.

Egypt Irr. Deficit Egypt Low HAD Sudan Irr. Deficit Ethiopia Hydropower

Egypt Irr. Deficit 1 -0.361773 -0.625568 -0.711667

Egypt Low HAD -0.361773 1 0.063587 0.016251

Sudan Irr. Deficit -0.625568 0.063587 1 0.585811

Ethiopia Hydropower -0.711667 0.016251 0.585811 1

4.2. Uncertainty Analysis
4.2.1. Global Sensitivity Analysis
In table 3, we have the importance of uncertain factors in explaining the variability in outcomes of
interest. These values were calculated using the extra trees algorithm and fitting 1,000 regression trees
for each objective.

The table indicates that the selected policy is influential on the outcome for all objectives, particularly
for Sudan, where it significantly impacts the irrigation deficit. The mean Blue Nile inflow is of utmost
importance for hydroenergy generation in Ethiopia, demonstrating the highest impact among all factors.
Similarly, average inflows of tributaries, especially the Blue Nile, have a substantial effect on the elevation
of the HAD in Egypt.

The irrigation deficit in Egypt is greatly influenced by the demand growth rate, showing the highest
importance among the factors for this objective. Inflow deviations of major tributaries did not turn out
to be impactful for any of the objectives. This lack of impact can be attributed to the high level of storage
and regulation provided by the four reservoirs in the system. The Atbara and White Nile mean inflows
showed minimal importance across the objectives, with the White Nile mean inflow only moderately
affecting the low HAD scenario in Egypt.
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Table 4.3: Feature score of uncertain parameters on each outcome calculated using extra trees algorithm.

Egypt Irr. Deficit Egypt Low HAD Sudan Irr. Deficit Ethiopia Hydropower

Policy 0.18 0.09 0.6 0.17

Atbara Deviation 0 0 0 0

Atbara Mean 0.01 0.04 0 0

Blue Nile Deviation 0 0 0 0

Blue Nile Mean 0.12 0.6 0.3 0.8

White Nile Deviation 0 0 0 0

White Nile Mean 0.06 0.21 0.01 0

Demand Growth 0.59 0.01 0.06 0

4.2.2. Robustness Analysis
We performed the robustness analysis using four robustness metrics with varying risk-averse levels,
Minimax Regret, Percentile-based Skewness, Mean-Variance, and Undesirable Deviations, which was
explained in detail in section 3.4.

The general approach for calculating the robustness scores involves analyzing the performance of
policies across multiple scenarios, considering both the direction of the outcome (whether higher or
lower values are preferable). Echoing the objective trade-offs of the baseline optimization performed
in subsection 4.1, in this robustness analysis we are only analyzing six policies, including 4 extreme
policies for each of the objectives and two compromise policies, absolute and percentile.

This decision is made to streamline the analysis due to time constraints and the scope of the thesis. By
focusing on just six policies, including the extreme policies for each objective and two compromise
policies, we can effectively demonstrate the core argument of this study. The primary goal is not to
exhaustively analyze every possible policy but rather to illustrate how different robustness metrics can
lead to the identification of different policies as the most robust. This approach allows us to clearly show
that the choice of robustness metric significantly influences which policy is considered most robust,
thereby proving the concept without needing to analyze the entire policy set.

The directions of the objectives are carefully considered in each robustness analysis—whether a lower or
higher value is preferred is directly integrated into the calculations. Specifically, for objectives such as
Egypt Irrigation, Egypt Low HAD, and Sudan Irrigation, lower values are preferred, which means that
better outcomes are achieved when the values are minimized. In contrast, for Ethiopia Hydropower,
higher values are desired, as greater hydropower output represents a better outcome.

This difference in direction is reflected in the mathematical formulation used in the robustness
calculations. Take, for example, the Minimax Regret analysis: when calculating the regret score for
a policy concerning Ethiopia Hydropower (where higher values are better), the regret is determined
by comparing the maximum possible hydropower output across all policies with the actual output
achieved by the policy in question. The regret is calculated as the difference between these two values. A
regret score of zero, in this context, indicates that the policy achieved the best possible outcome, leaving
no room for regret. Conversely, for objectives where lower values are preferred, such as Egypt Irrigation,
the calculation is reversed. Here, the regret is calculated by comparing the minimum possible value
with the value achieved by the policy. Again, a regret score of zero indicates that the policy achieved
the optimal outcome, minimizing regret.

This approach applies consistently across all robustness analyses. In the Undesirable Deviations
analysis, deviations are penalized differently based on whether lower or higher values are preferred.
For lower-is-better objectives, deviations above the median are penalized, while for higher-is-better
objectives like Ethiopia Hydropower, deviations below the median are penalized.
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In the Percentile-Based Skewness analysis, the skewness score is adjusted for the direction of preference.
For lower-is-better objectives, the score is inverted to favor outcomes clustered towards lower values,
while for higher-is-better objectives, positive skewness is preferred.

In the Mean-Variance analysis, the robustness score is also adjusted based on the objective’s direction.
For lower-is-better objectives, the score is calculated by multiplying the mean by the standard deviation,
favoring low and consistent outcomes. For higher-is-better objectives, the score is calculated by dividing
the mean by the standard deviation, rewarding high and stable outcomes.

Minimax Regret
The minimax regret scores provide a measure of the worst-case regret that could occur for each policy
across the different outcomes. The regret values represent the difference between the best possible
outcome and the actual outcome achieved by each policy under the worst-case scenario. The goal in
minimax regret analysis is to minimize this worst-case regret.

Table 4.4: Minimax Regret Scores of Policies on Each Objectives.

Policy Egypt Irr. Egypt Low HAD Sudan Irr. Ethiopia Hydropower

Best Egypt HAD 2.79 0.03 4.54 4.23

Best Egypt Irr. 1.45 0.75 4.52 4.47

Best Ethiopia 
Hydropower

12.79 0.86 2.44 0

Best Sudan Irr. 4.99 0.72 0 3.42

Compromise: Absolute 3.8 0.52 4.03 1.5

Compromise: Percentile 4.38 0.48 3.41 1.71

The following table provides a clear indication of which policies perform best across the different
objectives, considering the worst-case regret scenario for each. The analysis shows that:

• Egypt Irrigation: The “Best Egypt Irrigation” policy performs best with the lowest regret score
of 1.45, but it still has a non-zero regret, indicating that even in its optimal objective, it does not
eliminate regret.

• Egypt Low HAD: The “Best Egypt HAD” policy has the lowest regret score of 0.03, reflecting its
strong performance in this objective. However, like Egypt Irrigation, it is not entirely free of regret.

• Sudan Irrigation: The “Best Sudan Irrigation” policy has a perfect score of 0, meaning it completely
minimizes regret for this objective.

• Ethiopia Hydropower: The “Best Ethiopia Hydropower” policy also achieves a perfect score of 0,
indicating that it fully meets the objective without any regret.

While we would intuitively expect the extreme policies to perform best in their respective objectives, the
presence of residual regret scores in both the "Best Egypt Irrigation" and "Best Egypt HAD" policies
suggests that these policies, while optimal in their target objectives, do not eliminate regret. This residual
regret implies that there may be competing factors or trade-offs within the same objective, which prevent
these policies from being perfect. For instance, the "Best Egypt Irrigation" policy, although focused on
minimizing irrigation deficits, still leaves room for improvement when compared to other scenarios that
may have performed slightly better under certain conditions.

Interestingly, the Sudan Irrigation and Ethiopia Hydropower objectives have policies ("Best Sudan
Irrigation" and "Best Ethiopia Hydropower") that achieve a regret score of 0, indicating that these
objectives can be fully optimized without any competing trade-offs. This suggests that the goals for
Sudan Irrigation and Ethiopia Hydropower are more straightforward and less influenced by conflicting
factors, making it easier for these policies to perform without regret.

Another point of reflection is the performance of the compromise policies. Although these policies are
designed to balance across multiple objectives, their regret scores indicate that they perform reasonably



4.2. Uncertainty Analysis 26

well but do not excel in any single objective. This reflects the inherent trade-off in compromise policies:
they aim to balance competing interests but may not fully satisfy any objective as well as the extreme
policies. Finally, the fact that even the best policies for Egypt Low HAD and Egypt Irrigation still
show residual regret suggests while these policies are optimized for one aspect of the objective, other
dimensions (perhaps related to environmental or social factors) are still not fully addressed, leaving
room for regret.

Undesirable Deviations
The Undesirable Deviations analysis evaluates how much a policy deviates from a target value, which
in this case is the median (q50) of each outcome across all scenarios, following the reference target from
Kwakkel et al. (2016). This method penalizes deviations from this target, but the nature of the penalty
depends on the direction of the objective—whether higher or lower values are preferred.

Table 4.5: Undesirable Deviations Scores of Policies on Each Objectives.

Policy Egypt Irrigation Deficit Egypt Low HAD Sudan Irrigation Deficit Ethiopia Hydropower

Best Egypt HAD 91631.99 971.63 2695.7 12704.9

Best Egypt Irr. 94634.69 486.27 2325.8 9019.21

Best Ethiopia 
Hydropower

146080.6 6.61 1083.89 15133.7

Best Sudan Irr. 115002.6 438.52 13.1 10867.1

Compromise: Absolute 108564.5 1019.17 4095.77 15196.5

Compromise: Percentile 112331.8 1059.16 2483.09 16698.4

The following table provides a clear indication of which policies perform best across the different
objectives. The analysis shows that:

• Egypt Irrigation Deficit: The “Best Egypt HAD” policy shows the least undesirable deviations,
making it the best performer for this objective.

• Egypt Low HAD: The “Best Ethiopia Hydropower” policy has the lowest deviations, which is
counterintuitive since this policy is not focused on this objective.

• Sudan Irrigation Deficit: The “Best Sudan Irrigation” policy performs the best, aligning with
expectations.

• Ethiopia Hydropower: The “Best Egypt Irrigation” policy surprisingly shows the lowest deviations,
despite not being directly targeted at maximizing hydropower output.

The results reveal several interesting and somewhat unexpected findings. First, although we would
typically expect the extreme policies to minimize undesirable deviations in their respective objectives,
this is not always the case. For instance, the "Best Ethiopia Hydropower" policy, which we might expect
to perform well in the Ethiopia Hydropower objective, incurs higher deviations compared to the "Best
Egypt Irrigation" policy. Similarly, for Egypt Low HAD, the "Best Ethiopia Hydropower" policy achieves
the lowest deviation, despite its primary focus being on a different objective.

These unexpected outcomes suggest that the policies optimized for a specific objective do not necessarily
align perfectly with the median-based target (q50), leading to higher deviations. This may be due to
the inherent variability in outcomes across different scenarios, where the median value may not fully
represent the policy’s strength in its intended objective.

This observation raises the possibility that selecting a different target than q50 might yield more
insightful or favorable results. For example, if the target were set based on a different percentile (such
as the 75𝑡ℎ or 25𝑡ℎ), or even an average value, it could potentially reduce the apparent deviations and
better reflect the policy’s true performance relative to its intended goal.

The high scores across the board indicate that there is significant variability and deviation from the
median target values, reflecting the challenges in achieving consistently optimal outcomes across all
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scenarios. This variability shows the complexity of the problem space, where achieving a balance
between different objectives is difficult, particularly when the policies are tailored to extreme outcomes
rather than compromise solutions.

The compromise policies, both “Absolute” and “Percentile” generally perform better than the extreme
policies in some objectives but worse in others. This is expected as they are designed to balance
performance across multiple objectives rather than excelling in any single one.

Percentile Based Skewness
The Percentile-Based Skewness analysis offers insights into how the distribution of outcomes skews
in relation to the desired objectives, where we consider both the direction of preference (whether a
higher or lower value is better) and the shape of the distribution. The skewness score indicates whether
outcomes are skewed towards more favorable or less favorable results compared to the median (q50),
with a positive skewness indicating that outcomes are clustered towards higher values, and a negative
skewness indicating clustering towards lower values.

Table 4.6: Percentile Based Skewness Scores of Policies on Each Objectives.

Policy Egypt Irrigation Deficit Egypt Low HAD Sudan Irrigation Deficit Ethiopia Hydropower

Best Egypt HAD -0.32 -1 0.18 0.21

Best Egypt Irr. -0.32 -0.2 0.14 0.27

Best Ethiopia 
Hydropower

-0.14 0.86 -0.33 -0.01

Best Sudan Irr. -0.27 -0.14 -0.99 0.28

Compromise: Absolute -0.32 -0.81 -0.52 0.04

Compromise: Percentile -0.28 -0.87 -0.71 0.01

The analysis shows that:

• Egypt Irrigation Deficit: The policy “Best Egypt Irr” has a skewness score of -0.32, indicating
that outcomes tend to be better (lower) than the median. Similarly, “Best Egypt HAD”, and
“Compromise: Absolute” also shows a skewness score of -0.32, reflecting a similar distribution.
The negative skewness here makes sense since the objective is to minimize the irrigation deficit.
Both policies show a tendency towards achieving lower (better) outcomes than the median.

• Egypt Low HAD: The policy "Best Egypt HAD" achieves a skewness score of -1, which is the most
negative across all policies and objectives. This indicates that this policy strongly favors outcomes
that are better (lower) than the median, aligning well with the minimization goal.

• “Best Sudan Irr” achieves a skewness score of -0.99, indicating a strong tendency towards better
(lower) outcomes than the median, which aligns with the objective of minimizing irrigation
deficits.

• The objective is to maximize hydropower, and “Best Sudan Irr” shows the most favorable skewness
score (0.28), indicating a tendency towards higher (better) outcomes than the median. “Best
Ethiopia Hydropower” shows a slightly negative skewness score (-0.01), suggesting that this policy
doesn’t significantly outperform the median and might even perform slightly worse, which is
counterintuitive given that it’s optimized for this very objective.

The most notable counterintuitive result is seen in the Ethiopia Hydropower objective. The policy
specifically optimized for maximizing hydropower (“Best Ethiopia Hydropower”) does not exhibit
the highest positive skewness, and instead, “Best Sudan Irr” performs better according to this metric.
This might be due to the method of calculation, where the skewness is influenced by the range and
distribution of outcomes.

Best Ethiopia Hydropower, for the Ethiopia Hydropower objective has a slightly negative skewness
score of -0.01, this indicates that the outcomes are more evenly distributed around the median or even
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slightly skewed towards lower values, which is not ideal for a maximization objective. It implies that the
policy might not be achieving high outputs as frequently as expected. If the “Best Ethiopia Hydropower”
policy produces more consistent but not necessarily high outcomes, it could lead to a skewness score
that doesn’t reflect high performance relative to the 90𝑡ℎ percentile.

The compromise policies show varied performance. For instance, “Compromise: Percentile” generally
exhibits negative skewness across most objectives, which is less favorable for objectives where higher
values are desired, such as Ethiopia Hydropower. On the other hand, it performs reasonably well
(though not optimally) for minimization objectives. The skewness scores for compromise policies
indicate that they tend to achieve outcomes that are more balanced but not necessarily extreme or highly
favorable, which aligns with their design as compromise solutions rather than objective-maximizing
strategies.

Mean-Variance
The mean-variance analysis provides a measure of robustness by considering both the average per-
formance of a policy and the variability of that performance across different scenarios. The goal is to
identify policies that not only perform well on average but also do so consistently, with lower variability
being preferable for minimization objectives and higher consistency (low variability relative to high
mean performance) being preferable for maximization objectives.

Table 4.7: Mean-Variance Scores of Policies on Each Objectives.

Policy Egypt Irrigation Deficit Egypt Low HAD Sudan Irrigation Deficit Ethiopia Hydropower

Best Egypt HAD 26 0.09 2.86 4.27

Best Egypt Irr. 25.19 0.15 2.65 4.51

Best Ethiopia 
Hydropower

87.33 0.22 0.45 6.18

Best Sudan Irr. 40.78 0.15 0 4.28

Compromise: Absolute 33.51 0.13 0.91 5.45

Compromise: Percentile 37.3 0.12 0.41 5.35

This analysis shows that:

• Egypt Irrigation Deficit: “Best Egypt Irr” policy scores the best in this objective. This is the
expected outcome since this policy is specifically optimized for minimizing the Egypt Irrigation
Deficit. The low mean-variance score indicates that this policy performs consistently well across
scenarios, maintaining low irrigation deficits with relatively low variability.

• Egypt Low HAD: The scores are very low across all policies, with the “Best Egypt HAD” policy
scoring 0.09. As expected, the policy optimized for Egypt Low HAD performs best for this
objective. The very low mean-variance score suggests that this policy achieves low HAD levels
consistently, with minimal variability across scenarios.

• Sudan Irrigation Deficit: The “Best Sudan Irr” policy achieves a score of 0, indicating it perfectly
minimizes the deficit with no variability across scenarios. This makes it the ideal policy for this
objective, as expected.

• Ethiopia Hydropower: The “Best Ethiopia Hydropower” policy scores 6.18, which is the highest
among all policies for this objective. This score reflects a high average hydropower output
combined with low variability, making it the best policy for maximizing hydropower production.

The score for Best Ethiopia Hydropower is the highest because, for the Ethiopia Hydropower objective,
the goal is to maximize the outcome rather than minimize it. In the mean-variance analysis, when
higher values are preferred (as in the case of maximizing hydropower output), the robustness score is
calculated by dividing the mean by the standard deviation. A higher score indicates a better policy
because it reflects a high average performance (mean) with relatively low variability (standard deviation).
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This is the opposite of minimization objectives, where lower scores are better because they indicate low
outcomes with low variability. Thus, the highest score for Best Ethiopia Hydropower signifies that this
policy achieves the best balance of high hydropower output with stable performance across scenarios.

Both compromise policies (Absolute and Percentile) do not perform best in any of the individual
objectives. Their scores are generally higher than the extreme policies but still reflect a balance between
mean performance and variability. For example, "Compromise: Absolute" has a score of 33.51 for Egypt
Irrigation Deficit, which is higher than the optimized policy but still represents a reasonable balance
between different objectives.

What is noticed with this robustness metrics, is all extreme policies performs as expected, meaning the
extreme policies designed to optimize specific objectives generally perform best for those objectives.
This is intuitive as they are tailored to minimize or maximize the respective outcomes.

Comparing Robustness Metrics
In this chapter, we take a close look at the different robustness metrics used in this study to assess how
well policies perform across various scenarios. Our goal is to see how each metric affects the ranking of
policies and to understand the trade-offs that come with each approach. By doing this, we aim to shed
light on how different metrics can lead to different conclusions about which policies are the most robust.

We start by providing a clear summary of the rankings for each policy, based on the robustness metrics
we’ve chosen—Minimax Regret, Undesirable Deviations, Percentile-Based Skewness, and Mean Variance.
In these rankings, a score of 1 represents the best performance, while a score of 6 represents the worst.

Table 4.8: Relative Robustness Score Rankings based on Minimax Regret Metrics.

Policy Egypt Irr. Egypt Low HAD Sudan Irr. Ethiopia Hydropower

Best Egypt HAD 2 1 6 5

Best Egypt Irr. 1 5 5 6

Best Ethiopia 
Hydropower

6 6 2 1

Best Sudan Irr. 5 4 1 4

Compromise: Absolute 3 3 4 2

Compromise: Percentile 4 2 3 3

Table 4.9: Relative Robustness Score Rankings based on Undesirable Deviation Metrics.

Policy Egypt Irr. Egypt Low HAD Sudan Irr. Ethiopia Hydropower

Best Egypt HAD 1 5 5 3

Best Egypt Irr. 2 4 4 1

Best Ethiopia 
Hydropower

6 1 3 2

Best Sudan Irr. 5 3 1 4

Compromise: Absolute 3 6 6 5

Compromise: Percentile 4 2 2 6

The comparison of the rankings across different robustness metrics reveals that the identification of the
“best” policy is far from straightforward. The rankings show considerable variation depending on the
robustness metric applied, highlighting the complexity and trade-offs inherent in each approach.

It is evident that each robustness metric can lead to different conclusions about which policy is the
most robust. For instance, using the Minimax Regret metric, compromise policies like “Compromise:
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Table 4.10: Relative Robustness Score Rankings based on Percentile-Based Skewness Metrics.

Policy Egypt Irr. Egypt Low HAD Sudan Irr. Ethiopia Hydropower

Best Egypt HAD 1 1 5 5

Best Egypt Irr. 1 4 4 2

Best Ethiopia 
Hydropower

4 3 6 6

Best Sudan Irr. 3 5 1 1

Compromise: Absolute 1 3 3 3

Compromise: Percentile 2 2 2 4

Table 4.11: Relative Robustness Score Rankings based on Mean-Variance Regret Metrics.

Policy Egypt Irr. Egypt Low HAD Sudan Irr. Ethiopia Hydropower

Best Egypt HAD 2 1 5 5

Best Egypt Irr. 1 4 4 4

Best Ethiopia 
Hydropower

6 6 3 1

Best Sudan Irr. 5 5 1 3

Compromise: Absolute 3 3 2 2

Compromise: Percentile 4 2 2 3

Absolute” and “Compromise: Percentile” tend to perform well across the board, suggesting that these
policies strike a balance across various objectives. However, when considering Undesirable Deviations,
“Best Egypt Irr” emerges as the top performer, particularly for the “Ethiopia Hydropower” objective,
which is not its primary focus.

Interestingly, the Percentile-Based Skewness metric reveals a surprising outcome where extreme policies,
which are typically expected to excel in their respective objectives, sometimes rank poorly. For example,
“Best Ethiopia Hydropower” which should theoretically perform best for the “Ethiopia Hydropower”
objective, ranks worst for that metric under Percentile-Based Skewness.

To allow for better comparison and a clearer overview of the performance across different robustness
metrics, we next aggregate the scores. This aggregation aims to provide a consolidated ranking, helping
to identify which policies consistently perform well—or poorly—across the various robustness metrics.
By summing the relative rankings, we can determine which policies are the most robust overall according
to each metric. This approach enables us to better understand the trade-offs and see which policies offer
the best balance across different robustness considerations.

To aggregate the scores, we summed the relative rankings each policy received across all robustness
metrics. For each policy, the rankings from Minimax Regret, Undesirable Deviations, Percentile-Based
Skewness, and Mean-Variance were added together. Importantly, since the rankings are assigned on a
scale from 1 to 6—where 1 indicates the best performance and 6 the worst—the policy with the lowest
total score is considered the most robust overall. We’ll present these aggregated rankings in a parallel
coordinate plot to visually depict how each policy performs across the different robustness metrics. This
visualization allows us to clearly see the trade-offs between policies and identify which ones consistently
rank well across multiple metrics, making it easier to pinpoint the most balanced and robust policies.

The parallel coordinate plot and the aggregated rankings provide a clear illustration of how different
robustness metrics yield distinct "best" policies. Again, each robustness metric focuses on different
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Figure 4.3: Parallel coordinates plot of Aggregated Robustness Ranking Comparison.

aspects of performance, leading to varying conclusions about which policy is the most robust overall.
The best policies for each metrics are:

• Minimax Regret aims to minimize the worst-case scenario. “Compromise: Absolute” and
“Compromise: Percentile” is identified as the most robust policies, using this metric.

• Undesirable Deviations penalizes large deviations from the median outcome, finds “Best Egypt
Irr” to be the most robust policy.

• Percentile-Based Skewness rewards policies with favorable outcome distributions, surprisingly
highlights “Best Sudan Irr” and “Compromise: Percentile” as the best options.

• Mean Variance metric seeks a balance between mean performance and variability, favors “Best
Sudan Irr”.

From our findings, there are several interesting insights. One of them is how “Compromise Absolute”
and “Compromise: Percentile” policies perform well under the Minimax Regret metric despite not
being tailored to excel in any single objective. This suggests that these compromise solutions effectively
balance trade-offs, minimizing the worst-case scenario across multiple objectives. Minimax Regret
metric values policies that avoid the worst possible outcomes, which explains why compromise solutions
come out on top.

We also see that there’s two policies identified to be the best for the Percentile Based Skewness, namely
“Best Sudan Irr” and “Compromise: Percentile”. This metric rewards policies that have a favorable
outcome distribution—those that are skewed toward better outcomes—rather than those that simply
perform well on average. This can lead to unexpected results, where policies that are extreme in their
focus may perform poorly under this metric because their outcome distributions are less favorable or
more variable.

Undesirable Deviations penalizes large deviations from a target, which is why “Best Egypt Irr” is seen
as robust—it performs consistently close to the median outcome, avoiding large swings that could be
penalized by this metric. Policies that have more variability, like those designed to excel in a specific
objective, may be seen as less robust under this metric because they are more likely to have larger
deviations from the median.

Mean Variance seeks a balance between average performance and variability. Policies like “Best Sudan
Irr” perform well here because they maintain a good balance between achieving solid average results
and keeping variability low. This metric is less forgiving of policies with high variance, which may
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explain why more extreme policies do not perform as well.

“Best Ethiopia Hydropower” stands out in some metrics as not performing as expected. This could
be due to its extreme focus on a single objective, which leads to higher variability and less favorable
outcome distributions in the eyes of metrics that value consistency or favorable skewness. On the other
hand, “Best Egypt HAD” is relatively stable across most metrics but never emerges as the top policy in
any metric.

We should also reflect on the method of aggregating rankings by summing them. This provides a
straightforward way to compare policies across multiple metrics, but it also has limitations. This
approach assumes that all metrics are equally important and that they can be directly compared, which
might not always be the case. Furthermore, this method may obscure nuances in how policies perform
under different metrics, particularly if a policy scores well in one metric but poorly in another.

Comparing Robustness Metrics and Risk-Aversion Level
It is evident that the robustness metrics embody varying levels of risk aversion, as discussed in Chapter
3.4.2, and this is clearly reflected in the results. Percentile-Based Skewness, positioned at the lower end
of the risk aversion spectrum, calculates the skewness of outcomes by comparing extreme values (such
as the 90𝑡ℎ and 10𝑡ℎ percentiles) with the median (50𝑡ℎ percentile). These metric rewards policies where
the distribution of outcomes is skewed toward better results—those that exhibit favorable high-end
outcomes, even if they also carry the possibility of less favorable outcomes. “Best Sudan Irr” and
“Compromise: Percentile” were identified as the top-performing policies under this metric. These
policies are more tolerant of risk, as they leverage the potential for high rewards, even at the cost of some
risk. The focus on extremes allows for greater risk-taking, which might be more appropriate in scenarios
where decision-makers are willing to accept variability for the chance of better-than-average results.

On the opposite end of the spectrum, Minimax Regret represents the highest level of risk aversion. This
metric is designed to minimize the worst possible outcomes, specifically the maximum regret a decision-
maker might experience if a chosen policy performs poorly compared to the best-performing policy in
any given scenario. The Minimax Regret results favored “Compromise: Absolute” and “Compromise:
Percentile” which suggests that these policies are effective at avoiding the worst-case scenarios across
multiple objectives. This highly conservative approach prioritizes stability and predictability, often at
the expense of higher potential gains.

The other metrics, such as Undesirable Deviations and Mean Variance, fall somewhere in between
these two extremes in terms of risk aversion. Undesirable Deviations penalizes policies that deviate
significantly from a target value, which in our analysis was set as the median outcome (q50). For instance,
“Best Egypt Irr” was identified as the most robust under this metric, as it consistently performed close
to the median, avoiding large deviations. Decision-makers have the flexibility to choose this target
and adjusting it could yield different results. If a more aggressive target (like the 75𝑡ℎ percentile) were
chosen, policies aiming for higher-than-average performance might be rewarded more, while those that
focus on stability around the median might be penalized.

Mean Variance seeks to balance average performance with the variability of outcomes, offering a
moderate level of risk aversion. It penalizes policies with high variability, even if their average
performance is strong. In our analysis, “Best Sudan Irr” was favored under this metric because it
maintained a good balance between achieving solid average results and keeping variability low. This
approach is less forgiving of policies with high variance.

4.3. Physical System Implications
The previous robustness analysis identified the best policies for each metric. We now analyze the
physical system implications of these top-performing policies. The top robust policies analysed include:

• Minimax Regret: “Compromise: Absolute” and “Compromise: Percentile”
• Undesirable Deviations: “Best Egypt Irr”
• Percentile-Based Skewness: “Best Sudan Irr” and “Compromise: Percentile”
• Mean Variance: “Best Sudan Irr”
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We will assess how these policies affect key physical parameters such as reservoir water levels, irrigation
deficits, and hydropower generation.

4.3.1. Compromise: Absolute Policy
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Figure 4.4: GERD Performance under Compromise: Absolute Policy.

Under the “Compromise: Absolute Threshold” policy, the GERD demonstrates effective management,
as it is able to align releases with the inflow from the Blue Nile. The GERD releases are generally
lower than the inflow during peak months, suggesting that the dam is effectively storing excess water
that would be critical for maintaining operational flexibility. The GERD level graph supports this
observation, showing expected seasonal fluctuations with water levels decreasing during dry periods
and recovering during wet seasons. These fluctuations remain well within the dam’s operational range.
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Figure 4.5: HAD Performance under Compromise: Absolute Policy.

While the HAD’s releases under this policy track closely with the inflows, the water levels show a steady
decline over time. This indicates that the dam is consistently releasing more water than it is receiving,
which could potentially lead to long-term sustainability issues, especially during prolonged dry periods.
The HAD levels consistently approach and even goes beyond the minimum operational level, which
could be a red flag for future water security.

For the Gezira irrigation system, the policy shows that irrigation demands are mostly met during peak
flow periods. However, there is significant variability in the received flow, particularly during non-peak
months, which could indicate difficulties in maintaining consistent irrigation supply. Looking at Egypt’s
overall performance under this policy, the demanded flow is generally met during key periods, but there
are noticeable discrepancies during the dry season when the received flow falls short of the demand.

4.3.2. Compromise: Percentile Policy
The GERD under the Compromise: Percentile Threshold policy demonstrates a more conservative
approach compared to the Absolute Threshold. The releases from GERD are closely aligned with the
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Figure 4.6: Gezira and Egypt Water Levels Performance under Compromise: Absolute Policy.
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Figure 4.7: GERD Performance under Compromise: Percentile Policy.

Blue Nile inflow, particularly during peak flow months. The GERD release remains lower than the
inflow during most months, indicating successful water storage, particularly during the high inflow
months of July and August. However, the releases still ensure downstream demands are met without
over-releasing water. The GERD level shows significant fluctuations, but it maintains a stable storage
level over time.
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Figure 4.8: HAD Performance under Compromise: Percentile Policy.

The HAD releases are generally aligned with the inflow, but with noticeable fluctuations. These
fluctuations are more pronounced during off-peak months, suggesting that the dam may struggle with
maintaining a steady release when inflows are low. This is further supported by the gradual decline in
the HAD level over time, which is consistent with a pattern of releasing more water than is received.
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Figure 4.9: Gezira and Egypt Water Level Performance under Best Egypt Irrigation Policy.

The Gezira system’s performance under this policy is marked by significant variability in the received
flow compared to the demanded flow. During peak months, the demands are largely met, but during
off-peak periods, there is a substantial shortfall. This inconsistency could lead to challenges in meeting
irrigation demands consistently throughout the year. For Egypt overall, the demanded flow is largely
met during critical months under the Compromise: Percentile Threshold policy. However, similar to
the Gezira system, there is noticeable variability and occasional shortfalls during off-peak months.

4.3.3. Best Egypt Irrigation
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Figure 4.10: GERD Performance under Best Sudan Irrigation Policy.

Under the Best Egypt Irrigation, the GERD appears to perform effectively, particularly in managing
its releases in alignment with the Blue Nile inflow. The GERD releases are generally lower than the
inflow, indicating that the dam is successfully storing water during peak inflow months. The GERD
level graph further supports this, showing significant seasonal fluctuations where water levels decrease
during the dry season and rise during the wet season. Importantly, these fluctuations are well within
the operational range, suggesting that the dam is managing its storage efficiently, maintaining sufficient
reserves while also providing necessary releases downstream.

However, the High Aswan Dam (HAD) displays a more concerning trend. Although the HAD’s releases
track closely with inflows, particularly during peak months, the overall level of the dam shows a gradual
decline over time. This decline suggests that the dam is consistently releasing more water than it is
receiving, potentially leading to long-term issues in maintaining sufficient water levels. This trend, if
continued, could jeopardize Egypt’s water security, particularly during dry years when inflows are
already reduced.

The Gezira irrigation system’s performance is relatively stable, with irrigation demands largely met
during peak flow periods. However, there is noticeable variability in the received flow, indicating
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Figure 4.11: HAD Performance under Best Egypt Irrigation Policy.
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Figure 4.12: Gezira and Egypt Water Level Performance under Best Egypt Irrigation Policy.

challenges in consistently meeting irrigation demands, especially during off-peak periods. Similarly,
Egypt’s overall water demand is mostly met during crucial months, but there are instances, particularly
during the dry season, where the received flow falls short of the demand. This shortfall could negatively
impact agricultural productivity and water availability downstream.

4.3.4. Best Sudan Irrigation Policy
The Best Sudan Irrigation Policy demonstrates effective management of the GERD, particularly in
aligning water releases with Sudan’s irrigation needs, as expected.
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Figure 4.13: GERD Performance under Best Sudan Irrigation Policy.

The GERD’s release is carefully controlled and remains below the inflow levels during peak periods,
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suggesting that the reservoir is prioritizing water retention during times of high inflow. This strategy
ensures that the GERD operates well within its turbine capacity. The seasonal fluctuations in the GERD’s
water level are as expected, with increases during the wet season and decreases during the dry season.
Importantly, the levels remain within safe operational limits.

However, while the GERD performance is satisfactory, the policy raises concerns with the HAD
operation.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Month

1000

1500

2000

2500

3000

3500

4000

4500

Fl
ow

 [m
3/

se
c]

HAD Release
Inflow
Max Turbine Release

Jan-2022 Jan-2027 Jan-2032 Jan-2037 Jan-2042
Months

150

155

160

165

170

175

180

Le
ve

l (
m

as
l)

HAD Level
Min/Max Level
Minimum Operational Level

Figure 4.14: HAD Performance under Best Sudan Irrigation Policy.

The HAD’s water levels show a steady and concerning decline over time, which suggests that more
water is being released than is being stored. This trend poses a serious risk to Egypt’s long-term water
security. The discrepancy between inflow and release during peak periods at the HAD further suggests
potential inefficiencies in water resource management. The HAD’s water levels show a steady and
concerning decline over time, which suggests that more water is being released than is being stored.
This trend poses a serious risk to Egypt’s long-term water security. The discrepancy between inflow
and release during peak periods at the HAD further suggests potential inefficiencies in water resource
management.

For Gezira, while irrigation demands are met especially during peak flow periods, the significant
variability in the received flow suggests inconsistencies that could impact agricultural productivity,
particularly during off-peak times. Likewise, with Egypt, while the water demands are mostly met,
there are periods where the received flow falls short especially during dry season that could have effects
on water availability downstream.
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Figure 4.15: Gezira and Egypt Water Level Performance under Best Sudan Irrigation Policy.



5
Discussion

5.1. Robustness Metrics
In this discussion, we reflect on the robustness analysis conducted using four distinct metrics—Minimax
Regret, Percentile-Based Skewness, Mean-Variance, and Undesirable Deviations—each embodying
varying levels of risk aversion and providing different lenses through which to evaluate policy
performance. Our findings confirm that the choice of robustness metric has on identifying the most
robust policies, ultimately leading to different “best” solutions depending on the metric employed.

The robustness metrics that we used offers each differing definition of what it means for a policy to be
“robust”, directly reflected in the way scores are calculated.

1. Minimax Regret focuses on minimizing the worst-case scenario by comparing the maximum regret
a policy might incur against the best possible outcome across scenarios. This metric is inherently
conservative, representing a high level of risk aversion. It aims to identify policies that avoid the
most unfavorable outcomes.

2. Percentile-Based Skewness examines the distribution of outcomes relative to the median, favoring
policies that skew towards better results. This metric operates at the lower end of the risk aversion
spectrum, as it rewards policies that achieve high-end outcomes, even if they involve some risk.

3. Mean-Variance seeks to balance the average performance of a policy with the variability of that
performance across scenarios. It represents a moderate level of risk aversion, penalizing policies
that, despite having strong average performance, shows high variability.

4. Undesirable Deviations penalizes policies that deviate significantly from a target value, typically
the median outcome. This metric is less extreme in its risk aversion compared to Minimax Regret,
yet it still favors policies that perform consistently close to a desired target, minimizing large
difference to its target.

The analysis indeed reveals that the choice of robustness metric significantly influences which policies
are considered the most robust. This means that it is important for decision-makers to carefully consider
their priorities and risk tolerance when selecting a metric and should take a multi-metric approach into
selecting which policy is ultimately the most robust.

These findings confirm the presence of inter-utility of robustness, as previously discussed in Chapter
3.4.1 that no single policy will emerge as the most robust across all scenarios, thus it is inherently
multi-dimensional and depends on the specific context and the decision-maker’s preferences.

It should also be noted that some robustness metrics allows decision makers to choose their target,
like Undesirable Deviations, that we chose. The selection of the target value, penalizing policies that
deviates significantly from this, most definitely affects the outcome of the robustness score calculation.
If a more aggressive target (like the 75𝑡ℎ percentile) were chosen, policies aiming for higher-than-average
performance might be rewarded more, while those that focus on stability around the median might
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be penalized. This also applies in other metric that lets decision makers set their own target such as
Hurwicz Optimism-Pessimism Rule.

Clearly, for decision making in uncertainty, the choice of the robustness metrics and the eventual policies
that is chosen will have tangible implication on the physical system. For instance, the Compromise:
Absolute policy, identified as robust by the Minimax Regret metric, effectively manages GERD’s water
storage but leads to a concerning decline in HAD water levels, potentially threatening Egypt’s long-term
water security. In contrast, the Best Sudan Irrigation policy, favored by both Percentile-Based Skewness
and Mean Variance metrics, shows effective water management for Sudan but similarly results in
unsustainable water release patterns from the HAD, raising similar concerns for Egypt.

Ultimately, this analysis reinforces the concept that robustness is inherently multi-dimensional and
context dependent. The choice of metric should be aligned with the specific goals and risk preferences
of the decision-making body. Additionally, it emphasizes the need for a multi-metric approach in
multi-objective optimization to capture the full spectrum of potential outcomes and ensure a well-
rounded decision-making process. The findings provide valuable insights for the scientific community,
suggesting that the use of a variety of robustness metrics can offer a more comprehensive understanding
of policy impacts, particularly in complex systems like water resource management.

5.2. Limitations
5.2.1. Conceptual Limitations
The conceptual framework of this study presents several important limitations that could affect the
robustness and relevance of the findings. One major limitation is the assumption of equal weights for all
objectives in the analysis. This assumption does not necessarily reflect the diverse priorities, preferences,
and needs of different stakeholders within the Nile River Basin, which could vary significantly between
and within countries. By assuming equal importance across objectives, the analysis might overlook the
fact that some stakeholders might prioritize certain outcomes over others, such as agricultural water use
versus hydropower generation. This could lead to policy recommendations that are not fully aligned
with the actual needs and priorities of those affected by water management decisions in the region.

The study’s scope is also a notable limitation, as it focuses only on a portion of the Nile River Basin,
without fully encompassing the entire region that spans 11 countries. This narrower focus means that
many important stakeholder activities and interests are not incorporated into the analysis. For instance,
water diversion practices and the impact of upstream activities in other parts of the basin were only
superficially modeled, potentially missing critical interactions that could influence the system’s overall
dynamics. A more comprehensive scope that includes these broader interactions and activities would
likely enhance the accuracy and relevance of the system modeling.

Moreover, the study aggregates objectives within countries from a utilitarian perspective, which can
mask the diverse interests and needs within each nation. This approach may fail to adequately represent
specific groups, such as local communities and ecosystems that depend on water regimes. For example,
the regulated release regime of the Grand Ethiopian Renaissance Dam (GERD) could adversely impact
Sudan’s flood-recession agriculture, a critical livelihood for many in the region. The study’s aggregation
approach does not fully account for these localized impacts, potentially leading to recommendations
that might be beneficial on a national scale but harmful to certain communities or ecosystems.

Another conceptual limitation is the lack of consideration for political stability and potential conflicts
within the Nile Basin countries. Political instability and conflicts can severely disrupt water management
agreements and cooperation efforts, affecting the successful implementation of proposed policies. The
analysis assumes a stable political environment, which may not be realistic in a region characterized
by complex geopolitical tensions and frequent disputes over water rights. By not incorporating these
factors, the study may overestimate the feasibility and sustainability of the proposed water management
strategies.
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5.2.2. Methodological Limitations
The study presents several methodological limitations that could potentially influence the robustness
and accuracy of the findings. One of the primary limitations is the reliance on specific robustness
metrics and modeling approaches, which may introduce biases and restrict the full exploration of
variability and uncertainty within the system. The choice of robustness metrics, such as Minimax
Regret, Percentile-Based Skewness, Mean-Variance, and Undesirable Deviations, inherently shapes the
outcomes and may not capture all dimensions of robustness. Each metric defines robustness differently,
which can skew the results towards certain policy preferences that may not fully align with the overall
system goals.

A key methodological constraint arises from the use of Latin Hypercube Sampling (LHS) to select the
best robust solutions from extreme best solutions and their compromise solutions. While LHS is a
useful technique for reducing computational load by efficiently sampling the input space, it also limits
the exploration of the solution space. By focusing on specific policies (extreme policies and compromise
policies), potentially more robust solutions may be overlooked, particularly those that fall outside the
preselected sampling range.

For calculating the score using Undesirable Deviations, policies that score closer to the q50 median are
generally considered more desirable because they indicate consistent performance across scenarios.
However, this approach may inadvertently penalize policies that significantly outperform the median,
labeling them as having "undesirable deviations." This is particularly problematic for objectives where
exceeding the target is inherently beneficial, such as in maximizing hydropower output. A policy that
significantly surpasses the median might be more advantageous, yet the current metric framework
could misclassify it as less robust simply due to its divergence from the median.

The method of aggregating scores also presents a limitation. While the aggregation provides a means to
synthesize multiple metrics into a single ranking, it assumes that all metrics are equally important and
directly comparable. This assumption may not hold true in all contexts, leading to potential inaccuracies
in the overall assessment of policy robustness. Moreover, this method could obscure the nuances in
policy performance under different metrics, particularly if a policy performs exceptionally well in one
metric but poorly in another. The resulting aggregate score may not fully reflect the true robustness of a
policy, thereby affecting the final recommendations.



6
Conclusion

6.1. Addressing Research Questions
Main RQ: What is the consequence of applying multiple robustness metrics within many-objective
optimization models to address water allocation issues under deep uncertainty in the Nile River
Basin?

The consequence of applying multiple robustness metrics within many-objective optimization models
in the Nile River Basin is that it reveals the multidimensionality and complexity inherent in robust
decision-making under deep uncertainty. Different robustness metrics, each with its own definition and
emphasis, lead to the identification of different "best" policies, highlighting the fact that no single policy
can be considered the most robust across all scenarios. This emphasizes the importance of a multi metric
approach in policy evaluation, as it allows for a more comprehensive understanding of the trade-offs
and potential outcomes associated with different policies. By considering various robustness metrics,
decision-makers can better aling their choices with specific goals, risk tolerances, and stakeholder
preferences, thereby improving the overall resilience and effectiveness of water management strategies
in the basin.

SQ1: What are the trade-offs based on the Pareto-optimal policy alternatives of the optimal reservoir
control in the Nile River Basin?

Prominent trade-offs exist between Ethiopia’s hydropower maximization and the deficit minimization
objectives of Egypt and Sudan. The Pareto-optimal policy alternatives for optimal reservoir control in
the Nile River Basin illustrate these conflicts. Policies that prioritize Ethiopia’s hydropower generation
tend to result in undesirable outcomes for Egypt’s irrigation and low flow objectives, compromising
Egypt’s water security. Conversely, policies that optimize Egypt’s objectives lead to significantly reduced
hydropower outcomes for Ethiopia and poor irrigation outcomes for Sudan. These trade-offs show the
inherent conflict in balancing the diverse water needs and objectives of the Nile Basin countries, where
optimizing one country’s benefit will result in significant detriments to others.

SQ2: How do different robustness metrics influence the selection of optimal policy alternatives in
the Nile River Basin?

Different robustness metrics significantly influence the selection of optimal policy alternatives by
emphasizing different aspects of policy performance and risk tolerance.

• Minimax Regret prioritizes policies that minimize the worst-case outcome, leading to the selection
of compromise policies like “Compromise: Absolute” and “Compromise: Percentile” which
balance various objectives without excelling in any single one.

• Percentile-Based Skewness rewards policies with outcomes skewed towards better-than-median
results, favoring policies like “Best Sudan Irrigation” which might not have been selected under
other metrics.
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• Mean-Variance focuses on policies that achieve a good balance between mean performance and
consistency, potentially favoring policies that might be more stable but less extreme.

• Undesirable Deviations penalizes policies that deviate significantly from a target, favoring policies
like “Best Egypt Irrigation” that perform consistently close to the median.

These differences in metric application shows that the choice of robustness metric can lead to varying
conclusions about which policy is the most robust, thus influencing the final decision-making process.

SQ3: What are the implications of using different robustness metrics for stakeholder decision-making
in the Nile River Basin?

The implications of using different robustness metrics for stakeholder decision-making in the Nile River
Basin include the need for stakeholders to clearly define their priorities and risk tolerance levels before
selecting a robustness metric. The choice of metric will directly impact which policies are deemed most
robust and, consequently, which policies are recommended for implementation. For instance, a metric
like Minimax Regret may be more suitable for stakeholders who are highly risk-averse and concerned
with avoiding the worst possible outcomes, while Percentile-Based Skewness might appeal to those
willing to accept more risk for potentially higher rewards.

6.2. Recommendations
To enhance water management in the Nile River Basin, we recommend that policies should be
evaluated using multiple robustness metrics. This multi-metric approach ensures comprehensive
understanding and resilient decision-making across different scenarios and uncertainties. Strengthening
cooperative management among Nile Basin countries is crucial, potentially through a central authority
or improved joint decision-making frameworks, to balance diverse stakeholder interests and mitigate
conflicts. Engaging stakeholders, including local communities and governments, ensures that various
perspectives are considered, leading to more equitable policies. Additionally, implementing adaptive
management practices allows for flexibility and adjustments based on real-time data and changing
conditions, effectively managing uncertainties and improving long-term sustainability.

6.3. Future Research
Future research should expand the geographic scope to include the entire Nile Basin, incorporating
the White Nile and Atbara rivers for a more comprehensive understanding of the basin’s hydrology
and stakeholder dynamics. This broader scope would allow for a more accurate representation of the
complex interactions and water management challenges across the region. Additionally, exploring the
long-term impacts of climate change on the Nile River Basin will be crucial for developing adaptive
water management policies that can respond to changing environmental conditions.

Further exploration of robustness metrics and their implications for policy evaluation is also necessary.
This includes the development of new metrics that address specific regional challenges, such as those
related to economic performance indicators like Net Present Value (NPV), cost, and economic efficiency.
Incorporating these metrics into the analysis can provide a more comprehensive evaluation of policies by
balancing economic considerations with other objectives. This approach would enable decision-makers
to better understand the trade-offs between cost-effectiveness and other critical factors, leading to more
informed and balanced policy choices.

Moreover, future research should aim to create a unifying framework that systematically compares
the results of various robustness metrics. Such a framework would help identify commonalities and
differences among metrics, particularly those with similar underlying methodologies. For instance, as
demonstrated in studies like McPhail et al. (2018), metrics that assess performance stability or minimize
regret could often converge in their policy recommendations. By establishing a unified approach,
researchers could streamline the decision-making process, offering a more cohesive understanding of
which policies are most robust across different scenarios and metrics.

Finally, while this study focused on six extreme policies, future research should test a broader range of
possible policies to identify more robust solutions. Addressing these recommendations and research
directions will enhance the robustness and effectiveness of water management policies in the Nile
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River Basin, ensuring sustainable and equitable use of this vital resource. By integrating a wider array
of metrics and adopting a comprehensive, basin-wide approach, future research can provide more
nuanced and effective strategies for managing the Nile’s water resources in the face of ongoing and
future challenges.
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A
Appendix: Results

A.1. Converge Analysis
While the progress curve on the left indicates there is still potential for improvement, the hypervolume
graph on the right appears to be stabilizing. Considering the time and computational limits of the
project, we decided that the convergence status is adequate with 50,000 NFEs.

Figure A.1: Convergence Analysis Result.
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Figure A.2: GERD and HAD Level under Compromise: Percentile Policy
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Figure A.3: GERD and HAD Level under Compromise: Absolute Policy
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Figure A.4: GERD and HAD Level under Best Sudan Irrigation Policy
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Figure A.5: GERD and HAD Level under Best Egypt Irrigation Policy

A.2. Physical System Implications
In this section we present physical system changes imposed by policies that were not presented in the
study.
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