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Abstract
The accurate estimation of the pose, i.e. position and heading, of a vehicle while driving is of high
importance in autonomous driving applications. Right now, the main tool to estimate the location of a
vehicle is its GPS sensor. However, GPS data is known to be of very low accuracy, especially in urban
environments, and is thus not ideal for this application.

In this report, the research into possible improvements to an existing vehicle pose estimation tech­
nique are presented, with the aim of making it applicable for automotive radar data. The existing
technique is a scan­matching technique known as the Normal Distributions Transform (NDT), which
was originally designed for LIDAR measurements. By adapting the technique to accommodate radar
measurements, some of the drawbacks of LiDAR, such as the high cost and poor performance in cer­
tain weather conditions, can be overcome. Some of the main disadvantages of using radar compared
to LiDAR, e.g. lower resolutions, are addressed in the presented techniques. The lower resolution
results in significant spreading of the target response, this is especially prominent in the azimuth do­
main for a standard 3 Tx × 4 Rx MIMO automotive radar system. By addressing the scan­matching
problem in the polar domain, this spreading of the target response is better captured in the distribution
used to perform the scan­matching. Further, the implementation in polar coordinates allows for incor­
poration of the Doppler measurements, which contain knowledge about the angles of arrival of targets
and are generally measured at a much higher resolution than the angular measurements themselves.
Moreover, the use of radar measurements introduces the availability of knowledge about the Radar
Cross­Section of individual targets, this can be used to reduce the influence of false alarms.

The incorporation of Doppler additionally allows the exploitation of the relation between the Doppler
measurements and the angle of arrival to estimate a bias in the angle measurements, this can be used
for sensor calibration while driving.

The influence of the presented improvements to the NDT are examined through simulations and
experiments. These results show significant reduction in the estimation errors. The sensor bias es­
timation technique also proves to provide extremely accurate estimates. Finally, a small extension
is worked out to perform trajectory estimation using the individual poses by means of the Extended
Kalman Filter.
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1
Introduction

Developments in the automotive industry show a trend towards a higher level of automation. Current
estimates predict that in 2025 approximately 2% of car sales in the UK alone will comprise of vehicles
capable of conditional automation. By 2035 it is projected that 40% of car sales will be Connected and
Autonomous Vehicles (CAVs) [1]. CAV refers to a vehicle which accommodates autonomy levels of 3
(conditional automation) and above as defined by the SAE International Standard J3016 [2]. From this
40% around 65% is expected to refer to cars with autonomy levels 4 and 5, meaning high (level 4) to
full (level 5) automation will be the standard in these types of vehicles. Examples of high automation
are human activated systems such as automated driving on the freeway with presence of the driver or
even automated parking in absence of the driver. Full automation refers to a fully automated driving
system without intervention of a human driver [2]. These developments pose additional requirements
on the on­board sensor systems, as they are expected to accommodate more complex tasks such as
object recognition and localization in urban environments [3].

1.1. Background and Motivation
The most used approach to perform localization in automotive applications is through the Global Posi­
tioning System (GPS). However, especially in urban environments, GPS does not provide high enough
accuracy for automated driving application due to multi­path interference and non­line­of­sight recep­
tion [4]. A technique known as differential GPS uses ground­based reference stations to improve on
accuracy, however the accuracy of such systems is only around 1­3 meters [5]. In the applications of
highly and fully automated driving, such low accuracy is unacceptable. Solutions to the localization
problem exist that make use of range scanning sensors to estimate the vehicle location within a map of
its surroundings. This map can be made a priori [6] or simultaneous with the estimation of the vehicle
location, which is known as the Simultaneous Localization and Mapping (SLAM) problem [7]. The area
of SLAM can be divided into two main groups, techniques that perform full SLAM and techniques that
perform online SLAM. Themethods for solving full SLAM are considered to be too complex to perform in
real­time, whereas the online SLAM methods are well suited for real­time implementation. Over longer
distances, SLAM techniques are known to suffer from drift in their location estimation, this is especially
common in online SLAM [4]. A way to compensate for this drift is by using a scan­matching approach.
Scan­matching techniques estimate the pose, i.e. position and heading, of the vehicle relative to a
different point in time by maximizing the overlap between the respective range scans. Scan­matching
does not require the creation and maintenance of a map of the surroundings [8].

1.1.1. Background: Scan­matching Using Range Scans
Scan­matching techniques use the point clouds that result from 2D or 3D range scans to estimate the
relative pose. Range scans at two different time instances are considered, the so­called “reference
scan” and the “current scan”. The objective is to find the relative pose of the vehicle between these
two scans. The relative pose is estimated by finding the transformation of the current scan point cloud
that results in maximum overlap with the reference scan and in turn relating this transformation of the
point cloud to a transformation in the pose of the vehicle [9].
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2 1. Introduction

The scan­matching techniques can be divided into two main groups, the feature­based techniques
[10], and the distribution­based approaches [11]. The feature­based approaches aim to find the max­
imum overlap between the scans by minimizing the Euclidean distance between individual features,
such as points, lines or surfaces, explicitly. The distribution­based techniques overcome the required
knowledge about the correspondence of individual points as they represent the reference scan as a
piece­wise continuous distribution, after which the point of maximum overlap is found by maximizing
the probability of the points of the current scan to be at a certain location within this distribution.

Pioneering the distribution­based approaches is the Normal Distributions Transform (NDT) [11]. The
NDT converts the 2D range scans from the native polar coordinate frame to Cartesian coordinates,
after which the reference scan is represented by a combination of bivariate Gaussian distributions
related to the distribution of the points within the cells of a grid on the 𝑥𝑦 plane. The representation
of the reference scan on a fixed Cartesian grid comes with drawbacks such as convergence to local
minima which have been addressed in proposed techniques [12], [13]. Additional extensions have
been proposed to perform scan­matching using three­dimensional scans [14], [15].

1.1.2. Motivation: From LiDAR to Radar
Due to the high resolution of laser scanners (LiDAR), especially in the angular domain [3], [15], [16],
and due to the popularity of both laser sensors and scan­matching techniques within the robotics com­
munity, existing scan­matching techniques have been optimized to accommodate LiDAR technology.
Laser scanners, however, come at a higher cost [16] and perform poorly in bad weather conditions such
as heavy rain or fog [17]. Another line of research is devoted to the application of scan­matching tech­
niques to (stereo) cameras [18], [19], which also become sensitive to weather and lighting conditions
when mounted on a car.

These shortcomings of laser and optical sensors can be overcome using the mm­wave radar sen­
sors available in the majority of cars with a high automation level. However, the existing SLAM and
scan­matching techniques cannot be applied to radar measurements directly. Some work has been
done on radar SLAM using scan­matching, using multiple previous scans [20], [21] or visual features
[22]. The point­to­point scan­matching approaches are especially not well suited for radar measure­
ments, due to the fluctuations in radar cross section (RCS) for changing observation angles. The RCS
of a target is highly dependent on the observation angle, especially in the case of a complex shape
[23, Ch. 6]. This in turn results in inconsistency in the reflected power of the same target after move­
ment of the vehicle, which can result in missed detections in one of the scans used for scan matching,
causing the point clouds to suffer from “floating points” – the primitive detections which do not have a
counterpart in the other scan. Another problem that is encountered when using radar scans is the low
angular resolution. In radar systems the angular resolution is determined by the antenna dimensions
in terms of the wavelength. For uniform linear arrays (ULA) or MIMO radars with virtual arrays, it is
determined by the number of spacial channels. The current generation of automotive radar performs
distinction in the azimuth domain realized via 3 Tx × 4 Rx MIMO arrays [24], [25]. This results in a
12­element virtual array capable of angle of arrival estimation with an angular resolution of the order
of approximately Δ𝜃𝑟𝑎𝑑𝑎𝑟 = 10∘ at the broadside of the radar [26], degrading with deviation from the
broadside. This angular resolution of radar is significantly worse than LiDAR measurements, which
have an angular resolution of an order of Δ𝜃𝐿𝑖𝐷𝐴𝑅 = 1∘ [15]. The low angular resolution of radar results
in substantial spreading of the target response in the cross­range dimension, depending on the target’s
range which results in inaccuracies in the estimation of the angle of arrival. The response looks even
more complicated after transformation to the Cartesian grid for conventional NDT, which does not take
this effect into account.

The standard output of radar (considering standard range­Doppler­angular processing followed by
detection) offers additional information, which can be beneficial for localization. Of particular importance
can be the RCS of detected objects and their relative radial velocity with respect to the radar due to
Doppler processing. The access to Doppler measurements is foreseen to give an improvement in
cross­range resolution for stationary targets. In application to forward­looking radar, this processing is
referred to as Doppler Beam Sharpening [27], [28]. These particular aspects of radar data are however
not exploited in the current state­of­the­art localization techniques.
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1.2. Thesis Objective
This thesis details the steps towards a novel scan matching technique for vehicle localization using
radar data. The scan matching solution of the NDT will be addressed in polar coordinates, which
are native for the sensor, directly. The proposed technique, called polar normal distribution transform
(PNDT), allows for the addition of Doppler measurements into the scan­matching algorithm for further
improvement in localization accuracy. This extension will be referred to as Doppler polar NDT (DPNDT).
Further, the ability to incorporate targets RCS into the localization problem is addressed along with the
benefits of this approach. Finally, it is shown that the incorporation of Doppler measurements enforces
a particular structure of the data, which gives the potential for the estimation of angular bias while the
vehicle is driving.

1.3. Outline of the Report
First, the state of the art in vehicle localization is discussed in Chapter 2 through a literature review.
Then, in Chapter 3, the idea behind the conventional Normal Distributions Transform (NDT), along with
the changes needed to better suit radar scans are discussed briefly. The incorporation of solutions to
the problems with the NDT when applied to radar measurements are addressed in Chapter 4. Chapter
5 describes the optimization that is performed in the NDT techniques. The extension of the proposed
techniques to perform sensor bias estimation is discussed in Chapter 6. The newly introduced tech­
niques are compared to each other and to the conventional NDT through simulations and experimental
data, this is treated in Chapter 7. In Chapter 8, a way to use dynamic model­based filtering to improve
the estimated trajectory is explored and finally, in Chapter 9, conclusions are drawn and suggestions
for future work are made.





2
State of the Art

Using measurements of range scanning sensors to estimate the location of a vehicle within a map of the
surroundings has been researched extensively. Initially, the map used for localization had to be made
a priori, such as in the position estimation solution of [6]. Soon hereafter the Simultaneous Localization
and Mapping (SLAM) problem was introduced, which aims to create a map of the surroundings while
simultaneously estimating the position of the vehicle. The SLAM problem is paradoxical, in the sense
that in order to accurately estimate the position of the measurement set­up within a certain map of the
surroundings, this map should be extremely accurate, while in creating such amap frommeasurements
taken from the measurement platform, the position of the platform has to be known accurately [7].

2.1. Simultaneous Localization and Mapping
In recent years, many solutions to the SLAM problem have been proposed. So­called full SLAM tech­
niques aim to construct the whole trajectory and map using all measurements and control inputs,
whereas online SLAM methods typically only use the current sensor inputs. The full SLAM problem
is most often solved using the so­called optimization­based approaches. Examples of this are bundle
adjustment and graph SLAM. The working principle of optimization­based SLAM solutions is a two­
step approach. First, the measurements and control inputs are used to construct constraints after
which both the vehicle location and the map are optimized to conform to these constraints. In bundle
adjustment, this problem is tackled by minimizing a score function based on the Euclidean distance
between the predicted projection of a set of points and the corresponding measured points. Such an
optimization problem can be solved using linearized least­squares as in [29] or using non­linear least­
squares optimization techniques such as Levenberg­Marquardt [30]. In graph­SLAM a set of nodes
is used to represent vehicle poses or landmarks. These nodes are connected by edges representing
a set of constraints between these nodes. The constraints describe the relation between two nodes
based on measurements and are accompanied by an information matrix representing their uncertainty.
Taking nodes 𝑖 and 𝑗, a prediction can be made at node 𝑖 of the observations from node 𝑗, the likeli­
hood of all observations is in turn maximized taking into account the measurement uncertainty and the
error between this prediction and the constraints [31]. The contents of the graph structure dictate the
type of graph­SLAM that is considered. In general graph SLAM, the edges represent observations of
landmarks, the nodes are both poses and landmarks. In pose­graph SLAM the nodes represent the
vehicle poses and the edges represent relative poses. Solutions to the graph­based SLAM problem
have been researched extensively, from solutions regarding the two­dimensional domain [32], [33] to
solutions extended to three­dimensional movement [34], causing a much more involved derivation for
the before­mentioned error. Since most of the full SLAM techniques consider the entire collection of
information, they are considered too computationally complex for real­time applications [4].

Online SLAM is solved using filter­based approaches, making them well suited for real­time imple­
mentation. Filter­based approaches rely on a prediction step and an update step. The prediction step
is based on a dynamic evolution model of the vehicle and the control inputs and produces a predicted
estimate of the vehicle and map states. The update step in turn uses the sensor inputs to adjust these
estimates. Assuming linearity, the models take the following form:

5



6 2. State of the Art

𝑠𝑠𝑠[𝑡] = 𝐹𝐹𝐹𝑠𝑠𝑠[𝑡−1] +𝑤𝑤𝑤[𝑡−1],
𝑧𝑧𝑧[𝑡] = 𝐺𝐺𝐺𝑠𝑠𝑠[𝑡] +𝑛𝑛𝑛[𝑡].

(2.1)

Here, 𝑠𝑠𝑠 is the to be estimated state of the system and 𝑧𝑧𝑧 a vector containing observations. Superscript
(.)[𝑡] denotes the time index 𝑡. The state at the current time index 𝑠𝑠𝑠[𝑡] is related to the state at the
previous time index 𝑠𝑠𝑠[𝑡−1] through the dynamic model characterized by 𝐹𝐹𝐹. The observation at time
𝑡, 𝑧𝑧𝑧[𝑡], is related to the state 𝑠𝑠𝑠[𝑡] through the observation model characterized by 𝐺𝐺𝐺. 𝑤𝑤𝑤 and 𝑛𝑛𝑛 denote
process noise and measurement noise, respectively.

So­called Bayesian filters use thesemodels to produce amean and covariance of the state estimate,
using weights based on both the dynamic and observation model uncertainties through 𝑤𝑤𝑤 and 𝑛𝑛𝑛. Over
the years, a variety of implementations of these Bayesian filters have been proposed, some of which
are the Kalman filter, the extended Kalman filter, the Unscented Kalman filter and the particle filter.

The Kalman filter utilizes the assumption made in the definition of (2.1) that both the dynamic and
observation model are linear along with the assumption that all errors are Gaussian [35], [36]. In doing
so, a recursive solution to the estimation problem can be derived, consisting of the following prediction
step and update step:

𝑠𝑠𝑠[𝑡+1|𝑡] = 𝐹𝐹𝐹𝑠𝑠𝑠[𝑡], (2.2)
𝑄𝑄𝑄[𝑡+1|𝑡] = 𝐹𝐹𝐹𝑄𝑄𝑄[𝑡|𝑡]𝐹𝐹𝐹T +𝑊𝑊𝑊[𝑡]. (2.3)

𝑠𝑠𝑠[𝑡|𝑡] = 𝑠𝑠𝑠[𝑡|𝑡−1] +𝐾𝐾𝐾[𝑡] (𝑧𝑧𝑧[𝑡] −𝐺𝐺𝐺𝑠𝑠𝑠[𝑡|𝑡−1]) , (2.4)
𝑄𝑄𝑄[𝑡|𝑡] = (𝐼𝐼𝐼 −𝐾𝐾𝐾[𝑡]𝐺𝐺𝐺)𝑄𝑄𝑄[𝑡|𝑡−1], (2.5)

𝐾𝐾𝐾[𝑡] = 𝑄𝑄𝑄[𝑡|𝑡−1]𝐺𝐺𝐺T (𝐺𝐺𝐺𝑄𝑄𝑄[𝑡|𝑡−1]𝐺𝐺𝐺T +𝑁𝑁𝑁[𝑡])−1 . (2.6)

Here, 𝑠𝑠𝑠 and 𝑄𝑄𝑄 denote the estimated mean and covariance of the state and𝑊𝑊𝑊 and𝑁𝑁𝑁 are the covari­
ance matrices characterizing the Gaussian noise vectors.

In order to apply this to SLAM, both the dynamic and the observation models have to be derived
for the vehicle and the map features. A vehicle in motion and the observations of landmarks from this
moving vehicle cannot be modelled linearly, causing the relations in (2.1) to describe nonlinear rela­
tions, i.e. 𝑠𝑠𝑠[𝑡] = 𝑓𝑓𝑓 (𝑠𝑠𝑠[𝑡−1]) + 𝑤𝑤𝑤[𝑡−1] and 𝑧𝑧𝑧[𝑡] = 𝑔𝑔𝑔 (𝑠𝑠𝑠[𝑡]) + 𝑛𝑛𝑛[𝑡]. To solve this, SLAM uses the Extended
Kalman Filter (EKF) instead of the standard Kalman Filter [37], [38]. In the EKF, a linearization of the
non­linear models is performed through their Jacobians around the current estimates. This results in
linear functions which can be used in the standard Kalman Filter algorithm. To accommodate mod­
els with very extreme non­linearities the Unscented Kalman Filter (UKF) can be used [39]. By taking
samples according to a predefined algorithm that represents the estimated mean and covariance, the
UKF propagates these points through the non­linear (and possibly non­Gaussian) system, using the
points at the output to calculate the mean and covariance as subjected to the non­linear system. This
concept can be applied to the state transition and observation models of the SLAM Kalman Filter which
is presented in [40]. Another on­line SLAM technique that is robust to non­linearities and non­Gaussian
noise in the models is Particle Filter SLAM. Similar to the UKF, the Particle Filter (PF) uses samples
taken from the distributions characterized by the system noise (so­called “particles”) to represent the
estimated mean and covariance. Rather than using these particles to calculate the mean and covari­
ance and continue with the standard KF approaches, the PF keeps the representation as particles.
Additionally, in the PF, the points are taken from a random distribution defined by the system, rather
than being chosen via a predefined algorithm [41]. A particle filter is employed in a technique known
as FastSLAM. FastSLAM relies on the fact that for a known path, the posterior that is estimated can
be decomposed for each of the individual landmarks. FastSLAM exploits this fact by using a particle
filter to represent the possible paths and for each path apply the EKF to each individual landmark to
estimate its position. With efficient implementation, this results in log(𝑁) complexity for 𝑁 landmarks,
rather that 𝑁2 as in the EKF [42].

In recent years some solutions to lower the computational complexity of using graph SLAM have
been proposed. A combination of a filter­based approach with a graph­based representation of the map
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is proposed in [43], known as the Sparse Extended Information Filter SLAM. By removing edges in the
graph that can be deactivated, e.g. those connected to features that are far away from the vehicle,
the information matrix is sparsified and the problem can be solved in real time. Similarly, by removing
edges within the pose graph that are not relevant at the current pose, the pose graph can be converted
into a pose­chain, significantly reducing the computational complexity, this is used in COP­SLAM [44].

2.2. Scan­matching
Scan­matching techniques can be used to compensate for errors in the estimations from SLAM that
result from increasing uncertainty over time. The objective of scan­matching techniques is to find
the transformation, i.e. translation and rotation, of a vehicle between two scans at different points
in time. These two scans are referred to as the “reference scan” and the “current scan”. By iteratively
transforming the point cloud of the current scan until the maximum overlap with the reference scan is
found, the relative pose𝑝𝑝𝑝 of the vehicle between the two scans can be found through its relation with the
transformation of the point cloud. In most cases only the relative translation and rotation of the vehicle
are of interest, leading to the relative pose being defined as 𝑝𝑝𝑝 = [𝑡𝑥 , 𝑡𝑦 , 𝜙]T. This vector contains the
translation in the 𝑥­direction 𝑡𝑥, the translation in the 𝑦­direction 𝑡𝑦 and the change in heading 𝜙 at the
current scan, relative to the reference scan. 𝑡𝑥 is defined in the direction of the heading of the car at
the reference scan and 𝑡𝑦 perpendicular to that. The change in heading 𝜙 is defined to be positive for
rotation to the left and negative for rotation to the right. Since scan matching relies on only two scans
per estimation, the creation and maintenance of a map of the surroundings is not necessary [8].

The iterative process to find maximum overlap takes an estimate 𝑝̂𝑝𝑝 at each iteration to map the point
cloud of the current scan. 𝑝̂𝑝𝑝 can be an initialization vector or the estimate from a previous iteration in
the estimation process. By then defining certain criteria related to the overlap, optimization techniques
are used to converge to an estimate 𝑝̂𝑝𝑝 that results in maximum overlap between the point clouds. The
scan­matching techniques can be divided into two main groups related to the criteria that are used for
defining the overlap; feature­based and distribution­based techniques. The feature­based approaches
try to minimize the distance between individual features within the scans while the distribution­based
approaches represent one of the scans as a density which can be used to express a likelihood of
overlap with the other scan.

2.2.1. Feature­based Methods
In feature­based scan­matching methods, the aim is to match certain features within the scans explic­
itly. The criterion for overlap is in this case the Euclidean distance between individual points, lines or
surfaces. One of the first feature­based matching solutions is the Iterative Closest Point (ICP) algo­
rithm [10]. It presents a technique to match range scans from a data set 𝑃 to a free­form, complex
three­dimensional model defined by a data set 𝑋 by minimizing the distance between the range mea­
surements and the surface of the model. The prerequisites for applying such an approach are derived
first; formulas describing the distance of a point to different geometric shapes are derived and methods
to compute the point within these shapes that is closest to an arbitrary point are discussed. A derivation
of the least squares problem minimizing the distance between 𝑁𝑝 points 𝑝𝑖 ∈ 𝑃 to 𝑁𝑥 corresponding
points 𝑥𝑖 ∈ 𝑋 with 𝑁𝑝 = 𝑁𝑥 is presented. The least squares problem is formulated in terms of the spatial
mapping of 𝑃 to 𝑋, expressed as a translation vector and a rotation matrix:

min
𝑞𝑞𝑞

1
𝑁𝑝

𝑁𝑝

∑
𝑖=1
‖𝑥𝑖 −𝑅𝑅𝑅(𝑞𝑞𝑞𝑅)𝑝𝑖 −𝑞𝑞𝑞𝑇‖2, (2.7)

with 𝑅𝑅𝑅(𝑞𝑞𝑞𝑅) the rotation matrix based on rotation vector 𝑞𝑞𝑞𝑅 and 𝑞𝑞𝑞𝑇 the translation vector. Both the
measurements and the model are discretized (curves become sets of lines, surfaces become sets of
triangles) and in turn transformed to point sets. The result is two sets of points, 𝑃 and 𝑋. For each
point 𝑝𝑖, the point 𝑦𝑖 ∈ 𝑋 that minimizes the Euclidean distance of 𝑝𝑖 to 𝑋 is found. The set of resulting
correspondence points 𝑌 = 𝒞(𝑃, 𝑋) is then used to solve the least squares problem in order to find
the translation vector and rotation matrix. 𝒞 denotes the closest point operator. The spatial mapping
is applied to 𝑃 and the calculations are performed again until convergence. In essence, the distance
between individual points is minimized which in the end results in the distance between the surfaces
being minimized.
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In [8] two techniques are presented to perform relative pose estimation for robots using two range
scans, one of which is very similar to the ICP algorithm. The first techniques uses tangent lines of
individual points. An objective function is derived which relates the normals of the tangent lines to
each other through a translation 𝑇𝑇𝑇 and a rotation 𝑅𝑅𝑅(𝜔), where 𝜔 is the rotation angle. The objective
function is solvable for the 𝑇𝑇𝑇 when 𝜔 is known. In order to perform the optimization, 𝜔 is estimated by
a search on the objective function using the golden section method after which 𝑇𝑇𝑇 is optimized for this
value of 𝜔. This alternating approach is continued until convergence. The second technique is a point­
to­point method, the criterion deciding correspondence between points in the respective scans extends
on the ICP algorithm. Where ICP only uses the closeness of data points to model points the proposed
algorithm also includes the assumption that corresponding points fall within a certain region when it
comes to the measured bearing, this bound is determined by a predefined maximum rotation, along
with the fact that their measured ranges are closest together. The technique is named the Iterative
Dual Correspondence (IDC) algorithm and is found to perform better than the ICP, especially in case of
curved shapes. The authors suggest to use the two presented techniques together, using the tangent
line method, which can handle a large initial pose error but produces less accurate estimates, to obtain
a crude estimation of the pose to be used in IDC, which results in more accurate estimates.

Apart from the additional criterion proposed in IDC, both of the aforementioned techniques operate
in the Cartesian coordinate frame to perform scan­matching. A technique which utilizes the native polar
coordinate frame of range scans is presented in [9]. The technique, known as Polar Scan Matching
(PSM), uses a sparse set of laser measurements to perform the scan matching. At each iteration, the
current scan is projected according to an estimate of the pose:

𝑟′𝑚 = √[𝑡𝑥 + 𝑟𝑚 cos(𝜙 + 𝜃𝑚)]2 + [𝑡𝑦 + 𝑟𝑚 sin(𝜙 + 𝜃𝑚)]2,

𝜃′𝑚 = atan2[𝑡𝑦 + 𝑟𝑚 sin(𝜙 + 𝜃𝑚), 𝑡𝑥 + 𝑟𝑚 cos(𝜙 + 𝜃𝑚)].
(2.8)

The resulting points are mapped to the angle measurements of the reference scan using linear
interpolation of the measurements of the current scan. In the case that multiple range values are
mapped to a single bearing, only the closest one is maintained. The resulting set contains points with
bearings equal to those measured at the reference scan and at most one interpolated range per angle.
The residuals are then defined as the difference between the interpolated range and the measured
range in the reference scan for each bearing angle. The sum of these residuals is to be minimized in
order to estimate the translation. The rotation is estimated through a search approach shifting the set
of ranges and bearings over the angle until a point of minimum average range residuals is found.

2.2.2. Distribution­based methods
In 2003 Peter Biber and Wolfgang Straßer proposed the Normal Distributions Transform (NDT) [11]. In
the NDT, a score function is used as the criterion of overlap between the scans. This score function
is then maximized in order to find the pose 𝑝𝑝𝑝 corresponding to maximum overlap. This score value
is calculated by assessing the probability of each point in the point cloud of the current scan to be at
a certain position within the reference scan after mapping. In order to do this, the reference scan is
represented as a combination of distributions derived from the Normal distribution.

The distribution is calculated by transforming the range scans, which are received as sets of points
with their respective range and angle values, to the Cartesian coordinate frame, on which a grid is
constructed. For each cell 𝐶𝑘 within this grid with a minimum of three points, a two­dimensional vector
𝑞𝑞𝑞𝑘 and matrix ΣΣΣ𝑘 are calculated representing the mean and covariance, respectively, of the positions
(the 𝑥­ and 𝑦­coordinates) of the points within the cell. Using this mean vector and covariance matrix,
the positions of the points within a cell are approximated by a Gaussian distribution. This Gaussian
distribution is used to calculate a score for each point 𝑥𝑚 in the current scan after mapping of the current
scan point cloud using an estimate of 𝑝𝑝𝑝:

𝑠𝑐𝑜𝑟𝑒(𝑥𝑥𝑥′𝑚) = exp [−(𝑥
𝑥𝑥′𝑚 −𝑞𝑞𝑞𝑘)TΣΣΣ−1𝑘 (𝑥𝑥𝑥′𝑚 −𝑞𝑞𝑞𝑘)

2 ] . (2.9)

This calculated value is related to the probability of the point 𝑚, characterized by its 𝑥 and 𝑦 co­
ordinates 𝑥𝑥𝑥′𝑚, to be within a certain cell of the grid on the reference scan. Formulas are derived to
relate the pose change 𝑝𝑝𝑝 and the original position 𝑥𝑥𝑥𝑚 to the resulting position 𝑥𝑥𝑥′𝑚. These formulas
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form the relation between the score value of (2.9) and 𝑝𝑝𝑝, this relation is used to find the estimate 𝑝𝑝𝑝 that
maximizes the sum of these score values over all points 𝑀. In the paper, a method to use the NDT for
SLAM is also explained. The precise workings of the NDT are explained in detail in Chapter 3.

A technique using this distribution representation of the NDT for Monte­Carlo Localization (MCL) is
presented in [45]. MCL makes use of a particle filter to estimate the posterior of the pose given a map,
the controls and the observations. In traditional MCL an occupancy grid map is used, in the proposed
technique both the map and the measurements are represented as the Normal Distributions Transform,
using them for calculation of weights for the particles in the particle filter. Results show very accurate
performance of the NDT­MCL, outperforming the traditional grid­based MCL in all tests.

The calculation of the distribution over a fixed Cartesian grid has been shown to lead to convergence
to local minima. Solutions to these problems have been proposed in [12] and [13], which use 𝑘­means
clustering to group points together after which the distribution is calculated for each cluster rather than
for each cell. In [12] the clusters are formed on the 𝑥𝑦­plane, iteratively decreasing the cluster size to
guarantee convergence to the global minimum, whereas [13] makes use of the fact that range scans are
often received ordered by the angle of incidence, which can be used to cluster the points of consecutive
angle bins with a predefined maximum distance in range to each other. Experimental laser scan data
shows that the polar clustering technique outperforms the Cartesian clustering technique considerably
[13].

For scan­matching using three­dimensional range scans the relation between the measured point
cloud and the relative pose of the vehicle changes significantly. These relations have been derived
for the underlying application of underground mining by Magnusson et al. [14]. In the paper, special
attention is paid to some of the problems with the conventional NDT. An in­depth analysis of different
grid construction techniques such as additive, iterative and octree subdivision as well as the choice of
the cell size and sampling method are presented. In this paper, a size constraint was applied to the
descent step Δ𝑝𝑝𝑝 to prevent divergence. In his dissertation Magnusson treats this 3D NDT technique in
much more detail [15].

2.3. On­line Sensor Calibration
As part of the thesis, research was devoted to radar sensor calibration techniques suitable for calibration
while driving.

A technique to estimate errors in the position of a sensor is explained in [46]. In this thesis, Direc­
tion of Arrival (DoA) estimation using a sparse representation of the array manifold is presented. A
small portion of the thesis is devoted to calibration using this DoA approach. By including the explicit
dependence of the measured bearings on the erroneous coefficient (in this case the position of the
sensor), an error function can be constructed based on the error between the measurements and the
array manifold, which now depends on both the DoA estimates and the position of the sensor:

min
𝜃𝜃𝜃,𝑝𝑝𝑝

𝑇

∑
𝑡=1
‖𝑦𝑦𝑦(𝑡) −𝐴𝐴𝐴(𝜃𝜃𝜃,𝑝𝑝𝑝)𝑢𝑢𝑢(𝑡)‖22. (2.10)

In this expression, 𝑡 represents a time index, 𝑦𝑦𝑦 represents the received signal, 𝑢𝑢𝑢 represents the
baseband signal and 𝐴𝐴𝐴 the array manifold, now depending on the bearing vector 𝜃𝜃𝜃 containing the
bearings of the individual targets and the to be calibrated sensor position 𝑝𝑝𝑝. Using block­coordinate
descent both the position and the angle of arrival are estimated; alternating using each other’s optimal
values until convergence.

A combination of sensor calibration and SLAM is presented in [47]. The estimation of calibration
coefficients is done by assuming one array element to be calibrated correctly and including the real and
imaginary parts of the calibration coefficients of each of the other array elements in the state vector of
the EKF SLAM algorithm. In order to do so, the observation model is extended to include the received
signal power per element, normalized to the correctly calibrated element, which depends on the real
and imaginary calibration coefficients. The dynamic model is extended to include additive Gaussian
noise on the calibration coefficients. Both simulations and experiments show an accurate estimation
of the calibration coefficients after only a few tens of measurements.

In robotics odometry can be used to initialize localization techniques. Odometry data often contains
the velocity commands provided to the left and right wheel, which can be used, together with the wheel
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distance and radii to calculate the traversed path. However, in the case that the wheels of the robot
do not have equal radii, e.g. due to an uneven load distribution, upon control of the robot to drive in a
straight trajectory, odometry data would indicate a straight path while the robot’s path will have taken a
slight turn. In [48] an approach to estimate the radii of the wheels of a robot is presented which makes
use of pose­graph SLAM by incorporating the radii and wheel distance in the state vector. The resulting
error function is linearized around the current initial guess through first order Taylor expansion which
can be solved using techniques such as Gauss­Newton and Levenberg­Marquardt. Both simulations
and experiments show that the wheel radius can be estimated with high accuracy. Such a technique
could be used to estimate a sensor bias.



3
The Conventional Normal Distributions

Transform
Despite its drawbacks, the NDT poses a very appropriate starting point for a radar­applicable scan
matching technique due to its simplicity and its robustness against missed detections, which becomes
a more prominent problem with its application to radar measurements.

The Normal Distributions Transform (NDT), as first proposed by Biber and Straßer in [11], aims to
find the point of maximum overlap by representing the point cloud of the reference scan by a piece­wise
continuous distribution that is closely related to the Gaussian or Normal probability distribution, hence
the name of the NDT, and iteratively maximizing the overall probability of the points in the point cloud
of the current scan inside this distribution. In doing so, the scan­matching problem can be expressed
as maximizing the likelihood of overlap between the scans given the relative pose 𝑝𝑝𝑝, this likelihood is
expressed using the distribution resulting from the NDT.

The steps of the maximization are as follows: First a grid is constructed over the reference scan
which is used to create the piecewise continuous distribution. Based on this distribution, a score func­
tion is proposed that aims to maximize the probability of overlap. Formulas are derived that relate
the relative pose 𝑝𝑝𝑝 of the vehicle to a transformation of the points inside the point cloud and then by
iteratively transforming the point cloud, the point of maximum overlap is found using Newton’s method.

3.1. The Piecewise Continuous Distribution
The piece­wise continuous distribution is created by first converting the polar range scans to the Carte­
sian coordinate frame. On the, now Cartesian, reference scan four overlapping grids are constructed
by creating a grid and shifting it by half a cell width in the 𝑥­direction, the 𝑦­direction and both the 𝑥­
and 𝑦­direction. For simplicity, the following parts discuss the steps for only one grid, the steps are
repeated for each grid and later averaged over the grids. Cells which contain at least three points will
be used to construct the distributions, cells with less than three points will be represented by a proba­
bility of zero throughout the cell. In order to represent each cell as a Gaussian distribution, the points
inside a cell 𝐶𝑘 are used to calculate the mean and covariance in the 𝑥­ and 𝑦­direction. The result is a
two­dimensional mean vector 𝑞𝑞𝑞𝑘 ∈ ℝ2×1 and a two­dimensional covariance matrix ΣΣΣ𝑘 ∈ ℝ2×2 for each
cell 𝐶𝑘 with three or more points. 𝑞𝑞𝑞𝑘 and ΣΣΣ𝑘 are used as the expected values and covariances in the
2­dimensional Gaussian­based representation of the reference scan. The probability of measuring a
point𝑚 in the point cloud of the reference scan at a certain position 𝑥𝑥𝑥𝑚 = [𝑥𝑚 , 𝑦𝑚]T ∈ 𝐶𝑘 is then related
to this mean and covariance via [11]:

𝑝(𝑥𝑥𝑥𝑚) ∼ exp [−(𝑥
𝑥𝑥𝑚 −𝑞𝑞𝑞𝑘)TΣΣΣ−1𝑘 (𝑥𝑥𝑥𝑚 −𝑞𝑞𝑞𝑘)

2 ] . (3.1)

This expression is closely related to the probability density function of a bivariate Gaussian distribu­
tion characterized by mean 𝑞𝑞𝑞𝑘 and covariance ΣΣΣ𝑘. The similarity symbol is used since the probability of
point 𝑥𝑥𝑥𝑚 inside𝒩(𝑞𝑞𝑞𝑘 , ΣΣΣ𝑘) would require a scaling with 1

2𝜋√|Σ| . For its utilization in the NDT this scaling

11
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Point Cloud
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NDT Distribution
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Figure 3.1: Representation of the point cloud as a piece­wise continuous distribution, (a) the original detections, (b) the Normal
Distributions Transform

factor can be dropped. Figure 3.1 shows an example of a radar range scan with its NDT distribution. In
the scan the colored dots represent the individual detections, their color represents the received signal
power. From the figure, it is clear that the spreading in the azimuth direction results in an odd NDT
distribution in the surrounding cells.

3.2. The Point Cloud Mapping Equations
In order to calculate the probability of overlap for a certain relative pose 𝑝𝑝𝑝 the, now Cartesian, point
cloud of the current scan has to be transformed to represent the measurements were they taken from
the position related to 𝑝𝑝𝑝. This transformation is performed according to the equations in (3.2), where
𝑥′𝑚 and 𝑦′𝑚 are the mapped 𝑥 and 𝑦­coordinates of point𝑚 originally located at [𝑥𝑚 , 𝑦𝑚]T and 𝑡𝑥, 𝑡𝑦 and
𝜙 are the parameters in 𝑝𝑝𝑝 describing the translation in the 𝑥­ and 𝑦­ direction as well as the change in
heading, both relative to the pose at the reference scan.

𝑥′𝑚 = 𝑥𝑚 cos(𝜙) − 𝑦𝑚 sin(𝜙) + 𝑡𝑥
𝑦′𝑚 = 𝑥𝑚 sin(𝜙) + 𝑦𝑚 cos(𝜙) + 𝑡𝑦

(3.2)

For the actual pose 𝑝𝑝𝑝, 𝑥𝑥𝑥′𝑚 contains the 𝑥 and 𝑦 coordinates in the reference scan corresponding to
the point𝑚 with coordinates 𝑥𝑥𝑥𝑚 in the current scan. For each point, this new location 𝑥𝑥𝑥′𝑚 = [𝑥′𝑚 , 𝑦′𝑚]T is
then used to calculate a score related to the probability of (3.1). The cell 𝐶𝑘 in the grid of the reference
scan is found in which 𝑥𝑥𝑥′𝑚 resides and the calculated mean and covariance of 𝐶𝑘 are used to determine
the score of point 𝑚:

score(𝑥𝑥𝑥′𝑚) = exp [−(𝑥
𝑥𝑥′𝑚 −𝑞𝑞𝑞𝑘)TΣΣΣ−1𝑘 (𝑥𝑥𝑥′𝑚 −𝑞𝑞𝑞𝑘)

2 ] (3.3)

The relation between score(𝑥𝑥𝑥′𝑚) and 𝑝𝑝𝑝 is thus through (3.2), which are needed to calculate the
mapped point 𝑥𝑥𝑥′𝑚. This relation between the pose and the score will be used in the scan­matching
algorithm to estimate 𝑝𝑝𝑝 by maximizing the sum of the scores for all points 𝑚 through optimization
techniques.
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3.3. The Optimization
The scan­matching is performed iteratively. At each iteration the point cloud of the current scan is
mapped according to an estimate 𝑝𝑝𝑝. This estimate can be an initialization vector or the estimate of
a previous iteration. At each iteration a descent step Δ𝑝𝑝𝑝 is calculated using Newton’s method. The
descent step is added to the previous estimate of 𝑝𝑝𝑝 and the next iteration is initialized by mapping the
current scan point cloud according to this new estimate. This process repeats until convergence. The
objective is to maximize the sum of the scores in (3.3) of all points 𝑚 in the current scan. Using a
negative sign, the minimization problem of (3.4) can be constructed:

min
𝑝𝑝𝑝

−
𝑀

∑
𝑚=1

exp [−(𝑥
𝑥𝑥′𝑚 −𝑞𝑞𝑞𝑘)TΣΣΣ−1𝑘 (𝑥𝑥𝑥′𝑚 −𝑞𝑞𝑞𝑘)

2 ] . (3.4)

In order to solve this minimization problem using Newton’s method, calculation of the gradient and
the Hessian of the objective function is required. By choosing the score to be based on the Gaussian
distribution it is assured that the first and second­order derivative, needed for calculation of the gradient
and Hessian, are well­defined. Detailed derivations of the gradient and Hessian, as well as the first
and second­order derivatives of the mapping equations, can be found in Chapter 5.

3.4. Discussion
The NDT provides a powerful tool for scan matching of high­resolution images collected with laser
scanners. In radar, the range and angular resolutions are much worse than those of the aforementioned
sensors. This leads to spreading of target responses in these dimensions and significant uncertainty of
range and angular measurements of the targets. The applicability of the NDT to radar measurements
is limited by the targets’ representation in the Cartesian grid, which does not take these uncertainties
into account. Conventional automotive radars provide the detection point cloud along with additional
information, such as Doppler velocity and information about the radar cross­section (RCS) of a target
through its reflected power or SNR, which are related to the RCS via the radar equation. These aspects
are not exploited by the standard NDT. Incorporation of this knowledge could be used to improve the
performance, the following chapters provides details about the steps necessary to derive techniques
that are more suited for scan­matching using radar data.





4
The Radar Normal Distributions

Transforms

As mentioned previously and became evident from Figure 3.1b the standard NDT is not well suited for
the representation of radar scans due to spreading of the targets in the azimuth direction. Addition­
ally, in order to include knowledge about the relative Doppler velocity of targets into the optimization
technique, a reference to their bearings is necessary. A target’s bearing is available in the original
range scans, as they are received in polar coordinates, however, a direct reference to this parameter
is lost once the scans are converted to the Cartesian coordinate system. Representation of the scan
as a distribution in the range­angle domain, which is the native domain for range scan measurements,
allows for incorporation of Doppler as well as a better representation of the target spreading.

4.1. The Polar Normal Distributions Transform
Converting the NDT to polar coordinates requires changes to the algorithm: The grid for calculation
of the piecewise continuous distribution will have to accommodate the polar coordinate system. Addi­
tionally, the mapping equations used to transform the point cloud of the current scan are changed in
order to relate the movement of the vehicle to changes in the range and bearing of the targets, which in
turn requires the derivation of their first and second­order derivatives for calculation of the gradient and
Hessian for the optimization steps. The resulting technique is named the Polar Normal Distributions
Transform (PNDT).

4.1.1. The Piece­wise Continuous Distribution
The steps in which the distribution is created are the same as for the NDT, the difference is the di­
mensions of the cells that constitute the grids. Again, four overlapping grids are constructed, each
with cells 𝐶̃𝑘 with fixed lengths in the range and angle direction. The overlap in the grids is again cre­
ated by shifting the grid in each and both of the cell directions. The fixed cell width in degrees causes
the surface of the cells to become bigger at larger ranges. By constructing the grid in this way, the
resulting distribution shows a more authentic representation of the received radar measurements; in
the resulting distribution the power reflected from the targets is represented as a Gaussian distribution
around the targets, which is a reasonable approximation of the main beam of the target response in
radar measurements [23]. Additionally, the widening of the cells with increasing range results in an ap­
propriate representation of the increased spreading in the azimuth direction for larger ranges. Figure
4.1 shows the distribution representation for the NDT and the PNDT as a side­by­side comparison, for
the same scan as in Figure 3.1. From the figure it is very clear that the PNDT depicts a more accurate
representation of the original scene. For each cell 𝐶̃𝑘 on the polar grid the mean vector 𝑞̃𝑞𝑞𝑘 ∈ ℝ2×1
and the covariance matrix Σ̃ΣΣ𝑘 ∈ ℝ2×2 are calculated, now containing, respectively, the two­dimensional
mean and covariance of the position of the points in the polar domain.

15
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Point Cloud

(a)

NDT Distribution

(b)

PNDT Distribution

(c)

Figure 4.1: Different representations of the radar scan, (a) the original detections, (b) the Normal Distributions Transform, (c)
the Polar Normal Distributions Transform

4.1.2. The Point Cloud Mapping Equations
The individual points in the point clouds are now represented by a range and a bearing measurement.
These points have to be transformed based on the available estimate of 𝑝𝑝𝑝. This results in slightly more
involved mapping equations:

𝑟′𝑚 = √[𝑡𝑥 + 𝑟𝑚 cos(𝜙 + 𝜃𝑚)]2 + [𝑡𝑦 + 𝑟𝑚 sin(𝜙 + 𝜃𝑚)]2,

𝜃′𝑚 = atan2[𝑡𝑦 + 𝑟𝑚 sin(𝜙 + 𝜃𝑚), 𝑡𝑥 + 𝑟𝑚 cos(𝜙 + 𝜃𝑚)].
(4.1)

Here, 𝑟𝑚 and 𝜃𝑚 denote the original range and bearing measurements of point𝑚, 𝑟′𝑚 and 𝜃′𝑚 denote
their mapped counterparts and 𝑡𝑥, 𝑡𝑦 and 𝜙 again are the estimation parameters inside 𝑝𝑝𝑝. Figure 4.2
shows how these mapping equations can be derived for a stationary target. These equations were also
derived in [9] where they were used for a point­to­point scan matching technique in polar coordinates,
as can be seen in (2.8).

4.1.3. The Optimization
The objective function of the PNDT is formulated in the same manner as in (3.4). Accounting for the
change of parameters, the following objective function is found:

min
𝑝𝑝𝑝

−
𝑀

∑
𝑚=1

exp [ − (𝑥̃
𝑥𝑥′𝑚 − 𝑞̃𝑞𝑞𝑘)TΣ̃ΣΣ

−1
𝑘 (𝑥̃𝑥𝑥′𝑚 − 𝑞̃𝑞𝑞𝑘)
2 ]. (4.2)

Here, 𝑥̃𝑥𝑥′𝑚 = [𝑟′𝑚 , 𝜃′𝑚]T ∈ 𝐶̃𝑘 contains the mapped range and bearing measurements. The optimiza­
tion is again done using Newton’s method, for which the first and second­order derivatives of (4.1) are
needed. These will be derived in Chapter 5.

4.2. The Doppler Polar Normal Distributions Transform
Due to the high resolution and accuracy of Doppler measurements and their relation to the angle of
incidence of a target, incorporation of Doppler into the scan­matching algorithm can serve as a solution
to the low resolution and accuracy of angular measurements in radar. The relation between the angle
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Figure 4.2: The range­bearing measurements of a target 𝑚 mapped using the relative pose 𝑝𝑝𝑝 = [𝑡𝑥 , 𝑡𝑦 , 𝜙]T. 𝜑 is calculated as
𝜙 + 𝜃𝑚. The circles denote the vehicle at two separate positions and the bars indicate the front of the car, in this case chosen

to coincide with the broadside of the radar.

of incidence and the Doppler measurements depends on the vehicle velocity, for a stationary target this
relation is given as follows:

𝑣𝑚 = 𝑣𝑐𝑎𝑟 cos(𝜃𝑚). (4.3)

Here, 𝑣𝑚 is the measured Doppler velocity of target 𝑚, 𝜃𝑚 is the angle of incidence associated with
target 𝑚 and 𝑣𝑐𝑎𝑟 is the velocity of the vehicle in the direction of the broadside of the radar, i.e. in the
direction of 𝑡𝑥 in 𝑝𝑝𝑝.

As becomes evident from (4.3) in order to incorporate the Doppler measurements and create the
Doppler Polar Normal Distributions Transform (DPNDT), an estimate of the vehicle velocity is re­
quired. This necessitates the extension of the estimation vector to include the vehicle velocity: 𝑝̆𝑝𝑝 =
[𝑡𝑥 , 𝑡𝑦 , 𝜙, 𝑣𝑐𝑎𝑟]T.

4.2.1. The Piece­wise Continuous Distribution
The goal is to now optimize the overlap between the range, angle and Doppler measurements of the
current scan and the reference scan. For this, the two­dimensional distribution of the PNDT has to
be extended to a three­dimensional distribution spanning not only the range and angle, but also the
Doppler measurements. In the range and angle plane the four overlapping grids are kept and a single
additional grid is constructed over the Doppler measurements. The result is four overlapping grids with
three­dimensional cells. For each cell 𝐶̆𝑘 on this grid with at least three points again the, now three­
dimensional, mean vector 𝑞̆𝑞𝑞𝑘 and covariance matrix Σ̆ΣΣ𝑘 are calculated for the reference scan.

4.2.2. The Point cloud Mapping Equations
At each iteration, the point cloud of the current scan has to be transformed according to the estimate
of the relative pose. In addition to the range and angle measurements as in (4.1), the Doppler mea­
surements have to be mapped. Upon inspection of (4.3), this is easily done using the mapped angle
𝜃′𝑚 according to (4.1):



18 4. The Radar Normal Distributions Transforms

𝑣′𝑚 = 𝑣𝑐𝑎𝑟 cos(𝜃′𝑚). (4.4)

4.2.3. The Optimization
Similar to the PNDT, the objective function keeps the same form of (3.4). The vectors and matrices
now simply become three­dimensional:

min
𝑝𝑝𝑝

−
𝑀

∑
𝑚=1

exp [ − (𝑥̆
𝑥𝑥′𝑚 − 𝑞̆𝑞𝑞𝑘)TΣ̆ΣΣ

−1
𝑘 (𝑥̆𝑥𝑥′𝑚 − 𝑞̆𝑞𝑞𝑘)
2 ], (4.5)

with 𝑥̆𝑥𝑥′𝑚 = [𝑟′𝑚 , 𝜃′𝑚 , 𝑣′𝑚]T ∈ 𝐶̆𝑘 and 𝑞̆𝑞𝑞𝑘 ∈ ℝ3×1, Σ̆ΣΣ𝑘 ∈ ℝ3×3. For the optimization of the score function,
the first and second order partial derivatives of the new mapping equation (4.4) have to be calculated,
along with the first and second order partial derivatives of (4.1) with respect to the vehicle velocity 𝑣𝑐𝑎𝑟.
This is done in Chapter 5.

4.2.4. Target Filtering using Doppler Measurements
The proposed incorporation of Doppler explained in this section results in rewriting of the problem,
however, the availability of Doppler measurements can also be used to improve the performance of
scan­matching techniques in much simpler ways. Since the overlap between two scans is tested for
estimation of the pose, non­stationary targets are undesirable. These targets will appear in different
locations in the consecutive scans which leads to lower overlap. With the availability of Doppler non­
stationary targets, as well as artifacts due to thermal noise, can be filtered out once an estimate of the
velocity is available. Such an estimate 𝑣̂𝑐𝑎𝑟 can for example be calculated by rewriting (4.3) into the
following form:

𝑣̂𝑐𝑎𝑟,𝑚 =
𝑣𝑚

cos(𝜃𝑚)
, (4.6)

and taking the average or median value over all points. Each detection is then tested to see if their
measured Doppler velocity conforms to a constraint related to (4.3) such as:

|𝑣𝑚 − 𝑣̂𝑐𝑎𝑟 cos(𝜃𝑚)| ≤ 𝜖, (4.7)

where 𝜖 is a pre­defined bound. Additionally, all targets outside of the measurable azimuth region
can be filtered out by removing any target𝑚with ameasuredDoppler velocity lower than 𝑣̂𝑐𝑎𝑟 cos(𝜃𝑚𝑎𝑥),
where 𝜃𝑚𝑎𝑥 is the maximum measurable angle.

4.3. The Range­Doppler Polar Normal Distributions Transform
In an effort to reduce the computational load, the possibility of using only the range and Doppler mea­
surements for the optimization is investigated. Both the distribution and the score are calculated for
only the range and Doppler measurements. This results in 𝑥̄𝑥𝑥𝑚 = [𝑟𝑚 , 𝑣𝑚]T ∈ 𝐶̄𝑘 with 𝐶̄𝑘 denoting a cell
inside the range­Doppler grid and 𝑞̄𝑞𝑞𝑘 ∈ ℝ2×1, Σ̄ΣΣ𝑘 ∈ ℝ2×2 being the mean and covariance in the range
and Doppler direction. The pose vector 𝑝̆𝑝𝑝 is the same as in Section 4.2. The resulting scan­matching
technique is called the Range­Doppler PNDT (RDPNDT).

4.4. Incorporation of Signal­to­Noise Ratio Measurements
Using radar rather than LiDAR brings the availability of the received power of a target in the measure­
ments through its Signal­to­Noise ratio (SNR). This received power is related to the radar cross section
(RCS) of a target via the radar equation [23, p. 64­66], as a function of 1

𝑅4 . Knowledge about the
received power can be used to reduce the influence of missed detections resulting in floating points
between the scans, i.e. a point in one of the scans that has no corresponding counterpart in the other
scan, since these missed detections are most common for weaker targets. The incorporation of this
knowledge into the scan­matching algorithm can be done by addressing the received power directly or
by constructing a reference to the RCS of the individual targets through a multiplication of the received
power with 𝑅4. However, since the thermal noise level is constant over the range, this multiplication



4.4. Incorporation of Signal­to­Noise Ratio Measurements 19

Point Cloud

(a)

NDT Distribution

(b)

PNDT Distribution

(c)

Figure 4.3: Different representations of the radar scan, (a) the original detections, (b) the SNR­aware Normal Distributions
Transform, (c) the SNR­aware Polar Normal Distributions Transform

with 𝑅4 does increase the influence of false alarms at further ranges. Both of these approaches can
be implemented in two ways, by considering them in the calculation of the grid or by using it in the cal­
culation of the the score values of each point according to (3.3) in calculation of the objective functions
(3.4), (4.2), (4.5).

4.4.1. Using Knowledge of the RCS in the Calculation of the Distribution
In order to account for the received power in the calculation of the distribution, the weighted mean and
covariance are calculated. This results in the following relations [49]:

𝑞𝑞𝑞𝑖𝑘 =
1
𝑊𝑘

𝑀

∑
𝑚=1

𝑤𝑚𝑥𝑥𝑥𝑖𝑚 ,

ΣΣΣ𝑖,𝑗𝑘 = 1
𝑊𝑘

𝑀

∑
𝑚=1

𝑤𝑚(𝑥𝑥𝑥𝑖𝑚 −𝑞𝑞𝑞𝑖𝑘)(𝑥𝑥𝑥𝑗𝑚 −𝑞𝑞𝑞𝑗𝑘).

(4.8)

In these definitions, 𝑖 and 𝑗 denote the entries of the vector and matrix, 𝑚 denotes the measured
target whose associated weight 𝑤𝑚 is defined as the received power if it were addressed directly or
the received power multiplied by 𝑅4 to obtain a reference to the RCS directly, 𝑀 is the total number of
points inside 𝐶𝑘 and 𝑊𝑘 = ∑𝑀𝑚=1𝑤𝑚. The distributions in Figures 4.1 have been constructed without
taking the SNR into account. Figure 4.3 shows the resulting distributions for the case where the SNR
is taken into account according to (4.8).

Again, the original scan of Figure 3.1a is used. Clearly, through incorporation of the SNR into the
calculation of the distribution, the scan is represented as a more authentic representation compared to
Figure 4.1. The SNR­aware distributions show clear regions of high density around the areas of large
received power in the original scan and lower concentrations in the weaker regions.

4.4.2. Using Knowledge of the RCS in the Calculation of the Score
The same weights can be used in the calculation of the score, the adapted score function takes the
following form:
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score(𝑥𝑥𝑥′𝑚) = 𝑤𝑚 exp [−(𝑥
𝑥𝑥′𝑚 −𝑞𝑞𝑞𝑘)TΣΣΣ−1𝑘 (𝑥𝑥𝑥′𝑚 −𝑞𝑞𝑞𝑘)

2 ] . (4.9)

With the weight factors𝑤𝑚 defined in the same way as in (4.8). This definition results in the following
adjusted minimization problem:

min
𝑝𝑝𝑝

−
𝑀

∑
𝑚=1

𝑤𝑚 exp [−(𝑥
𝑥𝑥′𝑚 −𝑞𝑞𝑞𝑘)TΣΣΣ−1𝑘 (𝑥𝑥𝑥′𝑚 −𝑞𝑞𝑞𝑘)

2 ] . (4.10)

This scaling with 𝑤𝑚 is a linear operation, it is thus trivial to include it in the Hessian and gradient
for the optimization steps.

4.5. Discussion
All of the adjustments to the conventional NDT as discussed in this chapter could improve the perfor­
mance of the scan­matching. The PNDT aims to do so by creating a more authentic representation
of the scan, with a distribution that more closely resembles the extended targets that are present in
radar detections. Addressing the problem in polar coordinates additionally allows for the incorpora­
tion of the Doppler measurements, resulting in the DPNDT. The Doppler measurements are related to
the bearings of the targets and provide higher resolution than detection in the azimuth direction. The
RDPNDT is a mere simplification of the DPNDT in an effort to reduce the computational load. Finally,
incorporation of the received signal power can increase the robustness of the algorithm against missed
detections. Missed detections are most prominent for targets that reflect less power (so­called “weak
targets”). By incorporating a weighting factor related to this received power, the scan­matching relies
more on stronger targets.



5
The Optimization Problem

In order to perform the optimization of (3.4)1 the gradient and Hessian of the objective function with
respect to𝑝𝑝𝑝 have to be derived. Since the structure of the score function itself does not change between
the techniques, the gradient and Hessian of (3.4) are derived in terms of the first and second order
derivatives of the mapped points towards 𝑝𝑝𝑝. These derived equations can also be found in [11].

5.1. The Objective function
Recall (3.4), the objective function aims to maximize the sum of all scores of each point 𝑚, in turn
maximizing the overlap. The objective function is formulated as a minimization as is conventional
in optimization problems [50, p. 1]. Applying Newton’s method requires the objective function to be
convex, which introduces the condition that the Hessian 𝐻𝐻𝐻 of the objective function is always positive
semidefinite [50, p. 71]. This requirement implies that any local minimum is the global minimum.
Determining convexity analytically for (3.4) is non­trivial, as it relies on the positions of individual points
within the reference scan. However, an objective function can be visualized by calculating its value
over an interval on the optimization parameters in 𝑝𝑝𝑝 in order to investigate convexity. Figures 5.1, 5.2
and 5.3 show the shape of the objective functions corresponding to the scan in 3.1a in the matching
with its consecutive scan for some of these intervals, for a cell size of 1 meter. The true minima are
located at 𝑡𝑥 = 0.2047 m, 𝑡𝑦 = −2 × 10−5 m, 𝜙 = −0.005∘ and 𝑣 = 4.0942 m/s.

From these figures it immediately becomes clear that the objective functions are not convex and
suffer from many local minima, which leads to problems in the absence of an accurate initial estimate
of the pose. Such an estimate can for example be made by assuming both the translation in the 𝑦­
direction 𝑡𝑦 and the change in heading 𝜙 are small, which is a plausible assumption given the fact that
the velocity of the car is defined in the 𝑥­direction and the difference in time frames taken for scan­
matching is small. Additionally, 𝑡𝑥 can be initialized through an estimate of the vehicle velocity along
with knowledge of the time between the scans. Such an estimate of the velocity can be made using
(4.6). Noteworthy is the unusual structure in any of the figures showing the objective values for varying
𝑡𝑦 and 𝜙. The figures show the minimum as an oblique line, this is seen more clearly in Figure 5.4. This
can be explained by the fact that for small angles a change in heading has approximately the same
effect as a translation in the 𝑦­direction.

When it comes to the incorporation of Doppler measurements, some observations can be made.
First of all, when looking at the values around the optimal 𝑡𝑥 and 𝑡𝑦 in Figures 5.2a and 5.2b, it can
be seen that a somewhat more well­defined minimum in the direction of 𝑡𝑦 is present, especially the
minimum in Figure 5.1a has a seemingly flat shape in comparison. Furthermore, it seems like the
objective function of the DPNDT presents a less smooth path towards the minimum of 𝑡𝑥 and 𝜙 in
Figure 5.2c, which could result in additional local minima within the main valley of the global minimum.

Figures 5.2d and 5.2f show that the minima corresponding to 𝑡𝑥 and 𝜙 and 𝑡𝑦 and 𝜙 for the RDPNDT
are found at an offset to the correct minimum of 𝜙. This problem can be explained by the fact that by

1and its counterparts for the adjusted techniques
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addressing the problem in the range­Doppler domain, any information to distinguish between left and
right is lost since the only relation to the angle is through the cosine, which does not maintain the sign.
Because of this, objects with approximately equal but opposite angles end up very close together in the
range­Doppler representation. This causes the two individual targets to overlap, resulting in an area of
high density in the calculated distribution at the center of this overlap. The probability that is maximized
by the objective function now has a maximum value for these two particular targets in the case where
they would perfectly overlap, which is the case for a mapping which would result in their angles having
exactly equal values with opposite signs. In a realistic situation detected objects, such as lampposts,
parked cars or buildings, are positioned at approximately equal distance from the center of the road.
Since the measurements of Figure 3.1a represent measurements of a vehicle driving on the right side
of the road this results in objects to the right of the road appearing at a closer angle than objects to the
left. This causes the objective function to favor a positive heading, which is also seen in 5.2d.

A benefit of the introduction of the Doppler measurements is the well­defined and narrow minima in
Figure 5.3. This, however, leads to the requirement of an accurate initialization of the vehicle velocity
to prevent the optimization process from starting in a zero score region. Such a velocity estimate can
again be calculated using (4.6).

An additional way to reduce the local minima is by increasing the cell size of the grids, this however
leads to minima that are less well defined and appear more flat, sometimes even leading to bias in the
minimum due to crude discretization in the grid, leading to errors in estimation of the true minimum.
The counterparts of Figures 5.1a, 5.1b, 5.2a and 5.2b for a cell size of 10 meters are presented in 5.5,
the shapes corresponding to the other combinations of parameters show similar smoothing.

Utilizing the availability of the SNR in the calculation of either the distribution, the score or both also
has significant influence on the distinction of the global minimum. Figure 5.6 shows the shape of the
original objective function of 5.1a along with the shapes resulting from the incorporation of the SNR. It
can be seen that the local minima reduce in depth in the direction of 𝑡𝑥 and the global minimum can be
found through a smoother path.
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𝑡𝑥 vs 𝑡𝑦 for the NDT

(a)

𝑡𝑥 vs 𝑡𝑦 for the PNDT

(b)

𝑡𝑥 vs 𝜙 for the NDT

(c)

𝑡𝑥 vs 𝜙 for the PNDT

(d)

𝑡𝑦 vs 𝜙 for the NDT

(e)

𝑡𝑦 vs 𝜙 for the PNDT

(f)

Figure 5.1: The minima of the objective functions visualized by calculating their values for combinations of the optimization
parameters for the NDT and the PNDT for a cell size of 1 meter, (a) the NDT scanning through 𝑡𝑥 and 𝑡𝑦, (b) the PNDT

scanning through 𝑡𝑥 and 𝑡𝑦, (c) the NDT scanning through 𝑡𝑥 and 𝜙, (d) the PNDT scanning through 𝑡𝑥 and 𝜙, (e) the NDT
scanning through 𝑡𝑦 and 𝜙, (f) the PNDT scanning through 𝑡𝑦 and 𝜙
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𝑡𝑥 vs 𝑡𝑦 for the DPNDT

(a)

𝑡𝑥 vs 𝑡𝑦 for the RDPNDT

(b)

𝑡𝑥 vs 𝜙 for the DPNDT

(c)

𝑡𝑥 vs 𝜙 for the RDPNDT

(d)

𝑡𝑦 vs 𝜙 for the DPNDT

(e)

𝑡𝑦 vs 𝜙 for the RDPNDT

(f)

Figure 5.2: The minima of the objective functions visualized by calculating their values for combinations of the optimization
parameters for the DPNDT and the RDPNDT for a cell size of 1 meter, (a) the DPNDT scanning through 𝑡𝑥 and 𝑡𝑦, (b) the

RDPNDT scanning through 𝑡𝑥 and 𝑡𝑦, (c) the DPNDT scanning through 𝑡𝑥 and 𝜙, (d) the RDPNDT scanning through 𝑡𝑥 and 𝜙,
(e) the DPNDT scanning through 𝑡𝑦 and 𝜙, (f) the RDPNDT scanning through 𝑡𝑦 and 𝜙
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𝑡𝑥 vs 𝑣 for the DPNDT

(a)

𝑡𝑥 vs 𝑣 for the RDPNDT

(b)

𝑡𝑦 vs 𝑣 for the DPNDT

(c)

𝑡𝑦 vs 𝑣 for the RDPNDT

(d)

𝜙 vs 𝑣 for the DPNDT

(e)

𝜙 vs 𝑣 for the RDPNDT

(f)

Figure 5.3: The minima of the objective functions related to the velocity estimate visualized by calculating their values for
combinations of the optimization parameters for the DPNDT and the RDPNDT for a cell size of 1 meter, (a) the DPNDT

scanning through 𝑡𝑥 and 𝑣, (b) the RDPNDT scanning through 𝑡𝑥 and 𝑣, (c) the DPNDT scanning through 𝑡𝑦 and 𝑣, (d) the
RDPNDT scanning through 𝑡𝑦 and 𝑣, (e) the DPNDT scanning through 𝜙 and 𝑣, (f) the RDPNDT scanning through 𝜙 and 𝑣
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𝑡𝑦 vs 𝜙 for the NDT

(a)

𝑡𝑦 vs 𝜙 for the NDT

(b)

Figure 5.4: The oblique minimum inside Figure 5.1e zoomed out, (a) default view, (b) top­down view

𝑡𝑥 vs 𝑡𝑦 for the NDT

(a)

𝑡𝑥 vs 𝑡𝑦 for the PNDT

(b)

𝑡𝑥 vs 𝑡𝑦 for the DPNDT

(c)

𝑡𝑥 vs 𝑡𝑦 for the RDPNDT

(d)

Figure 5.5: The visualization of the objective functions for a cell size of 10 meters, (a) the NDT scanning through 𝑡𝑥 and 𝑡𝑦, (b)
the PNDT scanning through 𝑡𝑥 and 𝑡𝑦, (c) the DPNDT scanning through 𝑡𝑥 and 𝑡𝑦, (d) the RDPNDT scanning through 𝑡𝑥 and

𝑡𝑦
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𝑡𝑥 vs 𝑡𝑦 for the NDT

(a)

𝑡𝑥 vs 𝑡𝑦 for the NDT

(b)

𝑡𝑥 vs 𝑡𝑦 for the NDT

(c)

𝑡𝑥 vs 𝑡𝑦 for the NDT

(d)

Figure 5.6: The minima of the objective function of the NDT with consideration of the RCS, visualized by calculating their
values for combinations of the optimization parameters for a cell size of 1 meters, (a) using no knowledge about the RCS, (b)
using knowledge about the RCS in the calculation of the distribution, (c) using knowledge about the RCS in the calculation of

the score, (d) using knowledge about the RCS in the calculation of both the distribution and the score
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5.2. The Hessian and Gradient of the Objective Function
The fact that a Gaussian­based distribution is used ensures twice differentiability, which is needed in
order to calculate the Hessian. The gradient and Hessian of the objective function in terms of the
first and second­order derivatives of the mapped points can be found in (5.1) and (5.2) [11]. Here,
𝑞̂𝑞𝑞𝑚 = 𝑥𝑥𝑥′𝑚 −𝑞𝑞𝑞𝑚, 𝑔𝑔𝑔𝑖𝑚 is the 𝑖­th entry of the gradient vector, corresponding to entry 𝑖 of 𝑝𝑝𝑝 and 𝐻𝐻𝐻𝑖,𝑗𝑚 is the
entry on the 𝑖­th row and 𝑗­th column of 𝐻𝐻𝐻𝑚, corresponding to entries 𝑖 and 𝑗 of 𝑝𝑝𝑝. As is obvious from
the subscripts, the gradient and Hessian are calculated for each point 𝑚 after which they are averaged
over the number of points to find 𝑔𝑔𝑔 and 𝐻𝐻𝐻 which are used to calculate the increment step. The size of
𝑔𝑔𝑔𝑚 and 𝐻𝐻𝐻𝑚 is determined by the size of 𝑝𝑝𝑝. Thus, for the NDT and the PNDT we find 𝑔𝑔𝑔𝑚 , 𝑔̃𝑔𝑔𝑚 ∈ ℝ3×1,
𝐻𝐻𝐻𝑚 , 𝐻̃𝐻𝐻𝑚 ∈ ℝ3×3 and for the DPNDT and the RDPNDT we find 𝑔̆𝑔𝑔𝑚 , 𝑔̄𝑔𝑔𝑚 ∈ ℝ4×1 and 𝐻̆𝐻𝐻𝑚 , 𝐻̄𝐻𝐻𝑚 ∈ ℝ4×4.

𝑔𝑔𝑔𝑖𝑚 = 𝑞̂𝑞𝑞T𝑚Σ−1𝑚
𝜕𝑞̂𝑞𝑞𝑚
𝜕𝑝𝑝𝑝𝑖 exp(−𝑞̂

𝑞𝑞T𝑚Σ−1𝑚 𝑞̂𝑞𝑞𝑚
2 ) (5.1)

𝐻𝐻𝐻𝑖,𝑗𝑚 = − exp(−𝑞̂
𝑞𝑞T𝑚Σ−1𝑚 𝑞̂𝑞𝑞𝑚

2 ) [ (−𝑞̂𝑞𝑞T𝑚Σ−1𝑚
𝜕𝑞̂𝑞𝑞𝑚
𝜕𝑝𝑝𝑝𝑖 )(−𝑞̂𝑞𝑞

T
𝑚Σ−1𝑚

𝜕𝑞̂𝑞𝑞𝑚
𝜕𝑝𝑝𝑝𝑗 )+

(−𝑞̂𝑞𝑞T𝑚Σ−1𝑚
𝜕2𝑞̂𝑞𝑞𝑚
𝜕𝑝𝑝𝑝𝑖𝜕𝑝𝑝𝑝𝑗 ) + ( −

𝜕𝑞̂𝑞𝑞𝑚
𝜕𝑝𝑝𝑝𝑖

T

Σ−1𝑚
𝜕𝑞̂𝑞𝑞𝑚
𝜕𝑝𝑝𝑝𝑗 )] (5.2)

At each iteration, the current scan point cloud is first transformed according to the mapping equa­
tions, then a single Newton step is taken to calculate the increment Δ𝑝𝑝𝑝 by solving the following equation:

𝐻𝐻𝐻Δ𝑝𝑝𝑝 = −𝑔𝑔𝑔 (5.3)

Δ𝑝𝑝𝑝 is added to the previous estimate of 𝑝𝑝𝑝 to obtain a new pose estimate, to be used in the next iteration
for mapping the point cloud. This process repeats until convergence.

5.3. The First­ and Second­order Derivatives
5.3.1. NDT
The first and second­order derivatives of (3.2) have been calculated in [11], here they will be summa­
rized in short:

The First Order Partial Derivatives

𝑥𝑥𝑥­direction:
𝑥′𝑚 = 𝑥𝑚 cos(𝜙) − 𝑦𝑚 sin(𝜙) + 𝑡𝑥

𝜕𝑥′𝑚
𝜕𝑡𝑥

= 1

𝜕𝑥′𝑚
𝜕𝑡𝑦

= 0

𝜕𝑥′𝑚
𝜕𝜙 = −𝑥𝑚 sin(𝜙) − 𝑦𝑚 cos(𝜙)

𝑦𝑦𝑦­direction:

𝑦′𝑚 = 𝑥𝑚 sin(𝜙) + 𝑦𝑚 cos(𝜙) + 𝑡𝑦
𝜕𝑦′𝑚
𝜕𝑡𝑥

= 0

𝜕𝑦′𝑚
𝜕𝑡𝑦

= 1

𝜕𝑦′𝑚
𝜕𝜙 = 𝑥𝑚 cos(𝜙) − 𝑦𝑚 sin(𝜙)

The Second Order Partial Derivatives
Any second order derivative towards 𝑡𝑥 or 𝑡𝑦 is equal to zero, the only remaining expressions are:

𝜕2𝑥′𝑚
𝜕𝜙2 = −𝑥𝑚 cos(𝜙) + 𝑦𝑚 sin(𝜙)

𝜕2𝑦′𝑚
𝜕𝜙2 = −𝑥𝑚 sin(𝜙) − 𝑦𝑚 cos(𝜙)
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5.3.2. PNDT
Asmentioned previously, the objective function in terms of the mapped points does not change between
the techniques. The gradient and Hessian of the objective function in terms of the first and second­
order derivatives of the mapping equations is thus unaltered. However, due to the change in coordinate
frame, the mapping equations have changed to the ones in (4.1). The first and second order derivatives
of these equations are derived in the following sections.

The First Order Partial Derivatives
Range:

𝑟′𝑚 =√[𝑡𝑥 + 𝑟𝑚 cos(𝜙 + 𝜃𝑚)]2 + [𝑡𝑦 + 𝑟𝑚 sin(𝜙 + 𝜃𝑚)]2⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵
𝛼

𝜕𝑟′𝑚
𝜕𝑡𝑥

= [𝑡𝑥 + 𝑟𝑚 cos(𝜙 + 𝜃𝑚)]
√𝛼

𝜕𝑟′𝑚
𝜕𝑡𝑦

=
[𝑡𝑦 + 𝑟𝑚 sin(𝜙 + 𝜃𝑚)]

√𝛼
𝜕𝑟′𝑚
𝜕𝜙 =

𝑟𝑚[𝑡𝑦 cos(𝜙 + 𝜃𝑚) − 𝑡𝑥 sin(𝜙 + 𝜃𝑚)]
√𝛼

Angle:

𝜃′𝑚 = atan2[𝑡𝑦 + 𝑟𝑚 sin(𝜙 + 𝜃𝑚), 𝑡𝑥 + 𝑟𝑚 cos(𝜙 + 𝜃𝑚)]

= arctan [
𝑡𝑦 + 𝑟𝑚 sin(𝜙 + 𝜃𝑚)
𝑡𝑥 + 𝑟𝑚 cos(𝜙 + 𝜃𝑚)⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵

𝛽

] + 𝐶,

with 𝐶 a constant depending on the quadrant. Using 𝑝𝑝𝑝𝑖 to represent the 𝑖­th element of 𝑝𝑝𝑝 = [𝑡𝑥 , 𝑡𝑦 , 𝜙],
we can write:

𝜕𝜃′𝑚
𝜕𝑝𝑝𝑝𝑖 =

1
1 + 𝛽2

𝜕𝛽
𝜕𝑝𝑝𝑝𝑖

𝜕𝛽
𝜕𝑡𝑥

=
−𝑡𝑦 − 𝑟𝑚 sin(𝜙 + 𝜃𝑚)
[𝑡𝑥 + 𝑟𝑚 cos(𝜙 + 𝜃𝑚)]

2

𝜕𝛽
𝜕𝑡𝑦

= 1
𝑡𝑥 + 𝑟𝑚 cos(𝜙 + 𝜃𝑚)

𝜕𝛽
𝜕𝜙 =

𝑟2𝑚 + 𝑡𝑥𝑟𝑚 cos(𝜙 + 𝜃𝑚) + 𝑡𝑦𝑟𝑚 sin(𝜙 + 𝜃𝑚)
[𝑡𝑥 + 𝑟𝑚 cos(𝜙 + 𝜃𝑚)]

2

The Second Order Partial derivatives
Range:

𝜕2𝑟′𝑚
𝜕𝑡2𝑥

=
√𝑎 − [𝑡𝑥 + 𝑟𝑚 cos(𝜙 + 𝜃𝑚)]

𝜕𝑟′𝑚
𝜕𝑡𝑥

𝛼
𝜕2𝑟′𝑚
𝜕𝑡𝑥𝜕𝑡𝑦

= −[𝑡𝑥 + 𝑟𝑚 cos(𝜙 + 𝜃𝑚)]
𝛼

𝜕𝑟′𝑚
𝜕𝑡𝑦

𝜕2𝑟′𝑚
𝜕𝑡𝑥𝜕𝜙

= −
𝑟𝑚√𝑎 sin(𝜙 + 𝜃𝑚) + [𝑡𝑥 + 𝑟𝑚 cos(𝜙 + 𝜃𝑚)]

𝜕𝑟′𝑚
𝜕𝜙

𝛼
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𝜕2𝑟′𝑚
𝜕𝑡2𝑦

=
√𝑎 − [𝑡𝑦 + 𝑟𝑚 sin(𝜙 + 𝜃𝑚)]

𝜕𝑟′𝑚
𝜕𝑡𝑦

𝛼

𝜕2𝑟′𝑚
𝜕𝑡𝑦𝜕𝜙

=
𝑟𝑚√𝑎 cos(𝜙 + 𝜃𝑚) − [𝑡𝑦 + 𝑟𝑚 sin(𝜙 + 𝜃𝑚)]

𝜕𝑟′𝑚
𝜕𝜙

𝛼

𝜕2𝑟′𝑚
𝜕𝜙2 =

−𝑟𝑚√𝑎[𝑡𝑥 cos(𝜙 + 𝜃𝑚) + 𝑡𝑦 sin(𝜙 + 𝜃𝑚)]
𝛼

+
𝑟𝑚[𝑡𝑥 sin(𝜙 + 𝜃𝑚) − 𝑡𝑦 cos(𝜙 + 𝜃𝑚)]

𝜕𝑟′𝑚
𝜕𝜙

𝛼

Angle: Using the variable 𝛽 as defined above and using the same definition for the elements of 𝑝𝑝𝑝 we
can write:

𝜕2𝜃′𝑚
𝜕𝑝𝑝𝑝𝑖𝜕𝑝𝑝𝑝𝑗 = [

1
1 + 𝛽2

𝜕2𝛽
𝜕𝑝𝑝𝑝𝑖𝜕𝑝𝑝𝑝𝑗 −

2𝛽
(1 + 𝛽2)2

𝜕𝛽
𝜕𝑝𝑝𝑝𝑖

𝜕𝛽
𝜕𝑝𝑝𝑝𝑗 ] .

The second­order partial derivatives of 𝛽 are then given by:

𝜕2𝛽
𝜕𝑡2𝑥

= 2
𝑡𝑦 + 𝑟𝑚 sin(𝜙 + 𝜃𝑚)
[𝑡𝑥 + 𝑟𝑚 cos(𝜙 + 𝜃𝑚)]

3

𝜕2𝛽
𝜕𝑡𝑥𝜕𝑡𝑦

= −1
[𝑡𝑥 + 𝑟𝑚 cos(𝜙 + 𝜃𝑚)]

2

𝜕2𝛽
𝜕𝑡𝑥𝜕𝜙

=
−𝑟2𝑚[sin2(𝜙 + 𝜃𝑚) + 1] − 2𝑡𝑦𝑟𝑚 sin(𝜙 + 𝜃𝑚)

[𝑡𝑥 + 𝑟𝑚 cos(𝜙 + 𝜃𝑚)]
3 − 𝑡𝑥𝑟𝑚 cos(𝜙 + 𝜃𝑚)

[𝑡𝑥 + 𝑟𝑚 cos(𝜙 + 𝜃𝑚)]
3

𝜕2𝛽
𝜕𝑡2𝑦

= 0

𝜕2𝛽
𝜕𝑡𝑦𝜕𝜙

= 𝑟𝑚 sin(𝜙 + 𝜃𝑚)
[𝑡𝑥 + 𝑟𝑚 cos(𝜙 + 𝜃𝑚)]

2

𝜕2𝛽
𝜕𝜙2 =

[𝑡𝑦𝑟𝑚 cos(𝜙 + 𝜃𝑚) − 𝑡𝑥𝑟𝑚 sin(𝜙 + 𝜃𝑚)][𝑡𝑥 + 𝑟𝑚 cos(𝜙 + 𝜃𝑚)]
[𝑡𝑥 + 𝑟𝑚 cos(𝜙 + 𝜃𝑚)]3

+
2𝑟𝑚 sin(𝜙 + 𝜃𝑚)[𝑟2𝑚 + 𝑡𝑥𝑟𝑚 cos(𝜙 + 𝜃𝑚) + 𝑡𝑦𝑟𝑚 sin(𝜙 + 𝜃𝑚)]

[𝑡𝑥 + 𝑟𝑚 cos(𝜙 + 𝜃𝑚)]3

These expressions are much more involved than the ones in [11]. However, during the verification
process it was found that the increase in execution time per iteration of the PNDT compared to the NDT
is very low.

5.3.3. DPNDT
For the DPNDT, a new mapping equation has been introduced and the estimation vector has been
extended to include the velocity of the car. The range and angle mapping equations do not depend
on the vehicle velocity 𝑣𝑐𝑎𝑟, so the first and second order partial derivatives of Equations (4.1) towards
𝑣𝑐𝑎𝑟 are equal to zero. Therefore, only the first and second order partial derivatives of Equation (4.4)
are treated in this section. For simplicity, the partial derivatives derived in this section are expressed in
terms of the first and second order partial derivatives of the mapped angle as derived in 5.3.2. Naturally,
the derivatives calculated in this section will also be used in the RDPNDT.
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The First Order Partial Derivatives

𝜕𝑣′𝑚
𝜕𝑡𝑥

= −𝑣𝑐𝑎𝑟 sin(𝜃′𝑚)
𝜕𝜃′𝑚
𝜕𝑡𝑥

𝜕𝑣′𝑚
𝜕𝑡𝑦

= −𝑣𝑐𝑎𝑟 sin(𝜃′𝑚)
𝜕𝜃′𝑚
𝜕𝑡𝑦

𝜕𝑣′𝑚
𝜕𝜙 = −𝑣𝑐𝑎𝑟 sin(𝜃′𝑚)

𝜕𝜃′𝑚
𝜕𝜙

𝜕𝑣′𝑚
𝜕𝑣𝑐𝑎𝑟

= cos(𝜃′𝑚)

The Second Order Partial derivatives

𝜕2𝑣′𝑚
𝜕𝑡2𝑥

= −𝑣𝑐𝑎𝑟 cos(𝜃′𝑚) (
𝜕𝜃′𝑚
𝜕𝑡𝑥

)
2
− 𝑣𝑐𝑎𝑟 sin(𝜃′𝑚)

𝜕2𝜃′𝑚
𝜕𝑡2𝑥

𝜕2𝑣′𝑚
𝜕𝑡𝑥𝜕𝑡𝑦

= −𝑣𝑐𝑎𝑟 cos(𝜃′𝑚)
𝜕𝜃′𝑚
𝜕𝑡𝑥

𝜕𝜃′𝑚
𝜕𝑡𝑦

− 𝑣𝑐𝑎𝑟 sin(𝜃′𝑚)
𝜕2𝜃′𝑚
𝜕𝑡𝑥𝜕𝑡𝑦

𝜕2𝑣′𝑚
𝜕𝑡𝑥𝜕𝜙

= −𝑣𝑐𝑎𝑟 cos(𝜃′𝑚)
𝜕𝜃′𝑚
𝜕𝑡𝑥

𝜕𝜃′𝑚
𝜕𝜙 − 𝑣𝑐𝑎𝑟 sin(𝜃′𝑚)

𝜕2𝜃′𝑚
𝜕𝑡𝑥𝜕𝜙

𝜕2𝑣′𝑚
𝜕𝑡𝑥𝜕𝑣𝑐𝑎𝑟

= − sin(𝜃′𝑚)
𝜕𝜃′𝑚
𝜕𝑡𝑥

𝜕2𝑣′𝑚
𝜕𝑡2𝑦

= −𝑣𝑐𝑎𝑟 cos(𝜃′𝑚) (
𝜕𝜃′𝑚
𝜕𝑡𝑦

)
2
− 𝑣𝑐𝑎𝑟 sin(𝜃′𝑚)

𝜕2𝜃′𝑚
𝜕𝑡2𝑦

𝜕2𝑣′𝑚
𝜕𝑡𝑦𝜕𝜙

= −𝑣𝑐𝑎𝑟 cos(𝜃′𝑚)
𝜕𝜃′𝑚
𝜕𝑡𝑦

𝜕𝜃′𝑚
𝜕𝜙 − 𝑣𝑐𝑎𝑟 sin(𝜃′𝑚)

𝜕2𝜃′𝑚
𝜕𝑡𝑦𝜕𝜙

𝜕2𝑣′𝑚
𝜕𝑡𝑥𝜕𝑣𝑐𝑎𝑟

= − sin(𝜃′𝑚)
𝜕𝜃′𝑚
𝜕𝑡𝑦

𝜕2𝑣′𝑚
𝜕𝜙2 = −𝑣𝑐𝑎𝑟 cos(𝜃′𝑚) (

𝜕𝜃′𝑚
𝜕𝜙 )

2
− 𝑣𝑐𝑎𝑟 sin(𝜃′𝑚)

𝜕2𝜃′𝑚
𝜕𝜙2

𝜕2𝑣′𝑚
𝜕𝜙𝜕𝑣𝑐𝑎𝑟

= − sin(𝜃′𝑚)
𝜕𝜃′𝑚
𝜕𝜙

𝜕2𝑣′𝑚
𝜕𝑣2𝑐𝑎𝑟

= 0

5.4. Local Minima and not Positive Definite Hessian
As became apparent in Section 5.1, the objective function often suffers from local minima, especially
when a smaller cell size is used. This is something that has also been addressed in previous research
[12], [13], [15]. Solutions include techniques such as iterative subdivision of the grid cells and repre­
sentation via 𝑘­means clustering instead of a fixed grid. As can be seen from (5.3), Newton’s method
ensures the descent step to be in the direction of the negative gradient, thus moving towards the mini­
mum, for convex functions (the Hessian being positive (semi­)definite). The Newton step even requires
the Hessian to be positive definite for the inverse to be defined.

The local minima in the objective function cause so­called saddle points. Saddle­points are points
within the objective function, corresponding to a combination of optimization variables 𝑝̂𝑝𝑝 that denote the
minimum of the function in one dimension and the maximum of the function in another dimension [50,
p. 238], an example of such a point as found within Figure 5.3a is shown in Figure 5.7. At such a point,
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the calculated Hessian 𝐻𝐻𝐻 is not positive definite and thus taking the Newton step using the calculated
Hessian will result in divergence. In order to solve this problem, a predefined value is chosen to act as
the minimum eigenvalue 𝜆𝑚𝑖𝑛. After every calculation of the Hessian 𝐻𝐻𝐻 its eigenvalues are checked
using the eigenvalue decomposition, any eigenvalue that is below 𝜆𝑚𝑖𝑛 is set equal to it and the Hessian
is reconstructed using its new eigenvalues.

Figure 5.7: A saddle point inside the objective function of the DPNDT for the matching of the scan in 3.1a with its consecutive
scan



6
Joint Pose Estimation and Calibration

Some research was devoted to the possibility of using the DPNDT to perform sensor bias estimation.
Accurate localization using automotive radar requires high­quality radar measurements. Many fac­
tors, e.g. temperature drift, calibration errors, presence of a water or dirt layer on the bumper or its
deformation, can dramatically distort radar performance. Angular measurements, obtained via digital
beam­forming, are the most sensitive to these types of distortions, leading to the widening and dis­
tortion of the main beam, as well as bias from its nominal direction [51]. This section describes the
extension of the DPNDT to perform sensor bias estimation.

6.1. Angular Bias as an Estimation Parameter
In order to estimate the angular sensor bias, the properties of Doppler measurements can be utilized.
Upon close inspection of Equation (4.3) it is seen that the measured Doppler velocity of a target is
related to its actual, i.e. unbiased, angle of incidence 𝜃𝑚. The angles in (4.1) (Fig. 4.2) are unbiased
angles of the targets. By making the bias in the error explicit in the mapping equations and including it in
the estimation vector 𝑝𝑝𝑝, it can be estimated using the DPNDT through the standard steps as explained
in 4.2.

The bias in angular measurements can be modeled by 𝜃𝑚,𝑚𝑒𝑎𝑠 = 𝜃𝑚,𝑎𝑐𝑡 +𝜖𝜃, independently on the
scanning angle. The mapping equations of (4.4) are based on the actual angle, through the definition
of the measured angles, the modified mapping equations then become:

𝑟′𝑚 = √[𝑡𝑥 + 𝑟𝑚 cos(𝜙 + 𝜃𝑚,𝑚𝑒𝑎𝑠 − 𝜖𝜃)]2 + [𝑡𝑦 + 𝑟𝑚 sin(𝜙 + 𝜃𝑚,𝑚𝑒𝑎𝑠 − 𝜖𝜃)]2;

𝜃′𝑚,𝑎𝑐𝑡 = atan2[𝑡𝑦 + 𝑟𝑚 sin(𝜙 + 𝜃𝑚,𝑚𝑒𝑎𝑠 − 𝜖𝜃), 𝑡𝑥 + 𝑟𝑚 cos(𝜙 + 𝜃𝑚,𝑚𝑒𝑎𝑠 − 𝜖𝜃)];
𝜃′𝑚,𝑚𝑒𝑎𝑠 = 𝜃′𝑚,𝑎𝑐𝑡 + 𝜖𝜃;
𝑣′𝑚 = 𝑣𝑐𝑎𝑟 cos(𝜃′𝑚,𝑎𝑐𝑡).

(6.1)

By now including the sensor bias 𝜖𝜃 in the estimation vector 𝑝𝑝𝑝 and defining the gradient and Hessian
for this new parameter, the sensor bias can be found through the standard optimization steps.

6.2. The Hessian and Gradient
The gradient and Hessian of the objective function in terms of the first and second order derivatives
towards the entries of𝑝𝑝𝑝 remain the same as in (5.1) and (5.2). However, 𝑝𝑝𝑝 has been extended to contain
the sensor bias 𝜖𝜃, for which the first and second order derivatives still have to be derived. Upon closer
inspection of the mapping equations in (6.1) it can be seen that many of the partial derivatives will
be closely related to the partial derivatives of the heading 𝜙, due to the similarity in occurrence of the
two variables. Keeping this in mind, calculation of the derivatives becomes a trivial task, they can be
expressed in terms of the partial derivatives towards 𝜙 as follows:
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The First Order Partial Derivatives

𝜕𝑟′𝑚
𝜕𝜖𝜃

= −𝜕𝑟
′
𝑚
𝜕𝜙

𝜕𝜃′𝑚
𝜕𝜖𝜃

= −𝜕𝜃
′
𝑚

𝜕𝜙 + 1

𝜕𝑣′𝑚
𝜕𝜖𝜃

= −𝜕𝑣
′
𝑚

𝜕𝜙

The Second Order Partial Derivatives

Range:

𝜕2𝑟′𝑚
𝜕𝑡𝑥𝜕𝜖𝜃

= − 𝜕2𝑟′𝑚
𝜕𝑡𝑥𝜕𝜙

𝜕2𝑟′𝑚
𝜕𝑡𝑦𝜕𝜖𝜃

= − 𝜕2𝑟′𝑚
𝜕𝑡𝑦𝜕𝜙

𝜕2𝑟′𝑚
𝜕𝜙𝜕𝜖𝜃

= −𝜕
2𝑟′𝑚
𝜕𝜙2

𝜕2𝑟′𝑚
𝜕𝜖2𝜃

= 𝜕2𝑟′𝑚
𝜕𝜙2

Angle:

𝜕2𝜃′𝑚
𝜕𝑡𝑥𝜕𝜖𝜃

= − 𝜕
2𝜃′𝑚

𝜕𝑡𝑥𝜕𝜙
𝜕2𝜃′𝑚
𝜕𝑡𝑦𝜕𝜖𝜃

= − 𝜕
2𝜃′𝑚

𝜕𝑡𝑦𝜕𝜙
𝜕2𝜃′𝑚
𝜕𝜙𝜕𝜖𝜃

= −𝜕
2𝜃′𝑚
𝜕𝜙2

𝜕2𝜃′𝑚
𝜕𝜖2𝜃

= 𝜕2𝜃′𝑚
𝜕𝜙2

Velocity:

𝜕2𝑣′𝑚
𝜕𝑡𝑥𝜕𝜖𝜃

= − 𝜕
2𝑣′𝑚

𝜕𝑡𝑥𝜕𝜙
𝜕2𝑣′𝑚
𝜕𝑡𝑦𝜕𝜖𝜃

= − 𝜕
2𝑣′𝑚

𝜕𝑡𝑦𝜕𝜙
𝜕2𝑣′𝑚
𝜕𝜙𝜕𝜖𝜃

= −𝜕
2𝑣′𝑚
𝜕𝜙2

𝜕2𝑣′𝑚
𝜕𝜖2𝜃

= 𝜕2𝑣′𝑚
𝜕𝜙2

6.3. Convergence to the Correct Minimum
During the verification process it was found that a bias could be estimated, however this bias suffered
from a fixed offset. This fixed offset was the same for any arbitrarily chosen bias value. The reason
for this can be seen in Figure 6.1, which shows similar plots to the ones in Chapter 5, now regarding
the minima for varying values of the bias 𝜖𝜃. From this plot, it can be seen that the minimum of the
objective function is actually situated at an offset to the true value, which is 𝜖𝜃 = −0.5∘, denoted by the
black cross.

𝑡𝑥 vs 𝑣 for the DPNDT

(a)

𝑡𝑥 vs 𝑣 for the RDPNDT

(b)

Figure 6.1: The minimum of the objective function of the DPNDT with sensor bias estimation, (a) scanning through 𝑡𝑥 and 𝜖𝜃,
(b) scanning through 𝑣 and 𝜖𝜃

This problem can be explained by taking a look at the relation between velocity and angle as seen
in (4.3). If we want to derive any information about the angle from the Doppler measurements, the
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resolution of these Doppler measurements determines the resolution that our derived knowledge of
the angle has. This can be seen more clearly through manipulation of (4.3), if we want to distinguish
between any angles 𝜃 and 𝜃 + Δ𝜃, the Doppler measurements should be able to distinguish between
𝑣1 = 𝑣𝑐𝑎𝑟 cos (𝜃) and 𝑣2 = 𝑣𝑐𝑎𝑟 cos (𝜃 + Δ𝜃), in other words, the Doppler resolution should at least be:

Δ𝑣 = 𝑣𝑐𝑎𝑟 cos (𝜃) − 𝑣𝑐𝑎𝑟 cos (𝜃 + Δ𝜃) . (6.2)

For a vehicle velocity of 15 km/h and a Doppler resolution of Δ𝑣 ≈ 7.81 cm/s, as was the case
during the verification process in Section 7.1, the resolution of the angle information that can be derived
becomes Δ𝜃 ≈ 1.074∘, not enough to estimate a bias of −0.5∘. Due to discretization this causes the
minimum to be in the incorrect spot. If now the Doppler resolution were increased, either through
lowering of the unambiguous velocity or by increasing the number of sweeps (either directly or indirectly,
by concatenating consecutive frames in the slow time), knowledge about the angle can be derived at a
finer resolution. This solution to the problem is confirmed by Figure 6.2, which shows the counterpart
of Figure 6.1 for a Doppler resolution of Δ𝑣 ≈ 1.95 cm/s.

𝑡𝑥 vs 𝑣 for the DPNDT

(a)

𝑡𝑥 vs 𝑣 for the RDPNDT

(b)

Figure 6.2: The minimum of the objective function of the DPNDT with sensor bias estimation for a higher Doppler resolution, (a)
scanning through 𝑡𝑥 and 𝜖𝜃, (b) scanning through 𝑣 and 𝜖𝜃





7
Verification of the Performance of the

NDT Techniques
In this section the influence of the suggested improvements are examined. All four approaches for
incorporation of the SNR are compared; no weighting, weighting in the calculation of the distribution,
weighting in the calculation of the score values, and both weighting in the distribution and the score.
These comparisons are made for all of the four discussed techniques; the NDT, the PNDT, the DP­
NDT and the RDPNDT. In this way all of the proposed novelties are examined; transformation to polar
coordinates, inclusion of Doppler and incorporation of the SNR.

The performance has been tested and compared using both simulated and real data. In order to do
so, some fixed parameters have to be chosen on which the techniques depend, these parameters are
the following:

Table 7.1: Initialization parameters of the NDT techniques

𝑅𝑐𝑒𝑙𝑙 The size of a cell in the range direction1
[𝑅𝑚𝑖𝑛 , 𝑅𝑚𝑎𝑥] The minimum and maximum range for which the distribution is calculated
[𝜃𝑚𝑖𝑛 , 𝜃𝑚𝑎𝑥] The minimum and maximum angle for which the distribution is calculated2
[𝑣𝑚𝑖𝑛 , 𝑣𝑚𝑎𝑥] The minimum and maximum velocity for which the distribution is calculated

Δ𝑠𝑐𝑎𝑛 The position in discrete time of the current scan relative to the reference scan
‖Δ𝑝𝑝𝑝‖𝑚𝑖𝑛 The minimum 2­norm of the Newton step, used to determine convergence3
|Δ𝑝𝑝𝑝𝑖|𝑚𝑎𝑥 The maximum Newton step size for estimation parameter 𝑖, this is constrained to

prevent divergence, similar to in [14]
𝜆𝑚𝑖𝑛 The minimum eigenvalue for the Hessian, as discussed in 5.4

1Using this initialized value the sizes in the other dimensions are chosen such that all techniques have an equal number of cells.
The only dimension for which this does not hold true is for the velocity dimension, which is divided into 100 cells in all cases

2Together the minimum and maximum range this determines the size of the Cartesian grid in the 𝑥­ and 𝑦­direction
3If this constraint is not met within a certain number of iterations, the optimization process for the scans of interest is exited as
well

During the verification process it was found that the performance of the different techniques depends
very highly on the choice of most of these variables. Unfortunately there was not enough time to
investigate their influences individually and values were chosen that were considered to result in decent
outcomes most of the time.

7.1. Simulations
7.1.1. Set­up of the Simulations
For the simulation of measured radar data, a highly idealized environment is created. Shapes are cre­
ated within the vicinity of the car using gray­scale values. These gray­scale values will be used as the
RCS of individual targets to determine the received power. Within this created map a starting pose is

37
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chosen whose measurements will be used as the reference scan. 100 poses relative to the starting
pose are randomly generated. The magnitude of the individual relative pose parameters is in line with
a vehicle driving along a straight trajectory at a randomly generated velocity with mean 15 km/h and
standard deviation 0.1 km/h. At a framerate of 10 Hz, each timeframe will have a randomly gener­
ated velocity which, in combination with randomly generated steering irregularities (which represent
the change in heading) determines the translation in the 𝑥­ and 𝑦­direction. The randomly generated
relative poses are stored to be used as a ground truth. Figure 7.1 shows the surroundings of the vehicle
along with the generated relative poses, the circles representing the position and the bars indicating
the heading.

Generated map

(a)

Randomly generated poses

(b)

Figure 7.1: The simulated surroundings of the vehicles and the relative poses, (a) the map surrounding the vehicle, created
using shapes that represent different objects, (b) the randomly generated poses along with the starting pose

For each timeframe, radar measurements are created of the surroundings. A radar scan is gener­
ated according to the following steps:

1. Extract the part of the image in the immediate surroundings of the vehicle, corresponding to a
predefined maximum range

2. Add RCS fluctuation to the gray­scale values resulting in the distribution of the received power to
be non­central chi­squared with two degrees of freedom [23]1

3. Interpolate the Cartesian image to polar coordinates over a fine grid, restricting the field of view
to ±60∘2

4. Extend the data into a radar data cube by calculating the Doppler velocity for each range­angle
cell using (4.3)

5. Apply the inverse Fast Fourier Transform in the angular dimension to obtain a range­Doppler­
antenna element cube

6. Discard any information outside of the first 12 (3 Tx × 4 Rx) elements

7. Add target spreading in the Doppler and Range domain

8. Add white Gaussian noise to simulate thermal noise
1Modeling the gray­scale values representing received signal magnitudes as a Rician distributed variable similar to [52]
2This grid is constructed such that the cell size in the range dimension coincides with typical radar range resolution and the cell
size in the angle dimension is chosen such as to accommodate the chosen Doppler resolution
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9. Perform median detection in the range­Doppler domain followed by digital beamforming

The result is a collection of scans, one for each time frame, each containing detected targets with cor­
responding range, angle, Doppler velocity and SNR values.

For generating themeasurements, the thermal SNR is chosen to be 30 dB with a detection threshold
of 15 dB. In this simplistic case, the RCS fluctuation is not taken into account. Furthermore, a maximum
measurable range of 𝑅𝑚𝑎𝑥 = 40 m is chosen and the range and Doppler resolution are chosen to be
Δ𝑅 = 17.38 cm and Δ𝑣 ≈ 7.81 cm/s, respectively. These values are in a similar order of magnitude as
the ones achieved in the experiment detailed in Section 7.2.

In the simulations, the influence of the different methods to incorporate knowledge about the RCS
is examined for each of the four NDT techniques. The RCS is taken into account directly by using
the received power. The comparison criteria are the error in the position estimate, expressed as the
Euclidean distance to the correct position, and the error in heading, where the randomly generated
poses are used as the ground truth.

All estimation errors are expressed as the root mean squared values of the aforementioned errors
over the 100 time frames, along with their standard deviation.

Additionally, some more realistic simulations were performed based on a map of the Leeghwater­
straat near the EEMCS building, where the experiment of Section 7.2 was also conducted. The map
is created by tracing a section of the Leeghwaterstraat in a vector­based design and drawing program
using grayscale values with varying intensities for different targets. Again the grayscale values will be
used to simulate the RCS of the different targets, this time being modeled as Rice(𝐴0, 𝜎𝐴) distributed
random variables where 𝐴0 is the grayscale value and 𝜎𝐴

𝐴0
= 0.1.

Many point­like targets (roughly the size of a lamppost) are added which, along with the buildings
on the map and some added objects such as cars and bicycles, will be used as reflective targets. Along
the road that is present on the map a perfectly straight trajectory is created where the only uncertainty
is generated through random fluctuation of the vehicle velocity, which is generated by taking samples
from a Gaussian distribution characterized by a mean of 15 km/h and a standard deviation of 1 km/h.
The trajectory consists of vehicle poses taken at intervals of 0.1 seconds, allowing for a framerate of 10
Hz, and the resulting trajectory is stored for verification purposes. The trajectory, along with the map
can be seen in Figure 7.2. The black line denotes the trajectory at each time frame, the circles and the
bars indicate the vehicle’s position and heading at intervals of 10 time frames. In order to complete the
trajectory, 100 frames were needed.

For each timeframe along the trajectory, i.e. at a framerate of 10 Hz, radar measurements are
created of the surroundings. A radar scan is generated using the same method and parameters as
before.

7.1.2. Comparison of the Different Pose Estimation Techniques
For examination of the results, the parameters of Table 7.1 have to be chosen. As mentioned earlier,
these parameters, especially the values determining the cell size and 𝜆𝑚𝑖𝑛, highly influence the end
result. Unfortunately time did not permit to investigate the direct influences of all of these parameters in
order to obtain the optimal values, only the cell size 𝑅𝑐𝑒𝑙𝑙 is investigated for some values. The chosen
values can be found in Table 7.2.

Table 7.2: Chosen Initialization parameters of the NDT techniques

𝑅𝑐𝑒𝑙𝑙 0.5, 1 and 2 meter
[𝑅𝑚𝑖𝑛 , 𝑅𝑚𝑎𝑥] [0, 40] meter
[𝜃𝑚𝑖𝑛 , 𝜃𝑚𝑎𝑥] [­90, 90] degrees
[𝑣𝑚𝑖𝑛 , 𝑣𝑚𝑎𝑥] [0, 5] meter per second

Δ𝑠𝑐𝑎𝑛 +1 scan
‖Δ𝑝𝑝𝑝‖𝑚𝑖𝑛 1 × 10−5 1

|Δ𝑝𝑝𝑝𝑖|𝑚𝑎𝑥 0.05 meter or radians
𝜆𝑚𝑖𝑛 1

1With a maximum iteration count of 50
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Figure 7.2: The created map and generated trajectory

Primitive simulations

The Pose Estimation: Figure 7.3 shows the results of the pose estimation techniques for the different
RCS incorporation techniques and different cell sizes. Shown is the average Euclidean distance to
the correct position and the root mean square error (RMSE) of the heading estimate, along with the
standard deviation of these errors denoted by the errorbars. These values are found by averaging over
the 100 realisations. In each case the PNDT outperforms all of the other techniques considerably. For
each of the techniques, the dependence on incorporation of RCS information is not very prominent,
which can be expected in an idealized case as was used here. The PNDT seems to either outperform
the NDT or show similar performance. The RDPNDT shows very poor performance overall, it shows
no improvements over the NDT apart from the case where the cell size is chosen to be 𝑅𝑐𝑒𝑙𝑙 = 0.5 m.

A clear relation between the cell size and the overall performance of all the techniques cannot be
found, the PNDT shows considerable improvements in performance for the larger cell size of 𝑅𝑐𝑒𝑙𝑙 = 2
m, especially when in comes to the standard deviation in the heading estimate, however when compar­
ing the performance of the heading estimate in the case of 𝑅𝑐𝑒𝑙𝑙 = 1 m to that in the case of 𝑅𝑐𝑒𝑙𝑙 = 0.5
m it seems like both the error and the standard deviation increase for the larger cell size of the two.
With this same increase in cell size from 𝑅𝑐𝑒𝑙𝑙 = 0.5m to 𝑅𝑐𝑒𝑙𝑙 = 1m for the NDT both the error and the
standard deviation reduce, but they increase again as the cell size is increased further to 𝑅𝑐𝑒𝑙𝑙 = 2 m.
The PNDT shows slightly reduced errors and standard deviations for cell sizes 𝑅𝑐𝑒𝑙𝑙 = 1 and 𝑅𝑐𝑒𝑙𝑙 = 2
m, both showing a slight reduction in both error and standard deviation compared to the case where
𝑅𝑐𝑒𝑙𝑙 = 0.5 m. The achieved errors for each of the techniques for their optimal implementation out of
the investigated ones can be found in Table 7.3.

The improvements can be expressed more quantitatively by looking at the average RMSE over all
these realisations, i.e. all three values of 𝑅𝑐𝑒𝑙𝑙 and all four of the SNR incorporation techniques, for
both the position and the heading and compare them to the average RMSEs of the NDT. The reduction
in average RMSE expressed as a percentage can be calculated. The results of this are shown in Table
7.4. Here, a minus sign denotes an increase in the RMSE and thus a reduction in performance.
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𝑅𝑐𝑒𝑙𝑙 = 0.5 m

(a)

𝑅𝑐𝑒𝑙𝑙 = 0.5 m

(b)

𝑅𝑐𝑒𝑙𝑙 = 1 m

(c)

𝑅𝑐𝑒𝑙𝑙 = 1 m

(d)

𝑅𝑐𝑒𝑙𝑙 = 2 m

(e)

𝑅𝑐𝑒𝑙𝑙 = 2 m

(f)

Figure 7.3: The errors, denoted by the symbols, along with the standard deviation, denoted by the error bar, of the pose
estimates, (a) the Euclidean distance to the actual position using a cell size of 𝑅𝑐𝑒𝑙𝑙 = 0.5 m, (b) the RMSE of the heading using
a cell size of 𝑅𝑐𝑒𝑙𝑙 = 0.5 m, (c) the Euclidean distance to the actual position using a cell size of 𝑅𝑐𝑒𝑙𝑙 = 1 m, (d) the error in the
heading using a cell size of 𝑅𝑐𝑒𝑙𝑙 = 1 m, (e) the Euclidean distance to the actual position using a cell size of 𝑅𝑐𝑒𝑙𝑙 = 2 m, (f) the

RMSE of the heading using a cell size of 𝑅𝑐𝑒𝑙𝑙 = 2 m
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Table 7.3: The achieved errors for each technique, using the optimal settings

Optimal set­up Euclidean Distance [cm] RMSE Heading [∘]

NDT 𝑅𝑐𝑒𝑙𝑙 = 1, RCS none 6.19 0.397

PNDT 𝑅𝑐𝑒𝑙𝑙 = 2, RCS score 2.90 0.124

DPNDT 𝑅𝑐𝑒𝑙𝑙 = 1, RCS none 11.1 0.500

RDPNDT 𝑅𝑐𝑒𝑙𝑙 = 1, RCS none 14.81 1.245

Table 7.4: The reduction of the RMSE for each of the proposed techniques as compared to the conventional NDT, found by
comparing the average RMSEs over the varying grid sizes and methods to implement RCS knowledge

Position [%] Heading [%]

PNDT 59.54 58.50

DPNDT ­27.03 19.09

RDPNDT ­45.60 ­54.74

The Execution Times: The average execution times of the presented approaches are shown in Table
7.5, normalized to the execution time of the NDT3. It is clear that the increase in performance of the
PNDT comes with only a very slight increase of the computational time. And while the computation
time of the RDPNDT is lower than that of the NDT, the results are worse in most cases.

Table 7.5: Execution times of the NDT techniques, normalized to the execution time of the conventional NDT

𝑅 = 0.5 m 𝑅 = 1 m 𝑅 = 2 m
None Score Dist Both None Score Dist Both None Score Dist Both

PNDT 1.03 1.05 1.03 1.06 1.09 1.09 1.09 1.09 1.09 1.10 1.09 1.10

DPNDT 6.23 7.50 6.13 7.22 2.39 2.60 2.47 2.66 1.39 1.40 1.45 1.50

RDPNDT 0.87 0.90 0.86 0.88 0.98 1.00 0.99 0.99 0.97 0.97 0.97 0.98

The Sensor Bias Estimation: The sensor bias estimation technique was examined using an artificial
bias added to the original angular measurements. The artificial bias was chosen to be 𝜖𝜃 = −0.5∘ and
the algorithms were ran using the same settings as before, with a cell size of 𝑅𝑐𝑒𝑙𝑙 = 0.5 m. Figure
7.4 shows the estimated sensor bias per frame. It shows that there are few but very severe outliers
present among the estimates. The mean of the estimated bias over 100 frames can be seen in Table
7.6, along with their standard deviations, for the different types of RCS incorporation. The notation is
read as “mean (standard deviation)”. Due to the small number of very severe outliers, most of them to
one side, the median value is presented as well. It is clear that the estimation technique has detected a
bias, it seems, however, that this bias is estimated with an offset of approximately −0.55∘ in each case
when looking at the median. This offset was discovered during this verification process, but its cause
has been explained in 6.3.

As mentioned before, the offset is due to discretization of the Doppler measurements and can
be solved using a higher resolution. Figure 7.5 shows the estimated sensor bias per frame using a
Doppler resolution of Δ𝑣 ≈ 1.95 cm/s for each of the SNR incorporation techniques. Calculating the
mean, standard deviation and median over these 100 frames results in the values in Table 7.7, the
notation is the same as in Table 7.6. Clearly, taking the median here is preferable and results in an
3The techniques were not yet optimized for computational efficiency, so at this moment they were not implemented in a way
suitable for pose estimation in real­time
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Figure 7.4: The estimated sensor bias per frame for the different RCS incorporation methods

Table 7.6: Average value, median and standard deviation of the estimated sensor bias for the different RCS incorporation
techniques

Estimated bias [∘] median [∘]

No RCS incorporation ­0.9099 (0.4325) ­1.0615

RCS incorporation in the distribution ­0.8807 (0.6182) ­1.0635

RCS incorporation in the score ­0.9100 (0.4433) ­1.0540

RCS incorporation in both ­0.8610 (0.5951) ­1.0824

accurate estimate of the sensor bias, with an error of only 0.005∘ in the case of RCS incorporation in
both the score and the distribution.

Table 7.7: Average value, median and standard deviation of the estimated sensor bias for the different RCS incorporation
techniques

Estimated bias [∘] median [∘]

No RCS incorporation ­0.7995 (0.7022) ­0.5072

RCS incorporation in the distribution ­0.7001 (0.6733) ­0.4911

RCS incorporation in the score ­0.5881 (0.6631) ­0.5196

RCS incorporation in both ­0.6952 (0.6526) ­0.5050
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Figure 7.5: The estimated sensor bias per frame for the different RCS incorporation methods for a higher Doppler resolution

More Realistic Leeghwaterstraat simulations
The Pose Estimation: Figure 7.6 shows again the Euclidean distance for the position and the RMSE
for the heading estimate, along with their standard deviations, for each of the NDT techniques and each
of the RCS incorporation techniques in the case of the straight trajectory. Comparisons are made using
different cell sizes. It becomes immediately clear that the NDT without any adjustments is generally not
suited for the application to radar data. Again, almost every time the PNDT seems to outperform all of
the other techniques and no clear influence of the RCS incorporation techniques is seen, which might
be due to the high SNR along with a low fluctuation level. The DPNDT performs best when the cell size
is chosen to be 𝑅𝑐𝑒𝑙𝑙 = 2 m. What stands out is that in the case of the RDPNDT, the incorporation of
RCS knowledge actually reduces the performance quite considerably, especially regarding the position
estimate. A clear relation between the cell size and the performance is again not found. Each technique
has their own optimal settings, using these optimal settings, the obtained errors can be found in Table
7.8.

Table 7.8: The achieved errors for each technique, using the optimal settings

Optimal set­up Euclidean Distance [cm] RMSE Heading [∘]

NDT 𝑅𝑐𝑒𝑙𝑙 = 0.5, RCS score 18.76 1.734

PNDT 𝑅𝑐𝑒𝑙𝑙 = 0.5, RCS score 12.62 0.9087

DPNDT 𝑅𝑐𝑒𝑙𝑙 = 0.5, RCS dist 15.6 1.711

RDPNDT 𝑅𝑐𝑒𝑙𝑙 = 1, RCS score 15.49 1.86

Again, the improvements are looked at from a more quantitative perspective by looking at the reduc­
tion in average RMSE compared to the NDT expressed as a percentage. The results of this are shown
in Table 7.9, a minus sign denoting an increase in the RMSE and thus a reduction in performance.
Apart from the position estimates using the RDPNDT, the overall reduction in error is very significant
for each of the techniques.



7.1. Simulations 45

𝑅𝑐𝑒𝑙𝑙 = 0.5 m

(a)

𝑅𝑐𝑒𝑙𝑙 = 0.5 m

(b)

𝑅𝑐𝑒𝑙𝑙 = 1 m

(c)

𝑅𝑐𝑒𝑙𝑙 = 1 m

(d)

𝑅𝑐𝑒𝑙𝑙 = 2 m

(e)

𝑅𝑐𝑒𝑙𝑙 = 2 m

(f)

Figure 7.6: The errors, denoted by the symbols, along with the standard deviation, denoted by the error bar, of the pose
estimates, (a) the Euclidean distance to the actual position using a cell size of 𝑅𝑐𝑒𝑙𝑙 = 0.5 m, (b) the RMSE of the heading using
a cell size of 𝑅𝑐𝑒𝑙𝑙 = 0.5 m, (c) the Euclidean distance to the actual position using a cell size of 𝑅𝑐𝑒𝑙𝑙 = 1 m, (d) the error in the
heading using a cell size of 𝑅𝑐𝑒𝑙𝑙 = 1 m, (e) the Euclidean distance to the actual position using a cell size of 𝑅𝑐𝑒𝑙𝑙 = 2 m, (f) the

RMSE of the heading using a cell size of 𝑅𝑐𝑒𝑙𝑙 = 2 m

Table 7.9: The reduction of the RMSE for each of the proposed techniques as compared to the conventional NDT, found by
comparing the average RMSEs over the varying grid sizes and methods to implement RCS knowledge

Position [%] Heading [%]

PNDT 57.11 67.97

DPNDT 20.25 39.47

RDPNDT ­7.36 48.88
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The Execution Times: The average execution time of the presented approaches is shown in Ta­
ble 7.10, again normalized to the execution time of the NDT. Again, the very significant increase in
performance of the PNDT comes at only a very slight cost of increased computational complexity.

Table 7.10: Execution times of the NDT techniques, normalized to the execution time of the conventional NDT

𝑅 = 0.5 m 𝑅 = 1 m 𝑅 = 2 m
None Score Dist Both None Score Dist Both None Score Dist Both

PNDT 1.02 1.03 1.03 1.03 1.08 1.07 1.07 1.06 1.10 1.09 1.08 1.06

DPNDT 2.23 2.13 2.29 2.18 1.83 1.78 1.81 1.80 1.76 1.69 1.74 1.66

RDPNDT 1.33 1.33 1.36 1.36 1.39 1.39 1.38 1.38 1.43 1.38 1.36 1.36
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7.2. Experiment
For experimental verification, measurements were made using a commercially available automotive
radar attached to the front of a car. During the experiment, raw radar data with synchronized GPS
locations were recorded, all processing was performed offline. This section describes the experiment
set­up along with the results.

7.2.1. Set­up of the Experiment
For collection of the data an NXP Dolphin automotive radar operating at a center frequency of 79 GHz
was used. It was attached to the front of a car, slightly offset from the front of the vehicle. Figure 7.7
shows the radar system attached to the front of the car.

Figure 7.7: The front of the car with the MIMO radar system attached

The radar system contains a 3 Tx × 4 Rx MIMO array operating at a bandwidth of 860 MHz. The
angular resolution is approximately Δ𝜃 = 8∘ at the broadside, the range resolution is Δ𝑅 ≈ 0.1738
m and the Doppler resolution is approximately Δ𝑣 ≈ 3.81 cm/s. The maximum measurable range is
𝑅𝑚𝑎𝑥 = 94 m and the field of view of the radar is ±60∘. The data was captured at a frequency of 10
Hz. During the experiment, the car was driving at approximately 𝑣𝑐𝑎𝑟 = 15 km/h on the quiet road
the Leeghwaterstraat on the TU Delft campus. Figure 7.8 shows the view from the car during the
experiment.

The collected data was pre­processed into a range­angle­Doppler data cube after which median
detection was performed in the Range­Doppler domain followed by classical beamforming. In order
to filter out any non­stationary targets, the vehicle velocity was estimated according to the process in
4.2.4, taking the median value over the number of targets. Using this estimate of the velocity, non­
stationary targets were filtered out by discarding any target that did not meet the criterion set by (4.7)
for 𝜖 = 0.5 m/s.

7.2.2. Comparison of the Different Pose Estimation Techniques
From the pre­processed data 150 consecutive frames were taken to perform the scan­matching. The
performance of each of the four scan­matching techniques is compared and the influence of the in­
corporation of knowledge about the target RCS is examined. The accuracy of the pose estimation is
compared visually, since the only available ground truth is the GPS data which, as mentioned earlier,
is generally not of very high quality. To visualize the performance, the trajectories as a result of the
combination of the individual pose estimates have to be calculated according to (7.1):
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Figure 7.8: A snapshot of the view from the car during the experiment

𝜓[𝑡] = 𝜓[𝑡 − 1] + 𝜙[𝑡]

𝑥[𝑡] = 𝑥[𝑡 − 1] + √(𝑡𝑥[𝑡])
2 + (𝑡𝑦[𝑡])

2
cos (𝜓[𝑡 − 1] + atan2(𝑡𝑦[𝑡], 𝑡𝑥[𝑡])) ,

𝑦[𝑡] = 𝑦[𝑡 − 1] + √(𝑡𝑥[𝑡])
2 + (𝑡𝑦[𝑡])

2
sin (𝜓[𝑡 − 1] + atan2(𝑡𝑦[𝑡], 𝑡𝑥[𝑡])) ,

(7.1)

where 𝑥 and 𝑦 denote the position in the global Cartesian coordinate system at discrete time instance
𝑡 and 𝜓 denotes the heading in the global coordinate system. The starting point (the very first reference
scan) is taken to be 𝑥[0] = 0, 𝑦0[0] = 0, 𝜓[0] = 0. Extreme outliers in the pose estimates are filtered
out before application of (7.1). This is done using a simple rule, if one of the estimation parameters
is larger than a certain threshold, the estimate is removed and replaced by the estimated 𝑥 and 𝑦
translations of the previous timeframe along with a heading 𝜙 of 0. These trajectories are then plotted
on top of a map of the Leeghwaterstraat. The GPS is used for an approximation of the relevant part
of the road corresponding to the measurements. Additionally, the trajectory according to the GPS data
is plotted. It should be noted that while conducting the verification, it was found that the GPS data is
even less accurate than expected. When looking at the distance traversed according to the GPS within
any given time frame, the velocity needed to accomplish this is much higher than the velocity that
was driven during the experiment according to the people that were conducting the experiment. This
observation is corroborated by the fact that the maximum measured Doppler velocities are consistently
approximately 0.5­0.8 m/s lower than needed to travel the distance provided by the GPS data. This
overestimation in the GPS data will also be seen in the results. Moreover, it should be clear that this
representation of the estimates is not ideal. Since the individual poses are estimated, and not the total
trajectory, any error early on, especially in heading, results in a trajectory that might not look like it
follows the traversed path.

Additionally, the reconstructed trajectories are used to create a map of the surroundings. These
maps are created by stitching together the individual range scans using the estimated poses between
them. These maps are created only for the approaches that show good performance.

Finally, the performance of the sensor bias estimation is investigated. From Figure 7.7 it can be seen
that the radar system was attached at a slight offset from the center of the car. Due to the curvature
of the bumper this results in a bias in angle. An effort to estimate this bias will be made, this time by
taking into account 300 consecutive frames.

The Reconstructed Trajectories
Figure 7.9 shows the results of the estimated trajectory for the different techniques, utilizing the different
ways to take into account the knowledge about the RCS through the received power directly. The black
lines indicate the full reconstructed trajectory for each time frame, the shapes together with the bars
indicate the estimated global pose of the vehicle at intervals of ten time frames. The initialization
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parameters are the same as in the verification of the simulations, the cell size is fixed at 𝑅𝑐𝑒𝑙𝑙 = 0.5 m.
Any extreme outliers in the pose estimates are first filtered by removing estimated poses of which one of
the variables lies outside a certain bound. For 𝑡𝑥 this bound is chosen to be 75 cm, for 𝑡𝑦 20 cm and for
𝜙 10 degrees. These are very reasonable bounds, even for a trajectory that is not straight, considering
the velocity of the vehicle of approximately 15 km/h (≈ 4.2 m/s) at a time difference between frames of
0.1 seconds. The removed estimates are replaced by a vector containing the estimates of the previous
time frame with a heading 𝜙 = 0. The offset from the road that can be seen in the image is caused by
the initialization of the trajectory using the GPS data.

The first thing that stands out is the extremely poor performance of the RDPNDT. The trajectory
shows a curve, which can be explained by the problem in the minimum of the objective function due
to loss of distinction between left and right, as was explained in Chapter 5. The curve is towards
the left as expected. Further, the results show that the standard NDT does not perform well when
applied to radar data if no changes are made to the algorithm. It is clear from the figures that each
technique is affected differently by the incorporation of the RCS­awareness, very poor performance
for each technique is seen when the RCS is not considered at all, whereas the PNDT shows its best
performance with consideration of the RCS in only the score and the DPNDT shows it benefits very
heavily from the consideration in both the score and the distribution. The best performing techniques
(PNDT in 7.9c and DPNDT in 7.9d) underestimate the traveled distance compared to the GPS data by
approximately 8 and 9 meters, respectively, this is in line with the higher velocity according to the GPS
data of approximately 0.5­0.8 m/s over 15 seconds (150 consecutive frames at 10 Hz).
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No consideration of RCS

(a)

Consideration of RCS in the distribution

(b)

Consideration of RCS in the score

(c)

Consideration of RCS in both

(d)

Figure 7.9: The trajectories calculated using the individual pose estimates of the NDT, PNDT, DPNDT and RDPNDT with the
GPS data as a reference. Knowledge about the RCS is taken into account using the received power directly; (a) without

incorporation of knowledge about the RCS, (b) with incorporation of knowledge about the RCS via the calculation of the score
function, (c) with incorporation of knowledge about the RCS via the calculation of the distribution, (d) with incorporation of

knowledge about the RCS via the calculation of both the score function and the distribution

Figure 7.10 shows results that were obtained in the same way, now considering the RCS by its
relation with the received power through 1

𝑅4 . As explained in 4.4 this is done by first multiplying the
received power associated with a detected target by its range to the fourth power. This results in a
direct relation to the target’s RCS. Overall, the DPNDT benefits more from the incorporation of this
direct reference to the RCS than simply the received power, as can be seen when comparing Figures
7.9 and 7.10. Strangely enough however, the combination of considering the RCS in both the score
and the distribution leads to a curved shape of the trajectory, even more so than without consideration
of the RCS in 7.10a.

The dependency of the results on the initialization parameters from Table 7.1 is illustrated by Figure
7.11. The images clearly show that the performance of each technique is very highly dependent on
the choice of these parameters, so it can be expected that the presented results can be improved with
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No consideration of RCS

(a)

Consideration of RCS in the distribution

(b)

Consideration of RCS in the score

(c)

Consideration of RCS in both

(d)

Figure 7.10: The trajectories calculated using the individual pose estimates of the NDT, PNDT, DPNDT and RDPNDT with the
GPS data as a reference. Knowledge about the RCS is taken into account using the received power multiplied by 𝑅4, 𝑅 being
the target’s measured range; (a) without incorporation of knowledge about the RCS, (b) with incorporation of knowledge about
the RCS via the calculation of the score function, (c) with incorporation of knowledge about the RCS via the calculation of the
distribution, (d) with incorporation of knowledge about the RCS via the calculation of both the score function and the distribution

further investigation into the optimality of these parameters. In the literature, problems regarding the
cell size are often solved using techniques such as iterative subdivision [12], [15].

Building a Map of the Surroundings
Maps of the surroundings are constructed for the PNDT in case of RCS incorporation via the received
power in the score, corresponding to Figure 7.9c, and for the DPNDT in the cases of RCS incorporation
via the received power in both the score and the distribution, as in Figure 7.9d and in the case of
RCS incorporation via the relation between received power and range in the distribution and in the
score separately, corresponding to the trajectories in Figures 7.10b and 7.10c. The construction of
these maps is performed by transforming the radar scans at each time frame according to the global
translations 𝑥̂ and 𝑦̂ and rotation 𝜓̂. By then transforming each range scan to the Cartesian coordinate
frame a global map can be created, which can be visualized using the SNR values of the individual
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Different 𝑅𝑐𝑒𝑙𝑙

(a)

Different 𝜆𝑚𝑖𝑛

(b)

Figure 7.11: The influence of the choice of the initialization parameters of Table 7.1 visualized through the changes in the
estimated trajectories of Figure 7.9d; (a) the constructed trajectory for 𝑅𝑐𝑒𝑙𝑙 = 2 m, (b) the constructed trajectory for 𝜆𝑚𝑖𝑛 = 2

targets. The resulting maps corresponding to the aforementioned trajectories are found in Figure 7.12.
Although from Figures 7.9d and 7.10c it seems like the DPNDT estimates the trajectory accurately,

the maps in Figures 7.12b and 7.12d show many irregularities in what are assumed to be straight lines.
The straightest maps are created by the trajectories estimated by the PNDT using knowledge about the
SNR via the received power in the score and by the DPNDT using knowledge about the RCS directly
in the distribution.

Execution Times
The average execution times for the estimates of Figure 7.9 are shown in Table 7.11. Again, the
execution times have been normalized to the execution time of the NDT. It is debatable whether the
immense increase in computational time of the DPNDT is worth the occasional increase in accuracy.

Table 7.11: Execution times of the NDT techniques, normalized to the execution time of the conventional NDT

None Score Dist Both

PNDT 1.2730 1.3387 1.2532 1.2853

DPNDT 15.8910 15.8661 14.4365 14.1560

RDPNDT 1.2109 1.2363 1.0399 1.0475

Sensor Bias Estimation
As mentioned before, the radar system was mounted to the vehicle at an angle to preserve vision
of the license plate. Additionally, the radar system had not been calibrated for quite some time so the
presence of a bias in angle was highly likely. The precise value of the bias is not known, so in an attempt
to validate the sensor bias extension of the DPNDT, an artificial bias is added to the measurements,
simply through addition of the same fixed value to the angle measurements of each frame, and the
estimated bias before and after introduction of this artificial bias is compared. An estimate of the sensor
bias can be found by taking the mean or median of the estimated biases ̂𝜖𝜃 over the 300 time frames (30
seconds), its standard deviation is used as a measure of accuracy. The different ways to incorporate
measurements of the RCS are compared. They are implemented by taking into account the received
power directly, i.e. without multiplication with 𝑅4.
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Map corresponding to the PNDT in 7.9c

(a)

Map corresponding to the DPNDT in 7.9d

(b)

Map corresponding to the DPNDT in 7.10b

(c)

Map corresponding to the DPNDT in 7.10c

(d)

Figure 7.12: The resulting maps as created by transforming the individual range scans according to the estimated trajectories;
(a) the map corresponding to the trajectory as calculated by the PNDT in 7.9c, (b) The map corresponding to the trajectory as
calculated by the DPNDT in 7.9d, (c) The map corresponding to the trajectory as calculated by the DPNDT in 7.10b, (d) The

map corresponding to the trajectory as calculated by the DPNDT in 7.10c distribution

The average estimated biases with their standard deviation, for each of the four RCS incorporation
techniques, before and after introduction of the artificial bias are shown in Table 7.12, along with the
difference of these averages. The notation of themean and standard deviation is again “mean (standard
deviation)”, the artificial bias was chosen to have a value of 𝜖𝜃 = 1∘, so the difference should be as
close as possible to 1. The Doppler resolution that was used during the experiment should be sufficient
to estimate this artificial bias. Clearly, by taking into consideration measurements of the RCS in both
the score and the distribution, an accurate estimate of the artificial sensor bias can be made. To take
into account any outliers, the median value over the 100 frames is presented in Table 7.13. Here it can
be concluded that by taking into account knowledge of the RCS in both the score and the distribution,
the difference in bias can be estimated down to less than 0.02∘ of error.



54 7. Verification of the Performance of the NDT Techniques

Table 7.12: Average values and standard deviations of the estimated sensor bias over 100 frames, along with the difference
after addition of an artificial bias

w/o art. bias [∘] w/ art. bias [∘] Difference [∘]

No RCS incorporation 0.4100 (0.6242) 1.1355 (1.0992) 0.7255

RCS incorporation in the distribution 0.3929 (1.8346) 1.1159 (2.2529) 0.7230

RCS incorporation in the score 0.5054 (1.2484) 1.3145 (1.6980) 0.8092

RCS incorporation in both 0.3663 (2.0340) 1.3108 (2.3662) 0.9444

Table 7.13: Median value of the estimated sensor bias over 100 frames, along with the difference after addition of an artificial
bias

w/o art. bias [∘] w/ art. bias [∘] Difference [∘]

No RCS incorporation 0.3846 1.1073 0.7227

RCS incorporation in the distribution 0.3043 1.1575 0.8532

RCS incorporation in the score 0.4694 1.3784 0.9090

RCS incorporation in both 0.3464 1.3641 1.0177
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Calculation of the Trajectory

In the results presented in Chapter 7 the trajectories were constructed using (7.1), filtering out any
extreme outliers by re­using the previous estimates for 𝑡𝑥 and 𝑡𝑦 and setting 𝜙 = 0 each time a cal­
culated estimate was outside a certain bound. A more appropriate way to generate the trajectory is
by means of a Bayesian filter, so that a dynamic model is used to compensate for uncertainties in the
pose estimation.

In order to do so, a state evolution model and an observation model should be derived. Take state
vector 𝑠𝑠𝑠[𝑡] = [𝑥[𝑡], 𝑦[𝑡], 𝜓[𝑡], 𝑣[𝑡], 𝑥[𝑡−1], 𝑦[𝑡−1], 𝜓[𝑡−1], 𝑣[𝑡−1]]T containing the global position [𝑥, 𝑦]T, the
global heading 𝜓 and the vehicle velocity 𝑣 at the current and previous time samples 𝑡 and 𝑡 −1; using
the nearly constant velocity model as used in [47], which assumes a close to straight trajectory, the
following dynamic state evolution model is derived:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥[𝑡+1]
𝑦[𝑡+1]
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𝑣[𝑡+1]
𝑥[𝑡]
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⎤
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⎥
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⎥
⎥
⎥
⎥
⎦⎵⎵⎵⎵⎵⎵⎵

𝑠𝑠𝑠[𝑡+1]
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1 0 0 𝑇 cos (𝜓[𝑡])
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⎥
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𝑤𝑤𝑤[𝑡]

, (8.1)

where 𝑤[𝑡]𝜓 ∼ 𝒩(0, 𝜎𝜓) and 𝑤[𝑡]𝑣 ∼ 𝒩(0, 𝜎𝑣) are the process noise related to fluctuations in velocity
and steering respectively and 𝑇 is the elapsed time between two frames. The global pose of the previ­
ous timeframe is introduced to accomodate the observation model, which is defined as follows: Take
the observation vector 𝑧𝑧𝑧[𝑡] = [𝑡̂[𝑡]𝑥 , 𝑡̂[𝑡]𝑦 , 𝜙̂[𝑡]]T containing the estimated relative vehicle pose. Now, the
observation model can be derived:

[
𝑡̂[𝑡]𝑥
𝑡̂[𝑡]𝑦
𝜙̂[𝑡]

]
⎵⎵⎵⎵⎵⎵

𝑧𝑧𝑧[𝑡]

= [ 𝐼𝐼𝐼3×3 0003×1 −𝐼𝐼𝐼3×3 0003×1 ]
⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵⎵

𝐺𝐺𝐺[𝑡]

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑥[𝑡]
𝑦[𝑡]
𝜓[𝑡]
𝑣[𝑡]
𝑥[𝑡−1]
𝑦[𝑡−1]
𝜓[𝑡−1]
𝑣[𝑡−1]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦⎵⎵⎵⎵⎵⎵⎵

𝑠𝑠𝑠[𝑡]

+[
𝑛[𝑡]𝑥
𝑛[𝑡]𝑦
𝑛[𝑡]𝜓

]
⎵⎵⎵⎵⎵⎵
𝑛𝑛𝑛[𝑡]

, (8.2)

where 𝑛[𝑡]𝑥 , 𝑛[𝑡]𝑦 and 𝑛[𝑡]𝜓 are terms related to the uncertainty of the local pose estimate. The Hessian
𝐻𝐻𝐻 corresponding to the pose estimate𝑝𝑝𝑝[𝑡] provides ameasure of the certainty of the estimate, its inverse
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can be seen as an estimate of the covariance matrix [15]. 𝑛𝑛𝑛[𝑡] will thus be described as a zero mean
multivariate Gaussian with covariance matrix 𝐻𝐻𝐻−1; 𝑛𝑛𝑛[𝑡] ∼ 𝒩 (000,𝐻𝐻𝐻−1).

Due to the non­linearity of the evolutionmodel, the traditional Kalman filter cannot be applied directly.
Instead the Extended Kalman Filter (EKF) or the Iterated Extended Kalman Filter (IEKF) can be used.

The dynamic evolution model and the observation model have the following forms:

𝑠𝑠𝑠[𝑡+1] = 𝑓𝑓𝑓 (𝑠𝑠𝑠[𝑡]) +𝑤𝑤𝑤[𝑡],
𝑧𝑧𝑧[𝑡] = 𝐺𝐺𝐺[𝑡]𝑠𝑠𝑠[𝑡] +𝑛𝑛𝑛[𝑡],

(8.3)

with 𝑓𝑓𝑓 (𝑠𝑠𝑠[𝑡]) a non­linear function of 𝑠𝑠𝑠[𝑡]. The Extended Kalman filter estimates the state and its co­
variance through a prediction step, using the dynamic model, and an update step, using the observation
model. The predicted state 𝑠𝑠𝑠[𝑡+1|𝑡] and its predicted covariance are found according to:

𝑠𝑠𝑠[𝑡+1|𝑡] = 𝑓𝑓𝑓 (𝑠𝑠𝑠[𝑡|𝑡]) ,
𝑄𝑄𝑄[𝑡+1|𝑡] = 𝐹𝐹𝐹𝑄𝑄𝑄[𝑡|𝑡]𝐹𝐹𝐹T +𝑊𝑊𝑊[𝑡],

(8.4)

where 𝐹𝐹𝐹 is the Jacobian of 𝑓𝑓𝑓 (𝑠𝑠𝑠[𝑡]) and𝑊𝑊𝑊[𝑡] ∈ ℛ8×8 is defined by 𝜎𝜓 and 𝜎𝑣 on the corresponding
entries. This Jacobian is straightforward to calculate and has the following form:

𝐹𝐹𝐹 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 −𝑣[𝑡]𝑇 sin (𝜓[𝑡]) 𝑇 cos (𝜓[𝑡])
0 1 𝑣[𝑡]𝑇 cos (𝜓[𝑡]) 𝑇 sin (𝜓[𝑡])
0 0 1 0
0 0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

0004×4𝐼𝐼𝐼4×4

0004×4
(8.5)

The update step has the same form as in the standard Kalman filter, since the observation model
is linear:

𝑠𝑠𝑠[𝑡|𝑡] = 𝑠𝑠𝑠[𝑡|𝑡−1] +𝐾𝐾𝐾[𝑡] (𝑧𝑧𝑧[𝑡] −𝐺𝐺𝐺𝑠𝑠𝑠[𝑡|𝑡−1]) ,
𝑄𝑄𝑄[𝑡|𝑡] = (𝐼𝐼𝐼 −𝐾𝐾𝐾[𝑡]𝐺𝐺𝐺)𝑄𝑄𝑄[𝑡|𝑡−1],

𝐾𝐾𝐾[𝑡] = 𝑄𝑄𝑄[𝑡|𝑡−1]𝐺𝐺𝐺T (𝐺𝐺𝐺𝑄𝑄𝑄[𝑡|𝑡−1]𝐺𝐺𝐺T + (𝐻𝐻𝐻[𝑡])−1)
−1

(8.6)

Here, 𝑠𝑠𝑠[𝑡|𝑡−1] and 𝑄𝑄𝑄[𝑡|𝑡−1] are the predicted estimates according to (8.4).



9
Conclusion

In this thesis, the steps taken during the research into a relative pose estimation technique for au­
tomotive radar were presented. During this research, several techniques were investigated for this
purpose. The techniques are based on the Normal Distributions Transform (NDT), a distribution­based
scan­matching technique originally developed for the robotics field with applications to LiDARmeasure­
ments. Scan­matching techniques aim to find the relative pose between two timestamps using range
scans taken at those timestamps. They do so by trying to maximize the overlap between the scan at
the first timestamp, the so­called “reference scan”, and the second timestamp, the so­called “current
scan”. The NDT aims to solve this problem by addressing the scans in the Cartesian coordinate system
and using one of the scans to construct a piecewise continuous distribution and use the probability of
the points of the other scan within this distribution as a measure of overlap. This measure of overlap
is then maximized in an iterative process using Newton’s method.

Some of the drawbacks associated with the use of laser scanners are their high price and poor
performance in adverse weather conditions, making them less suitable for automotive applications.
In an effort to develop techniques applicable in the automotive field, scan­matching techniques were
explored that utilize radar measurements. In order to ensure applicability of the existing NDT to radar
scans, a drawback that results from using radar measurements has to be addressed, which is the low
resolution of the range scans compared to laser scans. Radar measurements contain properties that
can be exploited to compensate for this. The aspects that were explored during the thesis research
were the incorporation of Doppler measurements, which are known to contain higher resolution, as well
as knowledge about the received signal power, which can be used to improve the robustness of the
measure of overlap between the scans.

By reformulating the problem in polar coordinates through the Polar Normal Distributions Transform
(PNDT), the representation of the data takes into account the spreading of the target responses and
allows for the incorporation of Doppler measurements. The use of Doppler measurements was intro­
duced in the Doppler Polar Normal Distributions Transform (DPNDT), which extends the PNDT to a
third dimension, aiming to maximize overlap in not only the range and angle, but also the Doppler mea­
surements. In an effort to reduce the computational complexity, the DPNDT was rewritten into a form
only using the Range­Doppler domain to perform the optimization resulting in the Range­Doppler PNDT
(RDPNDT). Furthermore, an extension to the DPNDT was investigated that allows for the estimation of
a sensor bias which would affect the angle measurements but not the Doppler measurements. Addi­
tionally, for the construction of the traversed trajectory of the vehicle from the individual pose estimates,
expressions to perform recursive filtering using the Extended Kalman Filter have been presented.

Results of applications of the pose estimation techniques to both simulation data and experimental
data prove that the standard NDT has limited applicability to radar data due to its unnatural represen­
tation of the radar data in Cartesian coordinates. Improvements were made by the reformulation of
the problem in the polar coordinate system, leading to the distribution used for maximization of the
overlap to be a more authentic representation of the scanned scene. Additionally, it was found that
the incorporation of knowledge about the Signal­to­Noise Ratio (SNR) of the detected targets leads to
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58 9. Conclusion

further improvements in some cases for the experiments. It was found that the performance of each
of the techniques is heavily depended on the initialization parameters, the optimality of which was not
researched. Validation using simulation data suggests that the PNDT yields the most consistent im­
provements over the traditional NDT at the cost of a small increase in the computational complexity,
showing a reduction in error of around 60% at an increase in computation time of only 5­10%. The
experimental results show that under the right conditions the DPNDT outperforms all other techniques
in the pose estimation, however this comes at a computational cost that is more than tenfold the cost
of the conventional NDT.

The estimation of a sensor bias in the angular measurements was examined using both experimen­
tal and simulated data. Simulated data showed the bias can be estimated with an error of less than
0.005∘. In the case of the experiment, the initially present bias was not known, however, the difference
in estimated biases before and after addition of an artificial bias corresponded to this artificial bias with
an error of less than 0.02∘.

Recommendations for future research include investigation of the optimality of the techniques for
different initialization parameters. Moreover, the techniques should be validated for practical data with
a more reliable ground truth. During the validation of the experimental data, it was found that the GPS
data suffered some problems, leading to the combination of the pose estimates to underestimate the
traversed trajectory relative to the trajectory according to the GPS. Ideally a ground truth would be
available that provided accurate knowledge about the relative poses directly, rather than about the
global poses as is the case with GPS data. Further verification of the sensor bias estimation should be
conducted using experimental data with a known ground truth. Finally, the construction of the trajecto­
ries can be improved significantly by considering a dynamic model, the formulas needed to do so were
derived but not yet implemented.
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