
 
 

Delft University of Technology

Risk Quantification for Automated Driving Systems in Real-World Driving Scenarios

De Gelder, Erwin; Elrofai, Hala; Saberi, Arash Khabbaz; Paardekooper, Jan Pieter; Den Camp, Olaf Op; De
Schutter, Bart
DOI
10.1109/ACCESS.2021.3136585
Publication date
2021
Document Version
Final published version
Published in
IEEE Access

Citation (APA)
De Gelder, E., Elrofai, H., Saberi, A. K., Paardekooper, J. P., Den Camp, O. O., & De Schutter, B. (2021).
Risk Quantification for Automated Driving Systems in Real-World Driving Scenarios. IEEE Access, 9,
168953-168970. https://doi.org/10.1109/ACCESS.2021.3136585

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/ACCESS.2021.3136585
https://doi.org/10.1109/ACCESS.2021.3136585


Received December 4, 2021, accepted December 16, 2021, date of publication December 20, 2021,
date of current version December 30, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3136585

Risk Quantification for Automated Driving
Systems in Real-World Driving Scenarios
ERWIN DE GELDER 1,2, HALA ELROFAI1, ARASH KHABBAZ SABERI3,
JAN-PIETER PAARDEKOOPER 1,4, OLAF OP DEN CAMP 1,
AND BART DE SCHUTTER 2, (Fellow, IEEE)
1Department of Integrated Vehicle Safety, TNO, 5708 JZ Helmond, The Netherlands
2Delft Center for Systems and Control, Delft University of Technology, 2628 CD Delft, The Netherlands
3Automated Driving Product Unit, TomTom, 5656 AE Eindhoven, The Netherlands
4Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 XZ Nijmegen, The Netherlands

Corresponding author: Erwin de Gelder (erwin.degelder@tno.nl)

ABSTRACT The development of safety validation methods is essential for the safe deployment and
operation of Automated Driving Systems (ADSs). One of the goals of safety validation is to prospectively
evaluate the risk of an ADS dealing with real-world traffic. ISO 26262 and ISO/DIS 21448, the leading
standards in automotive safety, provide an approach to estimate the risk where the former focuses on risks
due to potential malfunctioning of components and the latter focuses on risks due to possible functional
insufficiencies. The main shortcomings of the approach provided in ISO 26262 are that it depends on
subjective judgments of safety experts and that only a qualitative risk estimation is performed. ISO/DIS
21448 addresses these shortcomings partially by providing statistical methods to guide the safety validation,
but no complete method is provided to quantify the risk. The first objective of this article is to propose
a method to estimate the risk of an ADS in a more quantitative and objective manner. A data-driven
approach is used to rely less on subjective judgments of safety experts. The output of the method is the
expected number of injuries in a potential collision. Thus, the method is quantitative, the result is easily
interpretable, and the result can be compared with road crash statistics. The second objective is to provide
a method that supports the risk assessment as stipulated by the ISO 26262 and ISO/DIS 21448 standards
by decomposing the quantified risk into the 3 aspects of risk as mentioned in these standards: exposure,
severity, and controllability. The proposed methods are illustrated by means of a case study in which the
risk is quantified for a longitudinal controller in 3 different types of scenarios. The code of the case study is
publicly available.

INDEX TERMS Intelligent vehicles, intelligent transportation systems, ISO 21448, ISO 26262, performance
evaluation, risk analysis.

I. INTRODUCTION
It is expected that ADSs will make traffic safer by eliminating
human errors, enablemore comfortable rides, and reduce traf-
fic congestion [1]. Lower levels of automation systems, such
as Adaptive Cruise Control (ACC) [2] and lane keeping assist
systems [3], are already widely deployed in modern cars and
trucks. Since the development of ADSs has made significant
progress, it is expected that ADSs addressing higher levels of
automation and covering the full dynamic driving task, i.e.,
SAE level 3 or higher [4], are soon to be introduced on public
roads [5]–[7]. Before deploying an ADS on public roads, it is
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of paramount importance to ensure that there is no negative
impact on the traffic safety. It has even been suggested [8] that
vehicles controlled by an ADS should be at least 4 to 5 times
as safe as human-driven vehicles in order to be accepted by
the general public.

Safety validation of an ADS is essential to guarantee that
the ADS is safe enough to be allowed on public roads. Retro-
spective safety validation alone, i.e., through test drives with
prototypes, requires millions of kilometers of driving [9],
which makes this practically infeasible. Therefore, prospec-
tive safety validation, i.e., before performing (test) drives in
public traffic, is required. Scenario-based safety validation is
an approach for prospective safety validation that is broadly
supported by the automotive field [10]–[22].
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As a consequence of the broad support for scenario-based
safety validation, significant research progress has been
made. Recent research focuses, among others, on scenario
terminology [23], [24], scenario-based requirement verifica-
tion [25], virtual simulation of scenarios [26]–[30], genera-
tion of scenarios [31]–[34], and scenario databases [11]–[13].
All these components are vital parts for estimating the risk of
the deployment of an ADS, where risk is the combination of
the probability of occurrence of harm and the extent of that
harm. This risk estimation itself, however, has received less
attention in the literature despite its essential role in the well-
known ISO 26262 [35] and ISO/DIS 21448 [36] standards,
which capture the state of the art in automotive safety.

The contribution of this work is twofold. First, we propose
a novel data-driven method for assessing and quantifying
the risk of an ADS considering real-world driving scenarios.
To provide a more objective method for risk quantification
compared to existing approaches, the proposed method uses
real-world data and relies less on the judgments of experts.
Second, we show how the risk quantification can be decom-
posed into the terms exposure, severity, and controllability,
such that the method can be applied to assess risks based
on the ISO 26262 and ISO/DIS 21448 standards. Therefore,
our method supports the risk assessment activities of these
standards. In the remainder of this section, we elaborate
more on the need for our work and we present the research
questions that are addressed by the current article.

A. RISK QUANTIFICATION OF AUTOMATED
DRIVING SYSTEMS
In [37]–[41], risk quantification is proposed for real-time use,
e.g., to support the path planning of a self-driving vehicle,
so this is not intended to be used for a prospective risk assess-
ment. In [42], a method for quantifying the risk of scenarios is
proposed based on the probability of occurrence of so-called
environmental conditions and the probability that an error
propagates in the fault tree given a specified environment
condition. However, they [42] do not provide methods to
estimate or specify these probabilities. Furthermore, the role
of a back-up operator, e.g., a human driver that supervises the
ADS, is not considered, whereas the influence of the back-
up operator is an important aspect that is considered in the
ISO 26262 and ISO/DIS 21448 standards. Another method to
quantify the risk of a driving scenario is proposed in [43], but
this method does not consider the likelihood of encountering
the scenario and the role of the back-up operator is not
explicitly considered. A quantitative assurance framework is
proposed in [44], [45], but this framework assumes that the
frequency of accidents is known, whereas this is unknown in
a prospective assessment. Furthermore, similar to [42], [44]
and [45] do not consider the role of a back-up operator.

To address the aforementioned shortcomings, the current
work aims to answer the following question:
Research question 1: How to quantify the risk of an ADS

in real-world driving scenarios?

To answer Research question 1, this article proposes a
novel method for quantifying the risk of an ADS. The first
step of the presented method is to identify the scenarios that
the ADS encounters in real life. Next, the exposure, i.e.,
the likelihood of encountering these scenarios, is estimated.
Using simulations, the probability that a scenario leads to a
harmful event is calculated. Combining this probability with
the exposure and the probability that a harmful event leads to
an injury results in the estimated risk.

B. RISK QUANTIFICATION IN RELATION WITH ISO 26262
AND ISO/DIS 21448
ISO 26262 is the state-of-the-art standard in automotive func-
tional safety that offers a framework for measuring risk in a
qualitative manner. This standard concerns hazards that are
the result of malfunctioning behavior of components. In the
Hazard Analysis and Risk Assessment (HARA), an Auto-
motive Safety Integrity Level (ASIL) is determined for each
hazardous event based on the classification of three aspects:
exposure, severity, and controllability (the definitions of these
terms will be provided in Section II). The classification has
two limitations. First, the classification relies on the judg-
ments of experts of the three risk aspects, which renders the
classification subjective [46], [47]. Second, the classification
is qualitative and offers only 5 different levels of risk.

As an addition to the ISO 26262 standard, the ISO/DIS
21448 standard, also known as ‘‘Safety Of The Intended
Functionality (SOTIF)’’, concerns hazardous behavior due
to a functional insufficiency of the intended functionality at
the vehicle level as opposed to malfunctioning behavior of
components. A functional insufficiency may refer to a failure
due to technological limitations of a sensor or an actuator.
The hazard in the context of SOTIF is initiated by a so-called
triggering condition. For the risk assessment, the ISO/DIS
21448 standard does not determine an ASIL, but the expo-
sure, severity, and controllability can be used to determine
the required validation effort. In [36, Annex C.6.4], the expo-
sure, severity, and controllability are quantitatively expressed
as probabilities, but no method is provided for determining
these probabilities other than that the probabilities can be
checked for consistency with the functional safety HARA of
the ISO 26262 standard. Therefore, the risk estimation of the
ISO/DIS 21448 standard inherits the limitations of the ISO
26262 standard, which means that there is no explicit risk
estimation method that considers hazardous behavior caused
by a triggering condition.

To address the lack of a quantitative and objective approach
to assess risks related to the ISO 26262 and ISO/DIS
21448 standards, the current work also aims to answer the
following question:
Research question 2: How to quantify the risk of an ADS

using the 3 aspects of risk as defined by the ISO 26262 stan-
dard: exposure, severity, and controllability?

To answer Research question 2, we decompose the quanti-
fied risk into the terms exposure, severity, and controllability.
Note that it is not our objective to provide a method that
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replaces parts of the ISO 26262 and ISO/DIS 21448 stan-
dards, but rather to provide a method that supports the risk
assessment activities of these standards.

C. ORGANIZATION OF THIS ARTICLE
This article is organized as follows. We first elaborate on the
risk assessment in the ISO 26262 and ISO/DIS 21448 stan-
dards in Section II. Section III provides a method for risk
quantification to answer Research question 1. In Section IV,
Research question 2 is answered by describing how the
proposed risk quantification method relates to the risk assess-
ment according to the ISO 26262 and ISO/DIS 21448 stan-
dards. To illustrate the proposed method, a case study1

involving the risk quantification of an ACC is presented in
Section V and the results are reported in Section VI. This
article ends with a discussion in Section VII and conclusions
in Section VIII.

II. ISO 26262 AND ISO/DIS 21448
In Section II-A, the risk assessment approach provided in the
ISO 26262 standard [35] and its shortcomings are described.
Section II-B elaborates on the risk assessment approach
described in the ISO/DIS 21448 standard [36].

A. ISO 26262
The ISO 26262 standard [35] captures the state of the art
in automotive functional safety. It defines the safety life-
cycle and the related safety activities such as the HARA.
Other methodologies, such as Systems-Theoretic Processes
Analysis (STPA) [48] and Failure Mode and Effect Analysis
(FMEA) [49], give guidelines on safety engineering based on
systems theory. Unlike the ISO 26262 standard, STPA and
FMEA do not offer a framework for measuring risk.

The ISO 26262 standard gives guidelines to assess risk
based on hazardous events. A hazardous event is the combina-
tion of an operational situation (or a scenario) with a potential
source of harm caused by malfunctioning behavior of system
components. The standard requires analyzing the risk of each
hazardous event based on three aspects: exposure, severity,
and controllability; see Table 1 for the definitions according
to the ISO 26262 standard. In this framework, each aspect is
classified in 4 or 5 levels:
• Exposure is classified as 0 (‘‘incredible’’), 1, 2, 3,
or 4 (‘‘high probability’’);

• Severity is classified as 0 (‘‘no injuries’’), 1, 2,
or 3 (‘‘life-threatening injuries, fatal injuries’’); and

• Controllability is classified as 0 (‘‘controllable in
general’’), 1, 2, or 3 (‘‘difficult to control or
uncontrollable’’).

The combination of these aspects contributes to constructing
the ASIL ranking A, B, C, D. With an ASIL D, the most
stringent requirements on system design, verification, and
testing apply while an ASIL A requires the least additional

1The code is publicly available at https://github.com/ErwindeGelder/
ScenarioRiskQuantification.

TABLE 1. Definitions of exposure, severity, and controllability according
to the ISO 26262 standard [35].

safety measures. If the sum of the aspects is 10, an ASIL D is
assigned, representing the most critical level. ASIL B or C is
assigned when the sum equals 8 or 9, respectively. If the sum
is 7 and no aspect has scored 0, then ASILA is assigned. In all
other cases, there are no requirements to comply with the
ISO 26262 standard and the classification ‘‘Quality Man-
agement (QM)’’ applies because it is assumed that the QM
system of the manufacturer suffices for reducing the risk.

A shortcoming of the ASIL ranking is that the results
are subjective. Teuchert [46] mentions that the classifica-
tion of the ASIL depends very much on the engineers that
perform the classification. Also Khastgir et al. [47] men-
tion the subjectivity of the ranking: ‘‘The two distinct short-
comings of the current ISO 26262-2011 standard are guided
by the subjective nature of the experts’ mental models lead-
ing to unreliable ratings and the ability to identify a hazard
(including the black swan events).’’ Through an experiment,
Khastgir et al. [47] demonstrated the low (intra-rater) reli-
ability due to the subjectivity of the Hazard Analysis and
Risk Assessment (HARA) process. Another disadvantage is
the qualitative nature of the ASIL ranking. Because only
5 different levels of risk are considered (ASIL A to D and
QM), only large changes in the overall risk are captured.

Since our proposed method for estimating the risk, pre-
sented in Section III, is based on data, it is more objective
by nature. In addition, the results are quantitative. Therefore,
our proposed method can be used to determine an ASIL-like
indicator in a quantitative and objective manner.

B. ISO/DIS 21448
Whereas the ISO 26262 standard focuses on possible hazards
caused by the malfunctioning behavior of system compo-
nents, the ISO/DIS 21448 standard [36] addresses hazardous
situations caused by the intended functionality, despite the
systems being free from the faults addressed in the ISO
26262 standard. The absence of unreasonable risk due to
these hazardous situations is defined as the Safety Of The
Intended Functionality (SOTIF). Although no ASIL is deter-
mined for SOTIF-related hazards, the aspects exposure,
severity, and controllability are still used to adjust the required
evidence of the safe operation, including the number valida-
tion scenarios used for testing. For determining these aspects,
the ISO/DIS 21448 standard refers to the ISO 26262 standard,
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which — as reasoned earlier — provides a subjective and
qualitative approach.

To address the qualitative nature of the ISO 26262 stan-
dard, Annex C of the ISO/DIS 21448 standard provides statis-
tical methods to guide the SOTIF verification and validation.
A method to quantify the validation targets is provided in
[36, Annex C.2], while [36, Annex C.3] proposes to use on-
road data or simulations to validate whether systems meet
these targets. The use of importance sampling to lessen the
amount of simulation testing is discussed in [36, Annex C.5],
but no quantification of, e.g., the risk, is provided.
In [36, Annex C.6], a statistical approach is presented for
arguing that a safety criterion is met while considering
the performance of the constituent components. Also in
[36, Annex C.6], the risk aspects exposure, severity, and
controllability are quantitatively expressed as probabilities.
No method is provided, however, to estimate these proba-
bilities. Thus, where Annex C of the ISO/DIS 21448 stan-
dard provides a step towards making the risk evaluation
more quantitative, the current work aims to be more explicit
in quantifying the risk. More specifically, in Section IV,
we show how our proposed method for risk quantification
can be used to quantify the aspects exposure, severity, and
controllability. Furthermore, Section IV describes how to
combine these aspects to quantify the risk.

III. METHOD FOR RISK QUANTIFICATION
To answer Research question 1, this section proposes a novel
method for quantifying the risk of an ADS in real-world
driving scenarios. To structure the risk quantification, the
method consists of six steps:

1) Identify the scenarios that are part of the so-called
Operational Design Domain (ODD) of the ADS.

2) Determine the exposure of these scenarios, i.e., the
expected number of occurrences per hour of driving.

3) Simulate the response of the ADS in these scenarios.
4) Calculate the expected number of harmful events.
5) Calculate the expected injury rate.
6) Calculate the risk by combining the exposure and the

injury rate.

These steps are schematically shown in Figure 1. Figure 1
also shows how the risk aspects exposure, severity, and con-
trollability relate to these steps. This relation will be further
explained in Section II.
Table 2 presents the definitions of the terms that are used

in our proposed method. In this work, the probability of u is
denoted by P(u), while E[u] denotes the expectation of u.
In the following subsections, the 6 steps for quantifying the
risk are described.

A. IDENTIFICATION OF SCENARIOS
An ADS is designed to operate within its ODD, which
is defined by the ADS developer and typically consists
of a geofence and some known operational conditions,
e.g., see [50]–[52]. The ODD is used to confine the risk

TABLE 2. The terms and definitions.

analysis [53]. To quantify the risk of an ADS in driving sce-
narios, the ODD of the ADS must be known. Once deployed,
the ADS needs to deal with many scenarios and the ODD in
which the ADS is operating determines the variety of these
scenarios. It is our goal to provide a method for determining
the risk for the ADS in these scenarios.

Considering the wide variety of scenarios, we propose
to distinguish between quantitative scenarios and qualitative
scenarios, where scenario categories refer to the latter, see
Table 2. It is assumed that all possible scenarios within a
given ODD can be categorized into one or more scenario
categories. This assumption does not limit the applicability
of the methodology proposed in this work, though it might
require many scenario categories to describe all these scenar-
ios. In the remainder of this section, we propose a method to
calculate the risk for an ADS in all scenarios that are catego-
rized by the same scenario category, i.e., for all S ∈ C [24],
where S and C denote a scenario and a scenario category,
respectively. For example, the scenario category ‘‘cut-in’’
comprises all possible cut-in scenarios in the ODD of the
ADS. See [54] for more examples of scenario categories.
Remark 1: As part of the scenarios, some factors may

cause hazardous behavior. These factors are called triggering
conditions, because they may trigger some specific behav-
ior [36]. Typically, triggering conditions may happen rarely,
so the impact on safety may not be known. In our case, one
or more triggering conditions could be part of a scenario
category. Examples of triggering conditions are heavy rain,
low road friction, poor lighting, or dirty sensor(s). For more
examples, see [36, Annex B.2]. ♦

B. PROBABILITY OF EXPOSURE
To determine the exposure, we estimate the expected number
of encounters of a scenario S ∈ C. Let nC denote the number
of encounters per unit of time of a scenario belonging to
scenario category C. We express the exposure as E[nC], i.e.,
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FIGURE 1. Schematic overview of the risk quantification method presented in this article. The gray blocks represent the six steps of the risk quantification
method explained in Section III. Each of these steps is further explained in Sections III-A to III-F, respectively. The white blocks show the relation between
our proposed method and the three aspects of risk as proposed in the ISO 26262 standard. Each of these aspects is further explained in
Sections IV-A to IV-C, respectively.

the expected number of encounters per unit of time of a
scenario belonging to scenario category C:

E[nC] =
∞∑
n=1

nP(nC = n), (1)

where P(nC = n) denotes the probability of encountering n
scenarios belonging to scenario category C.
We propose to determine P(nC = n), n = 0, 1, 2, . . .,

based on data, because the data provide a quantitative way to
estimate P(nC = n), n = 0, 1, 2, . . .. Furthermore, assuming
that the data are collected with the same conditions as speci-
fied by the ODD of the ADS, the data provides an objective
way to estimateP(nC = n). The probability can be estimated
by counting the number of occurrences of the scenarios in
the data. The method to find the scenarios belonging to C is
explained in [55]: First, tags are used to describe activities,
such as lane changing and braking, and statuses, such as
‘‘leading vehicle’’ and ‘‘driving slower’’. Note that a tag is
typically associated with an object and has a start time and an
end time. Second, by searching for a particular combination
of these tags that describes the scenario category C, the start
and end time of the scenarios are found.
Remark 2: It is not uncommon to assume that
• the occurrence of a scenario S1 ∈ C does not affect the
probability that a second scenario S2 ∈ C occurs,

• the expected rate at which a scenario belonging to C
occurs is constant, and

• two scenarios belonging to C cannot occur at exactly the
same time.

In that case, the probabilityP(nC = n) simplifies to a Poisson
distribution:

P(nC = n) =
λn

n!
exp{−λ}. (2)

Here, λ > 0 is a parameter that determines the rate at which a
scenario belonging to C occurs. Assuming (2), (1) simplifies
to E[nC] = λ. ♦

C. SIMULATION OF SCENARIOS
The next step of the risk quantification is to simulate how
the ADS behaves in the scenarios belonging to scenario cat-
egory C. Let xS ∈ Rd denote the d-dimensional parameter
vector that describes scenario S. The (stochastic) outcome
of a simulation of scenario S is denoted by R(xS), where
R(xS) = 1 means that the simulation of the scenario with
parameters xS ends with an unsuccessful outcome and oth-
erwise R(xS) = 0. An unsuccessful outcome may be a
collision or a situation where the ego vehicle ends off the
road. In addition to R(xS), the output of a simulation run
provides information to rank multiple scenarios from ‘‘most
critical’’ to ‘‘least critical’’ (see Section III-D2) and infor-
mation to estimate the extent of harm in case of a collision
(see Section III-E).

To enable the simulation of the scenarios, a simulation
framework is set up. Figure 2 shows the scheme of the simu-
lation framework, which is represented by the following five
blocks:
• World: the relevant information about the environment
of the system under test. This includes other vehicles.

• Sensors: mapping of the global information to sensor
data that can be used by the ADS.

• ADS: the logic and control laws to perform an automated
function. The ADS uses the information of the sensors
to determine the input to the vehicle. The ADS provides
input to the actuators of the vehicle and information to
the operator, e.g., a beep in case of a collision warning.

• Operator: the actual driver that is behind the steering
wheel or a remote driver.

• Vehicle: the system consisting of actuators for translat-
ing the inputs generated by the ADS and the operator
into vehicle motions and subsystems for enhancing con-
spicuity via, e.g., lighting, signaling, and sounding the
horn.

Note that the simulation framework is easily extended to
consider multiple ADSs, operators, and automated vehicles.
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FIGURE 2. Scheme of the simulation framework.

This could be of interest for testing, e.g., (cooperative) ACC
systems because one might be interested in the performance
of a platoon of vehicles rather than the performance of a single
vehicle.

D. PROBABILITY OF COLLISION
Instead of estimating the risk of an ADS in a specific scenario
with parameters x, the goal is to calculate the risk for all
scenarios from scenario category C. The first step toward the
calculation of the risk is to compute the expected outcome
while averaging over all scenarios in C: ES∈C[R(xS)]. Here,
the subscript S ∈ C indicates that the expectation is computed
while averaging over all scenarios belonging to scenario
category C.

To provide inputs to the simulation, scenarios are identified
and characterized from real-world driving data, e.g., collected
in field operational tests or naturalistic driving studies. In this
way, the scenarios are most likely to represent real-world
driving conditions [11], [13], [56]. One approach would be
to simply simulate the scenarios that are recorded from data,
but this gives two problems. First, because not all possible
variations of the scenarios might be found in the data, the
failure modes of the ADS might not be reflected in the simu-
lations [57]. Second, because the set of extracted scenarios
is largely composed of non-safety critical scenarios, many
scenarios may be required to obtain the required statistical
accuracy of rare events such as collisions [57], [58]. To over-
come these problems, so-called importance sampling can be
applied in order to put more emphasis on scenarios that are
likely to trigger safety-critical situations [57]–[60].

In this section, we propose a nonparametric importance
sampling method without requiring a-priori knowledge of
what might be scenarios that are likely to trigger safety-
critical situations given the ADS under test. First, crude
Monte Carlo sampling is used, see Section III-D1. The non-
parametric importance sampling method based on the simu-
lation results of the crude Monte Carlo sampling is proposed
in Section III-D2.

1) CRUDE MONTE CARLO SAMPLING
With crude Monte Carlo sampling, parameters are sampled
from a probability density function (pdf). Let fC(·) denote
the pdf of the parameters of the scenarios from scenario
category C. Typically, the pdf fC(·) is unknown, so it needs
to be estimated. To estimate the pdf, we use the observed

scenarios that have also been used to estimate the exposure
(Section III-B). Since the shape of the pdf is also unknown
beforehand, assuming a predefined functional form of the pdf
for which certain parameters are fitted to the data may lead
to inaccurate fits unless a lot of hand-tuning is applied. As an
alternative, we propose to estimate fC(·) using Kernel Density
Estimation (KDE) [61], [62]. Let xS1 , . . . , xSN denote the
parameters of the observed scenarios Si ∈ C, i ∈ {1, . . . ,N },
then the density fC(·) is estimated by

f̂C(x) =
1
Nhd

N∑
i=1

K
(
1
h

(
x − xSi

))
. (3)

Here, K (·) is the so-called kernel and h is the bandwidth. The
choice of the kernel function is not as important as the choice
of the bandwidth [63], [64]. We use the often-used Gaussian
kernel,2 but our method does not depend on the choice of
kernel. The Gaussian kernel is given by

K (u) =
1

(2π)d/2
exp

{
−
1
2
‖u‖22

}
, (4)

where ‖u‖22 = uTu denotes the squared 2-norm of u.
The bandwidth h > 0 is a free parameter that controls the

width of the kernel. A larger bandwidth results in a smoother
pdf, but choosing h too large may result in loss of details in
the pdf. Methods for estimating the bandwidth range from
simple reference rules like Silverman’s rule of thumb [67] to
more elaborate methods (for reviews, see [63], [68], [69]).
We use leave-one-out cross validation to determine the opti-
mal bandwidth because this minimizes the Kullback-Leibler
divergence between the estimated pdf, f̂C(·), and the unknown
pdf that underlies the data, fC(·) [63]. With leave-one-out
cross validation, the bandwidth equals:

argmax
h

N∏
i=1

 1
(N − 1)hd

N∑
j=1,j6=i

K
(
1
h

(
xSj − xSi

)). (5)

Note that with the one-dimensional bandwidth h, the same
amount of smoothing is applied in every direction. Therefore,
the parameters are first scaled, such that they have the same
standard deviation in each dimension. Our method can easily
be extended to a multi-dimensional bandwidth [64], [70].

Sampling from f̂C is straightforward. First, an integer
j ∈ {1, . . . ,N } is chosen randomly with each integer hav-
ing equal likelihood. Next, a random sample is drawn from
a Gaussian with covariance h2Id and mean xSj , where Id
denotes the d-by-d identity matrix.

With crude Monte Carlo, the probability of a collision is
calculated by taking the mean of R(xS) over a large number,
NMC, of different realizations of xS :

µMC =
1

NMC

NMC∑
j=1

R
(
xj
)
, xj ∼ f̂C . (6)

2The advantage of the Gaussian kernel is that it gives the possibility to
calculate a metric that quantifies the completeness of the data [65] and to
apply conditional sampling when generating scenario parameters [66]. Both
these topics are out of scope of this article.
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It is easy to see that the crude Monte Carlo result is unbi-
ased, i.e., E[µMC] = ES∈C[R(xS)]. To estimate the potential
approximation error,µMC−ES∈C[R(xS)], the estimated stan-
dard deviation of (6) is commonly used:

σMC =
1

NMC

√√√√√NMC∑
j=1

(
µMC − R

(
xj
))2
. (7)

2) NONPARAMETRIC IMPORTANCE SAMPLING
In general, it can be expected that the probability of collision,
ES∈C[R(xS)], is small. As a result, none or few of the NMC
scenario simulations may end with a collision and the relative
uncertainty, i.e., σMC/µMC, will be high or undefined (in case
none of the scenario simulations ends with a collision). With
importance sampling, the scenario parameters are sampled
from a different distribution— the so-called importance den-
sity — such that the simulation runs focus more on scenarios
in which the probability of collision is high. This will lead
to a lower relative uncertainty of the estimated probability of
collision. We use nonparametric importance sampling, which
means that a nonparametric method is used to estimate the
unknown optimal importance density [71]. More specifically,
as proposed in [71], the nonparametric importance sampling
method employs KDE to construct the importance density.

Let g(·) denote the importance density for sampling the
scenario parameters. If NNIS scenarios are simulated in non-
parametric importance sampling, the estimated probability of
collision is

µNIS =
1

NNIS

NNIS∑
j=1

R
(
xj
) f̂C(xj)
g
(
xj
) , xj ∼ g. (8)

The weight f̂C
(
xj
)
/g
(
xj
)
is used to correct for the bias intro-

duced by sampling from g(·) instead of f̂C(·). If g(x) > 0
whenever R(x)f̂C(x) > 0, then (8) gives unbiased results [72].
The estimated standard deviation of (8) is

σNIS =
1

NNIS

√√√√√NNIS∑
j=1

(
R
(
xj
)
f̂C
(
xj
)

g
(
xj
) − µNIS

)2

. (9)

In the ideal case, we choose g(·) such that the actual
standard deviation of µNIS is minimized. This ideal g(·)
is, however, unknown because it depends on R(·), for
which no functional form is available, and on the unknown
ES∈C[R(xS)]. Therefore, we propose to first conduct crude
Monte Carlo sampling and to base g(·) on this result. Let
{x(1), . . . , x(NMC)} denote the ordered set of scenario parame-
ters from the crude Monte Carlo sampling, such that x(1) and
x(NMC) are the parameter vectors corresponding to the ‘‘most
critical’’ scenario and ‘‘least critical’’ scenario, respectively.
Then, we use the KDE technique described earlier to con-
struct g(·) using the NC < NMC ‘‘most critical’’ scenarios:

g(x) =
1

NChdNIS

NC∑
i=1

K
(

1
hNIS

(
x − x(i)

))
. (10)

Using the Gaussian kernel of (4), it follows that g(x) > 0 for
all x, such that (8) gives an unbiased result. The bandwidth
hNIS is estimated using leave-one-out cross validation, similar
to h in (5).

To order the scenarios from ‘‘most critical’’ to ‘‘least crit-
ical’’, a metric for quantifying the (maximum) risk during
a single simulation run can be used. For illustration pur-
poses, this work uses the minimum absolute Time to Colli-
sion (TTC) [73] during each simulation run. Note that the
presented method can easily be applied with other metrics.
The TTC is defined as the ratio of the distance toward an
approaching object and the speed difference with that object.
In case the simulation of a scenario ends in a collision, the
minimum TTC is 0. Note that NC must be larger than the
number of simulation runs of the crudeMonte Carlo sampling
that ended in a collision and NC must be substantially smaller
than NMC, e.g., an order of magnitude, to really benefit from
the nonparametric importance sampling.

E. CALCULATION OF SEVERITY
Besides the probability of a collision, risk also includes the
extent of the harm in a potential collision. We express the
severity as the expectation of the probability of a moder-
ate injury or worse, corresponding to a Maximum Abbre-
viated Injury Scale (MAIS) [74] level of 2 or higher:
ES∈C[P(I (xS))].

Typically, two different approaches are considered for pre-
dicting the extent of harm in a crash. The first approach
involves simulation of the crash. The simulations as explained
in Section III-C and as used in Section III-D consider the
pre-crash phase and are used to determine initial conditions
and boundary conditions for the simulation of the in-crash
phase. The extent of harm is predicted by simulations of the
in-crash phase using biomechanical models; see [75]–[79]
for an overview. The second approach makes use of phe-
nomenological injury risk functions based on the research of
the relationships between collision parameters and the prob-
ability of an injury [80]. The most commonly used collision
parameter is the impact velocity change [81]–[85]. Other
factors for determining the probability of an injury are belt
usage [81]–[83], occupant age [81], [84], peak acceleration
during the crash [86], airbag deployment [84], and seating
position of the occupants [84]. Typically, logistic regression is
used to model the relationship between collision parameters
and the probability of an injury.

In this article, we assume that a method to estimate the
probability of an injury given a parameterized scenario,
i.e., P(I (xS)), is known. In the case study in Section V,
an example is provided. To estimate ES∈C[P(I (xS))], the
same approach for estimating the expectation of R(x) in (8)
is used:

ES∈C[P(I (xS))] ≈ µinjury =
1

NNIS

NNIS∑
j=1

w
(
xj
)
, xj ∼ g, (11)
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with

w
(
xj
)
= P(I (xS))R

(
xj
) f̂C(xj)
g
(
xj
) . (12)

The estimated standard deviation of µinjury is

σinjury =
1

NNIS

√√√√√NNIS∑
j=1

(
w
(
xj
)
− µinjury

)2
. (13)

F. RISK QUANTIFICATION
The risk associated with a scenario category C can be defined
as the combination of the probability of occurrence of a
scenario of C and the probability of an injury given such a
scenario. Thus, the risk is mathematically defined as:

Risk(C) = E[nC] · ES∈C[P(I (S))], (14)

where E[nC] is defined in (1) and ES∈C[P(I (S))] is
estimated in (11).
Remark 3: The risks of two scenario categories can be

combined as follows:

Risk(C1 ∪ C2) = Risk(C1)+ Risk(C2)− Risk(C1 ∩ C2).
(15)

In general, it is sufficient to estimate the upper bound of
the risk, so in case it is practically difficult to evaluate
Risk(C1 ∩ C2), one can use

Risk(C1 ∪ C2) ≤ Risk(C1)+ Risk(C2), (16)

where equality applies if two scenario categories, C1 and C2,
do not overlap. ♦

IV. RELATION WITH ISO 26262 AND ISO/DIS 21448
In this section, we propose how to quantify the exposure,
severity, and controllability in Sections IV-A to IV-C, respec-
tively. Finally, in Section IV-D, we show that combining these
aspects results in the earlier calculated risk of (14).

A. EXPOSURE
We consider the likelihood of being in a scenario that is
comprised by the scenario category C. Hence, the exposure
is similar to (1):

Exposure(C) = E[nC]. (17)

Note that the ISO 26262 standard [35] also mentions the
‘‘failure mode’’, see Table 1. The ISO/DIS 21448 stan-
dard [36], however, does not consider a specific ‘‘failure
mode’’, which is why we focus on the likelihood of ‘‘being in
an operational situation’’. Here, the ‘‘operational situation’’
is described by the scenario category C.

B. SEVERITY
In Section III-E, a method to compute the severity has been
proposed. Following the reasoning of the ISO 26262 stan-
dard, however, the severity is defined slightly differently, as it
is assumed that there is no operator that can avoid harm or
damage. Therefore, we define severity as follows:

Severity(C) = ES∈C
[
P(I (S))|no operator

]
, (18)

where ‘‘no operator’’ indicates that the backup function of the
operator is not considered in the simulations.
Remark 4: An operator might still be considered in the

simulation. For example, if the ADS only controls the vehicle
in the longitudinal direction, an operator is still in charge of
lateral control. In this example, the notation ‘‘no operator’’
indicates that the driver is not a backup for the longitudinal
control. ♦
Note that similar to the exposure, the severity in (18) is

calculated with respect to a scenario category, whereas the
ISO 26262 standard determines the severity with respect to
a ‘‘hazardous event’’. Our method still allows to evaluate the
severity considering such malfunctioning behavior by simply
injecting thismalfunctioning behavior as part of the sensor(s),
ADS(s), and/or vehicle(s). In a similar manner, any triggering
conditions (see Remark 1) that may cause hazardous behavior
can be included into the simulations.

C. CONTROLLABILITY
To determine the controllability, we compare the probability
of an injury with and without a backup operator. Hence,

Controllability(C) =
ES∈C[P(I (S))]

ES∈C
[
P(I (S))|no operator

] . (19)

If Controllability(C) = 1, then a backup operator cannot
avoid any potential harm. The ISO 26262 standard calls this
‘‘difficult to control or uncontrollable’’. If, on the other hand,
Controllability(C) = 0, then a backup operator is able to
avoid any potential harm.
Remark 5: It might be counterintuitive that a higher score

for Controllability(C) indicates that the situation is less con-
trollable. The ISO 26262 standard also assigns higher scores
for the controllability in case the situation is less control-
lable, see Section II-A. We have chosen to prefer consis-
tency with respect to the ISO 26262 standard, which is why
Controllability(C) = 1 means that the situation is difficult to
control and Controllability(C) = 0 means that the situation is
easy to control. ♦

D. COMBINING THE RISK ASPECTS TO COMPUTE
THE RISK
To compute the risk, the scores for the exposure, severity, and
controllability are multiplied:

Risk(C) = Exposure(C) · Severity(C) · Controllability(C).
(20)

Substituting (17) to (19) into (20) results in the risk of (14).
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Remark 6: The ASIL ranking is obtained by summing the
scores for the exposure, severity, and controllability, while
the risk in (20) is obtained by multiplying the scores for
the exposure, severity, and controllability. Following the ISO
26262 standard, the scoring for the exposure, severity, and
controllability is such that one point difference corresponds
to an order in magnitude. Therefore, loosely said, the ASIL is
proportional to the log of the risk of (20) while the individual
scores of the exposure, severity, and controllability are pro-
portional to the log of (17), (18), and (19), respectively. Since
we can rewrite (20) as

logRisk(C) = log Exposure(C)
+ log Severity(C)+ log Controllability(C),

(21)

(20) is consistent with the way the risk is determined in the
ISO 26262 standard. ♦

V. CASE STUDY
This section explains the details of the case study; the results
are reported in the next section. In Section V-A, the models
for the ADS under test and the human driver that serves
as a backup operator are described. The scenario categories
and triggering conditions are listed in Sections V-B and V-C,
respectively. Section V-D describes the data set. This section
is ended with details on the simulation (Section V-E) and the
severity estimation (Section V-F).

A. AUTOMATED DRIVING SYSTEM UNDER TEST
For the ADS under test, we consider the ACC model
described by Xiao et al. [87]. This ACCmodel is based on the
ACCmodel proposed byMilanés and Shladover [88] but also
includes a safety distance d0. The ACC function adjusts the
ego vehicle speed such that the ego vehicle maintains a safe
distance from a leading vehicle. If there is no vehicle ahead or
the distance between the ego vehicle and the leading vehicle
is large, then the ACC acts like a Cruise Control (CC) that
maintains a constant speed set by the driver. The acceleration
of the ACC is based on the speed of the ego vehicle, ve(t),
the speed of the leading vehicle, vl(t), and the gap between
the leading vehicle’s back and the ego vehicle’s front, g(t),
at time t . If the ACC function is active, the acceleration
of the ego vehicle at time t is described by the following
equations [87]:

ae(t) = max(min(aACC(t), aCC(t)),−dmax), (22)

aACC(t) =

{
k1gerror(t)+ k2verror(t) if g(t) < dACC,
aCC(t) otherwise,

(23)

gerror(t) = g(t)− d0(ve(t))− τhve(t), (24)

verror(t) = vl(t)− ve(t), (25)

d0(u) =


5m if u ≥ 15m/s,
7m if u < 10.8m/s,
75m2/s

u
otherwise,

(26)

aCC(t) = kCC(vset − ve(t)). (27)

The values and descriptions of the parameters dmax, dACC, k1,
k2, τh, and kCC are provided in Table 3. The parameter vset is
the desired speed, which is assumed to be the same as the
initial speed of the ego vehicle in each simulation run, i.e.,
vset = ve(0).

Following Xiao et al. [87], the human driver takes over
control from the ACC in the following circumstances:
• In case of a Forward Collision Warning (FCW). If the
FCW is at time t , then the human driver takes over at
t + tr, where tr is the reaction time of the human driver.

• In case the ego vehicle approaches the leading vehicle
with a relative speed of 15m/s and the gap between
the ego vehicle and the leading vehicle is less than the
perception range, dview.

Similar as in [87], the FCW model is taken from [89] and is
triggered when 1/(1+ exp{−β}) > 0.75, with

β =


−6.09+18.82

ve − vl
g
+0.12ve if vl > 0 ∧ al < 0,

−6.09+12.58
ve − vl
g
+0.12ve if vl > 0 ∧ al ≥ 0,

−9.07+24.23
ve − vl
g
+0.12ve otherwise,

(28)

where al denotes the acceleration of the leading vehicle. The
reaction time of the driver, tr, is distributed according to the
log-normal distribution with a mean of 0.92 s and a standard
deviation of 0.28 s [90].

Similar to Xiao et al. [87], we use the Intelligent Driver
Model plus (IDM+) [92] to model the human driver behavior.
If the human driver is controlling the vehicle and g(t) ≤
dview, then the acceleration of the ego vehicle at time t + tr is
described by the following equations [92]:

ae(t + tr) = max(aIDM(t),−dmax), (29)

aIDM(t) = kamin

(
1−

(
ve(t)
vset

)δ
,

1−
(
g∗(ve(t), ve(t)− vl(t))

g(t)

)2
)
, (30)

g∗(u, v) = s0 + τhu+
uv

2
√
kakd

. (31)

Table 3 provides the descriptions of the constants ka, kd, δ, s0,
and τh. If g(t) > dview, then ae(t + tr) = 0m/s2.

B. SCENARIO CATEGORIES
This case study considers 3 scenario categories named
‘‘leading vehicle decelerating (LVD)’’ (CLVD), ‘‘cut-in’’
(Ccut−in), and ‘‘approaching slower vehicle (ASV)’’ (CASV),
see Figure 3. The relevance of the first 2 scenario categories
is exemplified by the proposed regulation for automated lane-
keeping systems in which these two scenario categories are
mentioned as ‘‘critical scenarios’’ [93]. The scenario category
ASV, which also includes scenarios in which the leading
vehicle is stationary, accounts for more than 25% of all
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TABLE 3. Parameters of the system under test and human driver behavior
model. If the parameter value is taken from literature, the corresponding
reference is mentioned after the value. For the parameters dmax and
dview, different values are considered so-called triggering conditions are
included in the scenarios, see Section V-C.

crashes that involve two vehicles [94]. For each scenario cat-
egory, we will list the parameters that describe the scenarios.
Furthermore, we will describe how the speed of the leading
vehicle is modeled. Since the ego vehicle is controlled by the
ACC or the human driver, only its initial state at t = 0 is
provided.

1) CLVD: LEADING VEHICLE DECELERATING
In an LVD scenario, the ego vehicle is following another
vehicle, which is referred to as the leading vehicle. The
LVD scenario starts as soon as the leading vehicle starts
to decelerate. The simulation of LVD scenario ends if the
distance between the ego vehicle and the leading vehicle is no
longer decreasing or if the ego vehicle and the leading vehicle
collide. To describe an LVD scenario, 3 parameters are used:

• vl,0 > 0: The initial speed of the leading vehicle;
• 1v ∈ (0, vl,0]: The speed difference of the leading
vehicle obtained through decelerating; and

• ā > 0: The average deceleration of the leading vehicle.

To model the speed of the leading vehicle during its deceler-
ation activity, a sinusoidal shape is used:

vl(t) =

 vl,0 −
1v

2

(
1− cos

(
π āt
1v

))
if t <

1v

ā
,

vl,0 −1v otherwise.
(32)

It is assumed that the ego vehicle is following the leading
vehicle at the same speed, i.e., ve(0) = vl,0. This is also
the desired speed, thus vset = vl,0. The initial gap is such
that the ego vehicle is initially driving at a constant speed,
so g(0) = d0(ve(0)) + τhve(0), such that the initial distance
error, gerror(0), is zero, see (24).

FIGURE 3. Schematic representation of the scenario categories
considered in the case study. The left vehicle is the ego vehicle. All
parameters are shown except 1v and ā of the LVD scenario.

2) Ccut−in: CUT-IN
In a cut-in scenario, another vehicle changes lane such that it
becomes the leading vehicle of the ego vehicle. The reason
for the other vehicle to change lane is not considered, i.e.,
it may change lane because the driver of the vehicle assumes
it is safe and appropriate to change lane or because a lane
change is mandatory. A cut-in scenario starts as soon as the
other vehicle enters the lane of the ego vehicle. Similarly
as for an LVD scenario, the simulation of a cut-in scenario
ends as soon as the distance between the ego vehicle and
the leading vehicle is no longer decreasing or if there is a
collision. To describe a cut-in scenario, 3 parameters are used:

• g0 > 0: The gap between the leading vehicle and the ego
vehicle at the moment of the cut-in;

• vl,0 > 0: The initial speed of the leading vehicle; and
• ve,0 > 0: The initial speed of the ego vehicle.

It is assumed that the leading vehicle drives at a constant
speed, thus vl(t) = vl,0. The initial gap and the initial speed
of the ego vehicle are provided by the parameters: g(0) = g0
and ve(0) = ve,0. The initial speed of the ego vehicle is also
the desired speed: vset = ve,0.

3) CASV: APPROACHING SLOWER VEHICLE
In an ASV scenario, another vehicle, referred to as the leading
vehicle, is driving in front of the ego vehicle. Furthermore, the
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leading vehicle is driving slower than the ego vehicle, such
that the ego vehicle is approaching this vehicle. The ASV
scenario starts if the ego vehicle is at a safe distance and ends
if the distance between the two vehicle is no longer decreasing
or if the two vehicles collide. To describe an ASV scenario,
2 parameters are used:

• vl,0 ≥ 0: The initial speed of the leading vehicle; and
• ve,0 > 0: The initial speed of the ego vehicle.

It is assumed that the leading vehicle drives at a constant
speed, thus vl(t) = vl,0. The initial speed of the ego vehicle
is ve(0) = ve,0, which is also the desired speed: vset = ve,0.
The initial gap is g(0) = τh,0ve(0) with τh,0 = 4 s, such that
the initial distance is safe, considering a time headway of 4 s.

C. TRIGGERING CONDITIONS
To illustrate the application of the proposed method for the
risk quantification for the validation of the SOTIF, triggering
conditions are included in the scenarios that may trigger
hazardous situations, see Remark 1. For comparison, the
risk is calculated without a triggering condition and with a
triggering condition.

The first triggering condition is a limited braking capacity
of the ego vehicle. As a result, the maximum deceleration of
the ego vehicle is dmax = 3m/s2. The reason for a limited
braking capacity is not further specified here, but it could be
caused by a loss of road friction, e.g., due to an adverse road
condition.

The second triggering condition is a poor visibility.
It is assumed that the human driver can only see up to
dview = 60m. It is further assumed that the maximum sensor
range of the ACC, dACC, is unaffected. This assumption is
reasonable in case the poor visibility is caused by fog, because
fog has a limited effect on automotive radars that are typically
used for an ACC.

D. DATA SET
To estimate the exposure and the pdfs of the scenario param-
eters, the data set described in [95] is used. The data were
recorded from a single vehicle in which 20 experienced
drivers were asked to drive a prescribed route. Table 4 lists
more information about the drivers. Each driver drove the
50 km route, as shown in Figure 4, 6 times, which resulted in
63 h of data. The route contains urban roads, rural roads, and
highways. Tomeasure the surrounding traffic, the vehicle was
equipped with three radars and one camera. The surrounding
traffic was measured by fusing the data of the radars and the
camera as described in [96].

To extract the scenarios from the data set, the approach
described in [55] is used. LVD scenarios are found by query-
ing for a vehicle that has the tags ‘‘leading vehicle’’ and
‘‘braking’’ at the same time. Cut-in scenarios are found by
querying for a vehicle that initially has the tags ‘‘changing
lane’’ and ‘‘no leading vehicle’’ which changes into the tags
‘‘changing lane’’ and ‘‘leading vehicle’’ [55]. ASV scenar-
ios are found by querying for a vehicle that has the tags

TABLE 4. Information of the participants that drove the 50 km route
6 times.

FIGURE 4. The route, including the driving direction, that was driven by
the drivers.

‘‘leading vehicle’’ and ‘‘driving slower’’, where the tag ‘‘driv-
ing slower’’ indicates that the vehicle has at most 90% of the
speed of the ego vehicle. In 63 hours of driving, 1300 LVD
scenarios, 297 cut-in scenario, and 291 ASV scenarios has
been found.

E. SIMULATIONS
For the simulation, we use the forward Euler method with a
step size of 0.01 s to compute the positions of the ego vehicle
and the leading vehicle. We used Python as the coding lan-
guage. The code is available on a public repository.3 Initially,
the crude Monte Carlo sampling with NMC = 10000 simu-
lation runs is performed where the scenario parameters are
drawn from f̂C(·) of (3). Additionally, if applicable, the driver
reaction time, tr, is sampled from the log-normal distribution
described in Section V-A.

The importance density g(·) of (10) is constructed using
the NC = 200 ‘‘most critical’’ scenarios of the crude Monte
Carlo simulation: the scenarios with the lowest TTC. If appli-
cable, the driver reaction time is also part of the multivari-
ate pdf g(·). Note that these NC ‘‘most critical’’ scenarios
always include scenarios that ended with a collision, because
µMC < NC/NMC = 0.02.

3https://github.com/ErwindeGelder/ScenarioRiskQuantification
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F. PROBABILITY OF AN INJURY
For the calculation of the injury rate, see (11), it has been
assumed that the probability of an injury given a parameter-
ized scenario, P(I (S)), is known. The presented case study
uses the model from Kusano & Gabler [83] to determine
P(I (xS)), since this model is also used in [57], [97]. Kusano
&Gabler [83]model the relationship between impact velocity
change and belt usage with the probability of an injury with
MAIS≥2 in rear-end crashes:

P(I (xS)) =
1

1+ exp{−(β0 + β11v(xS)+ β2b)}
. (33)

Here, β0 = −6.068, β1 = 0.1000 s/m, and β2 =

0.6234 are parameters that are fitted to data of 1406 rear-end
crashes [83]. For the velocity change during a crash,1v(xS),
which depends on the masses of the two objects colliding,
we assume equal masses such that 1v(xS) is half of the
impact speed (i.e., the speed difference at the start of the
crash). If the belt is not used, then b = −1. In this case study,
it is assumed that the belt is always used, so b = 1.

VI. RESULTS
This section provides the results of the case study described
in Section V. First, the exposures of the scenarios are listed.
Next, the severity and controllability are reported. Finally,
we explain the results of the simulations that include the
triggering conditions.

A. EXPOSURE
The bar graph in Figure 5 shows the estimated probability that
the respective scenario is found n times in 1 hour of driving.
Given the number of encounters of the scenarios, we have the
following exposures:

Exposure(CLVD) = E
[
nCLVD

]
= 20.6 h−1, (34)

Exposure(Ccut−in) = E
[
nCcut−in

]
= 4.71 h−1, (35)

Exposure(CASV) = E
[
nCASV

]
= 4.62 h−1. (36)

As mentioned in Remark 2, it is not uncommon to assume
that the probability of encountering n scenarios belonging to a
specific scenario category is Poisson-distributed. To compare
the results with the Poisson distribution of (2), the probability
of the Poisson distribution is also shown in Figure 5. The
parameter λ is estimated by maximizing the likelihood. This
gives the same results as (34) to (36), i.e., λ = 20.6 h−1 for
the LVD scenarios, λ = 4.71 h−1 for the cut-in scenarios, and
λ = 4.62 h−1 for the ASV scenarios. According to the Chi-
square goodness of test, the probability that P

(
nCLVD = n

)
,

P
(
nCcut−in = n

)
, and P

(
nCASV = n

)
are distributed according

to the Poisson distribution is very small (p < 0.001). Hence,
it can be concluded that the assumption that the number of
encounters of the LVD, cut-in, and ASV scenarios is Poisson-
distributed is unrealistic.

B. SEVERITY AND CONTROLLABILITY
As explained in Section III-D, to estimate the probability
of a collision, the pdfs of the scenario parameters need to

FIGURE 5. The bar graph shows how often a scenario of scenario category
CLVD, Ccut−in, or CASV is encountered n times in 1 hour of driving divided
over the total number of hours, 63. For comparison, the dots denote the
Poisson distribution of (2) with the maximum likelihood estimate of λ.

be estimated. In Figures 6 to 8, the results of the pdf estima-
tion are shown. The histograms show the original data that are
used to estimate the pdfs. The multivariate pdfs are estimated
using KDE, see (3). To account for the infinite support of
the Gaussian kernel of (4), the resulting pdfs are set to 0 if
the parameters are outside the valid range of parameters as
mentioned in Section V-B. Next, the pdfs are scaled such that
they integrate to 1. The solid lines in Figures 6 to 8 represent
the marginal distributions of the resulting pdfs.

Table 5 shows the results of the simulation runs. It shows
that the estimated probability of an injury with MAIS≥2
in LVD scenarios is 2.77 · 10−7 with an estimated uncer-
tainty of 1.27 · 10−7. If, however, there would be no backup
from an operator, then this probability is substantially higher:
Severity(CLVD) = 1.12 · 10−5. Therefore, the controllability
score is small (Controllability(CLVD) = 2.47·10−2), resulting
in Risk(CLVD) = 5.72 · 10−6 h−1. In other words, it is
expected that, on average, one collision in an LVD scenario
with a moderate injury or worse happens in 1.75 · 105 h of
driving.

168964 VOLUME 9, 2021



E. de Gelder et al.: Risk Quantification for Automated Driving Systems in Real-World Driving Scenarios

TABLE 5. Results of the case study. µNIS of (8): estimated probability of collision. σNIS of (9): estimated standard deviation of µNIS. µinjury of (11):
estimated probability of an injury with MAIS≥2. σinjury of (13): estimated standard deviation of µNIS. Severity: estimation of (18). Controllability:
estimation of (19). Risk: estimation of (20). Note that for the risk estimation, the exposure of the triggering condition is not considered.

FIGURE 6. Three parameters of the LVD scenarios. The histograms show
the original data and the solid lines represent the marginal probability
distributions of the estimated pdf.

For the cut-in scenario category, the controllability score
is almost 1, indicating that it is unlikely that a human driver
can avoid any potential harm. Although the severity and
exposure are lower than for the LVD scenario category, the
higher controllability score results in a higher overall risk
(Risk(Ccut−in) = 1.75 · 10−5 h−1).

Out of the 3 scenario categories, the ASV scenario category
has the highest severity (Severity(CASV) = 2.12 · 10−5).
According to the simulations, however, the human driver is
able to avoid any harm in almost all cases. Therefore, the

FIGURE 7. Three parameters of the cut-in scenarios. The histograms show
the original data and the solid lines represent the marginal probability
distributions of the estimated pdf.

controllability score is low (Controllability(CASV) =

7.83 ·10−6) and the estimated risk is also low (Risk(CASV) =
7.68 · 10−10 h−1). Note that for the ASV scenario category,
σinjury is almost equal to µinjury, indicating that the relative
uncertainty is high. This indicates that the actual risk could
be an order of magnitude lower than the estimated risk.

C. TRIGGERING CONDITIONS
Table 5 also shows the results of the simulations that
include a triggering condition. The risk in LVD scenarios is
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FIGURE 8. Three parameters of the ASV scenarios. The histograms show
the original data and the solid lines represent the marginal probability
distributions of the estimated pdf.

approximately 50 times higher when considering the trigger-
ing condition ‘‘limited braking capacity’’; so this triggering
condition has a significant impact on the safety during such
scenarios. For cut-in scenarios, the risk is of the same order of
magnitude when considering the triggering condition ‘‘lim-
ited braking capacity’’. The estimated risk in ASV scenarios
is the highest when considering a limited braking capacity.

The triggering condition ‘‘poor visibility’’ does not influ-
ence the risk in LVD scenarios. This is because the leading
vehicle is always within the viewing range of the driver, i.e.,
s0 + veτh < dview. The risk in cut-in scenarios is also not
influenced by this triggering condition. It may be possible
that the vehicle cutting in is at a larger distance than dview,
but in potential risky scenarios that may result in harm, the
vehicle cutting in is at a smaller distance than dview. Hence,
the vehicle cutting in is still in the limited viewing range of
the human driver. For ASV scenarios, the risk is significantly
higher when considering the triggering condition ‘‘poor visi-
bility’’. The severity is the same because the limited viewing
range of the human driver does not affect the ACC, but the
controllability score is significantly higher. This indicates that
it is less likely that the human driver will prevent harm inASV
scenarios when its view toward the leading vehicle is limited.

VII. DISCUSSION
Quantifying the risk in driving scenarios is an important com-
ponent of the overall risk assessment of an ADS. Research
question 1 addresses this by asking how to quantify the risk
of an ADS. The proposed method in Section III answers this
question. To answer Research question 2, we have also shown
how the proposed method for risk quantification contributes
to the risk assessment as proposed in the ISO 26262 [35] and
ISO/DIS 21448 [36] standards by decomposing the risk into

the components exposure, severity, and controllability. In this
section, we provide further interpretations of the results and
we discuss limitations of the presented research that are to be
addressed in future research.

Whereas the ISO 26262 standard addresses functional
safety and the ISO/DIS 21448 standard addressed SOTIF,
for the safe deployment and operation of an ADS, cyberse-
curity [98] needs to be addressed as well. The cybersecu-
rity ensures that an ADS is well protected against security
attacks [99], [100]. This includes, e.g., mitigating privacy-
related risks [101]–[107]. Note that cybersecurity is out-of-
scope of the ISO 26262 and ISO/DIS 21448 standards and,
thus, it is also out-of-scope of the current work. We refer to
the ISO 21434 standard [108] for more information regarding
cybersecurity of ADSs.

The proposed risk quantification serves two purposes. One
purpose is to support the evaluation of whether it is safe
to actually deploy an ADS in real-world traffic. In fact, the
output of the proposed method, i.e., the expected number
of injuries per hour of driving, can be compared with road
crash statistics. Another purpose is to facilitate the design
decisions during the development of an ADS. For example,
based on the high controllability score of the ACC in ASV
scenarios and poor visibility conditions (Table 5), it might
be decided that a subsystem needs to be in place to detect
poor visibility conditions such that the speed is reduced under
these conditions. Also, the severity score might be lowered by
adapting the control logic of the ADS.

The exposure of a scenario category is estimated by count-
ing the number of occurrences of the corresponding scenarios
and dividing this number by the number of hours of driving.
As pointed out in Remark 2, it is not uncommon to assume
that the rate of occurrence is constant such that the occurrence
is Poisson-distributed. Looking at the results in Figure 5,
however, the data do not support the assumption that the
occurrence is Poisson-distributed. This suggests that the rate
of occurrence is not constant and depends on other factors,
e.g., the road layout, the environment (a cut-in is less likely
on a rural road than on the highway), the driver, and the time
of the day. If such factors are different during the deployment
of the ADS, the estimated exposure needs to be reconsidered.

The presented method for risk quantification comes with
limitations that are to be addressed in future research. While
we advertised the use of data such that the risk estima-
tion relies less on possibly subjective opinions from safety
experts, it might be difficult to justify the adequacy of the
data. First, it is important that we have enough data to
accurately determine the pdf of the scenario parameters.4

Second, the data need to match the Operational Design
Domain (ODD) (see Table 2 for the definition) of the ADS.
For example, the data that have been used in the case study
were obtained from driving a specific route multiple times
during daytime and good weather conditions. If the ODD

4To determine whether enough data have been collected to estimate the
pdf accurately, the metric proposed in [65] can be used.
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of the ADS considers the same route during daytime and
good weather conditions, then the data are representing this
ODD. If, however, the ODD is substantially different, extra
arguments are needed to justify that the data still represent
the ODD. The estimated exposure of the scenarios and the
estimated parameter pdfs might not be accurate for the speci-
fied ODD in case the data have been recorded under different
circumstances. As a result, the estimated risk might not be
accurate enough.

Another difficulty involves accounting for the exposure
of the triggering conditions. If the occurrence rate of the
triggering condition can be assumed to be independent of
the scenario category, the calculated risk of (20) — which
does not consider the exposure of the triggering condition —
can simply be multiplied with the estimated exposure of the
triggering condition. It may be difficult, however, to justify
this independence. More research is needed to investigate
the possible triggering conditions, their occurrence rates,
their relations with the occurrence of different scenarios, and
the (possible) dependency between the scenario parameter
values and the triggering conditions.

The proposed method for risk quantification employs sim-
ulations of the ADS response in driving scenarios. As a proof
of concept, we have implemented simulations using simple
models for the system-under-test and the driver behavior
model. On the one hand, using these simple models con-
tributes to the explainability of the results, ensures short simu-
lation run times, and facilitates the reproducibility of the case
study. On the other hand, the fidelity of the simulation results
may be compromised by the simplicity of the simulations.
When using the proposed method to assess the risk of deploy-
ing an ADS in the real world, evidence is needed to justify the
fidelity of the simulation results. Therefore, the development
of high-fidelity simulators for ADSs is an important research
topic; see [27], [30] for an overview. More research is needed
to actually verify the fidelity of such simulators. Note that
it might be possible to combine virtual simulations with,
e.g., hardware-in-the-loop tests, vehicle-in-the-loop tests, and
proving ground tests [109]. For example, proving ground tests
may be used to verify the virtual simulation results and virtual
simulations are used to alleviate the required resources as no
longer all tests have to be performed physically.

The proposed risk quantification is performed with regards
to a given scenario category, possibly including one or
more triggering conditions. To thoroughly review the risk
of deploying an ADS in real-world traffic, many scenario
categories and triggering conditions need to be consid-
ered. It remains an open question how many scenario cat-
egories and triggering conditions are to be considered. The
67 scenario categories described in [54] might be a good
starting point, but it is expected that more scenario categories
are needed for an ADS that aims for deployment in a complex
ODD. The ISO/CD 34502 standard [110], currently under
development, provides a process to determine the relevant
scenario categories and triggering conditions for the safety
validation of an ADS that is active on highways. Thus, once

published, this standard may help to answer the question
of which and how many scenario categories and triggering
conditions are needed for a thorough risk assessment.

VIII. CONCLUSION
Validating the safety of an Automated Driving System (ADS)
is essential to enable the safe deployment of an ADS. Part of
the safety validation is the estimation of the risk of an ADS
when dealing with real-world driving scenarios. The current
work has presented a method to quantify this risk given a
set of driving scenarios that are comprised by a scenario
category. Since a data-driven approach has been proposed,
the method relies less on the possibly subjective inputs from
safety experts. Simulations are employed such that risks
can be assessed prospectively, i.e., before real-life testing.
The method supports the decomposition of the risk into the
3 aspects of risk, i.e., exposure, severity, and controllability,
as mentioned by the leading standards in automotive safety,
i.e., the ISO 26262 and ISO/DIS 21448 standards. Thus, the
current article provides a method that can help engineers
when designing an ADS in compliance with these standards
and when evaluating the compliance of the ADS to these
standards.

The risk quantification method has been illustrated by
means of a case study. In the case study, the risk of a moderate
injury or worse per hour of driving of an ADS is estimated
for 3 scenario categories: leading vehicle decelerating (LVD),
cut-in, and approaching slower vehicle (ASV). In addition
to these scenarios, the scenarios have been complemented
with so-called triggering conditions, such as a poor visibility
conditions. The results have indicated, e.g., that the role of
a human driver as a back-up is essential to reduce the risk
in ASV scenarios and that, therefore, conditions that cause a
poor visibility of the driver’s environment have a significant
impact on the risk.

Future work involves determining the statistics of the trig-
gering conditions and the dependencies between triggering
conditions and the different scenarios. Furthermore, verifi-
cation methods for the fidelity of the simulation results is a
topic of ongoing research. Finally, more research is needed
to determine the relevant scenario categories that are to be
considered for a full risk assessment of an ADS.
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